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County-Level Factors That Influenced the Trajectory

of COVID-19 Incidence in the New York City Area

Ashley Wendell Kranjac and Dinko Kranjac

More than a century of research has shown that sociodemographic conditions affect infectious disease transmission. In

the late spring and early summer of 2020, reports of the effects of sociodemographic variables on the spread of COVID-

19 were used in the media with minimal scientific proof attached. With new cases of COVID-19 surging in the United

States at that time, it became essential to better understand how the spread of COVID-19 was varying across all segments

of the population. We used hierarchical exponential growth curve modeling techniques to examine whether community

socioeconomic characteristics uniquely influence the incidence of reported COVID-19 cases in the urban built envi-

ronment. We show that as of July 19, 2020, confirmed coronavirus infections in New York City and surrounding areas—

one of the early epicenters of the COVID-19 pandemic in the United States—were concentrated along demographic and

socioeconomic lines. Furthermore, our data provides evidence that after the onset of the pandemic, timely enactment of

physical distancing measures such as school closures was essential to limiting the extent of the coronavirus spread in the

population. We conclude that in a pandemic, public health authorities must impose physical distancing measures early

on as well as consider community-level factors that associate with a greater risk of viral transmission.

Keywords: COVID-19, SARS-CoV-2, Community health, Public health preparedness/response, Epidemic

management/response

Introduction

The presence of SARS-CoV-2 was initially detected in
Wuhan, China, in December 2019.1 Since then, the

outbreak of COVID-19, the disease caused by SARS-CoV-2,
has spread worldwide.2 As of July 19, 2020, the United States
found itself atop the list of countries most heavily impacted

by the pandemic, in terms of both total diagnoses and total
fatalities.3 Within the United States, the residents of the state
of New York were, until mid-May of 2020, disproportion-
ately affected by COVID-19, with New York City account-
ing for the vast majority of cases and deaths in the country.4

Following the first confirmed New York case in March
2020, the incidence of COVID-19 in and around New
York City followed an alarming exponential rise.4 This
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upward trend, however, was not uniformly patterned, as
evidenced by the substantial spatial heterogeneity of con-
firmed cases.5 Larger population size increases the potential
for virus transmission and may, in part, account for geo-
graphic differences in numbers of COVID-19 cases.6

However, in addition to the readily predictable effects of
population concentration, communities also exhibited clear
stratification along dimensions of demographic and socio-
economic characteristics, such as poverty, that associate with
vulnerability and, in turn, influence disease patterning.7

Relevant to our study, published reports, such as those
discussed by Quinn and Kumar,8 indicate that social con-
ditions and community-level characteristics affect the in-
cidence of numerous communicable diseases. Indeed, social
epidemiologists and medical sociologists argue that indi-
viduals and groups possessing fewer social, educational, and
economic resources may prove less able to avoid areas where
infectious disease runs rampant.6-8 Notably, counties in the
New York City area are some of the most racially and
ethnically diverse in the world.9 The population of Queens
County in 2019, for example, was 26.9% Asian, 20.7%
Black, 28.2% Hispanic, and 24.2% White.9 Moreover,
levels of poverty also vary substantially across counties in
the New York City area.9 In 2019, for example, 27.3% of
people residing in Bronx County, compared with 5.8% of
those in Nassau County, lived in poverty.9 In the current
study, we proposed that differences in existing demo-
graphic, socioeconomic, and structural variables may have
contributed to community-level differences in COVID-19
infection rates in the New York City area.

Here, we used an index of concentrated disadvantage as a
socioeconomic indicator of the individual’s county of resi-
dence. Concentrated disadvantage is a multidimensional
population-level measure that is typically constructed using
several components of deprivation, such as mean levels of
educational attainment, levels of poverty, rates of unem-
ployment, racial/ethnic composition, percentage of female-
headed households, and percentage of individuals receiving
public assistance.10 It is important to note that measures of
concentrated disadvantage are known to independently as-
sociate with disease patterning, including infectious disease
transmission,11 but data specific to COVID-19 outbreaks are
inconsistent.11-15 More specifically, findings vary substantially
by the modeling technique used, inclusion or exclusion of
independent variables, granularity (eg, county level vs state
level), and domain of the outcome being measured (eg,
concentrated disadvantage vs social vulnerability index).11-15

Our study adds to the existing literature and helps clarify the
impact of county-level demographic and socioeconomic dis-
parities on COVID-19 incidence in the New York City area.

Methods

Our primary outcome of interest was the spread of
COVID-19 across 7 counties in the New York City area.

We extracted data on the first recorded case in each county,
followed by the number of daily confirmed cases per
county, from USAFacts, which confirms county-level data
by directly referencing both state (New York State De-
partment of Health) and local (New York City Department
of Health and Mental Hygiene) public health agencies.16

We measured time as the number of days since the first
diagnosed case per county, and included K-12 school clo-
sure dates in the analysis to account for county-by-county
variations in time of enactment of physical distancing
measures since the first reported case.17,18 We included a
spatial lag composed of an inverse-distance spatial weight-
ing matrix to account for dependencies in counties that are
geographically adjacent. We used Stata version 16 (Stata-
Corp, College Station, TX) for our analyses.

County-level measures of socioeconomic factors were
generated using data from the 2014-2018 American
Community Surveys.9 Measures included total population
size, as an offset to denote the size of the population at risk;
median age; and percentages of adults with less than 12
years of education, Black residents, individuals below the
federal poverty level, individuals receiving public assistance,
female-headed households, and the population unem-
ployed. We followed Sampson et al10 to generate a stan-
dardized index variable of concentrated disadvantage. We
used the first loading of a principal components factor
analysis on all the county-level characteristics described,
with the exception of population size and median age, to
generate an overall z-score transformed index ranging from
lowest disadvantage (z-score = -1.00) to highest disadvan-
tage (z-score = 2.09). The eigenvalue of this index was
greater than 1, and internal consistency, as measured by
Cronbach alpha, was high at 0.92 (Table 1). We then used
this index of concentrated disadvantage along with median
age and a measure of population size as county-level so-
cioeconomic indicators.

Our aim was to uncover whether the rate of viral trans-
mission varied by the index of concentrated disadvantage
once the virus entered a county. Because we were analyzing
relatively rare events within small units, we tested the
impact of distinct sociodemographic environments on

Table 1. Results From the First Loading of a Principal Components
Factor Analysis Across 7 New York Counties

Concentrated Disadvantage
Variable Factor

% adults <12 years education 0.35
% Black residents 0.13
% below poverty line 0.14
% on public assistance 0.10
% female-headed families 0.19
% unemployed 0.12

Eigenvalue 6.64

Data are from the United States Census Bureau.9
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COVID-19 counts using hierarchical Poisson exponential
growth curve modeling techniques that could account for
overdispersion and correlation in the number of cases by
county. All models used maximum likelihood estimation with
adaptive quadrature that adjusted for problems that would
otherwise downwardly bias the estimated standard errors.19

A prior report,20 as well as our exploratory analyses, in-
dicate that due to nonlinearity, time is most appropriately
captured by a cubic time function, and thus we present
only results from these models. We specify that these
counts have variable exposure by county population and
thereby make the analysis one of COVID-19 rates.21 Since
COVID-19 infection occurs at most once for each con-
firmed case, and population total is included as an offset to
denote the size of the population at risk of infection, we
refer to the coefficients in our models as incidence rate
ratios (IRRs).21 In the models, time points are nested
within counties. The fully specified level 1 model fits the
number of cases per day as a function of time across ob-
servations for each county, while simultaneously account-
ing for variation in the enactment of the physical distancing
measures and a spatial lag. The fully specified level 2 model
fits the level 1 intercept and coefficients across all counties
as a function of the county-level characteristics. All models
treat the intercept as random across counties.

Results

Supplementary Table 1 (www.liebertpub.com/doi/suppl/
10.1089/hs.2020.0236) displays the number of confirmed
COVID-19 cases and the estimated means and standard
deviations of the covariates for each county. As of July 19,
2020, Queens County had the highest number of reported
cases (n = 67,007), followed by Kings County (n = 61,432),
whereas New York County had the lowest number of re-
ported cases (n = 29,731). Enactment of K-12 school clo-
sures across the state began on March 16, 2020, which was
9 days after the first reported case in Bronx and Suffolk
counties, but 15 days after the first reported case in New
York County. The median age of the population varied
significantly across counties, from a high of 42 years in
Nassau County to a low of 34 years in Bronx County.
Population size also varied across counties, with Kings
County being the most populated (2,559,903). Relative to
other counties, Bronx County and Kings County were the
most disadvantaged, with the highest percentages of the
population below poverty (26.1% and 17.1%, respective-
ly), the highest unemployment rates (6.3% and 4.4%), and
the highest percentages of the population receiving public
assistance (7.9% and 4.8%). On the other end of the
spectrum, Nassau County was the least disadvantaged rel-
ative to other counties, with the lowest percentage of the
population below poverty (4.0%), the lowest unemploy-
ment rate (2.8%), and the lowest percentage of the popu-
lation receiving public assistance (1.3%).

Because we were interested in trajectories of viral trans-
mission once the virus entered a county, we used the first
recorded case in each county as the baseline of that trajec-
tory. We then estimated the growth patterns of COVID-19
incidence across counties over time, with the spatial lag and
physical distancing measures included at model level 1 and
the county-level characteristics of median age and concen-
trated disadvantage included at model level 2. The results
from our hierarchical Poisson cubic growth curve models
are shown in Table 2. The exponentiated regression coef-
ficients are displayed in terms of IRR and represent the
relative change in the rate of infection per standardized
population size over time. We controlled for population
size in all models.

As shown in Table 2, from the onset of the outbreak,
without the physical distancing measures enacted, and
when holding population size and spatial differences con-
stant, each standard deviation increase in the linear (IRR
1.23, P < .001), quadratic (IRR 1.00, P < .001), and cubic
(IRR 1.00, P < .001) components of the time slope asso-
ciate with a relative increase in the IRR of COVID-19
infection. The model indicates further that the enactment
of physical distancing control efforts associates with a rel-
ative reduction in the rate of reported cases (IRR 0.10,
P < .001). Turning next to the county-level factors, every 1
standard deviation increase in median age across counties is
associated with a relative increase in the IRR of COVID-19
infection (IRR 1.13, P < .001). After accounting for all the
county-level characteristics, and with spatial and population

Table 2. Incidence Rate Ratios for Hierarchical Poisson
Polynomial Growth Regression Models Predicting
Confirmed COVID-19 Cases (N = 327,578)

Full Model

Fixed Effects IRR P Value 95% CI

Time 1.23 <.001 1.23–1.23
Time2 1.00 <.001 1.00–1.00
Time3 1.00 <.001 1.00–1.00
Physical distancing

K-12 school closure 0.10 <.001 0.09–0.12
Spatial lag 1.00 <.001 1.00–1.00
Median age 1.13 <.001 1.08–1.17
Population total 1.00 <.001 1.00–1.00
Concentrated disadvantage (SD) 1.29 <.01 1.16–1.49

Variance of Random Effect b 95% CI

0.02 <.001 0.01–0.03

Data are from March 2 through July 19, 2020, and are drawn from
USAFacts,16 The City of New York website,5 Suffolk County Govern-
ment,18 and the United States Census Bureau.9

aTime is measured as the number of days since the first diagnosed case
per county. Prior reports,20 as well as our exploratory analyses, indicate
that time is most appropriately captured by a cubic time function due to
nonlinearity.

Abbreviations: CI, confidence interval; IRR, incidence rate ratio; SD,
standard deviation.
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size differences held constant, each standard deviation in-
crease in concentrated disadvantage associates with a sig-
nificant relative increase in the rate of COVID-19 incidence
(IRR 1.29, P < .001). As shown in the lower portion of
Table 2, there is significant variation between counties in
initial COVID-19 incidence (b 0.02, P < .001).

To illustrate the patterns of COVID-19 incidence
within these contexts, we divided the counties’ levels of
concentrated disadvantage into equal thirds and pre-
sented the predicted probabilities of COVID-19 inci-
dence for the counties in each level, with and without
physical distancing measures enacted, in Figure 1.
Within communities facing the highest levels of con-
centrated disadvantage, we see a significantly higher
probability of COVID-19 infection relative to the
probability of infection among those living in areas of
low levels of disadvantage (445.62 vs 267.68, P < .001),
even with physical distancing measures enacted (30.13
vs 18.10, P < .001). Thus, our results present fur-
ther evidence that concentrated disadvantage influences
COVID-19 infection rates differently, with the most
disadvantaged areas largely suffering the highest number
of cases, both before and after the enactment of phys-
ical distancing measures.

Discussion

Overall, our results, based on data collected from March 2
through July 19, 2020, indicate that the number of docu-
mented COVID-19 infections varies widely both between
counties and over time within counties. For all counties, we
observed a substantial increase in the daily number of di-
agnoses along with evidence that earlier enactment of
physical distancing control policies, here measured by K-12
school closure dates,17,18 likely altered the trajectory of the
outbreak. This latter finding clearly underscores the im-
portance of timely introduction of physical distancing

measures to prevent virus diffusion, particularly when used
in combination and enacted without delay, as reported
elsewhere.22

Even with physical distancing intervention efforts in
place, people living in areas characterized by high concen-
trations of disadvantage are at greater risk of COVID-19
infection. This finding is in line with prior reports: al-
though the enactment of physical distancing policies may
help mitigate early spread of COVID-19 in urban areas
with large populations,23 this benefit is not uniformly
distributed across counties. To minimize viral transmission,
public health officials must institute a number of well-
timed physical distancing interventions, including closures
of schools and workplaces, restrictions on mass gatherings
and cancellations of large-scale public events, and restric-
tions on movement such as stay-at-home orders.6,22,23

However, we emphasize the fact that residents from poor
communities often live in multigenerational homes and
perform jobs that cannot be done remotely, and are thus
less able to physically isolate and socially distance, which
will shape the spread of infection and influence health
outcomes.24,25 Consequently, persons from low-resource
communities, compared with those living in more afflu-
ent areas, may benefit less from these mandated orders.24

Indeed, employees in some occupations (eg, healthcare,
social assistance, agriculture, construction, manufacturing)
have been shown to be at higher risk of COVID-19 ex-
posure, which has major implications considering that ra-
cial/ethnic minority populations are overrepresented in
these industry sectors.24,25 Related, transmission of COV-
ID-19 often occurs within the household,26-28 and average
US household size differs considerably by race/ethnicity.29

Public health programs seeking to eliminate or reduce in-
equities in viral transmission need to bolster testing uptake
among the most vulnerable populations disproportionally
affected by COVID-19.30

For well over a century, research has shown that many
sociodemographic conditions affect infectious disease

Figure 1. Fully adjusted predicted proba-
bilities of COVID-19 infection. We tri-
chotomized our standardized index of
concentrated disadvantage into equal thirds,
with and without physical distancing mea-
sures enacted, to estimate the predicted
probabilities of COVID-19 incidence for
counties.
Abbreviation: CD, concentrated disadvan-
tage.
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transmission, especially in urban settings.6-8 Here, we add to
this literature and show that concentrated disadvantage is a
potent ingredient in the observed pattern of detected
COVID-19 infections across counties in the New York City
area. We see this as evidence that the influence of commu-
nities on the spread of infectious disease reaches far beyond
the physical characteristics of the urban built environment.31

Furthermore, if community sociodemographic data exhibit
elevations in median age or higher prevalence of disadvan-
tage (eg, poverty), such factors will likely have far-reaching
consequences for COVID-19 incidence, as well as COVID-
19-related case fatality rates.32

Although it is beyond the scope of our analysis to explain
precisely why this variation exists, COVID-19 has exposed
major social and economic disparities that persist in the
United States. Indeed, individuals’ risk of being infected is
higher if they reside in counties of New York with more
socioeconomic disadvantage.6,12,15 It is clear that social
inequalities brought on by institutional and cultural racism
in the United States (eg, historical and contemporary res-
idential segregation policies) are key to understanding the
persistence of health inequalities (eg, higher rates of dis-
ease, greater severity of illness, poorer survival rates)
among racial/ethnic minorities.33 Because marginalized
populations are underserved and particularly vulnerable
to the effects of the pandemic,8,11-15 government officials
must build a more robust public health system that will
enable a more equitable response to the emerging health
crisis.34 These are urgent matters that need to be ad-
dressed through multifaceted, evidence-based, and pop-
ulation-wide initiatives aimed concomitantly at poverty
and racism to improve health and reduce disparities in
health.

To the best of the authors’ knowledge, this is the first
study that employs hierarchical exponential growth curve
modeling techniques to examine whether county-level de-
mographic and socioeconomic characteristics influence the
incidence of COVID-19 cases across counties in the New
York City area. This study, however, is not without limi-
tations. The available reports indicate that, especially dur-
ing the early phase of the COVID-19 outbreak, limited
diagnostic testing or hospital bed capacity, as well as testing
or reporting delays, may influence the number of daily
confirmed cases across counties.20 However, in New York
City, the case incidence curve paralleled the growth rate of
hospitalizations,22 which may be a less biased COVID-19
outbreak metric,20 and this gives us confidence in the re-
sults presented here. As this devastating pandemic contin-
ues to unfold in New York, an early epicenter of the
outbreak in the United States, we assume the number of
confirmed COVID-19 cases will likely shift in response to
improved testing and reporting practices, and over time,
this will enable the emergence of more accurate and useful
data. For now, we use the latest data available to us.16

Similarly, our sample is drawn from the New York City
area, which reduces the generalizability of our findings to a

particular portion of people in the city and surrounding
areas. Furthermore, to reduce virus transmission and keep
case-fatality rates as low as possible, the New York State
government instituted a number of physical distancing
control efforts which, in addition to school closures, in-
cluded closures of nonessential businesses, cancellation of
large-scale public gatherings, and restrictions on movement
such as stay-at-home orders.35 In the present analysis, we
used K-12 school closure dates alone to account for varia-
tion in time of enactment of these physical distancing
measures across counties. While our inclusion of 1 variable
is by no means comprehensive, we opted to use school
closure dates because this measure was introduced early on
in the initial response to the COVID-19 outbreak.17,18

However, if school closures were the only physical dis-
tancing measure enacted, intervention effectiveness would
be substantially reduced and variation in COVID-19 in-
cidence across counties would be magnified.22,23

We were unable to confirm whether individuals who
tested positive for SARS-CoV-2 also lived in the area
where testing was performed. However, local government
agencies directed people to contact their local health de-
partment for COVID-19-related concerns,36 and since
other physical distancing measures were being enacted
around the same time as school closures,17,18,35 we are
confident in the results reported here. Related, it is worth
noting that the governor of New York issued a mandate
on April 15, 2020, that required all people in the state to
wear a face mask/covering when out in public and when
using mass transit.35 This is a significant point because
face masks/coverings may result in a large reduction in
infection risk.37

Taken together, the dire circumstances in which we find
ourselves demand better understanding of how distinctive
geographic spaces influence infection incidence in order to
potentially isolate the community-level factors that associate
with a higher likelihood of COVID-19 diagnosis and disease
progression. Scientists interested in disentangling which
community factors relate to SARS-CoV-2 transmission may
use our findings to better understand the connections be-
tween specific population subgroups and infectious disease
dynamics. Decision makers, in turn, are obligated to incor-
porate empirical findings to guide public policy initiatives
aimed at identifying and assisting at-risk populations.
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