Increasing Response Time and Response Evaluation Time Compensates for Information Processing Difficulties in Persons at Risk for Alcoholism

Yasmin Akbari
Chapman University, akbar102@mail.chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/cusrd_abstracts

Part of the Family, Life Course, and Society Commons, and the Substance Abuse and Addiction Commons

Recommended Citation
http://digitalcommons.chapman.edu/cusrd_abstracts/63

This Poster is brought to you for free and open access by the Office of Undergraduate Research and Creative Activity at Chapman University Digital Commons. It has been accepted for inclusion in Student Research Day Abstracts and Posters by an authorized administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.
Increasing Response Time and Response Evaluation Time Compensates for Information Processing Difficulties in Persons at Risk for Alcoholism

Yasmin Akbari
Department of Psychology
Steven Schandler Ph.D., Faculty Mentor

Introduction
Children with a parental history of alcoholism display the greatest risk for developing alcohol abuse when they become adults. This risk appears associated with altered processing of visuospatial information. Our previous studies both support the presence of attention and encoding differences between adult children of alcoholics (ACOA) and persons who are not ACOAs (NACOA) and demonstrate the utility of incorporating direct evaluations of these operations to better understand these differences. The results support the hypothesis that the ACOA's information processing is disrupted by hyperaroused and reduced stimulus accommodation in the attention and orienting systems. These disruptions slow down and do not block information attention and encoding. Once the information is stored, its retrieval may be more difficult due to competition with continued information flow from the hyperaroused input systems. The effect would be most pronounced in those information processing forms most affected by ACOA-status, e.g., visuospatial learning. If the disruption results from inefficiency and delays in the ACOA's attention systems, then these persons may show enhanced and, perhaps, normal visuospatial learning if they are given more time to process information. Several investigators have incorporated the “tuning” of response periods and response evaluation periods to enhance general processing and visuospatial processing. Modifications of response period and response evaluation period have been reported as beneficial to persons with attentional disorders. The present study explored whether the ACOA’s disruptions in visuospatial information processing can be altered and reduced by the varying response times and response evaluation periods.

Method
Participants
The study is in progress. To date, data are available for 96 ACOAs and 96 NACOAs, with each group equally partitioned into four experimental conditions. Participants were healthy, light social drinkers, with no history of alcohol or drug treatment. They were matched on relevant cognitive, neurological and psychological criteria. ACOA/NACOA status was determined using self-reports, the Children of Alcoholics Screening Test, and the Family History-Research Diagnostic Criteria.

Apparatus
Both visual and verbal learning task stimuli were computer-generated on another computer slave to the main data acquisition computer. Using one computer to handle event sequencing and data acquisition and another to handle graphical stimulus generation, allowed very accurate event timing. The participant responded verbally to the learning task. Their verbal responses were monitored by a research technician. Determination of a response occurrence and timing was accomplished via a time- and delay-operated digital switch directed to and evaluated by the computer. If the computer determined that a response had occurred within the time window, the research technician was queried by the computer as to whether the response was correct or an error.

Procedure
All participants received individually in a single experimental session. After providing written informed consent, participants received the experimental learning tasks. One task required the subject to learn the positions of eight “nonsense shapes” on an eight position grid (visuospatial learning). The design was essentially paired-associate, with the shape serving as the stimulus and its grid position serving as the response. In a second verbal paired-associate task participants learned a list of eight letter-word pairs (verbal learning). The letter served as the stimulus while the word served as the response associate. During the presentation of the stimulus, participants were required to verbally state the response associate grid position of word. The correct grid position or word associate was then presented to the subject. The eight different shape/grid positions or letter/word pairs were arranged and randomly presented in trial blocks with shape/grid or letter/word pairs presented randomly with each. A random 9 – 15 intertrial interval was used. The learning criterion was two contiguous, correct trials. Learning continued until the criterion learning point was achieved. A three minute rest period separated the learning of the first and second tasks. Presentation order of the visuospatial and verbal task was counterbalanced across subjects.

The study is in progress. To date, data are available for 96 ACOAs and 96 NACOAs, with no history of alcohol or drug treatment. The study is in progress. To date, data are available for 96 ACOAs and 96 NACOAs, with no history of alcohol or drug treatment.

Results

Data Collection and Analysis
Learning performance data were collected, evaluated and stored real-time by the data acquisition computer. The data were analyzed using MANOVA with planned comparisons.

Table 1: Mean (standard deviation) visuospatial and verbal learning data (Trials to Criterion) for persons who are not adult children of alcoholics (NACOA, n = 96) and who are adult children of alcoholics (ACOA, n = 96).

<table>
<thead>
<tr>
<th>Group</th>
<th>VISUOSPATIAL (n = 48 / Group)</th>
<th>VERBAL (n = 48 / Group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACOA</td>
<td>6.9 (0.72)</td>
<td>5.5 (0.70)</td>
</tr>
<tr>
<td>ACOA</td>
<td>8.8 (0.59)*</td>
<td>5.6 (0.81)</td>
</tr>
</tbody>
</table>

Table 2: Mean visuospatial learning data (Trials to Criterion) for each learning condition (n = 12) for persons who are not adult children of alcoholics (NACOA) and who are adult children of alcoholics (ACOA).

<table>
<thead>
<tr>
<th>Group (n = 12/cond)</th>
<th>Short response /Short review</th>
<th>Long response /Short review</th>
<th>Short response /Long Review (“Normal”)</th>
<th>Long response /Long Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACOA</td>
<td>8.1</td>
<td>5.9</td>
<td>6.9</td>
<td>5.6</td>
</tr>
<tr>
<td>ACOA</td>
<td>9.7</td>
<td>6.8</td>
<td>8.6*</td>
<td>6.4</td>
</tr>
</tbody>
</table>

* p < .05

Conclusions
The data support the selectivity and sensitivity of visuospatial information processing for differentiating cognitive operations between ACOAs and NACOAs. Further, visuospatial processing appears sufficiently sensitive to monitor disruptions and enhancements in ACOA information processing associated with modifications in the parameters of the information processing task. The literature indicates that cognitive rehabilitation paradigms that modify information processing demands and operations can be effective both in identifying which operations are deficient and in compensating for the deficiencies.

The objective of this study was to determine if alterations of visuospatial information processing parameters do reduce or remove the information processing disruptions experienced by the sober ACOA. The parameters for optimizing information delivery to achieve maximum encoding and storage have been well-developed. The present data show that both NACOA and ACOA benefit from longer response and review periods. There findings are consistent with information processing theory. However, it appears that, compared to the NACOA, the ACOA benefits most from a lengthening of the response period. The findings support the implementation of “tuning” information processing parameters to compensate for pre-existing disruptions related to ACOA-status. This outcome could allow development of more accurately focused preventive strategies for persons at higher risk for alcoholism, reducing or eliminating what is now a 14 times greater probability that these persons will become chronic alcohol and substance abusers who produce high risk off-spring. Further, the ability to precisely adjust information processing dynamics and measure their outcomes on learning and performance would provide a valuable metric for objective determination of intervention and prevention program effectiveness.

Acknowledgements
This study was supported by a grant from the Alcohol Beverage Medical Research Foundation awarded to Steven Schandler, Ph.D.

References