
Chapman University Digital Chapman University Digital 

Commons Commons 

Physical Therapy Faculty Articles and Research Physical Therapy 

3-2014 

Classifying Lower Extremity Muscle Fatigue During Walking Using Classifying Lower Extremity Muscle Fatigue During Walking Using 

Machine Learning and Inertial Sensors Machine Learning and Inertial Sensors 

Jian Zhang 
Virginia Tech 

Thurmon Lockhart 
Virginia Tech 

Rahul Soangra 
Chapman University, soangra@chapman.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/pt_articles 

 Part of the Kinesiotherapy Commons, Musculoskeletal System Commons, Other Rehabilitation and 

Therapy Commons, and the Physical Therapy Commons 

Recommended Citation Recommended Citation 
Zhang J, Lockhart TE, Soangra R. Classifying lower extremity muscle fatigue during walking using 
machine learning and inertial sensors. Ann Biomed Eng. 2014;42(3):600-612. doi: 10.1007/
s10439-013-0917-0 

This Article is brought to you for free and open access by the Physical Therapy at Chapman University Digital 
Commons. It has been accepted for inclusion in Physical Therapy Faculty Articles and Research by an authorized 
administrator of Chapman University Digital Commons. For more information, please contact 
laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/pt_articles
https://digitalcommons.chapman.edu/physicaltherapy
https://digitalcommons.chapman.edu/pt_articles?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/757?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/938?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/758?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/758?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/754?utm_source=digitalcommons.chapman.edu%2Fpt_articles%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Classifying Lower Extremity Muscle Fatigue During Walking Using Machine Classifying Lower Extremity Muscle Fatigue During Walking Using Machine 
Learning and Inertial Sensors Learning and Inertial Sensors 

Comments Comments 
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Annals of 
Biomedical Engineering , volume 42, issue 3, in 2014 following peer review. The definitive publisher-
authenticated version is available online at DOI: 10.1007/s10439-013-0917-0. 

Copyright 
Springer 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/pt_articles/
72 

https://doi.org/10.1007/s10439-013-0917-0
https://digitalcommons.chapman.edu/pt_articles/72
https://digitalcommons.chapman.edu/pt_articles/72


Classifying Lower Extremity Muscle Fatigue during Walking 
using Machine Learning and Inertial Sensors

Jian Zhang1, Thurmon E. Lockhart1,2, and Rahul Soangra2

1Industrial & Systems Engineering, 557 Whittemore Hall, Virginia Tech, Blacksburg, VA 24061

2School of Biomedical Engineering and Sciences, Virginia Tech, Wake Forest University, 
Blacksburg, VA 24061

Abstract

Fatigue in lower extremity musculature is associated with decline in postural stability, motor 

performance and alters normal walking patterns in human subjects. Automated recognition of 

lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury 

risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been 

previously used for classifying healthy and pathological gait patterns and also for separating old 

and young gait patterns. In this study we explore the classification potential of SVM in recognition 

of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular 

fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded 

and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by 

performance of a squatting exercise until the participants reached 60% of their baseline maximal 

voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue 

conditions based on temporal and frequency information of the signals. Additionally, influences of 

three different kernel schemes (i.e., linear, polynomial, and radial basis function) were 

investigated for SVM classification. The results indicated that lower extremity muscle fatigue 

condition influenced gait and loading responses. In terms of the SVM classification results, an 

accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) 

within the same subject using the kinematic, time and frequency domain features. It is also found 

that linear kernel and RBF kernel were equally good to identify intra-individual fatigue 

characteristics. These results suggest that intra-subject fatigue classification using gait patterns 

from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle 

fatigue.
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Introduction

Localized muscle fatigue is a potential risk factor for slip-induced falls [1] as muscle fatigue 

adversely affects proprioception [2–4], movement coordination and muscle reaction times 

[5] leading to postural instability [6] and gait alterations [1, 7]. As such, identifying “at risk” 

gait patterns associated with fatigue may help in assessment of fatigue related fall risks in 

various environments (especially in the working environments). In this study, we explore the 

classification potential of Support Vector Machines (SVMs) in recognizing gait patterns 

associated with lower extremity muscle fatigue utilizing an inertial measurement unit (IMU) 

[8].

Numerous classification algorithms already exist to provide human motion classification and 

associated movement patterns. Najafi et. al. used gyroscope data and wavelet method to 

analyze the “sit-to-stand” transition in relation to the fall risk [9]. Lee et al. proposed linear 

discriminant analysis method to classify external load conditions during walking [10]. Begg 

et. al. used the SVM classifier to analyze the minimum foot clearance owing to aging [11]. 

The SVM is considered a powerful technique for general data classification and has been 

widely used to classify human motion patterns with good results [12–15]. The advantage of 

SVM algorithm is that it can generate a classification result with limited data sets by 

minimizing both structural and empirical risks [16]. Although numerous studies have been 

devoted to improving the SVM algorithms, little work has been performed to assess the 

robustness of SVM algorithms associated with movement variations and fatigue states. 

Furthermore, existing analysis is mainly based on motion capture systems and force plate 

measurements. While these systems are highly accurate, they do not allow continuous 

monitoring outside laboratory environments [55]. Additionally, the high commercial cost 

and complexity of data analysis in such motion capture systems restrict their use to research 

environments and trained personnel only.

In the current study, we aim to monitor kinematics of walking in unconstrained 

environments using an IMU situated at the sternum during fatigue and no-fatigue walking 

conditions. IMU’s may help in assessment of fall risk induced by fatigue and this mobile 

system may help monitoring people unobtrusively in outside environments (e.g., firefighters 

and construction workers, etc.). Additionally, feature selection methods as well as influences 

of different kernel schemes on classification accuracies were investigated. We hypothesize 

that lower extremity muscle fatigue will influence walking behavior and these subtle 

changes in gait can be classified by supervised machine learning techniques such as support 

vector machines.

Materials and Methods

Participants

Seventeen healthy young adults (9 males and 8 females) participated in this study. The 

participants mean age was 29±11 years, height was in the range of 174±10 cm, and weight 

was 73±12 kg. All participants were healthy, independent and non-sedentary and, were 

formally screened for major musculoskeletal, cardiovascular, and neurological disorders by 

a research coordinator during initial participant contact. Exclusion criteria of this study were 
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factors that could interfere with gait, such as medication use, presence of neuromuscular 

disease and, balance and vision disorders. Informed consent was approved by the 

Institutional Review Board (IRB) of Virginia Tech and was signed by all participants prior 

to the study.

Experimental Procedure

Participants were instructed not to perform any strenuous exercise 48 hours prior to the 

experiment. All experiments were conducted between 11:00 AM and 4:00 PM, and this was 

conducted to control the circadian effects of fatigue. Walking trials were conducted both 

prior and after the fatigue inducement. All walking trials were conducted on a linear 

walkway (15.5 × 1.5 m) embedded with two force plates (BERTEC #K80102, Type 

45550-08, Bertec Corporation, Columbus, OH 43212, USA) in the middle of the walkway. 

A six-camera ProReflex system (Qualysis) was used to collect three-dimensional movement 

data of participants using passive infra-red markers. A total of 5 reflective markers were 

attached on heels and toes of both lower limbs, and one at sacrum of the participants. Two 

IMU’s were affixed on the participants, one at right shank (to normalize the gait cycle) and 

the other at the sternum level using velcro straps and surgical tapes (Figure 1).

All non-fatigue walking trials were preceded by acclimatization in laboratory environment 

and warm-up for about 10 minutes (walking back and forth on the laboratory track). 

Timeline of testing procedure is illustrated in Figure 2.

Non-fatigue Walking Trials

Participants were instructed to walk at their self-preferred pace on the walking track and gait 

characteristics were assessed in the middle portion (5 m) of this walkway. Infrared markers 

on both feet were used to determine step length, step width, heel contact velocity and single 

stance time. Step length (SL) refers to the linear distance in the direction of progression 

between successive points of foot-to-floor contact of the first foot and contralateral foot. The 

step length is calculated from the difference between consecutive positions of the heel 

contacting the floor [17]. The step width is the distance between the rear end of the right and 

left heel centerlines along the mediolateral axis of foot. Heel contact velocity is the 

instantaneous horizontal heel velocity at heel contact is calculated utilizing heel velocities in 

the horizontal direction at the foot displacement of 1/60 s before and after the heel contact 

phase of the gait cycle [17]. Single stance time refers to the time person is standing on one 

foot [18]. And it is one of the most significant gait parameters [19].

Reflective marker affixed on the sacrum is used to determine walking velocity. Heel contact 

and toe-off time events were confirmed using ground reaction forces measured (sampling 

frequency 1200Hz) from the forceplates positioned across the center area of the walkway. 

Ground reaction force measurement was reviewed in every trial for ascertaining foot 

placement in the desired sequence (i.e., left-right heel contacts on the two forceplates). If the 

foot placement did not lie at the center of the force platform the participants were requested 

to repeat the trial. Five good walking trials were collected and each trial consisted of 6–7 

complete gait cycles.
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Fatigue Inducement

A custom built Biodex (Biodex System 3 Dynamometer, Shirley, New York, USA) 

attachment for the shoulders was used to assess maximum voluntary isokinetic exertions 

(MVE) during squatting (Figure 3). The Biodex attachment was designed to measure 

combined torque from the ankles, knees, hips and lower back through vertical motion/force 

exerted via shoulders. Although MVEs were performed using the shoulder attachment with a 

dynamometer during squat protocol, fatigue was induced by holding 5% of their body 

weight in front of themselves by both hands while squatting repeatedly at 22 repetitions per 

minute. An exercise set was set for 5 minutes and was followed by measurement of three 

MVEs using dynamometer. Experimenters did not instruct participants to take break 

between the exercise sets, but it was kept on participant’s choice to start their next new 

exercise set as soon as they felt they were ready for it. The exercise sets continued until the 

participants reached 60% of their baseline MVE; this was categorized as fatigued state (time 

taken by participants was 52±7 minutes to reach this state).

Fatigue Walking Trials

After inducement of fatigue as determined by degradation in MVEs, locations of all five 

infrared markers were re-checked. Participants did not warm-up after isotonic fatiguing 

exercises but were asked to walk again on the walking track at their own preferred pace. All 

gait characteristics were derived similar to that mentioned in non-fatigue walking section 

and five good walking trials were collected. The complete experiment lasted for 3–4 hours.

Instrumentation

The IMU node consisted of MMA7261QT tri-axial accelerometers and IDG-300 (x and y 

plane gyroscope) and ADXRS300, z-plane uniaxial gyroscope aggregated in the 

Technology-Enabled Medical Precision Observation (TEMPO) platform which was 

manufactured in collaboration with the research team of the University of Virginia [20, 21]. 

The data acquisition was carried out using a Bluetooth adapter and laptop through a custom 

built program in LabView (LabView 2009, National Instruments Corporation, Austin, TX). 

Data was acquired with sampling frequency of 120 Hz. This frequency is largely sufficient 

for human movement analysis in daily activities, which occurs, in low bandwidth [0.8–5Hz] 

[22]. The data was processed using custom software written in MATLAB (MATLAB 

version 6.5.1, 2003, computer software, The MathWorks Inc., Natick, Massachusetts) and 

libSVM toolbox [23]. The processor of laptop used for analysis was 2.2 GHz Intel Core i7.

Statistical Data Analysis

A repeated-measure design was used to test changes within-subject in gait parameters from 

normal walking and post fatigue walking trials. A paired sample t-test was used to test the 

gait parameters obtained using camera system and forceplates. Gait parameters such as step 

length, step width, heel contact velocity, and single stance time were computed for all five 

trials around the two forceplates [24].
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Input Data to the SVM Classifier

Kinematic data from the IMU located at the sternum during walking (i.e., representative gait 

cycle) was used as the SVM classifier input. Representative Gait Cycle (RGC) was defined 

as the period between one-foot contact to same foot contact again representing a stride 

duration, which was determined by the angular velocity profiles of the shank IMU. A perfect 

representative gait cycle signal between two easily identifiable events of the same foot was 

chosen for the analysis (Figure 4). RGC started at peak right shank angular velocity and 

terminated at consecutive peak right shank angular velocity. IMU signals from the sternum 

were truncated between the RGC and normalized from 0% (beginning of RGC) to 100% 

(end of RGC).

Training and Testing Sets

For the classification, both training and testing data sets consisted of fatigue and no fatigue 

RGC data. Each normal and fatigue walking trial consisted of 6–7 gait cycles, of which two 

middle RGCs data were extracted from each walking trial. In total, twenty RGCs were 

extracted: ten RGCs were extracted from five normal walking trials and the other ten RGCs 

from five fatigue walking trials. In both intra-subject and inter-subject classifications, 

training set was kept 70% of the total number of sets whereas the remaining 30% was kept 

for testing.

Intra-subject classification—Training set consisted of 14 RGC data sets, 7 from each 

walking condition (fatigue/no-fatigue). The remaining 6 RGC data sets, 3 from each walking 

condition were used as testing sets in intra-subject classification.

Inter-subject classification—Inter-subject fatigue/no-fatigue classification was 

performed using training sets of 238 RGCs and testing sets of 102 RGC data sets.

Feature Selection Methods

General Features—The general features were chosen to include all possible spatial and 

temporal information from the signals. Based on the criterion of minimizing computational 

complexity and maximizing the class discrimination, several key features have been 

previously proposed for SVM classification [25]. All features in this study have been 

extracted from raw signals.

Mean Absolute Value: The mean absolute value of the original signal, x̄, in order to 

estimate signal information in time domain:

(1)

where xk is the kth sampled point and N represents the total sampled number over the entire 

signal.

Zero Crossings: Zero crossing is defined as the number of times the waveform crosses zero, 

in order to reflect signal information in frequency domain.
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Slope Sign Changes: It is the number of times the slope of the waveform changes sign, 

which reflects frequency content of the signal.

Length of Waveform: It represents the cumulative curve length over the entire signal, in 

order to provide information about the waveform complexity.

Dominant Frequency: RGC signal was filtered using Butterworth low-pass filter of 4th 

order with cut-off frequency of 6 Hz. Fast Fourier Transformation (FFT) was carried out on 

the filtered signal and the dominant frequency was defined as the frequency with the highest 

magnitude.

Other general features included mean, standard deviation, maximum, minimum, skewness, 

kurtosis, and energy of RGC signal segments. All of these features would give a measure of 

waveform amplitude, frequency, and duration within a single parameter. Table 1 elaborates 

general features used in this study.

Selected Features—In total, 11 kinematic features were selected from the resultant 

walking acceleration and jerk. Resultant acceleration was calculated from the raw 

accelerometer data:

(2)

where Ax, Ay, Az are accelerations sensed by triaxial accelerometer situated on trunk in a 

period elapsed for one RGC. Jerk is computed as a derivative of resultant acceleration. 

Resultant acceleration and jerk of the trunk segment and their derived features such as mean, 

maximum, minimum, range, energy and dominant frequency while walking are important as 

they provide complete kinematics of the trunk. Helbostad and his colleagues have reported 

significant increase in trunk acceleration due to physical fatigue [7]. Skewness of resultant 

accelerations and jerk provides information of the temporal shift of peak accelerations and 

jerk in RGC derived signals. Jerk cost, as described by the area under squared jerk curve is 

an important measure to estimate the energy economy of walking.

(3)

During walking, minimizing jerk and minimizing energy are believed to be complementary 

performance criteria [26, 27]. Figure 4 illustrates resultant acceleration profiles for a 

complete RGC. We have performed the classification with possible kinematic features, 

which could bring significant changes due to fatigue (Table 1).

Input Data Processing

Preprocessing of features is usually required before using the SVM classifier to maximize 

the classification accuracy. The input features derived from RGC signals were normalized, 

and the dimension of the feature space was reduced using principal component analysis.
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A) Normalizing Input Data—All features values were normalized by combining training 

and testing feature space and dividing all of them by the maximum value of that particular 

feature. In this kind of scaling the input data was kept in range between 0 and 1, and where 1 

was the maximum value of the feature.

B) Dimension Reduction of Feature Space—Principle Component Analysis (PCA) 

[28] was employed to decrease the dimensions. The objective of PCA is to perform 

dimensionality reduction while preserving as much of the randomness in the high-

dimensional space as possible.

Kernel Schemes—A kernel is a function that transforms the input data to a high-

dimensional space where classification is possible. Kernel functions can be linear or 

nonlinear. Kernel selection plays an important role in acquiring high accuracy from SVM 

classification. A good selected kernel may minimize generalization error, and increase 

classification accuracy. The linear kernel function is the simplest kernel function and works 

well when there are many features in the training data. Radial Basis Function (RBF) kernel 

is usually the first reasonable choice as it can nonlinearly map data into higher dimensional 

space. Polynomial kernels are non-stationary kernels and are well suited for normalized 

training data.

Cross-validation—Cross-validation is a standard technique usually adopted for adjusting 

hyper-parameters to improve the quality of its estimates in SVM model. A five-fold cross-

validation scheme was adopted to evaluate the generalizability of the SVM classifier [13, 

29]. In cross-validation procedure, the training data set is uniformly divided into five subsets 

with one used for testing and the other four used for training and constructing the SVM 

decision surface. This process is continued until all subsets are used as the testing sample.

Performance Assessment of SVM Classifier—All SVM models were trained over 

the range of cost parameter, C (2−10 to 210) using linear, polynomial and radial basis 

function kernel. The cost parameter C controls the tradeoff between training error and 

margins. The criterions used to assess the classification performance of SVM classifier 

were:

(5)

(6)

(7)

where TP represents the number of true positive, SVM identified a normal no-fatigued gait 

that was labeled as no-fatigue; TN is the number of true negatives, identified fatigued gait 

data that was labeled as fatigue; FP is the number of false positives, and FN is the number of 
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false negatives, false fatigue identification. While accuracy indicates overall detection 

accuracy; sensitivity is defined as the ability of the SVM classifier to accurately recognize 

no-fatigue condition; and specificity would indicate the SVM classifier’s ability to avoid 

false detection. Schematic diagram of SVM classification algorithm is illustrated in Figure 

5.

Furthermore, Receiver Operating Characteristic (ROC) curve was also used to evaluate 

SVM classifier’s performance. ROC analysis is generally utilized to select optimal models 

and to quantify the accuracy of diagnostic tests. Besides, the Area Under the ROC Curve 

(AUC), which is a representation of the classification performance, was utilized to assess the 

effectiveness of SVM classifier. Further, tests were also conducted to evaluate performance 

of the SVM classifier in three different kernel functions: linear, polynomial and radial basis 

function (RBF) kernels.

Results

Gait parameters were extracted using forceplate and motion capture system as shown in 

Table 2. No significant differences were found for the step length of the participants due to 

inducement of fatigue. However, it was seen that participants adopted wider base of support 

(12% wider) in post fatigue walking trials. Although no statistical significant difference was 

observed in walking velocity, heel contact velocity was significantly increased (p=0.01) in 

post-fatigue walking trials.

The machine learning classification results demonstrated high intra-individual classification 

rates across all three types of kernel (i.e., linear, polynomial and RBF kernel). We found that 

linear (accuracy 97%) and RBF (accuracy 96%) kernels performed equally well in intra-

individual fatigue/no-fatigue classifications (Table 3). And polynomial kernel had the lowest 

classification accuracy (about 88%) amongst all three different types of kernels.

Table 4 shows mean success rates of SVM classifier for inter-subject fatigue classification. 

SVM achieved about 90% inter-subject fatigue classification accuracies with general 

features for identifying fatigue among participants. Selected features from the trunk 

kinematics could achieve a good accuracy of 88%. Additionally, these selected set of 

features were analyzed statistically for both fatigue and no-fatigue conditions.

We found that features of resultant acceleration and jerk such as maximum; minimum, 

range, skewness, and energy along with jerk cost were significantly different for post-fatigue 

walking as reported in Table 5.

Computation time for linear kernel was 70.85 seconds, polynomial kernel required 15.18 

seconds and RBF kernel required 16.59 seconds for classification. The inter-subject fatigue 

classification results from three different kernels are shown in Figure 6. Linear kernel 

defines a linear boundary to achieve classification (Figure 6a). Polynomial kernel utilizes 

polynomials of the original input data to classify post-fatigue walking and no-fatigue 

walking (Figure 6b). It belongs to nonlinear classification, and has more complexity and 

better performance when compared to linear kernel. Radial basis function kernel is the most 
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popular kernel function, and the two curves running through support vectors are the 

nonlinear counterparts of the convex hulls (Figure 6c).

Discussion

In this study we explored the classification potential of SVM in recognition of gait patterns 

utilizing an inertial measurement unit (IMU) associated with lower extremity muscular 

fatigue. Limited information exist in understanding the impact of muscle fatigue on dynamic 

postural control during walking that may be amendable to classification schemes. Our 

results indicate that fatigue effects are evident in individuals’ gait patterns and loading 

responses (as measured by an extracted feature - jerk costs). Additionally, these changes 

although subtle, can provide helpful information for SVM to classify the status of lower 

extremity muscle fatigue.

Fatiguing of the muscles around a joint may have inhibited the joint’s neuromuscular 

feedback and synergism between joint proprioception leading to instability and gait changes 

[30–38]. The current results suggest that single stance duration is decreased in post-fatigue 

walking trials which are similar to previous findings [39]. During stance phase of the gait 

cycle, proprioceptive input from extensor muscles and mechanoreceptors in the sole of the 

foot provide the loading information [40] to the central nervous system. Thus, the reduced 

stance duration decreases foot-loading information through afferent sensory and 

proprioceptive mechanoreceptors, such as Golgi-tendon units, muscle spindles, and joint 

receptors, and may have adversely influenced motor control of the lower extremity during 

walking. Additionally, fatigue inducement increased step width [8], which may be 

associated with modulation of self-selected pace and loss of proprioception due to fatigue 

[41], or due to change in motor control schema with adoption of other compensatory 

strategy to increase stability. Furthermore, inducement of fatigue also increased heel contact 

velocity (HCV) in post-fatigue walking trials [3]. Considering HCV is a kinematic gait 

parameter that can drastically alter the friction demand (by change in required coefficient of 

friction) [51] and influence the likelihood of slip-induced falls [1, 42, 43], fatigue 

inducement in lower extremity may ultimately increase slip-induced fall risks. Hence, our 

findings support the previous studies by Helbostad et. al. [7] and Johnston et. al. [30], 

suggesting that lower extremity fatigue impairs gait performance and locomotor control.

Gait adaptations associated with lower extremity muscle fatigue, as described above, may 

influence the energetics of walking and these changes in energy costs associated with 

fatigued state may be utilized to classify fatigue/no-fatigue gait conditions. Assuming, 

walker’s body mass to be a point mass and, a rigid strut connecting it to the point of ground 

contact. This point mass reaches the highest point at the middle of the stance phase [44–46]. 

The trajectory of whole body center-of-mass (COM) follows a sinusoidal path along vertical 

direction [44–47], which may have been influenced due to fatigue. Similarly in walking, 

accelerometer located at the trunk allowed the measurement of mechanical work done 

during walking (i.e., inducement of fatigue and its associated relationship to economy during 

walking as assessed by the jerk cost). Energy is defined as the external work done by 

muscles to maintain locomotion and is highly correlated with vertical displacement of COM. 

An approach to minimize vertical movements of the COM (at trunk level) was detailed by 
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Inman and his colleagues [48], in which they identified several mechanisms involved in 

flattening the trajectory of the COM [48, 49], including sagittal plane knee flexion and 

extension during stance phase. However, with fatigue, flattening of the trajectory of the 

COM may not be efficient due to the kinematics of lower extremity joints. For example, 

Kellis and Liassou found that ankle muscle fatigue decreased ankle dorsiflexion, while knee 

fatigue increased knee flexion at initial heel contact [50]. In addition, they reported 

increased hip extension following knee fatigue and increased plantar-flexion following ankle 

muscle fatigue, resulting in higher vertical movements in post-fatigue walking than that of a 

no-fatigue walking condition.

Hreljac and Martin concluded in their study that minimum jerk movements should also 

minimize energy consumption during walking [27]. When lower extremity muscle fatigue 

was induced, high abruptness in the trunk acceleration (Jerk) was noticed [51]. Fatiguing of 

the muscles in lower extremity joints may influence the joint’s neuromuscular feedback and 

synergism between joint proprioception and muscular function leading to instability [30–38] 

and stiffness [1, 52]. However, constant muscular stiffness has to be maintained to minimize 

jerk during repetitive, skilled movements [53]. It is seen that jerk at heel contact increased in 

magnitude by 2.3 folds and jerk cost increased by 2.8 folds in post-fatigue walking. Higher 

resultant accelerations (two folds higher range of acceleration) as well as higher signal 

energy magnitudes (5 folds higher signal energy) in post-fatigue walking trials were 

observed in our study. In essence, it appears that in post-fatigue walking trials, the total 

energy at the sternum level goes through large fluctuations during stance and the elastic 

energy storage is reduced; thus, resulting in higher energy dissipation through fluctuations at 

the trunk level (similar to catching a baseball with fully-extended elbow with greater impact 

(fatigued) vs. flexed elbow with less impact (non-fatigued)). It appears that SVM can map 

this nonlinear inter-feature relationship using the kinematics of the trunk for better 

discrimination of fatigue and no-fatigue states.

Previous researchers have adopted various gait feature extraction methods for SVM 

classification. Begg and coworkers differentiated elderly and young gait patterns using 

general features on minimum foot clearance data [29]. In another study, they selected kinetic 

and kinematic gait features for classification [31]. Whereas Eskoifer et. al. adopted 

concatenated waveforms from infrared markers to classify young and elderly gait [72]. 

Results of our investigation (Table 3 and Table 4) indicate that features extraction methods 

influenced classification accuracy. In inter-individual and intra-individual fatigue 

classification, general feature input performed with higher classification accuracy followed 

by selected feature input. In essence, general features exhibited superior classification 

accuracy and had important gait information to classify fatigue, on the contrary, the selected 

feature extraction method lacked peculiar information relevant to achieving higher 

classification results.

Three different types of kernels were employed in SVM classifier: linear, polynomial, and 

RBF. Both linear and RBF kernels performed well in intra-individual fatigue/no-fatigue 

classifications, which complied with Lee and Grimson’s report [54], showing that linear 

kernel performs better than polynomial kernel in SVM gait recognition. However, for inter-

individual classification, RBF performed better than the other two kernels. Considering the 
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computational cost, RBF and polynomial kernels need less time compared to linear kernel in 

the same conditions. As such, RBF kernel is the most promising kernel function in the 

fatigue classification schemes, and it may also provide better applicability to real time 

system implementation.

Limitations

Conclusions based on this study should be considered in context of the limitations. Due to 

limited number of testing and training data sets, a separate cross-validation set was not 

employed for generalization of regularization parameters. An IMU was placed at the 

sternum, which could only approximate kinematics of trunk center-of-mass, but does not 

accurately quantify its kinematics as this placement position may miss smaller nuances 

associated with fatigued data. Thus, the results of this study should be limited to kinematics 

of the sternum placement of participants and not to kinematics of trunk COM. It is also quite 

possible that during our intense fatiguing protocol, squatting exercises might have lead to 

some extent of anterior knee pain in few subjects, which would have added to another 

dimension in to altered gait (pain avoidance), beyond the altered characteristics of simple 

muscle fatigue. Another limitation of this study is that no feature selection method was used 

to extract optimal set of features. In addition, order effects are an inevitable limitation in all 

fatigue experiments. Fatigue level may change from day-to-day basis in humans and it also 

follows circadian rhythm and thus time of experiment may influence fatigue levels.

Conclusion

Inertial measurement units can assist in identification of localized muscle fatigue. Intra-

subject fatigue classification results in this study ranged from 93–98%, thus body worn 

sensors can potentially open doors for personalized monitoring on a regular basis to identify 

“at-risk” gait. SVMs are powerful machine learning tools applicable to the identification of 

post fatigue gait patterns by using a set of gait features relevant to the kinematics of the 

trunk during walking.

While the algorithms allow for online implementation, it is necessary to determine an 

optimal feature set that could automatically identify the most significant kinematic changes 

in gait after inducement of fatigue. Thus, we conclude that fatigue affects kinematics and 

gait characteristics, which can be assessed by an IMU using support vector machines.
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Figure 1. 
Attachment of IMU sensors at (a) shank and (b) sternum level using velcro strap.
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Figure 2. 
Timeline of testing procedures. Practice trials were performed with the dynamometer 

followed by data collection for maximum voluntary torque and normal walking. Before 

inducing fatigue warm up exercises were conducted. Participants were considered fatigued 

when their isokinetic MVC was below 70% of initial isokinetic values for all three trials.
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Figure 3. 
Customized Biodex attachment for measurement of maximum voluntary exertions.
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Figure 4. 
Two consecutive time epochs when right shank attains peak angular velocities were chosen 

during walking as input gait pattern data mimicking gait cycle and was defined as 

Representative Gait Cycle. The R-GC data from IMU situated at trunk was truncated for 

extraction of features values to SVM.
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Figure 5. 
Schematic diagram of procedure of SVM classification.
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Figure 6. 
Inter-subject fatigue classification results via three different kernels: (a) linear kernel; (b) 

polynomial kernel, and (c) radial basis function kernel.
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Table 1

Three feature sets were used as inputs to SVM. 1) General features, 2) Selected features.

General features Domain knowledge based selected
features

Data input
for feature
extraction

Accelerometer (Ax, Ay, Az)
and gyroscope (Gx, Gy, Gz) signals in all
3 directions of normalized RGC

- Resultant acceleration

- Resultant Jerk 

• Mean

• Standard deviation

• Maximum

• Minimum

•

Mean absolute value 

• Skewness

• Kurtosis

• Energy

• Number of slope sign changes

• Number of zero crossings

• Length of waveform

• Dominant frequency using low-pass filter and FFT

Resultant acceleration features

• Skewness (temporal shift)

• Energy

• Dominant frequency

• Maximum acceleration

• Minimum acceleration

• Range of acceleration

Resultant jerk features

• Skewness (temporal shift)

• Mean jerk at heel contact

• Absolute maximum jerk

• Absolute minimum jerk

• Range of jerk produced abs (max-min)

•

Jerk cost 

Ann Biomed Eng. Author manuscript; available in PMC 2015 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 22

Table 2

Step length (mm), step width (mm), heel contact velocity (mm/sec), walking velocity (m/sec) and stance 

duration (seconds) were evaluated for no fatigue and post fatigue walking trials. The data provided is in mean 

± SD for the group and paired t-test was used with alpha set at 0.05.

No fatigue Post fatigue p-value

Step length (mm) 755±59 748±58 0.22

Step width
(mm)

110±32 123±38 0.02*

Heel contact velocity
(mm/sec)

569±110 637±122 0.01*

Walking velocity
(m/sec)

1.41±0.15 1.40±0.16 0.90

Single stance time (sec) 0.68±0.04 0.66±0.04 0.005*
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Table 3

Intra-subject fatigue classification using IMU derived features. Accuracy, sensitivity, specificity and AUC 

(area under the Receiver operating curve) are tabulated for three kinds of feature selections methods and three 

kernels.

Intra-subject classification

Linear Polynomial RBF

General
Features

Accuracy 0.97 0.88 0.96

Sensitivity 0.98 0.92 0.98

Specificity 0.96 0.84 0.94

AUC 0.98 0.98 0.98

Selected
Features

Accuracy 0.93 0.86 0.93

Sensitivity 0.90 0.82 0.88

Specificity 0.96 0.90 0.98

AUC 0.96 0.94 0.97
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Table 4

Inter-subject fatigue classification using forceplate and IMU derived features. Accuracy, sensitivity, 

specificity and AUC (area under the Receiver operating curve) are tabulated for three kinds of feature 

selections methods and three kernels.

Inter-subject classification

Linear Polynomial RBF

General
Features

Accuracy 0.88 0.90 0.90

Sensitivity 0.88 0.92 0.92

Specificity 0.88 0.88 0.88

AUC 0.93 0.92 0.95

Selected
Features

Accuracy 0.85 0.85 0.88

Sensitivity 0.80 0.82 0.86

Specificity 0.90 0.88 0.90

AUC 0.93 0.92 0.94
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Table 5

Selected features from IMU were computed for no-fatigue and post fatigue walking and statistical analysis is 

reported.

Gait characteristics
from IMU

Features No-fatigue
walking

Post-fatigue
walking

p-value

Resultant
acceleration

Maximum [g] 0.201 0.428 <0.0001

Minimum [g] 0.042 0.127 <0.0001

Range [g] 0.157 0.301 <0.0001

Skewness 0.209 0.078 0.0333

Energy [g2. sec] 2.144 10.150 0.0006

Dominant
frequency [Hz]

1.494 1.558 0.1584

Jerk Maximum [g/sec] 0.010 0.022 <0.0001

Minimum [g/sec] 0.009 0.018 0.0003

Range [g/sec] 0.021 0.041 <0.0001

Skewness 0.185 0.317 0.0493

Jerk at Heel
Contact [g/sec]

0.003 0.007 <0.0001

Jerk cost [g2/sec] 0.007 0.022 0.0233
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