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Biomarkers that capture treatment effects could improve the precision of clinical decision making for restorative therapies.
Weexamined theperformanceof candidate structural, functional, andangiogenesis-relatedMRIbiomarkersbefore andafter a3-week
course of standardized robotic therapy in 18 patients with chronic stroke and hypothesized that results vary significantly according to
stroke severity. Patients were 4.1± 1 months poststroke, with baseline arm Fugl-Meyer scores of 20–60. When all patients were
examined together, no imaging measure changed over time in a manner that correlated with treatment-induced motor gains.
However, when also considering the interaction with baseline motor status, treatment-induced motor gains were significantly
related to change in three functional connectivity measures: ipsilesional motor cortex connectivity with (1) contralesional motor
cortex (p = 0 003), (2) contralesional dorsal premotor cortex (p = 0 005), and (3) ipsilesional dorsal premotor cortex (p = 0 004). In
more impaired patients, larger treatment gains were associated with greater increases in functional connectivity, whereas in less
impaired patients larger treatment gains were associated with greater decreases in functional connectivity. Functional connectivity
measures performed best as biomarkers of treatment effects after stroke. The relationship between changes in functional
connectivity and treatment gains varied according to baseline stroke severity. Biomarkers of restorative therapy effects are
not one-size-fits-all after stroke.

1. Introduction

Restorative therapies that promote plasticity within surviving
neural tissue [1] can improve recovery, but patient responses
are highly variable. Identifying biomarkers that provide
information about neural events underlying treatment-
related gains could improve individualization of rehabilita-
tion therapy [2], as stroke rehabilitative care clinical decision
making is still primarily based on behavioral assessments [3].

A biomarker can be defined as a laboratory measurement
reflecting the activity of a disease process [4] that changes in
parallel with clinical status [5]. Imaging techniques have
been identified that are related to neural events underlying

brain plasticity [6, 7] and are candidate biomarkers of
treatment-induced motor gains after stroke [8–10], including
functional MRI (fMRI) [11] and diffusion tensor imaging
(DTI) [7, 12, 13]. Restorative therapies in stroke animal
models have been associated with induction of angiogenesis
derived from T2∗-weighted susceptibility-weighted imaging
(SWI) [14], but this MRI-based measure has been little stud-
ied in humans as a potential biomarker related to plasticity.

The current study compared the utility of these imaging-
based biomarker candidates based on the extent to which
each changed in parallel with motor gains across a course
of therapy in patients early in the chronic phase of stroke.
The first study hypothesis was that motor gains across three
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weeks of standardized motor therapy would correlate signif-
icantly with changes in measures of cortical activation, func-
tional connectivity, and corticospinal tract (CST) integrity;
changes in angiogenesis were also examined as an explor-
atory aim. These categories of brain imaging have not previ-
ously been directly compared. Prior reports have emphasized
the biomarker potential of activation [15, 16] and connectiv-
ity measures [17–19] in terms of detecting changes in brain
function that parallel treatment-derived behavioral gains in
the chronic phase poststroke, and so these two categories of
brain imaging measures were of relatively high interest to this
hypothesis; connectivity measures were of particular interest
because they provide insights into network interactions
rather than activity in a single network node [20]. Because
of the high heterogeneity of human stroke, a single bio-
marker may not perform in an identical manner across
different patient subgroups [21]. A second hypothesis, there-
fore, was that the relationship between motor gains and
change in biomarker values over time would vary signifi-
cantly according to baseline motor status.

2. Materials and Methods

2.1. Patients. Patients enrolled in a study of robotic therapy
(ID number NCT01244243) underwent a battery of assess-
ments twice, baseline (“pretreatment”), then again immedi-
ately upon completion of treatment (“posttreatment”).
Inclusion and exclusion criteria (Table 1) were focused on
capturing patients who were close to the time when sponta-
neous motor recovery is complete and who had stable motor
deficits. To confirm patients had reached a plateau in arm
motor recovery, the arm motor Fugl-Meyer (FM) scale [22]
was performed at two baseline exams separated by a week,
and patients could only advance if the two scores did not dif-
fer by more than 3 points. Biomarker testing was obtained in
31 consecutive enrollees and is the focus of the current
report; of these, 13 were excluded (see the bottom of
Table 1 for specific reasons), leaving 18 patients who are
the focus of the current report. These 18 patients (Table 2)
were 61± 10 years of age (mean± SD) and 4.1± 1 months
poststroke, and all but two had ischemic injury. Enrollees
showed wide variation in baseline clinical status, for example,
FM scores ranged from 20 to 60 (66=best). All patients pro-
vided written informed consent. The UC Irvine Institutional
Review Board approved this study.

2.2. Robotic Therapy. Patients underwent 12 two-hour treat-
ment sessions of robotic hand therapy over a three-week
period. All 12 robotic therapy sessions were completed by
100% of patients; this was achieved by organizing treatment
time schedules to accommodate patient needs. The distal
arm on the patient’s paretic side was secured to the robotic
device. Therapy consisted of repeated grasp-release (“close”
and “open”) movements of the affected hand/wrist, linked
to a range of games and exercises, using a pneumatically
actuated robotic device described previously [23]; the patient
attempted movement on cue, and the robot moved the
patient’s hand after a delay, if movement was incomplete.
All therapy sessions were directly managed by a licensed

occupational therapist or physical therapist at the patient’s
side at all times. The average number of movement repeti-
tions at each of the 12 sessions was 954 for the fingers, 2579
for the thumb, and 1298 for the wrist.

2.3. Image Acquisition. An MRI scan was performed at base-
line and again approximately one week posttreatment. MRI
images were acquired using a 3.0T Philips Achieva system.
Three runs of blood oxygenation level-dependent (BOLD)
images were acquired using a T2∗-weighted gradient-echo
planar imaging sequence (TR=2000ms, TE=30ms, 31 slices
with thickness 4mm and 1mm interslice gap). Data were
acquired using a block design while patients were visually
guided to alternate between 24-second blocks of rest versus
execution of paretic hand grasp-release movements
(0.125Hz movement cycle), emulating the content of robotic
training, while wearing a nonactuated plastic exoskeleton
identical to the robotic interface. Each of the three fMRI runs
acquired 48 brain volumes, contained two blocks each of
rest and movement, and spanned 96 seconds. Before the
MRI, patients were trained to achieve successful, indepen-
dent performance on the task. Throughout the fMRI scan,
patients were visually monitored, and an investigator eval-
uated task performance. Anatomical imaging included a
high-resolution T1-weighted image using a 3D MPRAGE
sequence (TR=8.5ms, TE=3.9ms, slices = 150, voxel
size = 1× 1× 1mm3, acquisition time=9.58 minutes), diffu-
sion tensor imaging (32 directions, b value = 1000 smm−2, 60
slices, voxel size = 1.75× 1.75× 2mm3, acquisition time=6.6
minutes), and susceptibility-weighted imaging (TR=35ms,
TE=20ms, slices = 128, voxel size = 0.72× 0.72× 1mm3,
acquisition time=3.73 minutes).

2.4. Data Analysis

2.4.1. Treatment-Induced Motor Gains. The primary out-
come measure of the study was armmotor gains from robotic

Table 1: Main inclusion and exclusion criteria.

Inclusion criteria for study entry

(i) Age≥ 18 years
(ii) Diagnosis of stroke 11–26 weeks prior
(iii) Residual arm motor deficit (ARAT< 52 or 9-hole peg test

score> 25% longer than with unaffected hand)
(iv) Preserved voluntary movements in distal upper extremity

(≥5-degree range of motion in affected index
metacarpophalangeal joint or wrist)

Exclusion criteria for study entry

(i) Contraindication to MRI
(ii) Severe cognitive impairment
(iii) Concurrent diagnosis affecting arm/hand function
(iv) Armmotor status not at stable plateau (>3-point difference on

Fugl-Meyer scale between the two baseline assessments)

Exclusion criteria applied at time of data analysis

(i) Excessive head motion during fMRI (either
pre- or posttreatment scan)

(ii) Posttreatment scan could not be obtained (e.g., claustrophobia
or patient lost to follow-up)
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therapy, defined by combining impairment-based (FM) [22]
and function-based (Action Research Arm Test (ARAT))
[24] assessments via principal component analysis [25, 26];
only the first component was used given that it accounted
for 74% of variance. Treatment-induced motor gains were
measured as the change from baseline to immediately post-
treatment and were examined in relation to the below candi-
date biomarkers (Table 3).

2.4.2. Functional MRI. The fMRI images were analyzed using
SPM8 (Wellcome Trust Centre for Neuroimaging, London,
UK). Functional data were processed as previously described
[27]. Primary motor cortex (M1) and dorsal premotor cortex
(PMd) in each hemisphere were the chosen regions of inter-
est (ROI), as they were hypothesized to be of greatest impor-
tance to biomarker assessment. For the move versus rest
contrast, peak beta contrast estimates and activation volumes
were extracted from each ROI using small volume correction
using threshold p < 0 001.

2.4.3. Functional Connectivity. A psychophysiological inter-
action (PPI) analysis was used to assess functional connectiv-
ity. Psychophysiological interaction analysis is a tool that can
evaluate the influence of specific variables (here, pre- versus
posttreatment scan) on physiological variables (BOLD
response) [28, 29] and that reflects underlying neuronal
changes [30]. For each patient, time series data were
extracted from the BOLD fMRI images, for each of the four
ROIs. The PPI design matrix contained the following 3
regressors: (1) the psychological variable (i.e., pre- versus
posttreatment session); (2) the physiological variable (i.e.,
ROI BOLD time series data); and (3) the interaction term
of these two variables (i.e., the PPI term). Changes in motor
network functional connectivity were evaluated as the
changes in PPI regression slopes between brain regions based
on pre- versus posttreatment scan. Specifically, to evaluate
the change in functional connectivity between two brain
regions, the time series data from one ROI was plotted
against the time series of a second ROI, for both the pre-
and the posttreatment fMRI sessions. Next, the slopes of

the regression lines for the two fMRI sessions were extracted
[31] and the difference in slope across treatment (post-
minus pretreatment) was calculated. An increase in the PPI
slope from pre- to posttherapy indicates that activity between
the two brain regions has become more correlated, and thus
functional connectivity increased; a decrease in the PPI slope
over time indicates decreased functional connectivity. In this
way, connectivity was measured between ipsilesional M1
(iM1) and (1) contralesional M1 (cM1), (2) ipsilesional
PMd (iPMd), and (3) contralesional PMd (cPMd). Adopting
a control measure employed in preclinical stroke studies [32],
functional connectivity was also evaluated between two non-
motor regions, ipsilesional and contralesional primary visual
cortexes (V1).

2.4.4. Corticospinal Tract Integrity. CST white matter integ-
rity was measured using diffusion-weighted images, as
previously [27]. The ipsilesional cerebral peduncle was
selected for assessing CST integrity, via fractional anisotropy
(FA), because corticospinal tract fibers are highly focused in
this region.

2.4.5. Peri-Infarct Angiogenesis. Serial T2∗-weighted SWI
scans were used to estimate angiogenesis across treatment
[14]. Two infarct rims were generated in native SWI space,
as per a prior report [33]. First, the infarct was outlined on
the baseline T1-weighted images. Using FSL (http://www.fm
rib.ox.ac.uk/fsl), each lesion mask was dilated twice, by 1mm
each time. Rim 1 was defined as the first dilatation minus the
infarct, while Rim 2 was defined as the second dilatation
minus infarct +Rim 1. For posttreatment, the patients’
lesion masks (drawn in pretreatment SWI space) were
transformed into posttreatment SWI space, then the two
posttreatment Rims were created. To ensure Rims did not
extend beyond the brain, the FAST module in FSL was used
to generate pre- and posttreatment CSF masks that were
then subtracted from each infarct Rim. The mean intensity
within each Rim was calculated, at both time points, to
calculate the change in SWI signal intensity from pretreat-
ment to posttreatment.

Table 2: Patient characteristics.

All patients More severe at baseline (FM≤ 36) Less severe at baseline (FM> 36) p

n 18 9 9

Age (years) 61± 10 60± 10 62± 11 0.79

Sex 3 F/15 M 2 F/7 M 1 F/ 8 M 0.62

Time poststroke (months) 4.1± 0.97 4.5± 0.84 3.7± 0.96 0.07

Side of stroke 10 L/8 R 5 L/4 R 5 L/4 R 1.0

Infarct volume (cc) 27± 45 (0.5–166) 24± 37 (0.5–116) 30± 37 (0.7–165) 0.85

Corticospinal tract integrity∗ 0.39± 0.11 0.37± 0.12 0.41± 0.10 0.31

Mean baseline Fugl-Meyer (normal = 66) 39 [20–60] 30 [20–35] 47.5 [38–60] 0.0003

NIH stroke scale (normal = 0) 4± 1 3.7± 1 4.3± 0.9 0.18

Nottingham sensory scale (normal = 17) 13± 4.5 13± 5.4 14± 3.7 0.76

Mini-mental state exam (normal = 30) 28± 2.6 28± 1.8 28± 3.3 0.65

Geriatric depression scale (normal = 0) 3.2± 2.1 3.4± 1.4 2.9± 2.7 0.59

Values are the mean ± SD (range) or median [IQR]. ∗Measured as fractional anisotropy within ipsilesional cerebral peduncle.
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2.4.6. Statistics. To address the first hypothesis that the candi-
date biomarker would change in parallel with motor gains,
linear regression was used to compare “change in bio-
marker,” from pretherapy to posttherapy for each candidate
measure, with “treatment-induced motor gains” over the
same time period, that is, from pretherapy to immediately
posttreatment. To address the second hypothesis that the
relationship between biomarker change and motor gains
would vary according to the patient subgroup, patients were
divided into two “baseline impairment subgroups” based on
a median split of baseline impairment (pretherapy FM
scores); this turned out to be baseline FM≤ 36 for the more
impaired subgroup versus FM> 36 for the less impaired sub-
group, a division that closely parallels FM severity subgroup-
ing based on cluster analysis [34]. The above linear regression
analyses to predict “treatment-induced motor gains” were
then repeated but with the inclusion of the interaction term
“change in biomarker X baseline impairment subgroup” in
each model. For any model in which the interaction term
was significant, post hoc testing was done separately for each
baseline impairment subgroup. Analysis of fMRI and PPI
data excluded any patient in whom substantial (>50%) dam-
age was present in any of the ROIs [19, 35]; this occurred in
three patients from the more impaired subgroup and in two
patients from the less impaired subgroup. Bonferroni correc-
tionwas applied formultiple comparisons: three for functional
connectivity and so a p value of 0.0167 was used to define
significance; eight for regional activation and so a p value of
0.00625 was used to define significance; and no correction
was needed for SWI or DTI, as for each there was only a single
candidate measure (Table 3). Parametric statistical methods
were used for measures that were normally distributed or
couldbe transformed toanormaldistribution;otherwise, non-
parametric methods were used. All analyses were two-tailed
with alpha=0.05 and used JMP-8 software (SAS).

3. Results

3.1. Patients. Patients showed wide variation in treatment-
related clinical improvement; for example, gain in FM scores
from baseline to the end of treatment was 2.9± 2.7 points

(p = 0 0003), with 25% of patients achieving clinically rele-
vant gains of 6 points or more. During fMRI scanning, all
subjects had at least some hand movements, with a full
range of motion present in 5/9 subjects in the less
impaired group and 1/9 in the more impaired group
(p = 0 13, Fisher’s exact test). Mirror movements in the unaf-
fected hand during intended movement of the affected hand
during fMRI were present in 1/9 persons in the less impaired
group and 2/9 persons in the more impaired group (p = 1 0,
Fisher’s exact test).

Regarding the candidate biomarker measures (Table 3),
none changed significantly over time; the performance of
each as a biomarker was then evaluated by comparing its
change over time with the extent of treatment-induced
motor gains.

3.2. Biomarker Performance: All Patients Combined.
Biomarker performance across all patients was evaluated by
examining the extent to which change in each assessment
over time paralleled treatment-induced motor gains. When
evaluating the candidate measures among all patients com-
bined, no biomarker candidate changed over time in parallel
with motor gains. One measure, degree of increase in iM1-
cM1 connectivity, showed a trend towards correlating with
larger motor gains (r = 0 53, p = 0 065).

3.3. Biomarker Performance as a Function of Degree of
Baseline Deficits. The relationship that change in each assess-
ment over time had with treatment-induced motor gains was
further examined as a function of baselinemotor impairment.
For all threemeasures ofmotor system functional connectivity
examined, the interaction term (change in connectivity over
time× the baseline impairment subgroup) was significant
(Figure 1) and survived Bonferroni correction (p < 0 0167):
iM1-cM1 (p = 0 003), iM1-cPMd (p = 0 005), and iM1-iPMd
(p = 0 004). Note that connectivity at baseline did not signifi-
cantly differ between the two subgroups (iM1-cM1: p = 0 27;
iM1-cPMd: p = 0 76; and iM1-iPMd: p = 0 20). Also, the
controlmeasure was negative, as the interaction term between
change in iV1-cV1 connectivity and baseline impairment
subgroupwasnot significant (p = 0 19). For the eightmeasures
of regional activation predictingmotor gains, nonewas signif-
icant after Bonferroni correction (p < 0 00625). The interac-
tion term was not significant for the measurements related to
CST integrity or peri-infarct angiogenesis.

For the candidate biomarker measures showing signifi-
cant interaction terms, post hoc analysis (Fisher’s Least
Significant Difference test) was then performed separately
for each of the two baseline impairment subgroups. See
Table 2 for the characteristics of the two subgroups; note that
apart from the FM score, which was the defining basis for
separating the two subgroups, there were no differences
between subgroups including with respect to age, total infarct
volume, NIHSS total score, or CST integrity. In the more
impaired subgroup (baseline FM≤ 36), where three patients
with substantial (>50% [19, 35]) damage to an ROI were
excluded, larger treatment-induced motor gains were associ-
ated with significant increases in functional connectivity,
between iM1 and cM1 (r = 0 98, p = 0 0007; Figure 1(a)),

Table 3: Biomarker candidates under study.

Functional MRI measures of regional activation

Magnitude of activation (beta contrast estimates) in iM1,
cM1, iPMd, and cPMd

Volume of activation in iM1, cM1, iPMd, and cPMd

Measures of functional connectivity

Functional connectivity between iM1 and cM1

Functional connectivity between iM1 and cPMd

Functional connectivity between iM1 and iPMd

DTI measure of white matter integrity within corticospinal tract

Fractional anisotropy within ipsilesional cerebral peduncle

Peri-infarct angiogenesis

T2∗-weighted signal in infarct Rims of two different diameters

M1: primary motor cortex; PMd: dorsal premotor cortex; i: ipsilesional;
c: contralesional.
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iM1-cPMd (r = 0 82, p = 0 046; Figure 1(b)), and iM1-iPMd
(r = 0 83, p = 0 04; Figure 1(c)). In the less impaired subgroup
(baseline FM> 36), where two patients with substantial dam-
age to an ROI were excluded, larger treatment-induced
motor gains were associated with significant decreases in
functional connectivity, between iM1 and cPMd (r = −0 83,
p = 0 02; Figure 1(c)), with a trend for decreased iM1-cPMd
connectivity (r = −0 68, p = 0 09; Figure 1(b)).

4. Discussion

Stroke is a very heterogeneous disease, complicating pre-
scription of restorative therapies. Biomarkers reflect
disease-related events underlying behavioral state and its
evolution [4, 5] and therefore may be useful to inform treat-
ment decisions in this context. Numerous candidate bio-
markers have been suggested, but to date, results across
studies show substantial variability. The current study com-
pared the performance of several imaging-based candidate
measures previously suggested as useful biomarkers and, in
addition, considered how results varied according to the level
of baseline motor deficits. Across the entire (and heteroge-
neous) stroke population studied, no biomarker changed sig-
nificantly in parallel with treatment-induced motor gains.
However, significant findings emerged when biomarkers
were examined in specific patient subgroups, with the choice
of biomarker and the direction of its relationship with
treatment-related behavioral gains varying according to the
severity of baseline motor impairment. Of the various imag-
ing candidates examined, measures of functional connectiv-
ity performed best as biomarkers.

Functional connectivity measures performed best as bio-
markers in this chronic stroke population, and importantly,

this was only true when examining patient subgroups defined
according to baseline deficits. Previous studies have empha-
sized the importance of such connectivity measures for
understanding recovery after stroke [36]. The functional
connectivity findings were specific to the motor system given
that changes in iV1-cV1 connectivity did not significantly
correlate with treatment gains, similar to findings in an ani-
mal stroke model [32] and a prior study of patients with
stroke [37]. Regional measures of cortical activation were
considerably weaker biomarkers of treatment-induced motor
gains, suggesting a network-level approach is more informa-
tive than such regional measures for understanding behav-
ioral changes that parallel motor training. The change in
the DTI measure of CST integrity was also not related to
behavioral change perhaps because induction of white matter
changes may require far more extensive intervention [12].
Change in the peri-infarct SWI, a variable not previously
studied as a biomarker of brain plasticity in humans after
stroke, also was not significant, suggesting that this MRI
measure, validated in rodents during the early weeks post-
stroke [14], may not be useful in humans, at least across a
three-week intervention during the chronic stage of stroke.

Across the entire population of enrollees, no biomarker
changed over time in a manner that correlated significantly
with treatment-induced motor gains. Mixed results have
been seen in prior studies examining changes in connectivity
as a biomarker of restorative therapy effects after stroke, with
increased [17] and decreased [38] connectivity over time
reported as correlating with treatment gains. These dispar-
ities may be due to differences in the study design such as
the method used to measure connectivity, choice of treat-
ment, or severity of deficits among enrollees. Another key
factor is the extent of treatment-induced behavioral gains.
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Figure 1: Biomarker performance varies according to baseline motor deficits. Changes in functional connectivity paralleled treatment-related
behavioral gains in a manner that varied according to severity of pretreatment impairments. The change in connectivity between ipsilesional
primary motor cortex (iM1) and (a) contralesional M1 (cM1), (b) contralesional PMd (cPMd), and (c) ipsilesional dorsal premotor cortex
(iPMd) are each plotted against motor gains from therapy. Motor gains were assessed as the principal component of the change in Fugl-
Meyer (FM) and Action Research Arm Test scores from baseline to immediately posttherapy; to aid interpretation, change in FM
score is presented on the y-axis. Baseline motor impairment was split amongst all enrollees based on median FM score at baseline,
with more impaired patients (red dots) having FM≥ 36, and less impaired patients (blue dots) having FM< 36. A significant
interaction term (change in connectivity over time× baseline impairment subgroup) was identified for all three measures of functional
connectivity (iM1-cM1: p = 0 003; iM1-cPMd: p = 0 005; iM1-iPMd: p = 0 004).
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Gains in the current study on average were modest in magni-
tude, and findings might have differed if larger gains had
been achieved. Further insight was obtained in the current
study when biomarker performance was examined within
specific patient subgroups. This approach was motivated by
the frequent finding that features of spontaneous [39] and
treatment-induced [22] recovery vary tremendously accord-
ing to the level of baseline behavioral deficits. Consistent with
this and in support of the second study hypothesis, current
results differed substantially according to the level of baseline
deficits (Figure 1).

Among patients in the more impaired subgroup, larger
treatment-induced motor gains were associated with
increased motor system functional connectivity over time in
all instances, particularly between iM1 and cM1. This is
consistent with prior findings: increased activity within con-
tralesional brain regions is associated with greater motor
impairment after stroke [25], larger facilitatory effect of
cPMd on iM1 is seen in patients with greater impairment
after stroke [40], and interfering with the function of cPMd
reduces behavioral performance to a greater extent among
patients with greater poststroke impairment [41] as com-
pared to patients with lesser impairment [42]. The behavioral
relevance of these observations in more impaired patients
may be similar to greater recruitment of secondary motor
areas observed in healthy subjects during performance of
increasingly complex tasks [43]. Together, these findings
suggest a model for patients with more severe deficits in the
chronic phase of stroke whereby increases in connectivity,
especially between ipsilesional M1 and the contralesional
hemisphere, during a course of poststroke rehabilitation
therapy are important for achieving treatment-induced
motor gains.

Among patients in the less impaired subgroup, larger
treatment-induced motor gains were associated with
decreased motor system functional connectivity between
iM1 and contralesional areas, particularly between iM1-
cPMd. Previous activation studies have shown that, while
recruitment of secondary motor areas such as PMd can
support motor recovery after stroke, restitution of normal
circuitry is a more successful strategy [44]. Therefore, a
model is suggested for patients with less severe deficits
poststroke such that decreased reliance on functional
connectivity between M1 and secondary motor regions,
particularly contralesionally, during a course of poststroke
rehabilitation is useful for achieving the best motor gains.

The current findings expand upon prior studies that
studied BOLD fMRI functional connectivity measures as
biomarkers of treatment gains in the chronic stroke setting.
Várkuti et al. [17] treated nine patients with chronic stroke
and severe motor deficits (mean FM score 18) using a
brain-computer interface combined with robot assistance
and found increases in connectivity between bilateral motor
cortices in proportion to treatment-induced behavioral gains,
echoing current findings in the more impaired group. Bajaj
et al. [18] treated 10 patients with chronic stroke and
moderate-severe motor deficits (mean FM score 35) using
motor imagery combined with physical therapy and found
that degree of behavioral gains correlated with the extent of

increase in several forms of intrahemispheric connectivity.
Young et al. [19] treated nine patients with chronic stroke
and moderate motor deficits (ARAT score 27) using a
brain-computer interface combined with functional electrical
stimulation and found both decreases and increases in func-
tional connectivity, within and between hemispheres. These
studies included patients with relatively severe deficits, and
so the tendency to see increased connectivity in parallel with
the extent of treatment gains is consistent with the findings in
the current study’s more impaired group, where a similar
pattern of treatment-induced increases in connectivity in
proportion to behavioral gains was found. The current study
extends these findings by including the analysis of a less
impaired group, where greater treatment-related gains were
associated with reductions in connectivity.

The current findings have implications for therapies aim-
ing to modulate the interhemispheric balance of excitation
and inhibition after stroke. Brain stimulation techniques
such as transcranial direct current stimulation (tDCS) are
under study to improve motor function after stroke. One
strategy is advocated to decrease excitability within cM1
[45], based on the model that stroke produces increased
cM1 inhibition of iM1 [46]. Current findings suggest that this
approach may be more beneficial in patients with milder
baseline deficits and less useful in those with greatest deficits
and that a study enrolling both mild and severe cases may
show reduced effect sizes. This view is concordant with prior
findings whereby dampening excitability in cM1 with tDCS
improved arm motor control in patients with milder impair-
ment and worsened control in those with more severe
impairment after stroke [21].

The strengths of the current study include a direct com-
parison of multiple biomarker candidates, including those
with demonstrated value as well as the experimental SWI-
based measure. Biomarkers were studied across a treatment
regimen that used a robotic device to deliver therapy in a
highly standardized manner. A relatively heterogeneous
stroke population was intentionally enrolled, addressing the
concern that studies using functional imaging to examine
restorative therapy effects preferentially enroll a narrow frac-
tion of patients with milder impairments [11] and enabling
analysis of biomarker performance in relation to a wide range
of baseline impairment levels. Weaknesses include the
sample size, reduced due to serial data being unavailable in
a number of patients. Treatment gains while statistically sig-
nificant were overall modest, emphasizing the need to
develop predictors, which can improve patient stratification,
as well as biomarkers, which can provide greater insights into
treatment effects and so may be useful to optimize dosing of
poststroke restorative therapeutics. In addition, a potential
confounder in the current study, as with any motor system
study in a neurologically impaired population, is the impact
of intersubject differences in motor task performance during
fMRI acquisition. While differences in the range of motion
did not reach statistical significance in the current cohort,
current observations nonetheless suggest differences inmotor
task performance as a function of impairment level, which
may have contributed to the current findings. However, fMRI
activation is not simply a function of the range of motion but
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also reflects movement strength, attention, planning, effort,
and sensory feedback. These features were not measured
during fMRI acquisition in the current study. Thus, the cur-
rent study of fMRI across a wide range of motor deficits after
stroke must be interpreted in light of variance in motor task
performance, as well as intersubject differences in numerous
other variables that can affect fMRI measurements.

5. Conclusions

The human stroke population is extremely heterogeneous. A
number of promising restorative therapies are under study.
Their efficacy may be best appreciated by judicious use of
biomarkers [8–10]. As noted by Bradnam et al. [21], this task
“is not a ‘one-size-fits-all’ approach.” A crutch improving
function in more impaired patients hinders those who are
less impaired. The current findings may be useful for defining
biomarkers for restorative therapies after stroke across this
complex population.

Conflicts of Interest

Steven C. Cramer has served as a consultant for Dart Neuro-
science, MicroTransponder, and Roche. None of these rela-
tionships influenced the objectivity of this manuscript. All
other authors declare that they have no conflicts of interest.

Acknowledgments

This work received support from the NIH (R01 NS059909,
K24HD074722, and T32AR047752) and the University of
California, Irvine, ICTS (UL1-TR000153).

References

[1] S. C. Cramer, “Repairing the human brain after stroke. II.
Restorative therapies,” Annals of Neurology, vol. 63, no. 5,
pp. 549–560, 2008.

[2] S. C. Cramer, “Stratifying patients with stroke in trials that tar-
get brain repair,” Stroke, vol. 41, 10, Supplement 1, pp. S114–
S116, 2010.

[3] S. Hakkennes, K. D. Hill, K. Brock, J. Bernhardt, and
L. Churilov, “Selection for inpatient rehabilitation after severe
stroke: what factors influence rehabilitation assessor decision-
making?,” Journal of Rehabilitation Medicine, vol. 45, no. 1,
pp. 24–31, 2013.

[4] R. Katz, “Biomarkers and surrogate markers: an FDA perspec-
tive,” NeuroRx, vol. 1, no. 2, pp. 189–195, 2004.

[5] T. Fleming and D. DeMets, “Surrogate end points in clinical
trials: are we being misled?,” Annals of Internal Medicine,
vol. 125, no. 7, pp. 605–613, 1996.

[6] J. A. Hosp and A. R. Luft, “Cortical plasticity during motor
learning and recovery after ischemic stroke,” Neural Plasticity,
vol. 2011, Article ID 871296, 9 pages, 2011.

[7] W. D. Byblow, C. M. Stinear, P. A. Barber, M. A. Petoe, and
S. J. Ackerley, “Proportional recovery after stroke depends on
corticomotor integrity,” Annals of Neurology, vol. 78, no. 6,
pp. 848–859, 2015.

[8] M. H. Milot and S. C. Cramer, “Biomarkers of recovery after
stroke,” Current Opinion in Neurology, vol. 21, no. 6,
pp. 654–659, 2008.

[9] E. Burke and S. C. Cramer, “Biomarkers and predictors of
restorative therapy effects after stroke,” Current Neurology
and Neuroscience Reports, vol. 13, no. 2, p. 329, 2013.

[10] L. A. Boyd, K. S. Hayward, N. S. Ward et al., “Biomarkers of
stroke recovery: consensus-based core recommendations from
the stroke recovery and rehabilitation roundtable,” Interna-
tional Journal of Stroke, vol. 12, no. 5, pp. 480–493, 2017.

[11] T. Hodics, L. G. Cohen, and S. C. Cramer, “Functional imaging
of intervention effects in stroke motor rehabilitation,” Archives
of Physical Medicine and Rehabilitation, vol. 87, no. 12,
pp. 36–42, 2006.

[12] J. Scholz, M. C. Klein, T. E. J. Behrens, and H. Johansen-Berg,
“Training induces changes in white-matter architecture,”
Nature Neuroscience, vol. 12, no. 11, pp. 1370-1371, 2009.

[13] M. Taubert, B. Draganski, A. Anwander et al., “Dynamic prop-
erties of human brain structure: learning-related changes in
cortical areas and associated fiber connections,” The Journal
of Neuroscience, vol. 30, no. 35, pp. 11670–11677, 2010.

[14] G. Ding, Q. Jiang, L. Li et al., “Longitudinal magnetic reso-
nance imaging of sildenafil treatment of embolic stroke in aged
rats,” Stroke, vol. 42, no. 12, pp. 3537–3541, 2011.

[15] J. R. Carey, T. J. Kimberley, S. M. Lewis et al., “Analysis of
fMRI and finger tracking training in subjects with chronic
stroke,” Brain, vol. 125, no. 4, pp. 773–788, 2002.

[16] S. C. Cramer, T. B. Parrish, R. M. Levy et al., “Predicting
functional gains in a stroke trial,” Stroke, vol. 38, no. 7,
pp. 2108–2114, 2007.

[17] B. Várkuti, C. Guan, Y. Pan et al., “Resting state changes in
functional connectivity correlate with movement recovery for
BCI and robot-assisted upper-extremity training after stroke,”
Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 53–
62, 2013.

[18] S. Bajaj, A. J. Butler, D. Drake, and M. Dhamala, “Brain
effective connectivity during motor-imagery and execution
following stroke and rehabilitation,” NeuroImage: Clinical,
vol. 8, pp. 572–582, 2015.

[19] B. M. Young, Z. Nigogosyan, A. Remsik et al., “Changes in
functional connectivity correlate with behavioral gains in
stroke patients after therapy using a brain-computer interface
device,” Frontiers in Neuroengineering, vol. 7, p. 25, 2014.

[20] C. Grefkes and G. R. Fink, “Connectivity-based approaches in
stroke and recovery of function,” The Lancet Neurology,
vol. 13, no. 2, pp. 206–216, 2014.

[21] L. V. Bradnam, C. M. Stinear, P. A. Barber, and W. D. Byblow,
“Contralesional hemisphere control of the proximal paretic
upper limb following stroke,” Cerebral Cortex, vol. 22, no. 11,
pp. 2662–2671, 2012.

[22] J. See, L. Dodakian, C. Chou et al., “A standardized approach
to the Fugl-Meyer assessment and its implications for clinical
trials,” Neurorehabilitation and Neural Repair, vol. 27, no. 8,
pp. 732–741, 2013.

[23] C. D. Takahashi, L. Der-Yeghiaian, V. Le, R. R. Motiwala, and
S. C. Cramer, “Robot-based hand motor therapy after stroke,”
Brain, vol. 131, no. 2, pp. 425–437, 2008.

[24] N. Yozbatiran, L. Der-Yeghiaian, and S. C. Cramer, “A
standardized approach to performing the action research
arm test,” Neurorehabilitation and Neural Repair, vol. 22,
no. 1, pp. 78–90, 2008.

7Neural Plasticity



[25] N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J.
Frackowiak, “Neural correlates of outcome after stroke: a
cross-sectional fMRI study,” Brain, vol. 126, no. 6,
pp. 1430–1448, 2003.

[26] E. Burke Quinlan, L. Dodakian, J. See et al., “Neural function,
injury, and stroke subtype predict treatment gains after
stroke,” Annals of Neurology, vol. 77, no. 1, pp. 132–145, 2015.

[27] E. Burke, L. Dodakian, J. See et al., “Amultimodal approach to
understanding motor impairment and disability after stroke,”
Journal of Neurology, vol. 261, no. 6, pp. 1178–1186, 2014.

[28] J. X. O’Reilly, M. W. Woolrich, T. E. J. Behrens, S. M. Smith,
and H. Johansen-Berg, “Tools of the trade: psychophysiolog-
ical interactions and functional connectivity,” Social Cogni-
tive and Affective Neuroscience, vol. 7, no. 5, pp. 604–609,
2012.

[29] S. Saleh, S. V. Adamovich, and E. Tunik, “Resting state func-
tional connectivity and task-related effective connectivity
changes after upper extremity rehabilitation: a pilot study,”
in 2012 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC), pp. 4559–4562,
San Diego, CA, USA, August-September 2012.

[30] J. Kim and B. Horwitz, “Investigating the neural basis for
fMRI-based functional connectivity in a blocked design: appli-
cation to interregional correlations and psycho-physiological
interactions,” Magnetic Resonance Imaging, vol. 26, no. 5,
pp. 583–593, 2008.

[31] J. C. Stewart, X. Tran, and S. C. Cramer, “Age-related variabil-
ity in performance of a motor action selection task is related to
differences in brain function and structure among older
adults,” NeuroImage, vol. 86, pp. 326–334, 2014.

[32] M. P. A. van Meer, K. van der Marel, K. Wang et al., “Recovery
of sensorimotor function after experimental stroke correlates
with restoration of resting-state interhemispheric functional
connectivity,” The Journal of Neuroscience, vol. 30, no. 11,
pp. 3964–3972, 2010.

[33] S. C. Cramer, R. Shah, J. Juranek, K. R. Crafton, and V. Le,
“Activity in the peri-infarct rim in relation to recovery from
stroke,” Stroke, vol. 37, no. 1, pp. 111–115, 2006.

[34] E. J. Woytowicz, J. C. Rietschel, R. N. Goodman et al.,
“Determining levels of upper extremity movement impair-
ment by applying a cluster analysis to the Fugl-Meyer
assessment of the upper extremity in chronic stroke,”
Archives of Physical Medicine and Rehabilitation, vol. 98,
no. 3, pp. 456–462, 2017.

[35] A. R. Carter, K. R. Patel, S. V. Astafiev et al., “Upstream dys-
function of somatomotor functional connectivity after corti-
cospinal damage in stroke,” Neurorehabilitation and Neural
Repair, vol. 26, no. 1, pp. 7–19, 2012.

[36] A. R. Carter, G. L. Shulman, and M. Corbetta, “Why use a
connectivity-based approach to study stroke and recovery of
function?,” NeuroImage, vol. 62, no. 4, pp. 2271–2280, 2012.

[37] A. R. Carter, S. V. Astafiev, C. E. Lang et al., “Resting inter-
hemispheric functional magnetic resonance imaging connec-
tivity predicts performance after stroke,” Annals of
Neurology, vol. 67, no. 3, pp. 365–375, 2010.

[38] F. Sergi, H. I. Krebs, B. Groissier et al., “Predicting efficacy of
robot-aided rehabilitation in chronic stroke patients using an
MRI-compatible robotic device,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 7470–7473, Boston, MA, USA, August-September
2011.

[39] P.W. Duncan, S. M. Lai, and J. Keighley, “Defining post-stroke
recovery: implications for design and interpretation of drug
trials,” Neuropharmacology, vol. 39, no. 5, pp. 835–841, 2000.

[40] S. Bestmann, O. Swayne, F. Blankenburg et al., “The role of
contralesional dorsal premotor cortex after stroke as studied
with concurrent TMS-fMRI,” The Journal of Neuroscience,
vol. 30, no. 36, pp. 11926–11937, 2010.

[41] H. Johansen-Berg, M. F. S. Rushworth, M. D. Bogdanovic,
U. Kischka, S. Wimalaratna, and P. M. Matthews, “The role
of ipsilateral premotor cortex in hand movement after stroke,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. 22, pp. 14518–14523, 2002.

[42] E. A. Fridman, T. Hanakawa, M. Chung, F. Hummel,
R. Leiguarda, and L. Cohen, “Reorganization of the human
ipsilesional premotor cortex after stroke,” Brain, vol. 127,
no. 4, pp. 747–758, 2004.

[43] S. M. Rao, J. R. Binder, P. A. Bandettini et al., “Functional mag-
netic resonance imaging of complex human movements,”
Neurology, vol. 43, no. 11, pp. 2311–2318, 1993.

[44] N. Ward, M. Brown, A. Thompson, and R. Frackowiak, “Neu-
ral correlates of motor recovery after stroke: a longitudinal
fMRI study,” Brain, vol. 126, no. 11, pp. 2476–2496, 2003.

[45] F. C. Hummel and L. G. Cohen, “Non-invasive brain stimula-
tion: a new strategy to improve neurorehabilitation after
stroke?,” The Lancet Neurology, vol. 5, no. 8, pp. 708–712,
2006.

[46] N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influ-
ence of interhemispheric interactions on motor function in
chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–
409, 2004.

8 Neural Plasticity


	Biomarkers of Rehabilitation Therapy Vary According To Stroke Severity
	Recommended Citation

	Biomarkers of Rehabilitation Therapy Vary According To Stroke Severity
	Comments
	Creative Commons License
	Copyright

	Authors

	tmp.1522795776.pdf.FTROt

