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ABSTRACT 

Beta Drift: Forecasting the Manifold Relationships between Students and their Pursuit of STEM 

Careers 

by Douglas D. Havard 

 

 The purpose of this study was to examine the extent to which motivational and persistence 

factors predict the occupational career choices of underrepresented students in their pursuit of a 

STEM career. Data selected from the High School Longitudinal Study beginning with the base 

year through the fourth wave were employed in a large-scale multinomial regression analysis. 

Anticipated STEM occupation at the age of 30 was examined across six years of complex survey 

data using multiple taxonometric definitions. Social Cognitive Career Theory provided the 

theoretical framework for defining relevant factors affecting this STEM pursuit construct. The 

findings from the study suggest that by varying student perspectives on their expected STEM 

careers, the resulting pathway of pursuit is affected by a different set of predictors. Typographic 

models developed through fitting multinomial logistic regression models also suggest that female 

students are propelled into specific STEM careers through early mathematics identity, mid-study 

science utility, and an evolving dynamic between parent and student expectations. The results 

additionally highlight race and ethnicity differences which more closely, though less 

significantly, mirror those of female students. The overall results of these findings raise 

questions about the continued use of a STEM pipeline metaphor in describing student pursuit. 

Moreover, adjacent policies, theoretical frameworks, and research methods aligned to this 

construct should be reviewed on how they portray an inaccurate picture of pursuit amongst 

underrepresented students seeking STEM careers. 



 

vii 

TABLE OF CONTENTS 

  Page 

DEDICATION................................................................................................................. IV 

ACKNOWLEDGEMENTS ............................................................................................ V 

ABSTRACT ..................................................................................................................... VI 

LIST OF TABLES ........................................................................................................... X 

LIST OF FIGURES ..................................................................................................... XIII 

LIST OF ABBREVIATIONS ....................................................................................... XV 

LIST OF SYMBOLS ................................................................................................ XVIII 

CHAPTER 1. INTRODUCTION .................................................................................... 1 
Background, Context, and Theoretical Framework ...................................................... 4 
Statement of the Problem .............................................................................................. 7 
Purpose of the Study ..................................................................................................... 7 
Research Questions ....................................................................................................... 7 
Hypothesis..................................................................................................................... 8 
Significance of the Study .............................................................................................. 9 
Operational Definitions ............................................................................................... 10 

CHAPTER 2. LITERATURE REVIEW ...................................................................... 13 
Evolution of STEM ..................................................................................................... 26 

Science and Engineering (S&E) Policy Cycles ................................................. 26 

The Rise of STEM ............................................................................................. 33 

Gradations of STEM .......................................................................................... 36 

The STEM Pipeline............................................................................................ 42 

The “Leaky” Workforce Path ............................................................................ 46 

Theoretical Framework ............................................................................................... 50 
Models for Pursuit.............................................................................................. 50 

Dimensions and Constructs................................................................................ 54 

Factors Affecting STEM Career Pursuit ..................................................................... 57 
The Emergence of Typological Models ...................................................................... 60 

CHAPTER 3. RESEARCH METHODOLOGY .......................................................... 62 
The High School Longitudinal Study of 2009 (HSLS:09) ......................................... 63 

Survey Design .................................................................................................... 67 



 

viii 

Survey Instrument and Data Collection ............................................................. 68 

Analytic Weights ............................................................................................... 69 

Validation and Reliability .................................................................................. 71 

Exogenous Variables and Descriptive Statistics ......................................................... 74 
Educational Goals and Outcomes ...................................................................... 74 

Psychometric Influences .................................................................................... 75 

Experiential and Learning Influences ................................................................ 80 

Contextual-Environmental Influences ............................................................... 83 

Demographic Influences .................................................................................... 88 

Methodological Procedure .......................................................................................... 90 
Generalized Linear Model ................................................................................. 91 

Modeling with Complex Survey Data ............................................................... 93 

Covariate Interactions ........................................................................................ 94 

Fit and Diagnostics ............................................................................................ 94 

Methodological Limitations, Delimitations, and Ethical Considerations ................... 98 
Expected Findings ..................................................................................................... 101 

CHAPTER 4. DATA ANALYSIS AND RESULTS................................................... 103 
Sample Size ...................................................................................................... 103 

Multicollinearity .............................................................................................. 106 

Outliers ............................................................................................................. 107 

Additional Assumptions................................................................................... 108 

Modeling Results ...................................................................................................... 113 
Research Question 1: What is STEM and how is it defined within education and the 

workforce? ....................................................................................................... 113 

Research Question 2: What combination of influencing factors across student 

characteristic groupings contribute to expected STEM pursuit across secondary and 

postsecondary levels of education? ................................................................. 116 

Research Question 3: What influencing factors across student characteristic groupings 

act as supports for or barriers to an anticipated STEM career across secondary and 

postsecondary levels of education? ................................................................. 131 

Research Question 4: What typological models predict the successful pursuit of 

underrepresented groups of students into STEM fields? ................................. 139 

Research Question 5: Is there a STEM taxonomy that encompasses inclusive typologies 

for underrepresented groups of students? ....................................................... 140 

Research Question 6: How do these model results compare to traditional pipeline 

approaches to STEM pursuit? ......................................................................... 141 

CHAPTER 5. CONCLUSIONS AND DISCUSSION................................................ 143 
Fit of Research Findings ........................................................................................... 143 

Existing Literature and Conceptual Frameworks ............................................ 143 

Policy and Practice ........................................................................................... 148 



 

ix 

Limitations and Recommendations for Future Research .......................................... 149 
Conclusion ................................................................................................................ 152 

REFERENCES .............................................................................................................. 154 

APPENDICES ............................................................................................................... 176 

 

 

  



 

x 

LIST OF TABLES 

  Page 

Table 1. Defining STEM by Authority, Taxonomy, Level, and Type of Classification.. 21 

Table 2. Summary of Contemporary Factors in Motivation and Retention Theories ...... 52 

Table 3. HSLS:09 Educational Construct Assessed by Role ........................................... 70 

Table 4. Base-weighted Unit Response Rates .................................................................. 72 

Table 5. Second Follow-up Survey Weights .................................................................... 73 

Table 6. Major Selection Descriptive Statistics ............................................................... 75 

Table 7. Highest Level Math and Science Course GPA Descriptive Statistics ............... 75 

Table 8. Math Efficacy Descriptive Statistics .................................................................. 76 

Table 9. Science Efficacy Descriptive Statistics .............................................................. 76 

Table 10. Math Utility Descriptive Statistics ................................................................... 77 

Table 11. Science Utility Descriptive Statistics ............................................................... 77 

Table 12. Math Interest Descriptive Statistics ................................................................. 78 

Table 13. Science Interest Descriptive Statistics ............................................................. 78 

Table 14. Student Expectations (Wave 1) Descriptive Statistics ..................................... 78 

Table 15. Student Expectations (Wave 2) Descriptive Statistics ..................................... 79 

Table 16. School Belonging Descriptive Statistics .......................................................... 80 

Table 17. Math Identity Descriptive Statistics ................................................................. 80 

Table 18. Science Identity Descriptive Statistics ............................................................. 81 

Table 19. STEM Program for Underrepresented Students Descriptive Statistics............ 81 

Table 20. School Raises Math/Science Interest Descriptive Statistics ............................ 82 

Table 21. Informal STEM Partnership Descriptive Statistics .......................................... 82 

Table 22. 8th Grade Math Scores Descriptive Statistics .................................................. 83 



 

xi 

Table 23. Math Teacher Gender Bias Descriptive Statistics ............................................ 84 

Table 24. Science Teacher Gender Bias Descriptive Statistics ........................................ 84 

Table 25. Gender Matching Descriptive Statistics ........................................................... 85 

Table 26. Father’s Educational Level Descriptive Statistics ............................................ 85 

Table 27. Mother’s Educational Level Descriptive Statistics .......................................... 86 

Table 28. Parent Expectations (Wave 1) Descriptive Statistics ....................................... 86 

Table 29. Parent Expectations (Wave 2) Descriptive Statistics ....................................... 87 

Table 30. Mentorship Descriptive Statistics .................................................................... 88 

Table 31. Race Descriptive Statistics ............................................................................... 89 

Table 32. Gender Descriptive Statistics ........................................................................... 89 

Table 33. Socioeconomic Status Descriptive Statistics ................................................... 90 

Table 34. HSLS:09 Variables of Interest ......................................................................... 95 

Table 35. Monte Carlo Power Analysis for Continuous Covariates .............................. 105 

Table 36. Tolerance and Variance Inflation Factors (VIFs) .......................................... 106 

Table 37. Outliers for Wave 1 ........................................................................................ 109 

Table 38. Outliers for Wave 2 and Wave 4 .................................................................... 109 

Table 39. Coefficients and 95% Confidence Intervals - Wave 1 Model 1..................... 110 

Table 40. Coefficients and 95% Confidence Intervals - Model for Wave 1 Model 2 ... 111 

Table 41. Coefficients and 95% Confidence Intervals - Model for Wave 1 Model 3 ... 111 

Table 42. Subjects with Large Coefficient Values by Logit (1-3) in Waves 1-4 ........... 112 

Table 43. Descriptive Statistics for STEM code 1 – Sub-Domain Type (Far Term) ..... 114 

Table 44. Descriptive Statistics for STEM code 3 – Sub-Domain Type (Near Term) .. 115 

Table 45. MNLR Final Model Results on Expected STEM Career Outcomes at 30 .... 119 

Table 46. MNLR for Expected Occupation at Age 30 (X1STU30OCC_STEM1) ........ 120 

Table 47. MNLR for Expected Occupation at Age 30 (X2STU30OCC_STEM1) ........ 122 



 

xii 

Table 48. MNLR for Expected Occupation at Age 30 (X4OCC30STEM1) ................. 124 

Table 49. MNLR for Expected Occupation at Age 30 (X1STU30OCC_STEM3) ........ 126 

Table 50. MNLR for Expected Occupation at Age 30 (X2STU30OCC_STEM3) ........ 128 

Table 51. MNLR for Expected Occupation at Age 30 (X4OCC30STEM3) ................. 130 

 

  



 

xiii 

LIST OF FIGURES 

  Page 

Figure 1. Share of STEM Bachelor's Degrees Awarded from 2000-2017 ........................ 2 

Figure 2. STEM Bachelor’s Degrees Awarded in 2017 by Race and Ethnicity ................ 4 

Figure 3. Distribution of STEM Publications on the Web of Science from 2006-2019 .. 14 

Figure 4. Pathways to STEM Careers (Long-term) ......................................................... 24 

Figure 5. Pathways to STEM Careers through Instructional Programs (Near-term) ....... 25 

Figure 6. Applied to U.S. R&D Spending from 1953-2017 ............................................ 29 

Figure 7. PET Model to U.S. R&D per Capita Spending (1953-2017) ........................... 37 

Figure 8. Applied standard hierarchy to the STEM disciplines ....................................... 43 

Figure 9. Supply-driven STEM pipeline model ............................................................... 45 

Figure 10. Timeline of Motivation and Retention Theoretical Models ........................... 48 

Figure 11. Eccles et al. (2002) EVM of Achievement, Performance, and Choice .......... 49 

Figure 12. Bi-directional Model of Triadic Reciprocal Causation (Bandura, 1986) ....... 51 

Figure 13. SCCT Model of Person, Contextual, and Career-Related Choice) ................ 56 

Figure 14. Design for NCES Secondary Longitudinal Studies (1972-2025) ................... 64 

Figure 15. Longitudinal Design for HSLS:09 .................................................................. 66 

Figure 16. HSLS:09 Base-year (9th Grade) Conceptual Map ......................................... 68 

Figure 17. MNLR Model-Building Flowchart ................................................................. 99 

Figure 18. Monte Carlo Power Analysis over SES ........................................................ 105 

Figure 19. Individual Logit Fit and Diagnostics of STEM1 – Wave 4 Model 2 ............ 118 

Figure 20. Example mlogitplot on Wave 2 Outcomes (STEM1) .................................. 132 

Figure 21. Wave 1 MNLM by Gender for STEM1 ....................................................... 133 

Figure 22. Wave 2 MNLM by Gender for STEM1 ....................................................... 134 

Figure 23. Wave 4 MNLM by Gender for STEM1 ....................................................... 134 



 

xiv 

Figure 24. Wave 1 Outcomes mlogitplot (STEM1) ....................................................... 135 

Figure 25. Wave 4 Outcomes mlogitplot (STEM1) ....................................................... 136 

Figure 26. Wave 4 MNLM by Gender (Female) and Gender Bias for STEM1 ............ 136 

Figure 27. Wave 4 MNLM by Gender (Male) and Gender Bias for STEM1 ................ 137 

Figure 28. Wave 4 MNLM by Gender (Female) and Parent Expectations for STEM1 137 

Figure 29. Wave 4 MNLM by Gender (Male) and Parent Expectations for STEM1 .... 138 

  



 

xv 

LIST OF ABBREVIATIONS 

 

 

 

 

Abbreviation Meaning 

AAAS American Association for the Advancement of Science 

ACT American College Testing 

AP Advanced Placement 

AT Attribution Theory 

BLS Bureau of Labor Statistics 

BRR Balanced Repeated Replication 

CEO Corporate Executive Officer 

CI Confidence Interval 

CIP Classification for Instructional Programs 

CP College Prepatory 

DHS Department of Homeland Security 

EVT Expectancy-Value Theory 

GOT Goal Orientation Theory 

H Honors 

HS&B High School & Beyond 

HSLS High School Longitudinal Study 

ICPSR Inter-university Consortium for Political and Social Research 

IRT Item Response Theory 



 

xvi 

IT Information Technology 

MESA Mathematics Engineering Science Achievement 

MET Mathematics Engineering Technology 

MNLM Multinomial Logistic Model 

MNLR Multinomial Logistic Regression 

NAEP National Assessment of Educational Progress 

NAICS North American Industry Classification System 

NASA North American Space Agency 

NCES National Center for Educational Statistics 

NDEA National Defense Education Act 

NELS National Education Longitudinal Study 

NLS National Longitudinal Study 

NRC National Research Council 

NSB National Science Board 

NSF National Science Federation 

NSLDS National Student Loan Data System 

O*NET The Occupational Network 

OECD Organisation for Economic Co-operation and Development 

OMD Office of Management and Budget 

OR Odds Ratio 

PET Punctuated Equilibrium Theory 

PhD Doctor of Philosophy 

PISA Program for International Student Assessment 



 

xvii 

PSU Primary Sampling Unit 

R&D Research & Development 

ROC Receiver Operating Curve 

RT Retention Theory 

S&E Science & Engineering 

SCCT Social Cognitive Career Theory 

SCT Social Cognitive Theory 

SDT Self-Determination Theory 

SES Socioeconomic Status 

SET Science Engineering Technology 

SLS Secondary Longitudinal Studies 

SME&T Science Mathematics Engineering & Technology 

SMET Science Mathematics Engineering Technology 

SOC Standard Occupational Classification 

STEAM Science Technology Engineering Arts Mathematics 

STEM Science Technology Engineering Mathematics 

TIMSS Trends in International Mathematics and Scientific Study 

US United States 

USSR United Socialist Soviet Republic 

VIF Variance Inflation Factors 

 

  



 

xviii 

LIST OF SYMBOLS 

 

 

 

 

Symbol Meaning 

 Logit model coefficient 

 Log odds of a particular outcome 

n Sample Size 

N Population size 

b Base outcome (reference category or control) 

m Comparison outcome 

J Total number of alternative categories 

OR Odds Ratio 

 Cook’s distance 

D Deviance 

h Leverage 

2 Change in Pearson chi-square 

n Change in sample size 

df1 Degrees of freedom as the number of treatment levels - 1  

df2 Degrees of freedom as the number of observations – number of groups  

F F-statistic 

p p-value 

t t-statistic 

 



 

1 

Chapter 1. Introduction 

Science, Technology, Engineering, and Mathematics (STEM) has grown from its public 

policy origins to headline debates over labor market trends, pipeline models, and educational 

initiatives (Funk & Parker, 2018; Lucena, 2005; Maltese & Tai, 2011; Teitelbaum, 2003; Xie & 

Killewald, 2012). Tangent to the economic and educational policy discussions from the early 

2000s (National Academy of Sciences et al., 2007; National Governors Association, 2007; 

National Research Council, 2002), research today is reflecting a renewed focus on identifying 

intersectional barriers to, supports of, and models predicting STEM pursuit amongst the most 

marginalized. This shifting research priority has come in response to historic degree attainment 

data revealing that “many groups of Americans remain underrepresented among Science and 

Engineering [S&E] degree recipients” (National Science Board [NSB] & National Science 

Foundation [NSF], 2020). In-group comparisons between gender, race, ethnicity, and socio-

economic status (see Figure 1) are spotlighting these differences on a national scale. While the 

total number of degrees conferred by female students across the nation has reached 58%, the 

quantity of STEM degrees (36%) compared to the national average (45%; NSB & NSF, 2019; 

National Center for Educational Statistics [NCES], 2016) is unveiling a significantly different 

image. Underlying this difference in STEM degrees attained (-9%), is an overall lack of parity in 

the “pipeline” to pursuit. These trends have become even more concerning when examining the 

STEM subfields of engineering, computer science, and mathematics and statistics (see Figure 2; 

NSB & NSF, 2019). Considering the degree composition by race within these disciplines, Black 

people remain underrepresented “at all degree levels” and Hispanic people are represented 

singularly at the associate’s level (NSB & NSF, 2020). Figures 1 and 2 illustrate these gaps in 

STEM pursuit between 2000 and 2017 at the bachelor’s degree level based on race and ethnicity 
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and by STEM sub-discipline. Ascribing these differences to longitudinal pursuit factors such as 

lower high school completion rates, progression to advanced coursework, college enrollment, and 

degree attainment (NSB & NSF, 2020), the one-dimensional pipeline models employed to explain 

them present a rigid form of empiricism when defining and organizing the policy-problem space. 

Belied by the lack of an accepted operationalized definition of STEM, federal policies developed 

over the last fifteen years utilizing pipeline theories have been further limited by a depth of 

understanding of STEM pursuit and its application. The result is an affirmation to this increasingly 

subjective endeavor and to a drifting set of indicators which provide limited power in predicating 

career attainment. 

Figure 1. Share of STEM Bachelor's Degrees Awarded from 2000-2017 

 

Note. Data were compiled from the Science and Engineering Indicators 2020 (National Science Board et 

al., 2020) showing a percentage decrease in respondent reporting from 2000 to 2017. 

Amidst these challenges, contemporary quantitative research has begun to employ analysis 

methods that consider intersectional relationships in identifying model factors that support the 
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development of gap-reducing policies. Typological (Engberg & Gilbert, 2014; James et al., 2019; 

Wang et al., 2017), factor analysis (Yang & Barth, 2017), hierarchical models (Andersen & Ward, 

2014; Ibrahim & Johnson, 2020; Jackson & Laanan; 2015; Robnett & Leaper, 2013; Woo et al., 

2021; Xu, 2008), and multinomial regression techniques (Gottlieb, 2018; Kremer, 2020) have 

shown promise in evaluating these intersections as well as their application to longitudinal data. 

The High School Longitudinal Study (HSLS:09; Ingels et al., 2018) is the most recent NCES 

dataset capturing longitudinal panel data on S&E pursuit factors, extending from secondary to 

postsecondary educational environments and STEM careers, aligning to traditional pursuit models 

and research-supported motivational and persistence constructs of pursuit. With the goal to 

“further understand the correlates of educational success in the United States”, HSLS:09 aligns to 

the modern approaches of STEM pursuit research including many contextual, environmental, and 

demographic components that have been shown to affect students pursuing S&E careers.   

However, without clarity in the factors supporting the pursuit of a well-defined, modern 

definition of STEM, the U.S. has yet to acknowledge the positive impacts of a changing 

demographic of citizenry, and the resulting economic bearing – the corollary to a stance it has long 

supported in promoting individual and national growth (Piketty & Goldhammer, 2014, pp. 416-

420) – on stimulating innovation in science and engineering. Investing in high-quality STEM 

education and providing access to undergraduate STEM programs, are not only the “building 

blocks of the American innovation ecosystem” (National Economic Council et al., 2015) but, more 

importantly, a critical component for developing student agency in STEM. Agency is the human 

ability of students to make decisions about how they engage in a particular learning setting 

(Giddens, 1984). Although many students are building STEM agency outside the formal 

educational system (Levinson, 2014), motivation to continue to pursue difficult STEM career 
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outcomes relies on the building of a formal and informal learner agency designed around student 

interests and real-world relevancy (Levinson, 2014; Murphy et al., 2019; Rosenzweig, 2016). 

While innovation has undoubtedly been a driver of the post-modern economy (Carnevale, Smith, 

& Strohl, 2010), future STEM graduates will rely on their agency to develop innovative solutions 

that transcend economic means and lead to cultural, scientific, and engineering discoveries. The 

impacts of these new discoveries may have the capability to evolve the human condition.  

Figure 2. STEM Bachelor’s Degrees Awarded in 2017 by Race and Ethnicity 

 

Note. Data were compiled from the Science and Engineering Indicators 2020 (National Science Board et 

al., 2020).  

Background, Context, and Theoretical Framework 

A defining spirit of innovation has underscored a national identity long before STEM was 

phrased into the educational policy landscape. Before 2000, “SME&T” represented the 

“collective” disciplines of Science, Mathematics, Engineering, and Technology. However, by 

2008 and after some reimagining of the acronym at the National Science Foundation, “STEM” 
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was beginning to be used extensively throughout educational research, policy, postsecondary 

education, and the disciplines themselves. What is commonly believed to have generated a fervent 

proliferation of STEM is the convergence of three seminal reports released in 2005 – comprised 

of unique coalitions of non-profit organizations and corporate, academic, and educational leaders 

(Breiner et al., 2012; Koehler et al., 2012; Lantz, 2009; Teitelbaum, 2014). Each report had similar 

goals: (1) bringing to light a shared belief that the United States was failing to produce a quality 

science and engineering workforce, (2) that the U.S. was quickly being surpassed by rising foreign 

nations, and (3) to provide policy recommendations for addressing these forecasted challenges. As 

a basis for their calculations, the authors employed generalized economic models based around 

interpretations of the STEM occupations, each showing a similar crisis on the horizon. 

Of these three historicizing reports, Rising Above the Gathering Storm: Energizing and 

Employing America for a Brighter Economic Future (2005), developed out of an ad hoc committee 

from the National Research Council (NRC), impelled the use of National Science Foundation 

(NSF)-supported economic and pipeline models to the forefront of STEM education policy. By 

playing to the competitive fears of the public, the NRC report considered how the U.S. would 

become technologically competitive on an international stage as a perceived shortage of 

adequately trained STEM professionals furthered a lack of U.S. preparation into the new 

globalized economy. Historically, student national achievement levels in math and science have 

ebbed and flowed over the last three decades (Desilver, 2017). Within the last few years any gains 

shown in National Assessment of Educational Progress (NAEP) scores have stalled (Desilver, 

2017). Recent 2015 PEW research surveyed a representative sample of American Association for 

the Advancement of Science (AAAS) members and the public about their perceptions of the 

country’s STEM status in relation to the rest of the world. Only 29% of the public and 16% of 
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AAAS members surveyed believed the U.S. remained at or above other developed countries (Pew 

Research Center, 2015, p. 5). These positions are becoming increasingly supported by 2015 and 

2018 Program for International Student Assessment (PISA) scores showing the United States 

lagging behind other Organisation for Economic Co-operation and Development (OECD) nations 

(such as Canada, Japan, United Kingdom, Singapore, Hong Kong, Germany, and South Korea) 

and either at or below the OECD average (Desilver, 2017). Creating high quality jobs and 

responding for the need for clean energy were two challenges deemed by the committee as being 

closely tied to the future of S&E success. Therefore, the report pushed for reforms that increased 

training efforts, furthered a development plan to expand the supply-side STEM talent pool, and 

supported overall improvements to K-12 education. However, with the coupling of one-

dimensional human-capital economic models with a non-operationalized definition of STEM, 

predictive models for determining factors of pursuit for underrepresented S&E graduates has 

proven elusive – resulting in a workforce variance between 5 - 20% of the U.S. economy (Lowell 

& Salzman, 2007; Teitelbaum, 2014; Xie & Killewald, 2012; Xue & Larson, 2015). Nevertheless, 

the STEM pipeline model of supply-side inputs and demand-pulling outputs remains the most 

widely employed method for explaining and assessing the “state of STEM” compared to other 

industrialized nations. 

Modern research has revealed a growing role of typologies – a competing perspective to 

the one-dimensional pipeline approaches – in predicting STEM career pursuit for underrepresented 

groups of students. Results from these studies are challenging historical views which have relied 

on STEM pipeline models to examine factors associated with motivation and persistence. These 

models, conversely, do not address a changing demographic of citizenry and untapped workforce 

potential through: (1) a reliance on supply-side economics that have led to flawed measurements 
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and the “leaky path” analogy, (2) a single dimensionality (or linearity) of career pursuit milestones 

with a single career entry point that does not fully explain contemporary educational pathways, 

and (3) the homogenization of people and fields.  

Statement of the Problem 

 The research herein considers the barriers to, and supports of, STEM pursuit for 

underrepresented students across their secondary and postsecondary schooling. Results from a 

typological, student-focused approach across the longitudinal pursuit span of traditional pipeline 

models may illuminate critical barriers and supports for underrepresented groups of students 

interested in pursuing careers in critical STEM fields. 

Purpose of the Study 

 The purpose of this study is to examine the extent to which motivational and persistence 

factors predict U.S. secondary and postsecondary students’ occupational career choice and how 

their arrangement fit positive typologies of STEM pursuit. Anticipated STEM occupation at the 

age of 30 across multiple STEM taxonomies and longitudinal collection points are the categorical 

dependent variables and psychometric; experiential and learning; contextual-environmental; and 

demographic influences are independent variable groupings. Typographic models within and 

between groups will support a larger comparative analysis of the roles of these factors in STEM 

career pursuit amongst underrepresented students. 

Research Questions 

 The objective of the research is to examine how students make occupational and 

educational decisions in their longitudinal pursuit of STEM careers. As a basis for this research, 

the following research questions consider the purpose for and approaches toward re-assessing 

STEM pursuit models: 
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Research Question 1: What is STEM and how is it defined within education and the workforce? 

Research Question 2: What combination of influencing factors across student characteristic 

groupings contribute to expected STEM pursuit across secondary and postsecondary levels of 

education? 

Research Question 3: What influencing factors across student characteristic groupings act as 

supports for or barriers to an anticipated STEM career across secondary and postsecondary levels 

of education? 

Research Question 4: What typological models predict the successful pursuit of underrepresented 

groups of students into STEM fields? 

Research Question 5: Is there a STEM taxonomy that encompasses inclusive typologies for 

underrepresented groups of students? 

Research Question 6: How do these results compare to traditional pipeline model approaches to 

STEM pursuit and policy? 

Hypothesis 

 Research surrounding Research Question 1 is inseparable from the historical contexts of 

STEM education in the United States and the evolving educational policies enacted throughout the 

modern era (post-WWII). Since STEM was derived from educational policy, addressing this 

question will necessitate a policy analysis. The results are hypothesized to follow a STEM 

definitional structure aligned to occupational, national, and political interests. As a basis for 

Research Question 2-6, understanding career-connected definitions of STEM (e.g., through the 

Bureau of Labor Statistics, Department of Labor, and National Science Foundation) will reset the 

perspective for who enters STEM fields, how they are supported, and the barriers that exist to their 

pursuit of STEM careers. Building on prior research that specifically considers factors affecting 
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STEM pursuit, it is hypothesized that many typologies exist for students entering STEM careers 

from a multitude of directions.  

Significance of the Study 

Recent contributions to the field of STEM education have centered on the significance of 

promoting diversity by examining the limiting conditions of students with an initial interest in 

these disciplines. However, an overreliance on traditional one-dimensional approaches to 

educational policy, such as the “pipeline model”, have given way to more modern beliefs about 

the factors affecting student career goals and attainment outcomes as well as the frameworks for 

understanding the development process. Social Cognitive Career Theory (amongst a backdrop of 

other motivational and persistence theories) examines specifically how students shape their future 

careers and are shaped by their environment, forming a triadic relationship between social stimuli, 

self-influences, and achievement outcomes. Although the model has shown promise in predicting 

achievement outcomes of students through its derivative Social Cognitive Career Theory, it has 

yet to be applied longitudinally across secondary and postsecondary schooling and in the context 

of student motivations and career outlooks. The aim of this research is to uncover how students 

are making occupational and educational decisions longitudinally – those factors which affect their 

pursuit of a STEM major and beliefs about obtaining a STEM degree – and serve as model 

predictors. By disaggregating the STEM pipeline into factors and correlates, a cursory examination 

of the definitions surrounding traditional STEM careers with student career outlooks may give rise 

to an aggregate understanding of student motivations and persistence in these fields. The ability to 

provide educators, researchers, and policy makers with a deeper understanding of the gaps in the 

overall participation of women and underrepresented groups, including ways to close these divides 

and link opportunity pathways that may better align with a changing demographic of U.S. 
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citizenry, advances the state of the field. Success through these means will have a direct effect on 

increasing student agency in STEM and the well-being of all individuals in our society. 

Operational Definitions 

The following definitions are provided to give clarity to their use, operationalization, and 

context due to the interdisciplinary nature of the proposal. Since this proposed study combines 

literature from the individual STEM disciplines, education, economics, psychology, philosophy, 

educational policy, and the teaching profession, the included definitions offer a bridge toward 

connecting these parts throughout the document. To provide clarity in interpreting the terms 

presented, all researcher-developed definitions are not accompanied by a citation.  

Academic Identity: how we see ourselves in an academic domain. 

Academic Self-concept: how an individual regards their own academic achievement – a 

content-specific self-rating of skills, abilities, enjoyment, and interest. 

Agency: the active role of students in their learning through voice or choice. 

Classification of Instructional Programs (CIP): “a taxonomic scheme that supports the 

accurate tracking and reporting of fields of study and program completions activity” (U.S. 

Department of Education, 2020). 

Cost: financial or personal strain of performing a specific task. 

Expectancy: the probability that a desired outcome is achieved through a specific behavior 

or action. 

Iron triangles: “communities of specialists operating out of the political spotlight” 

(Baumgartner et al., 2017).  

Marginal effects: instantaneous rates of change of a predictor with an individual covariate 

under defined conditions (e.g., moderating factors). 
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North American Industry Classification System (NAICS): “the standard used by Federal 

statistical agencies in classifying business establishments for the purpose of collecting, analyzing, 

and publishing statistical data related to the U.S. business economy” (U.S. Census Bureau). 

The Occupational Network (O*NET): “the nation’s primary source of occupational 

information”. The O*NET database contains “standardized and occupation-specific descriptors on 

almost 1,000 occupations covering the entire U.S. economy” (Department of Labor, 2020). 

Policy images: “a mixture of empirical information and emotive appeals” (Baumgartner et 

al., 2017). 

Policy monopoly: “a definable institutional structure responsible for policymaking in an 

issue area, and its responsibility is supported by some powerful idea or image. This image is 

generally connected to core political values and can be communicated simply and directly to the 

public” (Baumgartner et al., 2017). 

Policy window: generic term to include both “agenda windows” (i.e., pushing “pet 

solutions” or garnering attention to “special problems [Kingdon, 2011]) and “decision windows”, 

which advocate for “getting policies adopted” (Herweg et al., 2017). 

Punctuations: “political processes” that “occasionally produce large-scale departures from 

the past” (Baumgartner et al., 2017). 

Self-efficacy: an individual’s belief in their capacity to perform the behaviors necessary to 

produce specific performance attainments (Bandura, 1977; 1986; 1997). 

Standard Occupational Classification (SOC): “a federal statistical standard used by federal 

agencies to classify workers into categories for the purpose of collecting, calculating, or 

disseminating data” (U.S. Bureau of Labor Statistics, 2020). 

Stasis: a long period “marked by stability and incrementalism” (Baumgartner et al., 2017) 



 

12 

STEM Pipeline: a metaphor describing the singular path to pursuit of a career in science, 

technology engineering, and mathematics. 

Supply-side Economics: a theory that postulates how an infusion of capital, jobs, and labor 

into a marketplace (the “supply-side”) will stimulate the economy.   

Task-value: perceived importance, usefulness, enjoyment, or benefit to the individual 

successfully completing a task. 

Triadic Reciprocal Causation: the triadic, simultaneously causal effects of personal, 

environmental, and behavioral determinants on each other. 

Utility Value: the perceived usefulness of a task. 
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Chapter 2. Literature Review 

 The lack of a clearly defined and rigorous classification of STEM careers has led to a 

disparate set of approaches for explaining how secondary and postsecondary students in the United 

States reach these outcomes as well as their effect on the U.S. economy. Since the popularization 

of “STEM” by the National Science Foundation, as a loosely abstracted group of fields in science 

and engineering, the evolution of STEM as a non-operationalized term has produced reflexive 

interpretations over the last fifteen years since its emergence. Most of these interpretations are 

fitted around labor-market economic models (e.g., the STEM pipeline) that aim to predict the 

STEM workforce and guide the overall effectiveness of STEM training programs. Classifications 

of STEM center primarily on the traditional disciplines (the natural and physical sciences, 

engineering, and mathematics), though many also branch outward toward non-traditional STEM 

careers including the social sciences, health and medical professions, the technical trades, and 

management positions. The result is a significant variance (Teitelbaum, 2014; Xue & Larson, 

2015) in the overall labor market through which “STEM” is defined – differences which may have 

had ripple effects across underrepresented groups of students, including on the models and 

educational policy decisions that have come as a result. 

By all accounts, the origin of STEM grew from within the national policy landscape prior 

to the early 1990s (Sanders, 2009). Before 2000, “SME&T” was the dernier cri, representing the 

“collective” disciplines of Science, Mathematics, Engineering, and Technology. Other acronyms 

launched throughout this time including “SMET”, “SET”, and “MET”, though only SET remains 

today in international contexts. It was within an interagency meeting on science education that the 

former director of the National Science Foundation’s Education and Human Resources Division, 

Judith Ramaley, was credited with cementing this change (Christenson, 2011; Koonce et al., 2011; 
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National Science Foundation, 1996). Although insignificant at the time, this simple arrangement 

became a catchy, well-utilized descriptor in economic and educational policy. By the early 2000s 

the term was widely accepted throughout academe and by 2009 “STEM” began bracing Education 

Week headlines (Loewus, 2015) and its usage exhibiting a quadratic growth in Web of Science 

search results (Figure 3), an acknowledgement that it had entered the vernacular. 

Figure 3. Distribution of STEM Publications on the Web of Science from 2006-2019 

 

Note. The search criteria included the following search terms: “STEM” AND “science, technology, 

engineering, and mathematics” 

Lacking an operationalized definition of STEM from the onset, the economic models 

undergirding national educational policy decisions have become highly criticized (Lowell & 

Salzman, 2007; Teitelbaum, 2014; Xie & Killewald, 2012; Xue & Larson, 2015). Depending on 

the economic model chosen (i.e., the inclusion or exclusion of agricultural, social science, or health 

occupations), labor market calculations have been shown to fluctuate from surpluses to deficits 
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(Xue & Larson, 2015). Educational and governmental organizations, therefore, have struggled 

with reconciling interagency meta-analysis and with ways of comparing workforce data as a means 

of assessing STEM policy decisions, like those outlined in the America COMPETES act (2007) 

and reauthorization act (2010; 2017). As a result, several national organizational bodies have 

developed their own definitions for STEM occupations, appearing as taxonometric codes, or 

numeric job and instructional program indicators, that form a standard hierarchical definition of 

STEM occupations1. The approaches, such as those employed by the Bureau of Labor Statistics, 

leverage solutions dating back to the 1890 Census of Population which originally specified a multi-

level taxonometric approach to account for industries, disciplines, disciplinary jobs within these 

industries, and for varying layers of job specificity to administer the census. In 1980, the National 

Center for Educational Statistics (NCES) developed the Classification of Instructional Programs 

(CIP), a “taxonometric scheme” supporting “the accurate tracking and reporting of fields of study 

and program completions activity” (NCES, 2020) to solidify a similar “accounting” methodology 

at the postsecondary level. Their approach diverged mainly from the unit of analysis presented by 

the Bureau of Labor Statistics (BLS) Standard Occupational Code (SOC) framework, by focusing 

on the instructional programs enrolling students as opposed to the skills defining the STEM 

occupations of working professionals. Seeking a way to connect to the BLS SOC for longitudinal 

alignment between programs of study and future careers, the NCES coordinated the development 

of “crosswalks” to link between the CIP and SOC taxonomies for pursuit research. 

Table 1 illustrates the leading definitions of STEM by organization and according to their 

authority, taxonomy, methodology, STEM definition, and level of analysis (e.g., educational- or 

 
1 For example, the code 1.A 17-2011 within the Bureau of Labor Statistics data uses dot/dash-delimited numbers to 

represent hierarchical jobs levels, in this case “Aerospace Engineer”, of sub-domain, occupation, and SOC code. 
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occupational-focused). Of the definitions, the top five authorities - as viewed in Table 1 from the 

top-down - are the most widely used and accepted. Each taxonomy offers a distinct perspective, 

yet each fall into either the SOC, CIP, or North American Industry Classification System (NAICS) 

taxonometric framework. Localized attributes are shown to exist within these perspectives 

independently as either career-focused or instructional-program hierarchies. The skills-based 

taxonomies including the BLS SOC, Census Bureau NAICS, and Department of Labor’s O*NET 

are organized around specific STEM skill sets determined by the Office of Management and 

Budget (OMB). Following the approach of separating STEM into “Science, Engineering, 

Mathematics, and Information Technology” and “Science and Engineering Related” domains, 

each domain is associated with jobs that fulfill five key STEM skill sets: (1) research, development, 

design, and practitioner, (2) technologist and technician, (3) postsecondary teaching, (4) 

managerial, and (5) sales. Through this approach military, health and medical, managerial, and 

technical sales jobs may be included in the job outlook since each requires a combination of 

education and industry-specific professional training. The NAICS, which guides the Census 

Bureau’s approach to STEM classification, similarly separates occupations into “STEM” and 

“STEM-related” categories, though with a production-orientation based on the goods produced by 

an “establishment” within a specific industry (NAICS, 2017, pp. 15-21). Conversely, instructional 

program-aligned taxonomies define STEM based on the NCES Classification of Instructional 

Programs (CIP) which offers a distinct organizational methodology aligned to postsecondary 

programs at institutions of higher education and affiliated organizations such as those supporting 

research, design, and emergent technologies. This taxonomy differs by classifying fields of study 

into three categories: (1) Science, (2) Engineering, and (3) non science or engineering fields of 

study. The National Science Foundation is an example of an organization adopting this framework. 
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In keeping with NCES policy, although the NSF has yet to explicitly define STEM, successful 

STEM-specific programs such as the Louis Stokes Alliances for Minority Participation (2020), 

NSF leaders (Fiegener, 2015; Green, 2007), and STEM researchers (Chen, 2011) have provided 

guideposts toward a tacit NSF definition.  

With a wide array of STEM definitions, the problem has arisen as to which taxonomy 

“best” defines STEM for a select population. Since each one delimits the types of STEM careers 

that are included in their individual definitions (mostly at the fringes), a large-scale acceptance of 

any one taxonomy has not materialized. Emerging to the surface of this STEM occupational 

inclusion debate, therefore, is the selection criteria of “related” STEM occupations – those 

hierarchies accepting STEM-trained workers, but which do not fall into the traditional STEM 

career fields. The Census Bureau definition is an example of this classification method, separating 

into “STEM” and “STEM-related” professions. The Standard Occupational Classification follows 

this approach to differentiate the two STEM domains into “Science, Engineering, Mathematics, 

and Information Technology” and “Science and Engineering Related”. A similar practice is also 

utilized by researchers to organize the STEM disciplines separately or in combination with one of 

the listed models (Koonce, 2011; Rothwell, 2013; Xu, 2008). This distinction is what separates 

these systems from the BLS SOC and Department of Labor’s O*NET, the decision to either 

include or exclude STEM-related occupations, even as both taxonomies utilize the same overall 

classification hierarchy, the Standard for Occupational Classification.  

To visualize the differences between each of the main taxonomies (see Table 1) and their 

distinguishing paths toward STEM careers, Figures 4 and 5 synthesize their attributes into 

instructional and career pathway perspectives. Figure 4 considers STEM and STEM-related 

careers, those approved for inclusion by the SOC Policy Committee, organized around the five 
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key skill sets that the committee defined as meeting their criteria for “STEM” within the domains. 

This approach contrasts to those taken by organizations employing an instructional program-

centered methodology (e.g., NSF, DHS, and ACT). Figure 5 shows this distinction as a collection 

of disciplinary programs of study falling into either the sciences, engineering, and non-science and 

engineering disciplines that are STEM-oriented. Distinctions between the two pathways are 

illustrated in situations where industry skills are developed on-the-job, or where unique skillsets 

are job-specific and disciplinary based, not allowing for an instructional program offering such as 

technical sales (i.e., sales engineering and sales representatives) and various management careers. 

By examining each figure, and to an extent the individual taxonomies, a distinct definition 

of STEM appears to lie between the two perspectives – one that is career-based and instructional 

program-centered. A thoughtful alignment of these current (instructional and degree program) and 

future (career) pathways to an individual students’ outlook may construct the foundation for the 

successful pursuit of a STEM career. Through a mix of STEM research (Funk & Parker, 2018; 

Kaleva et al., 2019; Palmer et al., 2017; Wang, 2013) and a review of grey literature (Harris 

Interactive Survey, 2011; Kennedy et al., 2018; Painter et al., 2017), a set of motivations for why 

students choose to enter STEM careers, and the subsequent impact of career orientations on STEM 

definitions, have been established. These outlooks include: (1) an enhanced quality of life, (2) a 

greater job outlook, (3) to make a larger societal impact, (4) having an interest, (5) having a 

perceived ability, (6) wanting to become cross-marketable, and (7) enjoy solving problems or like 

being challenged. Acknowledging a particular student viewpoint, anchors the cognitive foundation 

for students to align their individual outlook to a specific STEM career (Unfried et al., 2014). The 

career-oriented pathway described in Figure 4, offers students a long-range, future-looking 

endpoint. Figure 5, by contrast, provides a near-term perspective on instructional programs of 
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study leading to a STEM career. In each perspective, an alignment of outlooks may serve different 

means to the same ends. For example, a student who has an interest in computers and technology 

but may not associate their interests with a specific program of study in their school, may take a 

long-term look at STEM careers meeting these interests and backward plan how to meet their 

goals. Another student, with an interest in science and high perceived ability in biology that wishes 

to make a larger societal impact, may look toward the near-term pathways in Figure 4 to identify 

a STEM instructional program that leads to a matching career path. The utilization of both 

pathways may help assign context and meaning to students’ interest, perceived ability, and outlook 

as they, with the support of counselors and career mentors, determine a pathway of pursuit for a 

STEM career.  

Augmenting the traditional interpretations of STEM through a set of emerging 

taxonometric models is the changing problem landscape. STEM problems and industries have 

become more unified, cross-disciplinary, globalized, socioscientific, and historico-cultural 

throughout the last two decades, resulting in a definition that has become more transdisciplinary, 

or relating to more than one branch of knowledge. Without a clear definition of STEM careers, 

pursuit research and the policy models built to examine the state of STEM training effectiveness 

remain at best limiting. Current models, those relying on the overwhelming supply-side input of 

students and demand-pulling output from industries, remain challenged by: (1) nudging students 

who may not have interest in STEM into the “pipeline” through many policy-driven supply-side 

pushes, (2) misinterpreting the demand-pull given a fluctuating definition of what defines STEM 

careers, (3) not acknowledging the role of alternative pathways for entry into STEM careers (e.g., 

through military service, through career changes, or as a transfer student from a 2-year college), 

and (4) perpetuating a homogeneity of students through which these models identify and support. 
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With a changing national demographic of citizenry, the U.S. should, and has acknowledged, the 

importance of inculcating all interested students with STEM talent (NSB & NSF, 2020). The 

underrepresentation of students based on race, ethnicity, gender, and socioeconomic status, 

however, remains undergirded by the lack of an operationalized definition of STEM and current 

models for predicting their pursuit of a STEM career. These challenges consider which factors 

affect – and are barriers to – STEM across secondary and postsecondary education, inclusive of 

the teaching approaches emerging out of a pipeline “worldview”. A shifting research perspective 

on student typologies as “multiple streams” of outlooks and pursuit factors, rather than the 

traditional “one-dimensional” models, offers a unique perspective on STEM pursuit for 

underrepresented groups of students. The definitional STEM frameworks outlined in Figures 4 and 

5 connect student near- and long-term course taking, interests, and perceived STEM ability into 

account when planning pathways toward a specific STEM career. Both provide an illustrative look 

at STEM from a skills-based and instructional program-centered perspective. However, the 

emergence of “STEM” in the annals of the National Science Foundation owes its foundation to an 

evolution of policymaking decisions dating back to over a century.    
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Table 1. Defining STEM by Authority, Taxonomy, Level, and Type of Classification 

Authority Taxonomy Methodology How is STEM Defined? Level of Analysis 

and Type of 

Classificationa 

Bureau of Labor Statistics 

(BLS) Standard 

Occupational 

Classification (SOC) 

4-level hierarchical 

coding system of 860 

occupations (Bureau of 

Labor Statistics, 2020). 

“Federal statistical 

standard used by federal 

agencies to classify 

workers into occupational 

categories for the purpose 

of collecting, calculating, 

and disseminating data” 

(BLS, 2020).  

“STEM occupations include 

computer and mathematical, 

architecture and engineering, 

and life and physical science 

occupations, as well as 

managerial and postsecondary 

teaching occupations related to 

these functional areas and sales 

occupations requiring scientific 

or technical knowledge at the 

postsecondary level” (Bureau of 

Labor Statistics, 2020). 

• Occupational 

(workforce) 

• Skills-based 

Occupation 

Classification 

• Interest and Job 

Outlook 

Definitional 

Pathways 

Department of Labor 

O*NET 

4-level hierarchical 

coding system Based on 

the BLS Standard 

Occupational 

Classification, consisting 

of 923 occupations 

centered around the same 

taxonomic model 

(Department of Labor, 

2019). 

Nations primary source of 

occupational information 

– providing data and 

online resources (e.g., My 

Next Move, O*NET 

Online, and developed 

applications) for 

understanding the 

changing nature of work 

and how it impacts the 

workforce and US 

economy (Department of 

Labor, 2020) 

Over 300 STEM occupations 

including managerial, 

postsecondary teaching, 

traditional STEM, sales, and 

technical trades. 

• Occupational 

(workforce) 

• Skills-based 

Occupation 

Classification 

• Interest and Job 

Outlook 

Definitional 

Pathways 

Census Bureau 6-digit hierarchical 

coding system 

coordinated between the 

U.S., Canada, and Mexico 

known as the North 

The NAICS is a 

production-oriented 

(supply-based) taxonomy 

employed by the U.S., 

Canada, and Mexico. The 

67 occupations including 

“computer and mathematical 

occupations, engineers, 

engineering technicians, life 

scientists, physical scientists, 

• Occupational 

(workforce) 

• Instructional 

Program-based 

https://www.bls.gov/soc/2018/soc_2018_manual.pdf
https://www.bls.gov/soc/2018/soc_2018_manual.pdf
https://www.bls.gov/soc/attachment_c_stem.pdf
https://www.onetcenter.org/dl_files/Taxonomy2019_Summary.pdf
https://www.onetcenter.org/dl_files/Taxonomy2019_Summary.pdf
https://www.onetonline.org/find/stem?t=0
https://www.census.gov/eos/www/naics/2017NAICS/2017_NAICS_Manual.pdf
https://www.census.gov/eos/www/naics/2017NAICS/2017_NAICS_Manual.pdf
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American Industry 

Classification System 

(NAICS). 

Census Bureau 

incorporates this 

classification 

methodology in their 

Current Population 

Survey (Census Bureau, 

2020). 

social scientists, science 

technicians, and STEM 

managers. STEM-related 

occupations consist of architects, 

healthcare practitioners, 

healthcare managers, and 

healthcare technicians” (NSF, 

2014). 

Occupation 

Classification 

• Cross-marketable 

Definitional 

Pathway 

National Center for 

Educational Statistics 

(NCES) Classification of 

Instructional Programs 

(CIP) 

3-level hierarchical 

coding system of 

academic majors of study 

and instructional 

programs. Cross-

referenced 6-digit codes 

represent every discipline 

offered throughout 

academic universities in 

the U.S. and link the CIP 

to the BLS (National 

Center for Educational 

Statistics, 2020). 

The CIP was designed “to 

facilitate the organization, 

collection, and reporting 

of fields of study and 

program completions” 

(NCES, 2020). These 

classifications are the 

accepted government 

standard and used in 

surveys and databases to 

inform academic, 

research, and industrial 

communities. 

“Since there is such variation in 

how STEM is defined, NCES 

does not have a single 

definition” (NCES, 2020). 

Therefore, a specific set of CIP 

codes has not been categorized 

as a STEM for policy decisions. 

• Educational (post-

secondary) 

• Instructional 

Program-based 

Occupation 

Classification 

• Perceived Ability 

and Enjoy Solving 

STEM Problems 

Definitional 

Pathway 

National Science 

Foundation 

3-level hierarchical 

coding system from the 

NCES CIP. 

The NSF adopted the 

NCES CIP as the standard 

for academic major and 

instructional program 

reporting. However, 

larger groupings of these 

classifications (e.g., 

STEM) differ from 

NCES. 

The NSF funds research in 

mathematics, physical sciences, 

and engineering, as well as in 

psychology and Social Sciences 

(Granovskiy, 2018). 

• Educational 

(secondary and 

post-secondary) 

• Instructional 

Program-based 

Occupation 

Classification 

• Cross-marketable 

definitional 

Pathway 

Department of Homeland 

Security (DHS) 

3-level, 6-digit 

hierarchical coding 

DHS has fully adopted 

the Classification of 

Instructional Programs in 

Four summary groups are 

emphasized within the DHS 

STEM taxonomy including 

• Occupational 

(workforce) 

https://nces.ed.gov/ipeds/cipcode/Files/2020_CIP_Introduction.pdf
https://nces.ed.gov/ipeds/cipcode/Files/2020_CIP_Introduction.pdf
https://nces.ed.gov/ipeds/cipcode/Files/IES2020_CIP_SOC_Crosswalk_508C.pdf
https://nces.ed.gov/ipeds/cipcode/Files/IES2020_CIP_SOC_Crosswalk_508C.pdf
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system from the NCES 

CIP 

its STEM designated 

degree program list of 

fields designated as 

STEM.  

engineering, biological and 

biomedical sciences, 

mathematics and statistics, and 

physical sciences. STEM-related 

fields involve “research, 

innovation, or development of 

new technologies using 

engineering, mathematics, 

computer science, or natural 

sciences” (DHS, 2016). 

• Instructional 

Program-based 

Occupation 

Classification 

• Perceived Ability 

and Enjoy Solving 

STEM Problems 

Definitional 

Pathway 

ACT College Board 

designation of courses 

and disciplines 

Bridge STEM majors 

with advanced course 

taking at the secondary 

level.  

Emphasize four classifications 

of majors for continued STEM 

pursuit including science, 

computer science and 

mathematics, medical and 

health, and engineering and 

technology (ACT, 2018, p. 2). 

• Educational 

(secondary) 

• Instructional 

Program-based 

Occupation 

Classification 

• Interest and Job 

Outlook 

Definitional 

Pathway 

Note. a STEM occupations choice descriptor by taxonomy and the specific level of analysis 
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Figure 4. Pathways to STEM Careers (Long-term) 
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Figure 5. Pathways to STEM Careers through Instructional Programs (Near-term) 
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Evolution of STEM  

Science and Engineering (S&E) Policy Cycles 

The usage of the term “STEM” in policy discussions of Science, Engineering, and S&E-

related fields began to show a steep increase in its usage after 2007 (Figure 3). Coinciding with 

the implementation of the America COMPETES Act (2007)2 – which aimed to promote STEM 

career pursuit and technical innovation – educators and educational researchers became challenged 

to successfully implement its innovation policies without an operationalized definition of STEM 

and an unclear interpretation of its meaning. Amidst the sorting for a workable meaning of 

“STEM” and as the proliferation of the term continued to climb along a quadratic path (Figure 3), 

its broad use became correlated with the macro policy that brought it to the micro levels within 

our U.S. educational system.  

Historically, educational policy decisions have cycled through similar points of punctuated 

change, where policies are enacted, followed by lengthy periods of stasis – the “balancing” of 

policy implementation across educational levels. Baumgartner, Jones, and Mortensen (2018) 

characterize this type of phenomena – “marked by stability and incrementalism” but periodically 

invoking “large-scale departures from the past” – through Punctuated Equilibrium Theory (or 

PET), explaining how much of the policymaking in the United States is described through this 

exchange. Exhibiting a cyclical pattern of punctuation, where a geopolitical event, such as the 

events leading up to the implementation of the America COMPETES act (2007), alters the current 

public policy image, followed by years of stasis where policy solutions are implemented and 

evaluated, encapsulate the basis of PET (Baumgartner et al., 2018). The public has long had a U.S. 

 
2 The America Creating Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science 

(America COMPETES) Act of 2007 legislated the recommendations from the seminal reports of 2005. 
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policy image of a nation leading the world in science and engineering innovation, research, and 

development with the means to compete with other challenging states. This image has maintained 

a tradition of incremental changes (stasis) in governmental and educational policies. However, as 

seen throughout our history since World War II, when the policy image begins to break down out 

of perceived competitive fears, policy monopolies, iron triangles, and issue networks force 

decision-makers to accept large-scale policy changes (or punctuations) from the subsystems within 

the larger governmental or educational network.  

Figure 6 illustrates this cyclical change of state over the last 70 years based on the annual 

U.S. research and development (R&D) spending – a proven indicator of exogenous and 

endogenous factors in policy dynamics over long time periods (Baumgartner et al., 2017, pp. 72-

74). Applied generally to the science and engineering fields, Figure 6 demonstrates agreeable yet 

revealing trends to stochastic cost study research modeling PET (pp. 75-78). Both small 

perturbations over long stretches of time and sharp punctuated crises have led to instabilities and 

significant changes. Punctuations represent these momentous changes to policy (through sigmoid-

like functions, or S-curves), due to the breaking of a policy monopoly. This change is also 

characteristic of an unevenness of policy decision making with changing socio-political conditions 

where “the intersection of the parallel-processing capabilities of the policy subsystem and the 

serial-processing needs of the macro-political system creates the nonincremental dynamics of 

lurching” (Baumgartner, Jones, & Mortensen, 2018, p. 59). Times of stasis are subsequently 

indicated by time intervals where the policy does not represent a marked change. Identifying 

locations in time where public policy images are destabilized, called policy windows, characterize 

opportunities for in-depth analysis as to the nature of the destabilization. Figure 6 also reveals a 

philosophical shift in R&D funding from large governmental programs to industry-enhancing 
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benefits, promoting innovation in the emerging fields of computer technology and integrated 

networks through industry enhancing policies starting in the early 1980s. Although beginning after 

the break-up of Germany following World War II, national pushes for large numbers of scientists 

and engineers, alongside the funding increases to implement these changes, have followed 

noteworthy events throughout our history. Whether the events of Sputnik 1 and 2 in the 1950s, the 

Apollo missions that jumpstarted the National Aeronautics and Space Administration (NASA) in 

the 1960s, the decades of Cold War between the 1950s and 1980s, and more recent innovations in 

information technology, biotechnology, and automation through the Internet of Things (IoT) 

between the 1990s up to today, the policy decisions advocating for more scientists and engineers 

were aimed at either countering the successes of our international rivals or assuaging the fears of 

the American public (Teitelbaum, 2014).      

The most significant PET event of the modern era related to science and engineering policy 

was undoubtably the launch of Sputnik 1 and 2, occurring within a month of each other and 

meeting excessively complicated mission parameters. The events of Sputnik, more importantly, 

sparked considerable fear amongst the public and congressional leaders who vowed prompt action. 

George Reedy, one of Lyndon Johnson’s staff members famously noted, “the simple fact is that 

we can no longer consider the Russians to be behind us in technology. It took them four years to 

catch up to our atomic bomb and nine months to catch up to our hydrogen bomb” (Launius, 2009, 

p.97)3. As a response to a series of failures culminating in Sputnik, in September 1958, Congress 

passed the National Defense Education Act (NDEA). The law placed an increased emphasis on 

STEM and modern foreign languages to bolster the science and technology disciplines to compete 

globally against the Soviet Union. To manage their robust plans for a strategic national movement,  

 
3 Based on the United States’ “Fat man” design as a result of an intelligence breech (Haynes, 2012). 
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Figure 6. Applied to U.S. R&D Spending from 1953-2017 
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Congress gave power to the National Science Foundation to conduct research, direct programs, 

manage the distribution of federal grant monies, and aid with teaching, learning, and secondary 

and post-secondary program improvement (Mazuzan, 1994). A short- and long-term outlook for 

the NDEA was to increase the number of STEM graduates. Although concerns were emerging 

even before the NDEA was enacted that the USSR was graduating more engineers than the U.S. 

(70,000 to an estimated 30,000, or a ratio of just over 2:1) some disregard the idea that the NDEA 

was the primary policy responsible for the development and recruitment of engineers for the 

growing, and ultimately successful, U.S. space industry (Gunther, 1958; Teitelbaum, 2014). 

Nonetheless, efforts focused on identifying human capital shortages in engineering, while seeking 

policy solutions to resolve these identified gaps, would persist throughout the period of stasis into 

the 1960s and 70s.   

Both preceding and following the Sputnik PET events of the 1950s were crises leading to 

policy windows that opened the opportunity for change (Teitelbaum, 2014). Figure 7 shows the 

cyclical nature of policy fluctuations that have led to punctuation and stasis over the last 70 years, 

and more recently to the evolution of “STEM”. Four significant punctuation events are shown as 

“lurching” in the normalized trend in Figure 7 that exemplify the PET model. For example, 

following the changing public policy image of the U.S. as a world leader in S&E in the aftermath 

of Sputnik 1 and 2 launches, Congress quickly approved the development of NASA and the 

NDEA. As the public image continued to erode with another failure – the race to the first human 

in space, President Robert F. Kennedy’s 1961 “We choose to go to the moon...” speech offered 

direct policy leadership in affecting the future direction of S&E in the U.S. The era of 

governmental funding on S&E programs peaked during this time, seeing a NASA budget increase 

by over 500% ($5.933M or 4.41% of total U.S. spending; USAFacts, 2019). Two decades later in 
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the 1980s, economic concerns belied public confidence in U.S. S&E innovation with the rise of 

the Japanese manufacturing industry and lack of belief in the quality of programs training the next 

generation of scientists and engineers. As a result, in 1980 the U.S. Department of Education was 

developed to provide equal access to education, seeing a national need. One year later, the National 

Commission on Excellence in Education (NCEE), envisioned and led by Terrence Bell, examined 

the overall quality of education considering a “widespread public perception that something is 

seriously remiss in our educational system”, commissioning a review of the state of U.S. education. 

Out of the NCEE’s investigation emerged a historicizing report, A Nation at Risk (1983), which 

sought to "affirm” a “rising tide of mediocrity” in U.S. schools “that threatens our very future as a 

nation” (NCEE, 1983). Alongside these punctuations in education were the National Cooperative 

Research Act (1984) which aimed to promote R&D, innovation, trade, and amend historic antitrust 

laws. The 1980s were also witness to a rise in emergent technology fields and personal computing 

(e.g., Microsoft Windows) as well as their introduction into education – seeing personal computers 

introduced in schools in 1986. The policy changes in funding streams from government program-

centered to the innovation-inspired infusion of dollars into emergent technology fields, are 

illustrated in Figure 7 as “cusps” in the years of stasis. In each case and occurring with periodicity 

in successive decades, were a supporting economic model and push for fulfilling a scientific or 

engineering workforce gap. From the 1940s Cold War drives for physics Ph.D. graduates, the War 

on Cancer of the 1970s (and resulting National Cancer Act which sought molecular biologists), to 

the high-tech industry boom of the 1990s and demand for information technology (IT) workers 

(e.g., computer engineers and programmers), to the web developments of the 2000s, Punctuated 

Equilibrium Theory centers these historical events within their defining policy perspective. 
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In each decade, talks of “gaps” have also transcended the policy debate while supporting 

punctuated change. The gap argument has been used since WWII to instill a sense of shock when 

comparing the U.S. to other industrialized nations. These gap arguments are almost exclusively 

system-level and rarely connected to the individual as a point of resonance, reflection, identity, or 

solution. For example, science and engineering fields, following the events of WWII, saw their 

emerging disciplines elevated from the milieu of the classic disciplines, to become a source of 

national and economic importance. A shifting focus on the quality and quantity of the individuals 

pursuing S&E degrees, as compared to competing nations, served as both a point of pride and 

recognition of U.S. hegemonic status. Many economic models accompanying these macro 

analyses, compare PISA and TIMSS scores4 to validate global S&E standing or to stoke policy 

changes, typically accompanied by a gap analysis. The educational models and outcomes used to 

describe current and to project future gaps acknowledge S&E disciplines “in the tradition” through 

a hierarchical alignment (e.g., the physical sciences then the natural sciences). This hierarchy 

(which can be traced back to the historical events following WWII and policy pushes for well-

trained Ph.D. students throughout the Cold War era) places a historic emphasis on educational and 

economic needs within the disciplines at the top of the hierarchy. Nevertheless, the S&E 

disciplines became established over forty-five years through national, economic, and policy 

adaptations until the evolution of a new acronym, STEM, was penned into policy by the National 

Science Foundation in the late 1990s – a response to the emergence of information and technology 

sectors from the prior decade. 

 

 
4 This existence of a gap has persisted; however, it has not appeared to widen. In 2019, TIMSS and PIRLS data show 

the United States trailing Chinese Taipei and the Russian Federation in 8th – grade mathematics and science scores 

(Mullis et al., 2020). 



 

33 

The Rise of STEM  

What is commonly believed to have generated a fervent proliferation of STEM and 

cemented the acronyms status in education and policy is the convergence of three seminal reports 

released in 2005 – comprised of unique coalitions of non-profit organizations and corporate, 

academic, and educational leaders (Breiner et al., 2012; Koehler et al., 2012; Lantz, 2009; 

Teitelbaum, 2014). Each report had a similar goal, to bring to light the shared belief that the United 

States was failing to produce a quality science and engineering workforce, that the U.S. was 

quickly being surpassed by rising foreign nations, and to provide policy recommendations for 

addressing these forecasted challenges. As a basis for their calculations, the authors employed 

generalized economic models based around interpretations of the STEM occupations, showing a 

crisis on the horizon.  

 The first and most influential report in 2005 was developed out of an ad hoc committee 

from the National Research Council (NRC), Rising Above the Gathering Storm: Energizing and 

Employing America for a Brighter Economic Future (2005). Leaning on Thomas Friedman’s 

(2005) controversial text, The World Is Flat: A Brief History of the Twenty-First Century, the NRC 

report simmers on what Friedman calls the “creeping crisis”, that the lack of preparation of the 

United States in this “flattening” global economy5 will reduce its ability to compete on the 

international stage. However, this perspective has been largely criticized for developing a portrait 

of globalization that opens the door for the use of cheap labor as a multinational corporate strategy 

(Ikenberry, 2005). Nonetheless, the charge of the committee was to develop a top-ten list of actions 

that “federal policymakers could take to enhance the science and technology enterprise so that the 

 
5 Friedman (2005) defines “flattening” as the re-setting of the economic playing field putting competing nations on 

pace with the United States. He postulates that the convergence of personal computing and data transmission speeds 

with the efficiency multiplier in workflow software level, or “flatten”, the global marketplace. 
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United States can successfully compete, prosper, and be secure in the global community of the 

21st century” (National Academy of Sciences, 2005). Two challenges were deemed tightly 

coupled to future scientific and engineering successes: (1) “creating high quality jobs for 

Americans” and (2) “responding to the nation’s need for clean, affordable, and reliable energy” 

(National Academy of Science, 2005). Therefore, each of the suggested actions included an 

ambitious training and development push to increase the talent pool (supply-side pipeline model) 

through improvements to K-12 education, increase funding for research positions to promote 

innovation, and attract local and foreign talent.  

 Tapping America’s Potential: The Education for Innovation Initiative (2005), primarily 

made up of business coalitions including the Business Roundtable, Business-Higher Education 

Forum, and Council on Competitiveness, viewed similar “warning signs” in STEM labor market 

indicators as compared to past measures and with foreign governments (e.g., number of degrees in 

engineering, investment in research, and STEM pursuit). With a focus on education as a national 

priority, this report was unique in that it acknowledged the importance of promoting NSF programs 

and other efforts to guide underrepresented groups into STEM fields. In addition, the report sought 

to promote more pragmatic means of delivering high-impact courses for students with an interest 

in STEM as well as increasing funding for research efforts to boost innovation throughout the 

national research laboratories. 

The final report was entitled Innovate America (2005), a product of the Council on 

Competitiveness, a nineteen-member committee comprised of Chief Executive Officers (CEOs) 

and university presidents. Although the scope of the project was extensively broad, the section on 

“talent” provided similar recommendations and models as the previously mentioned reports. The 
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focus was a call for more federal funding for graduate fellowships, an expansion of science 

master’s programs, and measures to attract international science and engineering students.     

In each of these three historicizing reports, STEM is not explicitly defined but is referred 

in-context to the job sectors that support Science, Technology, Engineering, and Mathematics. As 

a result, most of the economic models used within these studies have generated substantial 

criticism over the years as to the extent to which the predictions for, and concerns surrounding, 

their validity are correct. In Lowell and Salzman (2007), Into the Eye of the Storm, the authors 

provide contrary evidence to the economic data presented in Rising Above the Gathering Storm 

(2005). “S&E occupations make up only about one-twentieth of all workers, and each year there 

are more than three times as many S&E four-year college graduates as S&E job openings” (Lowell 

& Salzman, 2007). A more recent comparative look by the National Science Board’s Science and 

Engineering Indicators (2020) also supports these findings. Additionally, Xie and Killewald 

(2012) address similar concerns in Is American Science in Decline? Although their conclusions 

differ from Lowell and Salzman (2007), they point to one of the initial signs of a STEM 

operationalization problem in the economic and educational models presented. Xie and Killewald 

(2012) could not produce any evidence from their research indicating shortages of scientists and 

engineers entering the STEM pipeline. In fact, they discovered a ratio of degrees awarded in 

science and engineering compared to those employed in science and engineering occupations of 

approximately 2:1 (Xie & Killewald, 2012) – prompting questions from the larger research 

community if there is “a STEM crisis or surplus”? The discrepancies in the findings of Lowell and 

Salzman (2007) with Xie and Killewald (2012) was in the decision of Xie et al. (2012) to exclude 

all social sciences from their definition of “science and engineering”.       
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In 2007 with the passage of the America COMPETES act, a response to the 2005 reporting 

of the “STEM crisis”, a call for promoting “promising practices in STEM teaching” redressed the 

traditional K-12 teaching pedagogies through an integrated curriculum. Although STEM may have  

been believed to contain a straightforward arrangement of disciplines, as the grouping caught fire 

in policy debates, it lacked the stabilizing groundwork in an operationalized definition. As a result, 

many definitional forms emerged and led to the gradation of STEM. 

Gradations of STEM 

Since STEM evolved from national-educational policy, a cyclical pattern of S&E PET 

events leading to federal policies since WWII, and has lacked an operationalized definition, the 

onus relied on organizations across PK-16 and the workforce (e.g., Department of Labor, Bureau 

of Labor Statistics, Department of Homeland Security, NSF, NCES, and ACT) to develop their 

own. As a result, multiple definitions and taxonomies were developed as others evolved, such as 

“STEM education” at the elementary and lower-secondary educational levels as an interdiscipline. 

At the workforce level, the Standard Occupational Classification (SOC) system, a 6-level 

taxonomy for breaking down all work for pay or profit, became the leading classification system. 

Managed by the Bureau of Labor Statistics (BLS), the SOC has been in existence since 1977 and 

is organized around similar skill sets or “worked performed”. Established by the Office 

Management and Budget, the BLS SOC STEM definition consists of two major domains (1) 

science, engineering, mathematics, and information technology domain and (2) the science and 

engineering-related domain (Bureau of Labor Statistics, 2018). Both contain two related 

subdomains, for example (1) life and physical science, engineering, mathematics, and information 

technology occupations and (2) social science occupations are subdomains of the first STEM 
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Figure 7. PET Model to U.S. R&D per Capita Spending (1953-2017) 

 

Note. The PET model is adopted from Baumgartner et al. (2018).
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domain (Bureau of Labor Statistics, 2018). Since the domains are broken up by skill, and skills 

may crossover between subdomains at both levels, OMB suggests data users and researchers 

decide “whether and how to split employment in this occupation between subdomains” (Bureau 

of Labor Statistics, 2018). This approach, however, is fundamentally flawed. For STEM, which 

already suffers from a non-operationalization problem, allowing users to choose definitions 

contributes to widening gaps in our understanding and implementation of STEM pursuit. 

Built on the BLS SOC in 1998 as a foundational framework, The Department of Labor’s 

Occupational Network (O*NET) formed a database “vital in helping people find the training and 

jobs they need, and employers the skilled workers necessary to be competitive in the marketplace” 

(Department of Labor, 2020). Through services such as O*NET online, My Next Move, and other 

public and privately established applications to the dataset, O*NET services millions of individuals 

each year (Department of Labor, 2020). Through this dataset, a task-centric collection of over 300 

jobs that require “STEM” skills have been established through the O*NET hierarchy. These jobs 

take on a wide range of offerings including (1) managerial, (2) postsecondary teaching, (3) 

research, development, design, and practitioners, (4) sales, and (5) technologists and technicians. 

Although these subdomains differ from the BLS SOC they may be categorized into similar 

domains. 

At the postsecondary level, CIP codes were developed separately for the Department of 

Education to track majors and educational programs, and recently have been linked through 

crosswalks to BLS occupations as major-to-career progressions of STEM pursuit. The breakdowns 

of science, engineering, and mathematics in each of these systems remain in the standard tradition, 

however, interpretations of technology (such as computer programming, technician, and architect) 

and the adoption of ancillary classifications which re-define STEM take liberties in including 
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“associated careers,” viewed by many as outside the tradition (i.e., medical and health professions, 

social sciences, and management). Furthering this point, the National Science Foundation is 

viewed to have included the social sciences in their definition of STEM but has left the medical 

and health professions from the definitional space. As highlighted in the prior research on STEM 

supply-side dynamics (Lowell & Salzman, 2007; Tanenbaum, 2003; Xie & Killewald, 2012), this 

decision has a significant impact on the description of the STEM workforce. The inclusion of the 

social sciences has the direct effect of increasing the labor market of STEM but has not shown to 

predict market trends more adequately, lead to gap reducing policies, or capture the pursuit of all 

students into STEM fields.  

 Over the last decade researchers at RAND Corporation (Anderson et al., 2018), the Census 

Bureau, and those working independently have developed classification models based on 

alternatives to the skill-based methods of the traditional taxonomies from the BLS. These recent 

taxonomies include more holistic approaches that have led to the development, and inclusion, of 

non-traditional STEM disciplines including those in the health and medical professions, social 

sciences, technical trades, and emerging industries (e.g., cybersecurity).  

 Educational and governmental organizations have also struggled to reconcile interagency 

meta-analysis and compare overall workforce data. As a result, several organizational bodies have 

developed modern definitions for STEM occupations and majors as well as crosswalks for 

comparing codes between the systems. These crosswalks, however, are limited to the 

postsecondary-workforce level and have furthered stratifications amongst secondary and 

elementary levels while processing policies and research traditionally handed-down during 

implementation.  



 

40 

Some researchers have attempted to re-define STEM through unique methods and 

adaptations to accepted classifications (Rothwell, 2013), but these results have shown either a lack 

of unity, clarity, or robustness to become accepted by the larger educational communities. Lacking 

an operationalized definition of STEM has, therefore, resulted in a pick-and-choose approach to 

examining the nature of STEM pursuit. A consistent definitional pattern of the “traditional STEM” 

disciplines is observed, broadly including the sciences (physical and life), mathematics, and 

engineering. However, at the margins (i.e., STEM management, medical, social science, and some 

technician occupations), the selection criteria fall uniquely upon one of two perspectives 

undertaken: a taxonomy that is either (1) clearly situated within the discipline and at the level of 

analysis or (2) “endorsed and validated” by independent researchers. These resulting overall 

gradations of STEM have allowed for its stratification across longitudinal levels of education 

producing a two-fold effect on pursuit by: (1) segmenting the layers of education and (2) 

constraining career pathways to pursuit (e.g., the discontinuities in engineering between secondary 

and postsecondary schools form misalignments between student outlooks and their understandings 

about engineering careers), therefore rendering current one-dimensional economic models of 

STEM inaccurate and impractical at the individual level.  

The aerospace industry provides a striking example of the vast sub domains of STEM 

careers contained within the sector and a corollary to why near- and long-term perspectives can 

support all students’ pursuit of STEM careers. Although Southern California, regionally, has the 

greatest density of aerospace engineers (those with a minimum of a bachelor’s degree; Cooper et 

al., 2016, pp. 14-18), the manufacturing and aircraft industry has large population pockets 

throughout the United States. The range of educational achievement required for jobs within the 

sector stretch from a high school degree through a Ph.D., though both are rare. Most STEM careers 
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within aerospace revolve around aerospace products (i.e., aircraft, spacecraft, satellites, rockets, 

and military hardware/software), providing a range of job opportunities to support the research 

and development, design, fabrication, sustainment, and planned obsolescence of these products. 

Whereas an aerospace engineer has either a bachelor’s or master’s in their respective specialty 

area, aerospace technologists support sustainment and maintenance efforts and have bachelor’s 

degrees. Aerospace technicians, by contrast, perform the actual technical work and are highly 

trained though without a bachelor’s degree, usually an associate degree but at a minimum a high 

school diploma and extensive on the job training. Even with just a high school diploma and some 

in-demand certifications (such as computer-aided design) a newly graduating high school senior 

or 2-year skilled postsecondary program graduate can enter the aerospace workforce and 

contribute in a meaningful way.  

Not all jobs within the industry, however, center around a technical design-development 

mission but are critical for their operations. For example, the commercial aircraft industry employs 

aircraft cabin cleaners to tidy cabins and lavatories for new outbound public travelers. Cargo 

technicians also haul, stack, and arrange luggage for commercial passengers. Both positions are 

STEM-related and could be associated with STEM careers. However, from a skill-oriented 

perspective, these careers do not meet the criteria for a “STEM occupation” compared to the skills 

required to perform other STEM-specific jobs. Viewing the STEM taxonomies in Figures 4 and 5 

in combination with student outlooks provide a multiple streams approach to developing and 

understanding pathways to STEM careers in the context of what defines a STEM occupation. This 

methodology diverges from the traditional STEM pipeline perspectives for developing models of 

pursuit.   
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The STEM Pipeline 

Following the events of World War II (1945), a time of reconstruction of our American 

society, parallel efforts were underway by social efficiency advocates and political leaders to 

establish a core curriculum which was heavily skills-based (i.e., helping students develop skills 

essential for fulfilling societal needs). This movement came to be known as “life adjustment” 

education and witnessed strong motivations from vocational educators through efforts within the 

Prosser resolution, a campaign which garnered significant support from the US Office of 

Education (Kliebard, 2004). The movement was short-lived, however, collapsing under significant 

public fear and political pressure in 1958 when the United Soviet Socialist Republic (USSR) 

launched Sputnik I. 

In response to the launch of Sputnik, the 85th Congress pushed forward the National 

Defense Education Act which garnered federal funding to improve secondary and post-secondary 

schools under the national security needs encultured by the Space Race. The law more importantly 

placed an increased emphasis on Science, Technology, Engineering, and Mathematics (STEM) 

and modern foreign languages to bolster the science and technology disciplines to compete 

globally against the Soviet Union. To manage their robust plans for a nationally planned 

movement, Congress gave power to the National Science Foundation to conduct research, direct 

programs, manage the distribution of federal grant monies, and aids with teaching, learning, and 

secondary and post-secondary program improvement (Mazuzan, 1994). The increased federal role 

was viewed by the government as a necessary result but one which diverged from tradition (Hunt, 

2019). In addition to the increased federal role, interdisciplinarity became a lost artifact in the 

modern-day curriculum. The disciplines were becoming stratified again and more prestige given 
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to subject areas which were “highly desired” or met the perceived needs of the country to grow 

our global competitiveness.  

The 1970s were recognized as a time of social, historical, and political reestablishment – 

one which also witnessed the NSF reach for positional power and find its limitations. Firmly 

entrenched into our “grammar of schooling”, the disciplines as different and distinct areas of study, 

began to give way to hierarchical groupings such as liberal arts and the sciences. Soon after the 

acknowledgement of civics, geography, English, and reading became less trivialized with their 

funding through an amended National Defense Education Act (1964), they quickly fell in line with 

these hierarchical disciplinary structures. Figure 8 illustrates a similar trend within the STEM 

fields. The disciplines which are perceived as theoretical, more cognitively difficult, and objective 

approach the pinnacle of the pyramid versus those which are perceived as more clinical (or hands-

on), less cognitively demanding, and less objective.  

Figure 8. Applied standard hierarchy to the STEM disciplines 
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As a divergence from the objective nature within “the tradition” of these disciplines 

(Koppman, Leahey, & Cain, 2014), the NSF attempted to write curriculum centered around issues 

of humanity in the 1970s – it became a well-documented failure of power and tradition.  “Man: A 

Course of Study” was a social science educational project for 5th grade students developed and 

implemented by the NSF and released to elementary schools within 47 states to national 

controversy. At the surface was an axiological debate over the distortion of family values. The 

underlying tension, however, was rooted in the both the divergence from an objective science 

curriculum and the national wrestling of control over the devolution of power to the states on the 

implementation of educational policy.   

The earliest reference to the STEM pipeline as a metaphor in workforce predictive models 

was first introduced to the National Science Foundation in the 1980s (Lucena, 2000; 2005). As the 

economic recession of the 1970s lingered, long-term economic projections were sought amidst 

fears of a growing gap between the U.S. and foreign economic markets, particularly from Japanese 

exports. As a result, there was a stronger movement toward more governmental involvement in 

education. Differing from the proliferation of the national controlling features of the National 

Defense Education Act (1958), a new era situated in the evolving dominance of a global free 

market economy gained traction called supply-side6, or “trickle-down”, economics. The pipeline 

model, depicted in Figure 9, was developed by engineers at the National Research Council (NRC) 

as a systems-level model based on the movement of human capital (supply-side inputs and 

demand-pulling outputs) within the STEM fields. On the supply-side, students enter as 9th graders, 

graduating from secondary educational institutions, progressing through their post-secondary 

 
6 Supply-side economics is an economic theory during the Regan era which postulates that supply is the central 

determinant of economic growth and producers and their willingness to create products and services set the pace. 
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studies, and entering a career (National Research Council, 1986). Throughout the model, 

curriculum is individualized to specific discipline areas and scaffolded longitudinally throughout 

the entirety of the pipeline (9th-grade pre-requisites to post-graduate work). Under this model no 

points exist for entry outside of the supply year, however many points for “leakage” or movement 

out of the career path are availed by the model calculation.   

Figure 9. Supply-driven STEM pipeline model 

 

 

 

 

 

Note. Retained from NCES: Science and Engineering Indicators (2008) 

The construct of a “leaky pipeline,” or human capital losses prior to the pursuit of a STEM 

career, was first revealed by Bickenstaff (2005). Since this time, researchers have debated the size 

and type of these losses based on race, ethnicity, and gender (National Academy of Sciences et al., 

2007; 2010; Teitelbaum, 2003; Xue & Larson, 2015). More recent debates by researchers such as 

Miller and Wai (2015) have concluded closure based on gender through their operationalized 

definition of STEM – which follows the National Science Foundation model, encompassing a 

broad set of fields such as those in the social sciences. As more data have become available through 

the National Boards, NSF, NRC, National Center for Educational Statistics (NCES), and other 
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national longitudinal databases, traditional frameworks and perspectives have synthesized into 

new viewpoints. While today, the analogy of a STEM pipeline is well-employed in the lexicon of 

educational research surrounding scientific and engineering career pursuit, it is more of a reflection 

of the competitive consciences of the United States’ – a stance fostering little risk with trained 

STEM workers across industries – than it is a reliable predictive logic or series of guide markers 

supporting STEM pursuit. Research supports movement away from these one-dimensional 

pipeline approaches. Secondary and postsecondary students who are not well informed about their 

career prospects or face additional skilled training requirements are at a great risk of not achieving 

their STEM career goals. Disaggregating the components of the STEM pipeline including entry 

conditions, linear progression, falling out, and completion allows for the restructuring of a model 

that may become more predictive for underrepresented groups of students. 

The “Leaky” Workforce Path 

Critiques surrounding the unsound predictions of the STEM pipeline model have been 

recorded beginning with NSFs initial pipeline studies throughout the mid-to-late 1980s. Lucena 

(2000) describes a specific flawed NSF claim from the pipeline model: In 1988 the Policy Research 

and Analysis Division published a pipeline study claiming for an assumed fixed percentage of 

students entering into the fields of science and engineering and without any efforts to increase the 

flow into these majors, an approximate 675,000 shortfall of graduates with degrees would result 

by 2006. As a poor conceptual model of a near 20-year trend, the prediction not only lacked 

research on the mediating relationships occurring both within and extant to the model (Lucena, 

2000) but did not allow for the operationalization of science and engineering careers into an 

evolving STEM definition. Yet, since the development of the STEM pipeline, researchers routinely 

attempt to predict large shortages of individuals in the STEM workforce, particularly within 
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underrepresented populations and along strategic points of the pursuit model. What has resulted 

are: (1) flawed measurements, a heavy research emphasis on the build-up of the supply-side feed 

of the model (Lucena, 2005; Teitelbaum, 2003), (2) one-dimensionality of career paths and career 

entry points, and (3) homogeneity of people and fields (Hammonds & Subramaniam, 2003). 

Although the latter critique is diminishing amongst the female population and specific racial and 

ethnic groups of students, it is due to a re-definition of STEM and finer (as opposed to coarser) 

gap analysis of STEM majors (Science and Engineering Indicators, 2020). 

The “leaky path” model continues to analogize human capital flow into and out of a pre-

defined educational path without regard for the multiple dimensions of inputs. This approach 

perpetuates problematic binary relationships, such as singular inputs and outputs of students 

through post-secondary institutions, negative connotations of STEM exit, the establishment of 

disciplinary hierarchies, and the resulting rejection of re-entry. Contemporary research has not 

only highlighted the flawed nature of these approaches but also the structural policies and measures 

of student success (Dixon-Román et al., 2013; Romero, 2016). It has also been attributed to a 

reductionist philosophical approach and to furthering of the divide between the applied disciplines. 

Pawley (2007) counters the reductionist approach, arguing for studying STEM in a newly formed 

aggregate. While each discipline has its own methods, histories, and axiology, they have 

similarities across generalized practices which when viewed together has shown to promote 

transfer across problems (Lindahl, et al., 2019). This aggregate coupling may help support the 

development of STEM definitions and pathways that consider many correlates for STEM pursuit.     
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Figure 10. Timeline of Motivation and Retention Theoretical Models 
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Figure 11. Eccles et al. (2002) EVM of Achievement, Performance, and Choice 
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Theoretical Framework 

Models for Pursuit 

Instead of relying on high-level system models of human capital input-outputs for 

understanding the factors that affect the attainment outcomes in students pursuing STEM careers, 

theoretical models have recently focused on constructs rather than on numbers to adjust to internal 

and external motivations, persistence, and diversity of students. Two main frameworks  

have emerged (see Figure 10) to explain the educational attainment outcomes of STEM students: 

Expectancy-Value Theory (EVT) and Social Cognitive Career Theory (SCCT).  

Expectancy-Value Theory describes how achievement-related choices, such as a career and 

college major, are motivated by expectations of success and subjective task value (Eccles et al., 

1983; Wigfield, 1994). For example, if an individual performs well in an activity and values the 

activity, they are more likely to pursue it. Figure 11 illustrates the two major constructs within the 

expectancy-value model: (1) achievement behaviors (e.g., performance and choice) and (2) belief 

and value (Wigfield, 1994). Subscribing to motivational explanatory variables around subjective 

task values (i.e., interest, utility, attainment value, and cost), expectancies for success, achievement 

goals, and beliefs about competence, the EVT model is the grounding perspective in many 

contemporary national longitudinal data sets (HSLS:09; Ingles et al., 2011). Social Cognitive 

Career Theory is derived principally on the perspective that people are actively shaped by and 

shape their environment (Lent, Brown, & Hackett, 2002). SCCT follows the triadic-reciprocal 

model of causality, proposed in Bandura (1986) and illustrated in Figure 12, which details how 

individuals are both “products and producers of their environment” (Wood & Bandura, 1989) with 

an ability for self-regulation – the guiding of ones’ thoughts, behaviors, and feelings to reach 

personal goals. Within the SCCT framework, three central variables from social cognitive theory 
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are incorporated as building blocks of career development: (1) self-efficacy, (2) outcome 

expectations, and (3) personal goals, key mechanisms for exercising personal agency (Lent, et al., 

2002). Figure 13 represents the SCCT choice model tracing learning and individual experiences 

toward interests in STEM and onto an intent to pursue a STEM major, the selection of a STEM 

major, and entry into a STEM career (Lent, et al., 1994; 2002). Three career-related models are 

incorporated into the SCCT framework which subsumes a perspective of “conceptually and 

developmentally related processes of vocational interests, choice, and performance” (Lent, et al., 

2002). SCCT also acknowledges the cyclical nature between self-efficacy and interests and 

bidirectional variable influences in each model over time. This perspective has opened 

opportunities for research on intrinsic and extrinsic barriers and supports to STEM pursuit amongst 

women and underrepresented racial-ethnic groups, and those living in poverty.  

Figure 12. Bi-directional Model of Triadic Reciprocal Causation (Bandura, 1986) 
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Table 2. Summary of Contemporary Factors in Motivation and Retention Theories 

Factor Conceptual Overview Theory Source  

Self-efficacya Perceived ability to learn or perform at a specific level 

based on past accomplishments  

SCT, SCCT, SDT Bandura (1994) 

Task-value Perceived importance, usefulness, enjoyment, or 

benefit to the individual successfully completing a task 

(felt- recognition) 

EVT, SCT, AT Eccles & Wigfield (2002) 

Attributions Individual explanations for causes of behavior in 

relation to events 

AT, RT Weiner (1979) 

Mindsets An individually held set of attitudes about a specific 

task 

GOT Dweck (2000) 

Environmental Influences Informal learning exposure, family social supports, 

parental education, classroom culture/environment 

(sense of belonging), and teacher academic 

qualifications and experience 

SCT, SCCT  

Academic Engagement Combination of academic identification (interactions, 

interests, attitudes, behaviors) and participation (in-

class and out-of-class work) 

RT Bean (1980) 

Academic Preparation Prior academic coursework (aptitude [GPA, math 

grades], identity, course sequencing, and 

participation in formal/informal learning) will 

influence future success in academic work 

RT, SCT, SCCT Tinto (1993) 

Cognitive Ability Mental capability to plan, reason, comprehend ideas, 

and learn - especially through experience 

  

Social Engagement Peers, mentors, and teacher/faculty-student 

connections are important connective social structures 

RT Tinto (1993) 

Demographic Characteristics Characteristics based on race, ethnicity, gender, 

socio-economic status, and locale 

RT, SCT, SCCT, 

EVT 
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Academic Interest Wanting to know more about a specific topic, idea, or 

method (science interest, early major declaration) 

EVT Lent, Brown, & Hackett 

(1994)  

Academic Efficacy Belief that one can successfully achieve an intended 

goal at a designated level in an academic subject area 

(math self-efficacy) 

EVT Eccles & Wigfield (2002) 

Academic Utility Value Belief in how a specific task relates to future goals EVT Eccles & Wigfield (2002) 

Attainment Value Importance students’ attach to a specific task as it 

relates to their conception of their identity and ideals or 

given domain 

EVT Eccles & Wigfield (2002) 

Cost Financial or personal cost of performing a specific task EVT Eccles & Wigfield (2002) 

Motivational Orientations Intrinsic and extrinsic motivations adjustment and 

perceived stress 

SDT Ryan & Deci (2000) 

Identity The distinguishing character or personality of an 

individual, however part of persons concept of self 

comes from the groups they belong (parents’ and 

students’ future identity, gender-matching) 

SCT, SCCT, EVT Tajfel & Turner (1979) 

Academic Self-concept Content-specific self-rating of skills, abilities, 

enjoyment, and interest (math self-concept, science 

self-concept) 

SDT Marsh & Shavelson (1985) 

Note. Contemporary theories on motivation and retention include attribution theory (AT), retention theory (RT), Expectancy-Value Theory (EVT), 

social-cognitive theory (SCT), Social Cognitive Career Theory (SCCT), self-determination theory (SDT), and goal orientation theory (GOT). 

a Bolded constructs are represented within the narrative literature selection as contemporary factors that have shown a positive effect on STEM 

pursuit (9-16W).   
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In addition to EVT and SCCT frameworks, motivational theories have also played a vital 

role in understanding why students participate in and pursue STEM careers (see Figure 11 and 13). 

Goal orientation and self-determination models have propelled ground-breaking research from 

Dweck (2000), describing how mindsets may not be fixed and can be taught or transformed, and 

Ryan & Deci (2000), on intrinsic and extrinsic factors on social development. Four reoccurring 

themes amongst the contemporary retention and motivation theories have emerged, crystalizing 

into the following key concepts: (1) competence beliefs, (2) value beliefs, (3) attribution, and (4) 

social-cognitive interactions (Cook & Artino, 2016, p. 1011). Table 2 provides an overview of 

these models in relation to other leading theories of motivation. 

Dimensions and Constructs 

Recent pursuit research studies on women and other underrepresented groups have begun 

to reveal the barriers to and factors influencing educational and career choices – acknowledging 

the influence of peers, families, teachers, and classrooms (Yang & Degol, 2013). Potential 

predictor variables for quantitative research have been theorized using Eccles’ Expectancy-Value 

Theory as a framework broadly including: (1) intellectual aptitude and motivational beliefs 

(identity, self-efficacy, interest, and utility), (2) sociocultural factors (classroom setting, curricular 

differentiation, teaching foci), and (3) contextual influences (parental behaviors and peers), each 

providing a set of variable assemblages for the construction of robust quantitative models. 

Similarly, within the SCCT framework, studies have focused on the same dimensions but through 

the lens of barriers or supports and racial, ethnic, socioeconomic, and gendered considerations. 

Sequences of STEM courses (e.g., applied and advanced courses), the role of mathematics 

placement and instruction on interest and self-efficacy are some of the educational constructs 

explored. Parental influences and expectations, work-family planning, and perceived support were 
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environmental factors researched in-depth. More generalized research on pursuit occurred between 

both frameworks including access to informal STEM programs (Lynch et al., 2018), career 

aspirations (Tai et al., 2006; Trusty, 2002), persistence, and attainment goals have reached for 

solutions to balancing the underrepresentation of women and minorities whose participation in 

these career fields is far below their employment participation (Funk et al., 2018).    

Although progress has been made in certain STEM subfields (e.g., life sciences and 

mathematics), significant gaps still exist in engineering, computer science, and the physical 

sciences (The Pew Research Center, 2018). From a curricular lens, relevancy, informal learning 

opportunities, increased engagement, continuity, and self-efficacy are curricular attributes which 

have been associated with positive individual outcomes and increased entry into STEM careers 

(Lyon, et al., 2012). The inclusion of these attributes (particularly social influences) proposed 

through social cognitive theory (Bandura, 2001) and its derivative Social Cognitive Career Theory 

(Lent, Brown, & Hackett, 1993), encapsulate some of the longitudinal learning aspects across 

grades 9-20 and the workforce (9-20W). In response to the growing STEM gap, states such as 

California have begun exploring large-scale admissions changes to the California State University 

system based on research suggesting a correlation between fourth-year mathematics, or math-

equivalent courses (i.e., statistics, computer science, career technical education, or personal 

finance), and an increase in STEM attainment outcomes (Asim, Kurlaender, & Reed, 2019). What 

the overall research has yet to completely consider are how career aspirations are formed 

longitudinally beginning around the early entry points for STEM training (Yang & Degol, 2013). 
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Figure 13. SCCT Model of Person, Contextual, and Career-Related Choice) 

 

Note. Solid lines indicate direct relationship between variables while dashed lines indicate moderator effects (Lent et al., 1994)  
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Factors Affecting STEM Career Pursuit  

 Factors affecting STEM career pursuit highlighted in the research over the last 15 years 

has evolved from a one-dimensional focus on curricular effects to contextual factors based on race, 

ethnicity, gender, region, or socioeconomic status. This evolution has followed a progression from 

researching system-level changes to those at the individual student level, as more data continues 

to emerge about gap persistence in STEM pursuit amongst underrepresented groups of students. 

Applied course taking, course sequencing, and advanced coursework encompassed a significant 

percentage of the research energies over the last ten years. Gottfried (2015) discovered that 

students who had taken an applied STEM course early in high school had greater odds (37% 

higher) of taking an advanced course later in their secondary education. Two key findings: (1) 

student sociodemographic data and family (socioeconomic) covariates in either mathematics or 

science models and (2) critical school investments (i.e., prior math ability, self-efficacy, and 

college expectations) were noted by Gottfried (2015) for not attenuating these results. Moreover, 

enrolling in an information technology course within this early timeframe (9th or 10th grade) 

correlated to a higher probability (30% greater odds) of taking an advanced math or science course 

in grades 11 and 12 (Gottfried, 2015, p. 392). This range of course sequencing at the secondary 

level (from integrated to advanced courses for underrepresented students) is also highlighted in the 

research of Bozick et al. (2007; 2008) and to an extent by Sadler et al. (2012) in the early secondary 

years on developing interest in STEM.  

The importance of secondary educational research on the pursuit of STEM careers is also 

documented throughout the last two decades (Gottfried, 2015; Warne et al., 2019; Wolniak, 2016). 

Wolniak (2016) provides in-depth research on the predictive factors of STEM major selection (i.e., 

demographics and high school academics) and the moderating influence of STEM dispositions, 



 

58 

highlighting the need for more focus on first-year transitions and concentrating resources on those 

who do not fit traditional profiles of STEM students.       

Discipline-based research on early interest in science, mathematics-related ability beliefs 

(Seo et al., 2019), math self-concept (Sax et al., 2015; Wang et al., 2017), and cognitive ability 

(Wang et al., 2017) were additional psychological constructs explored throughout the literature. 

Negative math self-concepts were discovered in female adolescents, whereas Black adolescents 

had a positive math self-concept when controlling for race/ethnicity, displaying “similar rates of 

STEM career attainment to White men” (Sax et al., 2015). As a result, model covariates (career 

expectancy, STEM achievement, and family background) are suggested to play a larger role in 

acting as barriers to STEM pursuit (Sax et al., 2015). Wang et al. (2017) investigated cognitive 

ability and task value (or interest) on student chances of STEM employment using the Longitudinal 

Study of American Youth (LSY:89) through the creation of three ability typologies characterized 

by math, science, and verbal abilities. Their findings suggested that youth with relatively low math 

and science abilities were more likely to be employed in a STEM career if they had greater math 

self-concept (Wang et al., 2017).    

New research settings for social engagement, such as those occurring within undergraduate 

research experiences (Hernandez et al., 2018) and end of high school summer apprenticeships (Tai 

et al., 2017), revealed the mediating effects of mentorship on student pursuit of STEM majors and 

careers. Hernandez et al. (2018) investigated the intent of students interested in pursuing research 

careers in STEM, discovering these interests cycled through the declines and rebounds of the 

research work. Most revealing from their research was the strong mediating effect of inspirational 

role-modeling (i.e., having accomplished researchers talk about their careers and career paths with 

mentees) on the pursuit of STEM research careers. Similarly, Tai et al. (2017) corroborated prior 
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research on the effects of “close mentorship and hands-on experiences with authentic scientific 

endeavors” as factors leading to increased student interest in pursuing STEM degrees through 

participation in a summer laboratory apprenticeship. The explanatory belief in these results is that 

an apprenticeship (or internship) builds a cognitive scheme for a future STEM career (Tai et al., 

2017).  

Environmental influences have also been well-researched within the literature. Parental 

motivation (Rozek et al., 2017), education (Svoboda et al., 2016), and family context (Rinn, 2013) 

were factors of STEM pursuit in the corresponding research. Rozek et al. (2017) evaluated the 

long-term effects of a theory-based intervention promoting math and science course taking 

amongst high school students – a motivational intervention – on their STEM career pursuit 

(interest, courses taken, and attitudes). As a follow-up to the positive findings from the same 

intervention on math and science course-taking in high school, Rozek et al. (2017) found that the 

intervention improved ACT mathematics and science test scores by 12 percentile points. Matching 

their findings onto a recursive process model, the results suggest that students’ motivation is a key 

factor to enhance STEM competence and career pursuit (Rozek et al., 2017). Leveraging the 

impact of motivations on student career pursuit, Svoboda et al. (2016) determined that parental 

education, mediated by parents’ and students’ future identity and motivational beliefs of science 

and mathematics, predicted STEM course taking in secondary and post-secondary schools. The 

authors explain that although low-SES students are less likely to take STEM courses in high school 

(Tyson et al., 2007), a psychological perspective encompasses an important role due to the beliefs 

about the value of STEM and STEM-related future identities in parents and students. Intersectional 

factors, such as those described above, emerged most recently through the research with studies 

on gender-matching (Chen et al., 2020), sense of belonging (Rodriguez et al., 2020) and internal 
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disciplinary biases in STEM classrooms, and felt recognition and classroom climate (Starr et al., 

2020). Each of these factors describe intersectional influences on individual science and math 

classroom experiences. Amongst the studies, motivation, perception, identity, and demographics 

were key mediating constructs (Chen et al., 2020; Rodriguez et al., 2020; Starr et al. 2020). 

Research over the last fifteen years on STEM education pursuit has focused on secondary, 

postsecondary, and careers with much of the research identifying early educational constructs that 

affect pursuit. These have been proven to be critical in understanding the supports and barriers to 

STEM pursuit milestones such as identifying early interest, choosing a STEM degree, graduating 

with a STEM degree, and entering a STEM career field. Therefore, much of the research over the 

last two decades has sought to resolve pursuit questions around choices of STEM courses, 

sequencing, pathways, and institutions (see Table 2 for a contextualized summary of this research).  

The Emergence of Typological Models 

Typologies have also emerged as models and methods for understanding underrepresented 

groups of students who may experience differences in the contextual factors describing their 

experiences of pursuit. Addressing these differences by investigating typologies, has shown the 

ability to support an understanding of students who were not adequately described by the high-

level one-dimensional models depicted within the STEM pipeline. Moreover, contemporary 

research on interest (Su & Rounds, 2015) and ability (Yang & Barth, 2017) typologies has well-

predicted student choices throughout their pursuit of a STEM career at level (e.g., secondary or 

postsecondary). Su and Rounds (2015) describe how interests in people-oriented versus product-

producing careers have been shown to describe pathways for female students pursuing STEM 

careers (Su & Rounds, 2015). This research illustrates the potential explanatory ability for 

underrepresented populations of students using a typological methodology. It also provides the 
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flexibility to align STEM pathways with orientations to ensure a more granulized approach to 

understanding the complexities surrounding pursuit.  

The use of uniquely derived typologies has shown promise in recent pursuit studies (Yang 

& Barth, 2017) and serves as a guide for analyzing pursuit between student demographic 

subgroups, STEM orientations, motivations, and the STEM sub-disciplines. This central 

methodological shift alters the research approaches inherent within traditional STEM pipeline 

models – singularly placing every student within the same pipeline. Using typologies to understand 

the longitudinal progressions across high schools, colleges, and universities additionally provides 

adjustments for multiple entry points for STEM career pursuit not well-researched (e.g., military 

transitions, 2-year college pathways, and apprenticeships) and accounts for the intersectional 

relationships between demographics and predictive constructs of career attainment (see Table 2). 

With the lack of an operationalized definition of STEM and its application to research and 

institutional policy decisions, those that drive pathways and programs, a typographical approach 

could provide for nuanced investigations of the factors that support students’ pursuit of STEM 

careers. 
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Chapter 3. Research Methodology 

A quantitative methodological approach is undertaken herein to examine the extent to which 

motivational and persistence factors predict U.S. secondary and postsecondary students’ 

occupational career choice and how their arrangement fit derived typologies of STEM pursuit. In 

the prior section, the factors supporting STEM pursuit were examined from the research over the 

last 15 years following the seminal reports of 2005 and are depicted in Table 2 and Table 6. The 

purpose of this proposal specifically seeks to outline an approach to answer the first three research 

questions below as current gaps in the STEM research literature: 

1. What is STEM and how is it defined within education and the workforce? 

2. What combination of influencing factors across student characteristic groupings contribute 

to an anticipated STEM career across secondary and postsecondary levels of education? 

3. What influencing factors across student characteristic groupings act as supports for or 

barriers to expected STEM pursuit across secondary and postsecondary levels of 

education? 

Utilizing the definitional pathway models through STEM instructional programs and toward STEM 

careers as a framework (see Figures 4 and 5), a set of multinomial logistic regressions are proposed 

for developing typologies that guide the pursuit of STEM careers for underrepresented students 

based on positive factors supporting STEM career aspirations. The generation of typological models 

as well as the factors encompassing their designs provide the basis for the final three research 

questions: 

4. How can typological models predict the successful pursuit of underrepresented groups of 

students into STEM fields? 
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5. Is there a STEM taxonomy that encompasses inclusive typologies for underrepresented 

groups of students? 

6. How do these typological model results compare to traditional pipeline approaches to 

STEM pursuit? 

To capture student data that ranges across secondary and postsecondary contexts, a 

longitudinal panel was sought that would be representative of the research factors supporting the 

pursuit of STEM careers, demographically representative of students within the United States, and 

occurring within the research timeframe. Meeting each of these criteria, along with the specified 

delimiters, was the High School Longitudinal Study of 2009 (HSLS:09; Ingels et al., 2009). 

HSLS:09 was developed based on an approach consisting of waves of survey questions that aim to 

collect S&E educational construct data within an expectancy-value framework. The overall 

alignment of HSLS:09 to the proposed research purpose, goals, and potential outcomes supports its 

choice as a representative dataset for conducting STEM pursuit research. 

The High School Longitudinal Study of 2009 (HSLS:09) 

HSLS:09 is a nationally represented longitudinal study comprising over 23,000 9th-graders 

beginning in 2009 with a planned lifecycle of 16 years. Organized through the National Center for 

Educational Statistics (NCES), the study is situated as the most current data collection effort amongst 

the Secondary Longitudinal Studies (SLS) program (see Figure 14). The SLS program comprises 

five studies (four completed) including HSLS:09: The National Longitudinal Study of 1972 (NLS-

72), the High School and Beyond Longitudinal Study of 1980 (HS&B:80), the National Education 

Longitudinal Study of 1988 (NELS:88), and the Education Longitudinal Study of 2002 (ELS:2002). 

A chronology of each study is illustrated in Figure 14, detailing the coordinated efforts to investigate 
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the secondary and post-secondary experiences of students over the last fifty years (Ingels et al., 2018, 

pp. 2-4). The High School Longitudinal Study (HSLS:09), was designed to follow secondary  

Figure 14. Design for NCES Secondary Longitudinal Studies (1972-2025)  

 

Note. From the “High School Longitudinal Study of 2009 (HSLS:09) Base Year to Second Follow-Up and 

High School Transcript Data File Documentation” by Ingels, S.J., Pratt, D.J., Herget, D., Bryan, M., Fritch, 

L.B., Ottem, R., Rogers, J.E., and Wilson, D. (2018). National Center for Education Statistics, Institute of 

Education Sciences, U.S. Department of Education. Washington, DC. 

students from high school through their post-secondary education and entry into their respective 

career fields. Supporting longitudinal analysis for current policy objectives, HSLS:09 serves as a 

data source for investigating: (1) student retainment and STEM pursuit through multiple entry points, 

(2) the individual experiences of students (especially English language learners), (3) longitudinal 

pursuit models within STEM, and (4) the educational and social experiences of students including 

how these outcomes, decisions, and experiences affect their pursuit of STEM attainment goals 
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(Ingels et al., 2018, p. 5). The central focus, therefore, is on how students plan and make decisions 

about their current and future career goals. HSLS:09 is inclusive of students, parents, math and 

science teachers, administrators, and counselors which allows for multi-level analysis across 

schools, classrooms, and households. Subsequently, educational goals and outcomes; psychometric; 

experiential and learning; contextual-environmental; and demographic influencing variables are 

available for analysis. What makes this study unique for assessing STEM pursuit is a unit of analysis 

focus on the same panel of students, without refreshment7, throughout the duration of the data 

collection period.   

HSLS has been used extensively to describe the educational experiences of underrepresented 

groups of students based on research employing this dataset since 2017. Of the 24 studies identified 

within the Inter-university Consortium for Political and Social Research (ICPSR) relating to student 

STEM pursuit - those including achievement outcomes (Howard, N. R., et al., 2019; Jackson et al., 

2020; Jang, 2019; Kremer, 2020; Young et al., 2018; Yu & Singh, 2018), aspirations (Edwin et al., 

2019; Gottlieb, 2018), barriers (Holzman et al., 2019; Saw et al., 2018; Shi, 2018), and factors 

(Alvarado, et al., 2018; James et al., 2019; Sanone, 2017; Young et al., 2017; Young et al., 2019) – 

67% (n = 16) identified applied a primary or secondary focus on race, ethnicity, or gender. This 

intersectional focus is a significant attribute to HSLS:09 to which other panel data do not provide 

in-depth. With an additional concentration on science and engineering coursework at the student unit 

of analysis, most of the recent research using this dataset considers questions surrounding either the 

STEM disciplines generally (Alvarado & Muniz, 2018; Edwin et al., 2019; Gottlieb, 2018) or science 

(Anderson & Chen, 2016; Young et al., 2017) and mathematics (Howard, N.R. et al., 2019; Young 

et al., 2019; Yu & Singh, 2017) disciplines specifically. 

 
7 Refreshment refers to the cycling of new panel participants, used in prior SLS program studies. 
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Figure 15. Longitudinal Design for HSLS:09 

 

Note. From the “High School Longitudinal Study of 2009 (HSLS:09) Base Year to Second Follow-Up and 

High School Transcript Data File Documentation” by Ingels, S.J., Pratt, D.J., Herget, D., Bryan, M., Fritch, 

L.B., Ottem, R., Rogers, J.E., and Wilson, D. (2018). National Center for Education Statistics, Institute of 

Education Sciences, U.S. Department of Education. Washington, DC. 

Due to the data collection methodology of HSLS, a complete look at student experiences 

from multiple perspectives is captured through student, parent, teacher, administration, and 

counselor surveys. This is particularly relevant to the research presented herein which considers the 

role educational leaders (such as counselors) maintain in providing career pathway advice to students 

seeking STEM careers, matching student job outlooks to careers, and aligning the coursework 

sequence to achieve those attainment goals (Engberg & Gilbert, 2014; Li et al., 2017; Mwangi et al., 

2019). HSLS:09 also provides some depth within the overall instructional pedagogies offered 

throughout 9th-grade S&E classes in addition to student motivations (Liu et al., 2019) that is believed 
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to be an early STEM entry point from prior research. Regression-type analysis, including multilevel 

and multinomial logistic regression, have also been employed successfully using this dataset 

(Engberg & Gilbert, 2014; Gottlieb, 2018; James et al., 2019; Kremer, 2020).  

Survey Design 

HSLS:09 utilizes a stratified, two-stage random sample design with schools and students as 

the primary sampling units (Ingels et al., 2018, p. 17). Figure 15 presents the HSLS:09 longitudinal 

design beginning in 2009 with the base year data collection and extending through 2025, the third 

follow-up at age 30 (twelve years beyond secondary graduation date). A first and second follow-up 

report released in 2012 and 2016, respectfully, employed mixed survey methods which includes data 

from students, their parents, school administrators, counselors, and math and science teachers. 

Supplementary transcript data were collected in 2013 (secondary) and 2017 (post-secondary) in 

addition to student updates and financial aid records collection. The dataset is unique due to its 

comprehensive set of survey questions (students, teachers, parents, administrators, and counselors) 

surrounding many contextualized features of the students’ educational experience in math and 

science. 

The research agenda of the HSLS:09 dataset employs an expectancy-value theoretical 

framework to guide questionnaire content and select data for inclusion. Figure 16 illustrates this 

conceptual approach, selecting the student as the unit of analysis to “identify factors that lead to 

academic goal setting and decision making” (Ingels et al., 2018, p. 9). Many influencing variables 

are provided within the model including science and mathematics interest, perceived opportunities, 

barriers, costs, motivation, and values and expectations of attainment goals. An end-of-year 8th 

grade mathematics assessment was also included in the design and administered on-site (at the 

participating schools), aligning to the vast amount of research supporting the inclusion of prior 

mathematics ability on STEM course taking, STEM major selection, and STEM career pursuit 
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(Bozick & Ingels, 2007; 2008; Gottfried, 2015; Lichtenberger et al., 2013; Sadler et al., 2012; Seo 

et al., 2019; Svoboda et al., 2016; Wang, 2013; Wolniak, 2016). Overall, student persistence and 

motivation for pursuing STEM careers are active areas for research within HSLS:09.  

Figure 16. HSLS:09 Base-year (9th Grade) Conceptual Map 

Note. From the “High School Longitudinal Study of 2009 (HSLS:09) Base Year to Second Follow-Up and 

High School Transcript Data File Documentation” by Ingels, S.J., Pratt, D.J., Herget, D., Bryan, M., Fritch, 

L.B., Ottem, R., Rogers, J.E., and Wilson, D. (2018). National Center for Education Statistics, Institute of 

Education Sciences, U.S. Department of Education. Washington, DC. 

Survey Instrument and Data Collection 

 The design structure of the study for data collection relies on a two-phase random sample. 

Phase 1 focuses on the identification of schools in all fifty states including the District of Columbia 

(Ingels et al., 2018, pp. 53-57). Of the 1,889 schools identified, 944 high schools agreed to 

participate, producing a weighting factor of 55.5%. Phase 2 moved onto selecting students within 

the individual schools. Seeking approximately 25 students per school, 25,206 total students were 

selected and participated in the school-based web survey and mathematics assessment (Ingels et al., 

2018, pp. 53-60). 
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The second-year follow-up design consists of panel tracing and locating procedures of 

students and their parents using Lexus-Nexus social security numbers and telephone locators within 

the National Student Loan Data System (NSLDS). This advanced tracing method then produced and 

delivered a letter explaining the survey selection. Emails, postcards, and mailings were subsequently 

used for the follow-up and as reminders to complete the survey (see Figure 15 for a timeline of the 

data collection procedure). The surveys were multi-modal and could be accomplished either through 

a paper-pencil form, web-based data management system, telephonically, or through an in-person 

interview. Rerouting procedures were additionally utilized to reduce the length of in-person/web-

based/telephonic interviews. Table 3 classifies the overall longitudinal data collection based on role, 

educational constructs assessed, and the data collection method for a holistic view of the alignment 

between the conceptual approach taken by the study designers and the range of pursuit factors 

collected. 

Analytic Weights 

The HSLS:09 data follows a complex sampling design, which is coded to compensate for the 

oversampling of smaller subgroups of schools and students; a set of 200 sample weightings is used 

to adjust the standard errors for this type of sampling. This design ensures a representative sampling 

of local populations and maintains accuracy in hypothesis testing procedures undertaken by 

researchers. Following this approach, a Balanced Repeated Replication (BRR) method is suggested 

by the study designers and can be employed throughout the variable selection and overall model 

development in Stata 17.0, matching the survey design (Heeringa et al., 2017; Hosmer et al., 2013). 

 Herringa et al. (2016) provide a strategic method, through a BRR approach, for analyzing 

the data using the bias-adjusted weighting method (pp. 121-122). Balanced Repeated Replication of 

variance estimation is a method used within HSLS:09 for evaluating sample variances under two 
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Table 3. HSLS:09 Educational Construct Assessed by Role 

Role Educational Constructs Assessed Data Collection (Year)a 

Student (1) STEM or school interest and goals; (2) 

identity formation, academic behavior; (3) 

attitudes and beliefs; (4) social and cultural 

experiences; (5) formal/informal STEM 

environment; (6) negative experiences 

BY-SA-SS (2009), F1-SA-SS 

(2012), U-SS-HST (2013), 

F2-SS (2016), SR-PETS 

(2017), F3-SS-PETS (2025) 

Parent (1) Sources and quality of information; (2) 

expectations; (3) discussions about courses, 

postsecondary options, and careers; (4) school 

involvement 

P (2009 and 2012) 

Math/Science 

Teacher 

(1) Personal preparation or experience; (2) 

depth of math and science at school; (3) 

perceptions of leadership and parental 

involvement; (4) attitudes toward work 

T (2009) 

Administrator (1) Outreach and transition programs for 8th-

graders; (2) course availability and planning; (3) 

planning for transition to postsecondary 

education 

A (2009 and 2012) 

Counselor (1) Caseload; (2) duties; (3) pathway entry to 

college or postsecondary and careers; (4) course 

placement and advising; (5) student supports 

C (2009 and 2012) 

 a Each code is defined at the bottom of Figure 14 

primary stage unit8 (PSU)-per-stratum designs. The original strata9 in the sample were distilled into 

199 BRR-specific strata accounting for differing school and student characteristics (i.e., type of 

school, region, and locale; Ingels et al., 2018, p. 126). Within this partial balance of BRR variance 

 
8 Primary Stage Units (PSUs) represent the highest-level clusters, or groupings, of sample observations. “Two-per-

stratum” allocation designs, such as HSLS:09, are the most common due to the minimum two PSUs per primary stage 

stratum requirement for estimating sampling variances (Heeringa et al., 2017). 
9 Strata are stratifications, or homogeneous groupings, of population elements formed a priori by the study designers. 

In the case of the HSLS:09 dataset, these strata represent school and student samples. 
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estimates, two PSUs were subsequently formed to produce base weights from a 200 x 200 Hadamard 

matrix10 analysis (p. 126). The solution to this Hadamard matrix produces precise values for the 

standard errors and is reported in Stata 17.0 using the “brr” option appended to the “mlogit” function 

for a MNLR. An initial setup, however, is required in identifying the weighting (see Tables 4-5 for 

weighting details) prior to running the statistical procedure.       

Validation and Reliability 

The High School Longitudinal Study utilizes the National Center for Educational Statistics 

(NCES) statistical standards for survey planning, design, data collection, and evaluation. NCES 

requires an evaluation which includes information about the quality and limitations of the data 

collected within the survey (for future surveys and survey replication) as well as a systematic 

assessment of the sources of error for key statistics resulting from the survey items. For HSLS:09 

this includes: (1) descriptive statistics on item response rates, (2) weights, (3) standard errors and 

design effects, (4) non-response bias item-level declined to answer analysis, and (5) single-value 

item imputation. Table 4 represents some descriptive statistics on base-weighted unit response rates 

for waves up to and including the second follow-up (Ingels et al., 2018, p. 93). Each wave has a set 

of weighting factors which are used to account for the population of survey non-respondents and 

calibration adjustments considering sampling frame coverage (using a balanced repeated replication 

method) for analysis performed by researchers utilizing the survey data. Table 5 highlights these 

weighting factors for the second follow-up.    

Other forms of validity and reliability, including construct and internal consistency 

reliability, are provided for specific factors and measures. For instance, Ingels et al. (2018) report 

that the HSLS:09 mathematics 8th-grade assessment was field tested at an IRT-reliability of 0.92 

 
10 Hadamard matrices are square matrices with elements +/- 1 and mutually orthogonal. Individual replicates in the BRR 

method are similarly formed (as either “0” or a value considering the complimentary half). 
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(after sampling weights were applied). Specific item sets across student, teacher, counselor, and 

administrator surveys analyzed using psychological scales (e.g., student self-efficacy and identity 

for math and science) were evaluated for internal consistency using Cronbach’s alpha (Ingels et al., 

2011, pp. 109-113). In total 24 constructs -12 in science and 12 in mathematics - reported internal 

consistency reliability, though only as psychological factors. 

Throughout the survey, only 11 items indicated an unacceptable rate of missing data 

(significance greater than 5%) – tied primarily to income, loans, and parental salary (Ingels et al., 

2018, p. 133). HSLS designers additionally performed inferential statistical tests on the data 

following the implementation of each wave to estimate bias (i.e., if a survey item represented a level 

of 0.05). As indicated by the data file documentation, “[t]he results of these nonresponse bias 

analyses suggest that there is not a substantial bias due to nonresponse after adjusting for that 

nonresponse” (Ingels et al., 2018). The statistics prior to and following the addition of a nonresponse 

adjustment is detailed by Ingels et al. (2018) and proves the above claim by maintaining validity and 

reliability of the survey data following NCES standards. Given that these data are valid and reliable, 

it provides a contemporary data collection repository for quantitative analysis including multinomial 

logistic regression.    

Table 4. Base-weighted Unit Response Rates 

Unit Participation Definition Eligiblef Participatedf Weighted 

Percent 

 Base Year    

School School agreed to participate 1,880 940 55.5a 

Student School questionnaire completed 25,210 21,440 85.7b 

 Student assessment completed 25,210 20,780 83.0b 

 First Follow-up    

Student Student questionnaire completedc 25,180 20,590 82.0b 
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 Student assessment completedc 25,180 18,510 73.0b 

 Parent questionnaire completede 11,950 8,650 72.5d 

 2013 Update and H.S. Transcript 

Component 

   

Student Student questionnaire completed 25,170 18,560 73.1b 

 High school transcripts collected 25,170 21,930 87.7b 

 Student questionnaire completed and high 

school transcripts collected 

25,170 17,660 70.2b 

 Second Follow-up    

Student Student questionnaire completed 25,120 17,340 67.9b 

Note. From the “High School Longitudinal Study of 2009 (HSLS:09) Base Year to Second Follow-Up and 

High School Transcript Data File Documentation” by Ingels, S.J., Pratt, D.J., Herget, D., Bryan, M., Fritch, 

L.B., Ottem, R., Rogers, J.E., and Wilson, D. (2018). National Center for Education Statistics, Institute of 

Education Sciences, U.S. Department of Education. Washington, DC. a School base-weight was used to 

calculate the weighted percentage. b Student base-weight was used to calculate the weighted percentage. c 

Ineligible first follow-up students totaled 20 students.   d Student base-weight adjustment for parent 

subsampling was used to calculate the weighted percentage. e Includes a subsample of 11,950 eligible students 

for the first follow-up data collection. f Rounded per IES data security requirements. 

Table 5. Second Follow-up Survey Weights 

Weight Number of 

Respondentsc 

Meanc Standard 

Deviationc 

Maximumc Suma 

W4STUDENT 17,3340 240 311.0 7,890 4,183,280 

W4W1STU 15,910 260 343.2 7,950 4,133,580 

W4W1W2W3STU 13,280 310 412.4 9,240 4,133,880 

W4W1STUP1 12,890 320 427.37 10,130 4,157,770 

W4W1STUP1P2b 5,430 770 976.31 18,340 4,153,490 
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Note. From the “High School Longitudinal Study of 2009 (HSLS:09) Base Year to Second Follow-Up and 

High School Transcript Data File Documentation” by Ingels, S.J., Pratt, D.J., Herget, D., Bryan, M., Fritch, 

L.B., Ottem, R., Rogers, J.E., and Wilson, D. (2018). National Center for Education Statistics, Institute of 

Education Sciences, U.S. Department of Education. Washington, DC. a Weight sums differ across population 

counts due to the suppression of data for excluded students. b Respondents restricted to a parent subsample 

of the first-year follow-up. c Rounded per IES data security requirements. 

Exogenous Variables and Descriptive Statistics 

 The following exogenous variables were retained and employed in the research analysis. As 

outlined in Chapter 3, a balanced repeated replication was implemented to account for the survey 

weights applied to this complex survey data set. Each variable, therefore, is outlined by a sample 

size, weighting effect, range (minimum and maximum values), respondent frequencies (or 

percentages), missing data, and how each variable was coded. 

Educational Goals and Outcomes 

Major will be Considering – 2-digit CIP Code (S3FIELD2) 

 This independent variable represents the field of STEM study considered by the sample 

population of students as a 2-digit CIP code. The following survey question was administered to 

postsecondary students as of November 1, 2013: “What field of study or program [will/were/was] 

[you/he/she] [be] considering? To reduce the number of categories for achieving numerical 

convergence on each model, the variable was re-coded to acknowledge if the respondent was 

considering a STEM field of study or program. STEM fields were categorized using the BLS 

SOC11. 

 
11 Bureau of Labor Statistics Standard Occupational Classification (BLS SOC) System 
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Table 6. Major Selection Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 Non-STEM Major 8,690 40.0 46.40 

1 STEM Major 2,810 12.0 13.55 

 Missing/Non-response 12,010 51.0 40.05 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Highest Level Math/Science Course Taken (X3TGPAHIMTH/X3TGPAHISCI) 

 This variable is a composite of X3TGPAHIMTH and X3TGPAHISCI which attains the 

student GPA in their highest math and science courses, respectively. The resulting Cronbach’s 

alpha was moderate at 0.74. 

Table 7. Highest Level Math and Science Course GPA Descriptive Statistics 

Category Minimum Maximum Mean 

Weighteda 

Std. Errora 95% CI 

Continuous -2.43 1.77 -.063 .018 -.098 -.027 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Psychometric Influences 

Math and Science Efficacy (X1/X2MTHEFF and X1/X2SCIEFF) 

 X1MTHEFF, X2MTHEFF, X1SCIEFF, and X2SCIEFF represent a scale of the 

participant’s mathematics self-efficacy in their 9th-grade and 11th-grade years (waves 1 and 2 

respectively). These variables are composites of S1/S2MTESTS, S1/S2MTEXTBOOK, 

S1/S2MSKILLS, and S1/S2MASSEXCL. Similarly, X1SCIEFF and X2SCIEFF represent a scale 

of the participant’s science self-efficacy by wave. S1/S2STESTS, S1/S2STEXTBOOK, 
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S1/S2SSKILLS, and S1/S2SASSEXCL are the composites. The resulting Cronbach’s alpha for 

both math and science efficacy were adequate at 0.65. 

Table 8. Math Efficacy Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

Std. 

Errora 

95% CI 

1 Continuous -2.92 1.62 .038 .019 .001 .076 

2 Continuous -2.50 1.73 .017 .016 -.016 .049 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Table 9. Science Efficacy Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

 Std. 

Errora 

95% CI 

1 Continuous -2.91 1.83 .025 .022 -.018 .067 

2 Continuous -2.47 1.64 .030 .018 -.006 .065 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Math and Science Utility (X1/X2MTHUTI and X1/X2SCIUTI) 

 X1MTHUTI, X2MTHUTI, X1SCIUTI, and X2SCIUTI represent a scale of the participant’s 

mathematics self-efficacy in their 9th-grade and 11th-grade years (waves 1 and 2 respectively). 

These variables are composites of S1/S2MUSELIFE, S1/S2MUSECLG, and S1/S2MUSEJOB. 

Similarly, X1SCIUTI and X2SCIUTI represent a scale of the participant’s science self-efficacy by 

wave. S1/S2SUSELIFE, S1/S2SUSECLG, and S1/S2SUSEJOB are the composites. The resulting 

Cronbach’s alpha for both math and science efficacy were adequate at 0.65. 
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Table 10. Math Utility Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

 Std. 

Errora 

95% CI 

1 Continuous -3.51 1.31 .018 .019 -.019 .055 

2 Continuous -3.94 1.21 .023 .016 -.009 .055 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Table 11. Science Utility Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

Std. 

Errora 

95% CI 

1 Continuous -3.10 1.69 .013 .022 -.029 .056 

2 Continuous -.23 .10 .000 .001 -.002 .003 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Math and Science Interest (X1/X2MTHINT and X1/X2SCIINT) 

 X1MTHINT, X2MTHINT, X1SCIINT, and X2SCIINT represent a scale of the participant’s 

mathematics self-efficacy in their 9th-grade and 11th-grade years (waves 1 and 2 respectively). 

These variables are composites of S1/S2MENJOYING, S1/S2MWASTE, S1/S2MBORING, 

S1/S2FAVSUBJ, and S1/S2MENJOYS. Similarly, X1SCIUTI and X2SCIUTI represent a scale of 

the participant’s science self-efficacy by wave. S1/S2SENJOYING, S1/S2SWASTE, 

S1/S2SBORING, S1/S2FAVSUBJ, and S1/S2SENJOYS are the composites. The resulting 

Cronbach’s alpha for both math and science efficacy were adequate at 0.65. 
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Table 12. Math Interest Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

 Std. 

Errora 

95% CI 

1 Continuous -2.46 2.08 .029 .017 -.005 .062 

2 Continuous -2.02 1.99 .023 .018 -.012 .059 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Table 13. Science Interest Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

Std. 

Errora 

95% CI 

1 Continuous -2.59 2.03 .016 .025 -.033 .065 

2 Continuous -2.24 1.71 .020 .019 -.017 .057 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Student Expectations (X1/X2STUEDEXPCT) 

 This independent variable represents how far in school the participant (9th-grade and 11th-

grade year) thinks he/she will get. To reduce the number of categories for achieving numerical 

convergence on each model, the variable was re-coded into categories depicting the major levels of 

academic achievement longitudinally. 

Table 14. Student Expectations (Wave 1) Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 High School Diploma/GED 2,760 11.7 14.69 

1 Associate Degree/Some College 1,310 5.6 6.85 

2 Bachelor’s Degree 3,740 15.9 17.48 

3 Master’s Degree 4,450 19.0 20.19 
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4 Ph.D./M.D./Law/Other 4,460 18.98 19.39 

 Non-response/Don’t Know 6,780 28.86 21.39 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Table 15. Student Expectations (Wave 2) Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 High School Diploma/GED 2,930 12.5 15.84 

1 Associate Degree/Some College 2,190 9.3 10.96 

2 Bachelor’s Degree 5,800 24.7 28.21 

3 Master’s Degree 4,640 19.7 22.06 

4 Ph.D./M.D./Law/Other 2,930 12.5 12.98 

 Non-response/Don’t Know 5,020 21.3 9.95 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Student Belonging (X1SCHOOLBEL) 

 This variable describes the participant’s perception of school belonging (9th-grade year). 

This scale (higher representing a higher sense of belonging) was developed using principal 

components factor analysis standardized between 0 and 1.  The inputs included S1SAFE, 

S1PROUD, S1TALKPROB, S1SCHWASTE, and S1GOODGRADES. The resulting Cronbach’s 

alpha for both math and science efficacy were adequate at 0.65.  
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Table 16. School Belonging Descriptive Statistics 

Category Minimum Maximum Mean 

Weighteda 

Std. Errora 95% CI 

Continuous -4.35 1.59 .020 .019 -.017 .058 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Experiential and Learning Influences 

Math and Science Identity (X1/X2MTHID and X1/X2SCIID) 

 X1MTHID, X2MTHID, X1SCIID, and X2SCIID represent a scale of the participant’s 

mathematics identity in their 9th-grade and 11th-grade years (waves 1 and 2 respectively). These 

variables are composites of S1MPERSON1 and S1MPERSON2 which correspond to participants 

who agree with the statements: “You see yourself as a math person” and “Others see me as a math 

person”. Similarly, X1SCIID and X2SCIID represent a scale of the participant’s science identity 

by wave. S1SPERSON1 and S1SPERSON2 are the composites. The resulting Cronbach’s alpha 

for both math and science efficacy were adequate at 0.65. 

Table 17. Math Identity Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

Std. 

Errora 

95% CI 

1 Continuous -1.73 1.76 .046 .017 .013 .078 

2 Continuous -1.54 1.82 .034 .017 .001 .068 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 
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Table 18. Science Identity Descriptive Statistics 

Wave Category Minimum Maximum Mean 

Weighteda 

Std. 

Errora 

95% CI 

1 Continuous -1.57 2.15 .033 .017 -.000 .066 

2 Continuous -1.74 1.86 .026 .016 -.007 .058 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

Formal STEM Program for Underrepresented Students (C1PURSUE) 

 C1PURSUE is a dichotomous factor variable determined from the following survey 

question: “Does your school have any formal programs to…encourage underrepresented students 

to pursue mathematics or science?”  

Table 19. STEM Program for Underrepresented Students Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No 14,630 62.2 59.26 

1 Yes 6,390 27.2 29.56 

 Non-response/non-response 2,490 10.6 11.17 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

School Raises Math/Science Interest (A1MSOTHER) 

 A1MSOTHER is a dichotomous factor variable determined from the following survey 

question: “Does your school do any of the following to raise high school students’ interest and 

achievement in math or science?”  Ingels et al. (2018) lists 12 items in which participants have the 

option to select including: 

• Hold school-wide math or science fairs, workshops, or competitions 
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• Pair students with mentors in math and science 

• Sponsor a math or science after-school program 

• Partner with Mathematics Engineering Science Achievement (MESA) or similar program 

Table 20. School Raises Math/Science Interest Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No 600 64.0 60.90 

1 Yes 210 21.7 25.86 

 Non-response/non-response 140 14.3 13.24 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Informal STEM Partnership (A1MSSUMMER) 

 This variable is a dichotomous factor variable determined from the following survey 

question: “Does your school do any of the following to raise high school students’ interest and 

achievement in math or science?”  Ingels et al. (2018) lists 12 items in which participants have the 

option to select in-line with A1MSOTHER: 

Table 21. Informal STEM Partnership Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No 600 64.0 46.45 

1 Yes 210 21.7 40.31 

 Missing/non-response 140 14.3 13.24 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 
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8th Grade Math Scores (S1M8GRADE) 

 This variable was coded by letter grade (A through Below D) based on each participant’s 

response to “What was your final grade in this math course?” The grade indicated was the final 

score for the 9th grader’s most advanced 8th grade math course. 

Table 22. 8th Grade Math Scores Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

1 A 7,730 32.9 33.62 

2 B 7,820 33.3 36.75 

3 C 3,680 15.7 18.61 

4 D 1,030 4.4 5.67 

5 Below D 570 2.4 2.46 

 Missing/Non-response 2,510 11.4 2.89 

a Balanced Repeated Replication survey method was used to calculate the weight15ed proportion.  

b Rounded per IES data security requirements. 

Contextual-Environmental Influences 

Teacher Gender Bias (S1MTCHMFDIFF and S1STCHMFDIFF) 

 S1MTCHMFDIFF and S1STCHMFDIFF considers how the participant felt their Fall 2009 

math teacher treated males/females differently. The variable results were based on a four-point 

Likert scale which corresponds to participants who agree with the statements: “Your math 

teacher…treats males and females differently.”  
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Table 23. Math Teacher Gender Bias Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

1 Strongly Agree 670 2.8 3.30 

2 Agree 1,540 6.6 7.40 

3 Disagree 8,700 37.0 41.57 

4 Strongly Disagree 7,940 33.8 36.31 

5 Missing/Non-response 4,660 19.8 11.43 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Table 24. Science Teacher Gender Bias Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

1 Strongly Agree 640 2.7 2.79 

2 Agree 1,540 6.5 6.96 

3 Disagree 8,230 35.0 38.73 

4 Strongly Disagree 6,950 29.6 32.54 

5 Missing/Non-response 6,150 26.2 18.98 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Gender Matching (X1GENMATCH) 

 X1GENMATCH is a composite variable determined by matching the student’s gender with 

their math (M1SEX) and science teacher (N1SEX) in the 2009 year.  
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Table 25. Gender Matching Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

 Percent 

Weighteda 

1 Not Matched 14,880 63.3  65.00 

2 Matched 8,620 36.7  35.00 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Parental Education Level (X1DADEDU and X1MOMEDU) 

 X1DADEDU and X1MOMEDU represent a sample member’s father/mother’s highest 

educational level attained. 

Table 26. Father’s Educational Level Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No bio/Adoptive/Stepfather 3,720 15.8 19.40 

1 Less than High School 1,210 5.1 6.77 

2 High School Diploma/GED 5,410 23.0 27.47 

3 Associate Degree 1,490 6.4 7.07 

4 Bachelor’s Degree 2,910 12.4 12.17 

5 Master’s Degree 1,220 5.2 4.86 

7 Ph.D./M.D./Law/Other 820 3.5 2.48 

 Missing/Non-Response 6,720 28.6 19.77 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 
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Table 27. Mother’s Educational Level Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No bio/Adoptive/Stepfather 1,160 4.9 5.10 

1 Less than High School 1,280 5.5 7.77 

2 High School Diploma/GED 6,340 27.0 32.07 

3 Associate Degree 2,520 10.7 12.86 

4 Bachelor’s Degree 3,690 15.7 15.69 

5 Master’s Degree 1,370 5.8 5.39 

7 Ph.D./M.D./Law/Other 430 1.8 1.35 

 Missing/Non-Response 6,720 28.6 19.77 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

b Rounded per IES data security requirements. 

Parental Expectation (X1/X2PAREDEXPCT) 

 This independent variable represents how far in school the parent (9th-grade and 11th-grade 

year) thinks their student will achieve. To reduce the number of categories for achieving numerical 

convergence on each model, the variable was re-coded into categories depicting the major levels of 

academic achievement longitudinally. 

Table 28. Parent Expectations (Wave 1) Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 High School Diploma/GED 1,440 6.1 7.38 

1 Associate Degree/Some College 1,390 5.9 7.45 

2 Bachelor’s Degree 5,030 21.4 23.66 
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3 Master’s Degree 3,390 14.4 15.55 

4 Ph.D./M.D./Law/Other 3,780 16.1 16.75 

 Non-response/Don’t Know 8,470 36.1 29.21 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

b Rounded per IES data security requirements. 

Table 29. Parent Expectations (Wave 2) Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 High School Diploma/GED 2,700 11.5 14.69 

1 Associate Degree/Some 

College 

1,810 7.7 9.55 

2 Bachelor’s Degree 6,470 27.5 29.89 

3 Master’s Degree 4,140 17.6 18.36 

4 Ph.D./M.D./Law/Other 3,310 14.1 14.43 

 Non-response/Don’t Know 5,080 21.6 13.09 

a BRR survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Parental Expectation (X1/X2PAREDEXPCT) 

 The parental involvement scale was advanced by Howard (2016) for use with HSLS:09 as 

no measure currently exists. This factor variable combines P2DISCOURSES, 

P2DISCCLGEXAM, P2DISCCLGAPP, and P2DISCCAREER inputs. Each variable corresponds 

to the following survey questions, respectively:  

• How often the parent has discussed selecting courses or programs at school 

• How often discussed preparing for college entrance exams 
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• How often discussed applying to college/other school safter high school 

• How often discussed careers he/she might be interested in 

To use the scale, a similar principal component factor analysis was conducted with an equivalent 

Cronbach’s alpha equal to .82.  

Mentorship (C2HAMENTOR) 

 This mentorship variable seeks to identify which schools support high achievers with an 

adult mentor. The survey question asks, “In which of the following ways does [school name] 

support high-achieving students…a school-arranged match with an adult mentor”.  

Table 30. Mentorship Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

0 No 15,810 67.3 68.48 

1 Yes 3,330 14.2 15.23 

 Missing/Non-Response 4,370 18.6 16.29 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Demographic Influences 

Race (X1RACE) 

 X1RACE is an ethnicity-composite variable which combines six dichotomous race/ethnicity 

variable as inputs: X1HISPANIC, X1WHITE, X1BLACK, X1ASIAN, X1PACISLE, and 

X1AMINDIAN. To simplify the later analysis and reach numerical stability, the variables 

considered were X1HISPANIC, X1WHITE, X1ASIAN, and X1BLACK. 
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Table 31. Race Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

1 Asian 1,950 8.3 3.53 

2 Black/African American 2,620 11.1 14.32 

3 Hispanic/Latin American 3,800 16.2 21.95 

4 More than one Race 1,940 8.3 7.93 

5 White/European American 12,080 51.4 51.79 

6 Missing/Non-response 1,120 4.8 .48 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 

Gender (X1SEX) 

 This variable inquiries about the sample members’ gender from the categories of either 

Male or Female. 

Table 32. Gender Descriptive Statistics 

Category Label Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

1 Male 11,980 51.0 50.29 

2 Female 11,530 50.0 49.71 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion.  

b Rounded per IES data security requirements. 
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Socioeconomic Status (X1SES) 

 This variable is a composite scale measuring the socioeconomic status of participants. The 

construct is calculated using parent/guardian education (X1PAR1EDU and X1PAR2EDU), 

occupation (X1PAR1OCC2 and X1PAR2OCC2), and family income (X1FAMINCOME). 

Table 33. Socioeconomic Status Descriptive Statistics 

Category Minimum Maximum Mean 

Weighteda 

Std. Errora           95% CI 

Continuous -1.93 2.88 -.062 .018 -.097 -.026 

a Balanced Repeated Replication survey method was used to calculate the weighted proportion. 

 Considering the array of exogenous variable types in this study including dichotomous, 

categorical, ordinal, and continuous covariates are paired with endogenous categorical variables to 

predict whether a participant expects to enter a STEM career at the age of 30, a multinomial 

logistic regression was chosen. 

Methodological Procedure 

Multinomial logistic regression (MNLR) is a statistical method for evaluating and predicting 

nominal12 dependent variables given multiple independent variables. Matching other regression 

procedures, both continuous and categorical covariates may be employed (separately or in 

combination) as well as any interactions between these variables. MNLR, therefore, is a uniquely 

suited statistical method for predicting how factors such as mentorship, parental support, course 

sequencing, and teacher instructional methodologies affect an individual’s pursuit of a STEM career.  

HSLS:09 additionally provides a direct measurement of this dependent outcome, student occupation  

 
12 Nominal outcomes are unordered categories such as those describing educational progression (e.g., secondary, post-

secondary, and careers). These categories can be used in evaluating questions that seek to understand motivations and 

persistence in pursuing STEM careers - such as by race, ethnicity, gender, and socioeconomic status. 
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at the age of 30 (X1/X2/X4STU30OCC_STEM1) and offers several variables for assembling models 

that predict STEM pursuit. Table 6 considers possible motivational and persistence covariates in a 

STEM pursuit model, including the univariate results from considering their independent impact on 

perceived pursuit. These variables are situated in historic and current research categorized by their 

respective area (see Table 6). MNLR offers a method for assembling these factors into multiple 

categories (beyond three and including controls) to evaluate their interactions longitudinally across 

demographics and educational experiences. 

Generalized Linear Model 

 The multinomial logit model (MNLM) is the most widely used and employed nominal 

regression model (Long & Freese, 2014) – one that is also featured in Stata 17.0. The challenge, 

however, for a multinomial versus a traditional binary logit model is in merging the probabilities of 

each combination of logits13 in addition to their interpretations. The difference between the logits of 

two distinct probabilities is defined as the odds ratio (OR). MNLM fits these binary logit 

combinations simultaneously for comparisons that account for all possible alternatives (sometimes 

referred to as “one-versus-all” multi-class classification method), determining their odds ratios. This 

method may also be thought of as comparing each logit to a control situation (i.e., comparing a 

control logit to multiple categories). Below is the generalized equation for an MNLM: 

Equation 1. Generalized MNLM Equation 

ln⁡ Ω𝑚|𝑏⁡(𝑥) = 𝑙𝑛⁡⁡
Pr⁡(𝑦 = 𝑚│𝑥)

Pr⁡(𝑦 = 𝑏│𝑥)
⁡= 𝑥⁡𝛽𝑚|𝑏⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡𝑚 = 1⁡𝑡𝑜⁡𝐽 

 
13 Logits are log-odds functions that describe the probability of a binary outcome based on several covariates. These 

functions map probability values within a domain of 0 to 1 (two binary outcomes) following a logistic distribution. 
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where b is the base outcome (reference category or control), m is comparison outcome, and J is the 

total number of alternative categories. Comparing an outcome with itself, yields a value of 0. As a 

result, the number of logits produced from a MNLM is equal to J-1. To see this equation applied 

conceptually, consider a research question that seeks to determine the effect of course taking (college 

prepatory [CP], honors [H], and advanced placement [AP]) by three regressors (age, ethnicity, and 

gender) on the decision to pursue a STEM degree (either yes or no). The following set of equations 

are produced from equation (1) and account for categorical and continuous regressors established 

from the problem statement and researched factors, 

Equation 2. Example Set of MNLM Equations to Determine the Effect of Coursetaking on 

STEM Degree Attainment 

ln 𝛺𝐶𝑃|𝐻𝑥𝑖 = 𝛽0,𝐶𝑃|𝐻 + 𝛽1,𝐶𝑃|𝐻 ⁡𝑎𝑔𝑒 + 𝛽2,𝐶𝑃|𝐻ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽3,𝐶𝑃|𝐻 ⁡𝑓𝑒𝑚𝑎𝑙𝑒 

ln⁡ Ω𝐶𝑃|𝐴𝑃𝑥𝑖 = 𝛽0,𝐶𝑃|𝐴𝑃 + 𝛽1,𝐶𝑃|𝐴𝑃⁡𝑎𝑔𝑒 + 𝛽2,𝐶𝑃|𝐴𝑃ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽3,𝐶𝑃|𝐴𝑃⁡𝑓𝑒𝑚𝑎𝑙𝑒 

ln⁡ Ω𝐻|𝐴𝑃𝑥𝑖 ⁡ = 𝛽0,𝐻|𝐴𝑃 + 𝛽1,𝐻|𝐴𝑃⁡𝑎𝑔𝑒 + 𝛽2,𝐻|𝐴𝑃⁡ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐 + 𝛽3,𝐻|𝐴𝑃⁡𝑓𝑒𝑚𝑎𝑙𝑒 

Although additional constraints are imposed when solving the MNLM model based on individual 

logits, Hosmer et al. (2013) indicate that the differences are minimal. Stata 17.0 additionally provides 

a method for calculating each simultaneously (Long & Freese, 2014) which yields the slightly more 

precise results and will be approached whenever possible. However, some fit and diagnostic tests 

are not supported by current statistical software (including Stata 17.0) and therefore must be 

calculated using the set of individual logits with binary diagnostic methods (Hosmer et al., 2013).   

Given this set of equations, Hosmer et al. (2013) illustrate how to interpret the coefficients 

(’s) from the logits obtained through an emerging MNLM and on how to evaluate their significance 

(pp. 273-278). Following the odds ratio model, 
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Equation 3. Odds Ratio Model 

𝑂𝑅𝑚(𝑎, 𝑏) =
Ω𝑎|𝑏⁡(𝒙, ⁡𝑥𝑘 + ⁡𝛿)

Ω𝑎|𝑏(𝒙, ⁡𝑥𝑘)
=
(Pr⁡(𝑦 = 𝑚│𝑥 = 𝑎)/Pr⁡(𝑦 = 0│𝑥 = 𝑎)⁡)

(Pr⁡(𝑦 = 𝑚│𝑥 = 𝑏)/Pr⁡(𝑦 = 0│𝑥 = 𝑏)⁡)
 

which represents the difference between logits a and b using logarithmic difference identities (see 

equation [1] and Long & Freese [2014, p. 387]). These odds ratios may also be obtained from a 

cross-classification of the dependent variable with the independent variables (Hosmer et al., 2013, 

pp. 273-278). Standard errors for the coefficients ( = ln [OR]) are calculated by determining the 

square root of the sum of the inverse cell frequencies (p.  274). Conversely, when using complex 

survey data, Stata is similarly employed to calculate the standard errors and account for the data 

collection design through a balanced repeated replication method.  

Modeling with Complex Survey Data 

 Given adjustments to the bias in the HSLS survey data using a weighting methodology 

through balanced repeated replication, Herringa et al. (2016) provide a strategic method for 

analyzing the data using the bias-adjusted weighting approach (pp. 121-122). The design of a 

multinomial logistic regression model begins with the purposeful selection14 and assembly of 

covariates. Hosmer et al. (2013, pp. 90-93) provide a step-by-step, research-based approach to 

selecting variables, identifying significant interactions between covariates, calibrating the 

preliminary model and testing the final main effects model for fit. Figure 17 details the procedure 

for each step and synthesizes the integration between Stata 17.0, complex survey data analysis with 

HSLS:09, and these methods. The approach follows through selecting and iteratively testing main 

effects covariates to develop a preliminary main effects model (see Figure 17 for a general map). 

Likelihood ratio tests strategically assess the covariates for inclusion while comparing their changes  

 
14 The purposeful selection of covariates was accomplished through the comprehensive literature review including 

motivation and retention theories as well as prior research on pursuit factors. 
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( percentages) during the model updates. New and original models are additionally compared 

using partial likelihood tests (or Wald tests) as well as any unretained variables from the initial step 

for fit. Throughout each analysis, a balanced repeated replication is required for a correct calculation 

of the standard errors. Stata 17.0 allows for BRR adjustments using multinomial logit functions and 

hypothesis tests (Long & Freese, 2014).A final check is conducted for covariate linearity, an 

assumption for the multinomial regression model, using lowess smooth and fractional polynomial 

(or quartile design variable) plots. Variables that meet this criterion are retained and a main effects 

model is produced.   

Covariate Interactions 

Following the development of a main effects model, the process for determining the 

significance of variable interactions is approached through practical and statistical perspectives.  

Hosmer et al. (2013) suggest creating a list of all possible pairs of variables that have a “realistic 

possibility” of interacting with each other. Interpreted as arithmetic products, meaningful pairs 

(based on practical expertise) are assessed for statistical significance (p-value < 0.05) using a 

likelihood ratio test in a univariate analysis (pp. 92-93). Those selected are added to the main effects 

model as the logit coefficients are tested for large changes (i.e.,  > 20%). Retained interactions 

are then included into the main effects model forming the preliminary final model.    

Fit and Diagnostics 

An assessment of the preliminary final model adequacy and fit remain as the final step toward 

developing a completed version. The assessment of fit for a model seeks to determine how good of 

a job the model does in predicting outcomes. Therefore, “fit tests” evaluate the probability that the 

model will yield a binary outcome, events that are hypothesized to occur ( = 1) or those that are 

predicted not to occur ( = 0) based on a decision boundary. The probabilities of a positive or
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Table 34. HSLS:09 Variables of Interest 

Variable Description Variable Retaineda 

Educational Goals and Outcomes  
 

Student occupation at age 30 Intent to pursue a STEM career (X1/X2/X4STU30OCC_STEM1) Dependent 

Selection of a STEM major Reference degree’s first major is STEM X4RFDGMJSTEM 

Major will be considering Major the secondary student will be considering (early-selection; 2-digit 

CIP) 

S3FIELD2 

Coursetaking Academic track/concentrator and occupational track X3TACADTRCK/ 

X3TOCCUCON 

Highest level math/science course taken  GPA earned in the highest-level mathematics and science course taken X3TGPAHIMTH/ 

X3TGPAHISCI 

Psychometric Influences    

Math and Science Self-efficacy Composite self-efficacy variable  X1/X2/MTH/SCIEFF 

Math and Science Utility Composite utility variable  X1/X2/MTH/SCIUTI 

Math and Science Interest Composite interest variable  X1/X2/MTH/SCIINT 

Student Expectation Variable to determine “How far a student believes they will get in school”  X1/X2STUEDEXPCT 

Student Sense of Belonging Composite of a student’s sense of belonging  X1SCHOOLBEL 

Experiential and Learning Influences   

Math and Science Identity Composite identity variable  X1/X2/MTH/SCIID 

Program to encourage underrepresented  

     students in STEM  

School has a formal program/engages in systematic efforts to encourage  

     underrepresented students to pursue STEM  

 

Raises student math/science interest in 

another wayb 

12 factor variables representing how early-education teachers raise student 

interest  

     in math and science 

A1MSOTHER 

Informal STEM participation Indicators of whether the student’s school holds math/science fairs, 

workshops, or  

    competitions (A1MTHSCIFAIR), partners with colleges to offer 

math/science  

    summer enrichment programs (A1MSSUMER), or afterschool programs  

    (A1MSAFTERSCH) 

A1MSSUMER 

8th-grade Math Scores Pre-assessment of mathematics cognitive ability entering high school Initial Control 
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Contextual-Environmental Influences 

Teacher educational background Teacher major field of study at the highest STEM degree-level (2-digit CIP 

code) 

N1/M1HIMAJ_STEM 

Teacher gender biases Student’s 9th-grade math/science teacher treats males/females differently  S1M/S1STCHMFDIFF 

Gender matching Teacher’s gender in 9th-grade math and science M1/N1SEX 

Parental Education Highest level of education achieved by biological, adopted, or 

stepfather/mother 

X1DADEDU/ 

X1MOMEDU 

Parental Involvement 4 factor variables, based on the work of Howard (2016) identifying how 

often a parent engages with their student (e.g., discusses course selection, 

entrance exam preparation, college, and/or careers) 

PInv 

Parental Motivation Highest level of education the parent expects the student to achieve X1PAREDEXPCT 

Mentorship Indicators of whether the student was paired with a math/science mentor  

    (A1/A2MSMENTOR), supports high achieving students with a mentor  

    (C2HAMENTOR), and/or school arranged mentors are provided by the 

school  

    (C2XTRAMENTOR) 

C2HAMENTOR 

Demographic Influences   

Race Student’s race/ethnicity based on questionnaire data. Initial Control 

Sex 

 

Sex of the student taken from the base-year questionnaire, parent 

questionnaire,  

    and/or school-provided sampling roster (X1SEX) 

Control 

Socioeconomic Status 

 

Composite for SES using parent/guardian income, occupation, and family 

income  

    (X1SES) 

Control 

aPInv was obtained through a principal component analysis described by Howard et al. (2016) containing P2DISCCOURSES, P2ISCCLGEXAM, 

P2DISCCLGAPP, and P2DISCCAREER. 
bThe purposeful selection of variables utilized Hosmer et al. (2013, pp. 90-107) to determine if a variable was retained or not retained, and if it 

represents a dependent or control variable.  
cItalicized variable names indicate multiple factors present in HSLS:09.  
dRepresents a variable that is part of the restricted-use HSLS:09 dataset. 
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negative prediction describes the model’s sensitivity and 1-specificity, respectively. Plots of 

sensitivity versus 1-specificity15 are commonly referred to as the Receiver Operating Characteristic 

(ROC)16 curve and the area under this curve provides a characteristic of discrimination – the 

estimated probability of one outcome occurring versus another. Values of ROC > 0.7 are considered 

“acceptable” (Hosmer et al., 2013, p. 177), however the greater the area, the better the model does  

at predicting an outcome. The success rate of predictions statistic is provided in Stata 17.0 with a 

default cutoff at 50%. To determine the optimal cutoff (a value between 0 and 1) plotting 

sensitivity/specificity versus the range probability cutoffs will reveal this value at the intersection of 

each curve between sensitivity and specificity line graphs (Hosmer et al., 2013). An accurate quantity 

for determination may then be fed back into the Stata 17.0 statistical function to show the best result 

for classification. Lastly, jittered outcome (scatter) and density (histogram) plots provide clarity on 

the ability of the data to discriminate between predicted and unpredicted outcomes.   

Regression diagnostics are the final measures of fit, examining how a model “fit” is 

supported over the entire set of regressor patterns. Hosmer et al. (2013) recommend a series of plots 

detailing the contribution of the estimated probability to the value of the following diagnostic 

statistics: (1) leverage (h), (2) change in Pearson chi-squared (2), (3) change in deviance (D), 

and (4) Cook’s distance (Δ𝛽 ̂). Since a statistical method is not available in Stata 17.0, the 

development of each plot requires breaking up the MNLM into individual logits. Data points in these 

plots at either the top left or right, generally indicate a poor fit (Hosmer et al., 2013, p. 197). The 

data points in these outlying covariate patterns are eliminated one-by-one, then completely, to test 

for their effect on the model. Assembling the results in a table by covariate and percent change, a 

 
15 1-specificity describes the rate of false positives among the cases that should be negatives. 
16 The Receiver Operating Characteristic (ROC) curve originated from signal detection theory in describing the existence 

of a signal in the presence of noise (Hosmer et al., 2013, p. 174). 
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decision is subsequently made on keeping or eliminating covariates. Hosmer et al. (2013) further 

explain this decision point with a word of caution, “we use diagnostics statistics to identify subjects 

and subject matter considerations to decide on exclusion” (p. 199). 

Methodological Limitations, Delimitations, and Ethical Considerations 

Four significant challenges remain in implementing a multinomial logistic regression. The 

first is the resolution of multiple odds ratios across logits. The difficulty, here, lies more in the 

reporting and interpretation of the odds ratios rather than the calculation. With many comparisons 

across covariates, the researcher must carefully navigate the meaningfulness of the complete set of 

results against the questions for inquiry. An unintended stretching of the data could also result due 

to small subgroups of students represented in the sample being spread “thinly” across each logit. 

This was evaluated post hoc to verify that the sample sizes by subgroup fit within accepted levels. 

The second challenge is the lack of statistical software for fully testing the fit of a particular model 

under multinomial conditions. Although methods exist, they have not implemented in the leading 

statistical packages (e.g., Stata, SPSS, and SAS). As a result, testing for model fit of a MNLM 

requires reducing the model into individual logits and analyzing each logit for fit – a tedious 

proposition with more than a half dozen covariates. Since outliers in the data for these logistic models 

have a significant effect on the fit and diagnostics of the overall model, individual outlying data 

points will be excluded in the final model. A third difficulty is the pathway to convergence on a 

fitted MNLM. The number of covariates, especially when introducing categorical independent 

variables, may quickly reach numeric instability and a divergence of the fitted model. Additionally, 

while the steps provided by Hosmer et al. (2013) for developing an MNLM is one of the more 

straightforward approaches, it relies heavily on the researcher’s empirical experience (statistical and 

subject area expertise) for reaching convergence on a well- fitted model. The selection of variables 
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Figure 17. MNLR Model-Building Flowchart 

 

Note. A process flow map of the steps for conducting a thorough analysis using MNLR. Designed from the methodology in Hosmer et 

al. (2013).  
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is critically important to the model which leans on the researcher’s ability to construct pragmatic, 

clinical, and testable covariate interactions. Finally, the last challenge considers model building 

methods with complex survey data designs (such as HSLS:09) and practical statistical procedures 

(e.g., in Stata 17.0). Debates over the most precise statistical methods for testing covariates and 

assessing their fit continues as methods are constantly evolving. For example, the Hosmer-

Lemeshow statistic is viewed as being highly dependent on an arbitrary decision for the number 

of groups used. Independence of Irrelevant Alternatives (IIA) assumption tests, long used when 

reporting MNLMs, are also debated about their relevance in characterizing model behavior. 

Although the inclusion of IIA assumption tests is left to the individual journal reviewers, Long and 

Freese (2014) report these findings and do not recommend the measure for assessing fit (pp. 223-

224) or performing an IIA analysis. 

With the chosen study design, delimitations to the chosen number of variables are 

accomplished through a rigorous review of literature and practical experience teaching at both 

secondary and postsecondary levels of education. In addition to factor delimiters, the theoretical 

landscape will focus on transactional motivational and persistence theories to frame the models of 

student pursuit. Moreover, the choice of range between secondary and postsecondary education 

levels (i.e., 9-16) for the typological models, matches the research on early STEM pursuit 

progressions toward STEM careers. It also mirrors traditional STEM pipeline timescales for future 

study comparisons. A last delimitation includes the scope of accepted taxonomies of STEM to the 

most widely used systems and approaches in the research. 

A significant ethical consideration considered through this proposal is the scope to which 

the results generalize across demographic and factor groupings. As more conditions are set onto 

the population of students within the study (n = 14,130), the sample sizes supporting the analysis 
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begin to decrease dramatically. For instance, the population of students taking computer science 

courses is between 1 – 3% (140  n  430) of the total population. Careful consideration when 

utilizing this population must then be given to the generalization of these results based on the initial 

set of students the analysis was based on. Moreover, matched typologies are generalized guidelines 

that offer counselors, students, and parents better-matched pathways toward pursuit of STEM 

careers. This implies that a product resulting from the research has a usefulness only in its ability 

to transfer the research on STEM pursuit to the individual student and provide counselors, parents, 

teachers, and administrators pathway models for providing guidance toward these ends.   

Expected Findings 

Utilizing a quantitative methodology, the objective of the methodology section was to 

outline how a multinomial logistic regression could be used to perform a statistical analysis within 

the High School Longitudinal Study (HSLS:09). HSLS:09 was chosen since it was one of the only 

longitudinal datasets available to study student progressions across educational levels with a focus 

on STEM and utilized current theoretical frameworks on student motivation and persistence 

aligned to the overall research focus on analyzing STEM pursuit. In meeting these goals, a 

synthesis between the HSLS:09 survey design, regression techniques using Stata, and multinomial 

logistic regression modeling methods was explored in providing a roadmap toward answering this 

question pragmatically. Table 6 and Figure 16 illustrate a collective framework for conducting an 

analysis of HSLS:09 data through multinomial logistic regression methods and practical 

applications. Utilizing this framework through a correlational quantitative research design, future 

studies will be able to determine how much of power educational attainment outcomes, self-

influences, experiential-, contextual-, and personal-influences play in determining the selection of 

STEM occupational pursuit for underrepresented groups of students nationwide. Accordingly, 
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potential implications for policy adjustments to the traditional STEM pipeline approaches 

describing pursuit for diverse groups of students suggest intersectional approaches using MLNMs 

as viable methods with contemporary data.  



 

 

 

103 

Chapter 4. Data Analysis and Results 

 A multinomial logistic regression was employed to evaluate the role of psychometric; 

experiential and learning; contextual-environmental; and demographic influences (see Table 6) on 

predicting anticipated STEM career attainment, longitudinally (secondary through postsecondary 

education), while controlling for socioeconomic status, race, and 8th grade math scores. Following 

the process outlined in step 1 of Figure 16, the purposeful selection of variables, a robust a priori 

and posteriori analyses of the assumptions required for completing a statistically significant 

multinomial regression analysis was conducted. Included in these assumption analyses were 

assessments of the overall (1) sample size, (2) multicollinearity in the independent variables, and 

(3) outliers in the data. Multinomial logistic regressions are particularly sensitive to these 

assumptions which needed to be evaluated prior to running the MNLR. Although tests for 

independence of observations and linearity are not required for a multinomial logistic regression, 

the latter is performed herein following the development of the logistic regression preliminary 

main effects models in step 4 of Figure 16. As described in Chapter 3, the MNLR analysis will 

closely follow the flow in Figure 16 which checks for outliers using special case-wise diagnostics 

for linearity prior to the main effects model in step 5. A final model was determined following 

calibration and discrimination through goodness of fit tests and ROC curve area values (Hosmer 

et al., 2013). 

Sample Size 

Long and Freese (2014, p. 85) proposed a general rule for determining the minimum 

number of samples required for maximum-likelihood estimates. At approximately N  500, this 

amount correlates to, but is generally a higher threshold, then the calculated value approached by 



 

 

 

104 

other researchers (Tabchnick & Fidell, 2005). The formula for calculating sample size using the 

later models is given by 𝑁⁡ > ⁡50⁡ + ⁡8𝑚, where m is the number of independent variables. 

Considering these significant differences, Long and Freese (2014) acknowledge that at least 10 

observations per parameter (N > 220) is a reasonable sample estimation, which is in-line with 

Tabachnick and Fidell (2015; N > 226). However, they caution the researcher to evaluate each 

study individually for ill-conditioned data (i.e., for ordinal regression models or highly collinear 

data; p. 85). Under these conditions the sample size for the initial set of variables (n = 23) is 

much smaller than the minimum proposed by Long and Freese (2014, p. 85; N > 220). 

Considering the smallest sampled variable S3FIELD2 (N = 6,540) and the MNLR analyses, the 

sample size assumption appears adequate for our study as it far surpassed the size threshold. 

As a redundant a priori measure for checking the minimum sample size, a power analysis 

was performed using a Monte Carlo simulation on a generalized set of logistic regression models 

(i.e., using researched coefficients for building the model). 

Equation 4. Monte Carlo Simulation Logit Model 

Ω𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛⁡𝑎𝑡⁡30 ⁡

= ⁡
0
⁡+ ⁡

1
(𝑥𝑠𝑒𝑥) ⁡+⁡

2
(𝑥𝑠𝑐𝑖𝑒𝑛𝑐𝑒⁡𝑢𝑡𝑖𝑙𝑖𝑡𝑦) ⁡+ ⁡

3
(𝑥𝑔𝑒𝑛𝑑𝑒𝑟⁡𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔) ⁡

+⁡
4
(𝑥𝑔𝑒𝑛𝑑𝑒𝑟⁡𝑏𝑖𝑎𝑠) ⁡+ ⁡

5
(𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑚𝑎𝑗𝑜𝑟) ⁡+⁡

6
(𝑥𝑆𝐸𝑆) ⁡+ ⁡

7
(𝑥𝑚𝑎𝑡ℎ⁡𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦) ⁡

+⁡
8
(𝑥𝑖𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙⁡𝑙𝑒𝑣𝑒𝑙) 

Figure 18 illustrates the results of an estimated 80% power model with four combinations of 

sample and effect sizes for the control covariate – socioeconomic status. At an odds ratio of 1.36, 

an estimate of at least 80% power is obtained at sample sizes ranging from 800 to 1000. With 

larger odds ratios, 85% power levels are achieved through a significant reduction in the overall 

sample size. The remaining continuous covariates in the model are displayed in Table 35 with 
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their respective power values. These results further confirm our prior sample size estimates and 

level of statistical confidence in the summary data. 

Figure 18. Monte Carlo Power Analysis over SES 

 

Table 35. Monte Carlo Power Analysis for Continuous Covariates 

Continuous covariate alpha Power Sample size (N) 

Science utility .05 .49 400 

 .05 .65 600 

 .05 .78 800 

 .05 .86 1000 

Socioeconomic status .05 .63 400 

 .05 .81 600 

 .05 .89 800 

 .05 .94 1000 

Math identity .05 .58 400 

 .05 .79 600 

 .05 .86 800 

 .05 .94 1000 

Note: Bolded values represent covariates with >.85 power 
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Multicollinearity 

Tests for multicollinearity represent another significant verification step in preparing the 

data for analysis. Multicollinearity refers to the relationships amongst the independent variables 

in the sample set. For the multinomial logistic regression study, each variable was compared 

against each other using a linear regression technique in Stata 17.0. Since collinearity is a 

property of the predictors, not the model, the assumption for multicollinearity was simplified 

through correlation calculations using Spearman’s  (between continuous and categorical 

variables) and Pearson’s r statistics (between continuous variables). Tolerance and Variance 

Inflation Factors (VIFs) were later calculated and are displayed in Table 36. As a result, none of 

the independent variables were shown to have strong correlational results (r  0.9), low 

Tolerance levels (less than 0.1), and VIFs greater than 10. Since each a priori assumption criteria 

were met, the next step of the model building process continued with a univariate analysis of 

each variable against the anticipated STEM occupation at the age of 30. Table 34 shows the 

results of this analysis in the column “Variable Retained?”. Each variable was then carefully 

fitted to the multinomial models for each wave using the procedure in Figure 17 (steps 3-6; 

Hosmer et al., 2013).  

Table 36. Tolerance and Variance Inflation Factors (VIFs) 

Modela Variable Wave 1 Wave 2 Wave 4 

VIF Tolerance VIF Tolerance VIF Tolerance 

1 X1PAREDEXPCT 1.34 .74 – – 1.10 .91 

 X1STUEDEXPCT 1.31 .77 – – – – 

 S1M8GRADE 1.2 .82 1.2 .80 – – 

 X1SCIID 1.34 .74 – – – – 

 X1SES 1.22 .82 1.23 .81 1.04 .96 

 X1SCIUTI 1.27 .79 – – – – 
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 X1SEX 1.07 .93 1.10 .91 1.12 .89 

 X1MGENMATCH 1.02 .98 1.03 .97 1.03 .97 

 X1RACE 1.12 .89 1.11 .90 – – 

2 X2SCIEFF – – 1.47 .68 – – 

 X2SCIUTI – – 1.48 .68 1.14 .88 

 X2SCIID – – 1.74 .58 – – 

 X2MTHID – – 1.19 .84 – – 

 X2STUEDEXPCT – – 1.30 .77 – – 

 S1MTCHMFDIFF – – 1.03 .97 1.03 .98 

4 X4RFDGMJ123 – – – – 1.25 .80 

 S3FIELD_STEM – – – – 1.35 .74 

 X2MTHID – – – – 1.14 .88 

aFirst appearance of the variable in each model by ascending order 

Outliers 

Following the development of the preliminary final multinomial logistic regression 

model, diagnostics were performed to determine and eliminate outliers, high leverage values, and 

highly influential points. An initial review of outlying data points was first performed using the 

Cox (2017) extremes ado module in Stata 17.0. The results are presented in Table 37-38, 

showing the five highest and five lowest values for each continuous covariate by wave, were 

compared to those obtained from the diagnostic statistics outlined in Chapter 3 and following an 

individual logistic regression approach from Begg and Gray (1984). While most statistical 

packages, including Stata, do not allow for MNLR diagnostics on complex survey data, the 

abovementioned approach was employed by treating the MNLR as individual logits without 

survey estimation and weighting effects. Following the procedure provided by Begg and Gray 

(1984) in combination with that proposed by Hosmer, et al. (2013), which forces the iterative 

estimation process to start with coefficients from the MNLR analysis and fixes the iteration 
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count to 0 (Hosmer et al., 2013, p. 284), diagnostic graphs of leverage, change in Pearson chi-

square, change in deviance, Cook’s distance versus estimated probability (see Figures B.4-B.27) 

revealed a set of outliers that were compared with those in Tables 37-38. Tables 39-41 shows the 

coefficients, confidence intervals, and percent differences in coefficients using model-based 

versus design-based analysis approaches for the first wave model results as outlined by Hosmer 

et al. (p. 241). The results indicate variable coefficients in the simplified model differed between 

0-67% with larger coefficient values on S1M8GRADE and X1MGENMATCH. Figure 42 

identified 10 covariate patterns with outliers on one or more of the diagnostic statistics. These 

patterns showed four large values for 2 and D, one for h, three for 2, and two more 

outlying values of  (see Table 42). Each covariate pattern was deleted individually to assess 

their effect on the overall model. Following their stepwise deletion, Table 42 describes the 

overall change in the covariate patterns deleted. Since the results indicated a positive association 

within each model after the deletion of the respective pattern, the decision was made to drop all 

the outlying data points in the final model. 

Additional Assumptions 

 The remaining additional assumptions for running a multinomial logistic regression 

analysis hinge on proving linearity amongst the final model covariates. Since Long and Freese 

(2014) warn against using IIA tests to verify independence of irrelevant alternatives, the analysis 

was omitted after careful consideration of the recoding of the individual STEM taxonomies (into 

STEM1 and STEM3 categories). As previously discussed in Chapter 3, these tests may result in 

a negative 2 value, one that Hausmann and McFadden (1984) acknowledge as a limitation to the 

test and not evidence of a violation of IIA. Long and Freese (2014, p, 408) suggest only using  
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Table 37. Outliers for Wave 1 

Variable Observation Value Observation Typea 

Science Identity (X1SCIID) -1.57 L 

 2.15 H 

Socioeconomic Status (X1SES) -1.93 

-1.82 

-1.75 

L 

L 

L 

 2.57 

2.88 

H 

H 

Science Utility (X1SCIUTI) -3.10 L 

 1.69 H 

aHighest outlier is denoted by an “H” and lowest by an “L” 

cDirect outlying observations are not shown per IES reporting guidelines 

Table 38. Outliers for Wave 2 and Wave 4 

Variable Observation Valuec Observation Typea 

Science Efficacy (X2SCIEFF) -2.47 L 

 1.64 H 

Science Utility (X2SCIUTI)b -.23 L 

 .1 H 

Science Identity (X2SCIID) -1.74 L 

 1.86 H 

Mathematics Identity (X2MTHID)b -1.54 L 

 1.82 H 

Socioeconomic Status (X1SES)b -1.93 

-1.82 

-1.75 

L 

L 

L 

 2.57 

2.88 

H 

H 

aHighest outlier is denoted by an “H” and lowest by an “L” 

bWave 4 variables 

cDirect outlying observations are not shown per IES reporting guidelines 
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models in which the decision maker can distinctively and independently attest to their difference. 

Therefore, comparing the outlined STEM career models adds to the credibility of independence. 

A final assumption analysis will, therefore, check for linearity between continuous 

covariates on the predicted multinomial logistic regression model results. Following step 4 of 

Figure 17 and the development of a preliminary effects model, each of the covariates in this 

model were checked for linearity by plotting a two-way lowess smooth scatter plot for each 

variable. As depicted in a combined linearity plots in Figures B.1-B.3, all continuous covariates 

in the study exhibit linearity.  

Table 39. Coefficients and 95% Confidence Intervals - Wave 1 Model 1 

 

Variabled 

“Design-Based” Analysisb “Model-Based” Analysisc  

Pct. Diff. (%) Coeff. 95% CI Coeff. 95% CI 

X1PAREDEXPCT -.16 -.27 -.05 -.14 -.19 -.09 -14.3 

X1STUEDEXPCT 

(Master’s Degree) 

-.35 -.61 -.10 -.38 -.51 -.90 8.6 

(Ph.D./M.D./Prof.) -.96 -1.2 -.66 -1.04 -1.18 -.90 8.3 

S1M8GRADE 

(Grade C) 

.37 .01 .73 .11 -.05 .27 -70.3 

(Grade D) .87 .14 1.60 .57 .26 .89 -34.5 

X1SCIID_1 -.16 -.23 -.09 -.13 -.16 -.09 -18.8 

X1SCIID_2 .10 .05 .16 .08 .06 .10 -20.0 

X1SCIUTI -.39 -.53 -.25 -.35 -.41 -.29 -10.2 

X1SEX -.38 -.60 -.17 -.33 -.45 -.26 -13.1 

X1MGENMATCH -.01 -.26 .26 .02 -.09 .13 100.0 

a All waves and correlative models by sub-domain (i.e., [1] not a STEM occupation; [2] life and physical 

science, engineering, mathematics, and information technology occupations; and [3] health occupations). 

b Design-based analysis include survey estimation and weights. 

c Model-based analysis exclude survey estimation and weights, performed as a simple random sample. 

d Control variables disregarded in the analysis 
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Table 40. Coefficients and 95% Confidence Intervals - Model for Wave 1 Model 2 

 

Variabled 

“Design-Based” Analysisb “Model-Based” Analysisc  

Pct. Diff. (%) Coeff. 95% CI Coeff. 95% CI 

X1PAREDEXPCT .12 -.07 .32 .04 -.05 .12 -66.7 

X1STUEDEXPCT 

(Master’s Degree) 

.27 -.04 .59 .35 .14 .57 29.6 

(Ph.D./M.D./Prof.) -.17 -.67 .33 -.20 -.43 .04 17.6 

S1M8GRADE 

(Grade C) 

-.04 -.63 .54 -.11 -.39 .16 175.0 

(Grade D) -1.24 -2.07 -.42 -.58 -1.15 -.01 7.3 

X1SCIID_1 .14 .05 .24 .15 .10 .19 7.1 

X1SCIID_2 -.08 -.15 -.01 -.09 -.12 -.05 -12.5 

X1SCIUTI -.09 -.28 .11 .06 -.04 .16 33.3 

X1SEX -1.47 -1.86 -1.08 -1.29 -1.48 -1.11 12.2 

X1MGENMATCH -.07 -.42 .28 -.11 -.28 .07 -57.1 

a Waves include 1, 2, and 4 with a correlative model 1-4 represented by the STEM occupation sub-domains 

(i.e., [1] not a STEM occupation; [2] life and physical science, engineering, mathematics, and information 

technology occupations; and [3] health occupations). 

b Design-based analysis include survey estimation and weights. 

c Model-based analysis exclude survey estimation and weights, performed as a simple random sample. 

d Control variables disregarded in the analysis 

Table 41. Coefficients and 95% Confidence Intervals - Model for Wave 1 Model 3 

 

Variabled 

“Design-Based” Analysisb “Model-Based” Analysisc  

Pct. Diff. (%) Coeff. 95% CI Coeff. 95% CI 

X1PAREDEXPCT .23 .11 .35 .21 .15 .27 -8.7 

X1STUEDEXPCT 

(Master’s Degree) 

.25 -.07 .56 .21 .05 .36 -16.0 

(Ph.D./M.D./Prof.) 1.42 1.14 1.69 1.35 1.20 1.50 -4.9 

S1M8GRADE 

(Grade C) 

-.31 -.73 .10 -.15 -.33 .03 51.6 
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(Grade D) -.61 -1.53 .31 -.30 -.67 .07 -50.8 

X1SCIID_1 .08 .01 .15 .07 .03 .10 -12.5 

X1SCIID_2 -.06 -.12 -.01 -.05 -.08 -.03 16.7 

X1SCIUTI .43 .27 .58 .38 .31 .45 -11.6 

X1SEX 1.12 .90 1.34 1.09 .97 1.22 -2.7 

X1MGENMATCH .03 -.23 .30 -.03 -.15 .09 0.0 

a Waves include 1, 2, and 4 with a correlative model 1-4 represented by the STEM occupation sub-domains 

(i.e., [1] not a STEM occupation; [2] life and physical science, engineering, mathematics, and information 

technology occupations; and [3] health occupations). 

b Design-based analysis include survey estimation and weights. 

c Model-based analysis exclude survey estimation and weights, performed as a simple random sample. 

d Control variables disregarded in the analysis 

Table 42. Subjects with Large Coefficient Values by Logit (1-3) in Waves 1-4 

Subject Wave Diagnostic Deletion Effect 

18072 1 Large X2 and D in Logit 1 and Logit 3 No major effects on the estimates 

33977 2 Large h in Logit 1 No major effects on the estimates 

33195 2 Large X2 in Logit 2 No major effects on the estimates 

29586 2 Large X2 in Logit 2 No major effects on the estimates 

    

12597 2 Large X2 and D in Logit 1 and Logit 3 No major effects on the estimates 

33493 2 Large X2 and D in Logit 3 No major effects on the estimates 

33404 2 Large X2 in Logit 3 No major effects on the estimates 

29556 2 Large X2 and D in Logit 1 and Logit 3 No major effects on the estimates 

33099 4 Large  in Logit 1 No major effects on the estimates 

28453 4 Large  in Logit 1 No major effects on the estimates 
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Modeling Results  

The data considered in the High School Longitudinal Study of 2009 (HSLS:09) consists of 

23 independent variables (13 categorical), two dependent variables (STEM1 and STEM3 

occupational expectations at the age of 30), three waves extending from early secondary to mid-

postsecondary levels, and a minimum of 3,930 subjects, respective of the wave analyzed, per 

model. An evaluation of these modeling results was conducted using descriptive, factor, Wald, 

and marginal effects analysis techniques.   

Research Question 1: What is STEM and how is it defined within education and the workforce? 

Science, Technology, Engineering, and Mathematics is categorized in HSLS:09 using the 

criteria detailed in Table 43. Six STEM variables outlined by Ingels et al. (2018) follow the BLS 

SOC sub-domain (STEM1) and occupation type (STEM2) architecture. For STEM1 designated 

variables, these include: (a) life and physical science, engineering, mathematics, and information 

technology occupations; (b) health occupations; and (c) split across two STEM or STEM-related 

sub-domains (e.g., social science, architecture, and health occupations). STEM2 designated 

variables follow the occupational type designations in the BLS SOC: (a) research, development, 

design, or practitioner occupations; (b) technologist and technician occupations; (c) postsecondary 

teaching occupations; (d) managerial occupations; and (e) sales occupations. Although educational 

data mirrors what is used in workforce predictive models, HSLS:09 does not categorize STEM 

longitudinally through CIP and BLS SOC crosswalks. This alternative approach for describing 

STEM career pursuit in the secondary years follows the discovery of a near-STEM perspective in 

the review of literature. As a result, a new STEM3 dependent variable was constructed using the 

6-digit BLS codes provided by X1/X2/X4STU30OCC6. Both Figure 5 and the CIP-BLS 

crosswalks were employed as guidelines for the re-categorization of these codes into their 
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respective designations. Table 44 provides a summary statistical data of this “near-STEM” outlook 

defined by: (a) science, (b) engineering, and (c) non-science and engineering majors/programs of 

study.  

A descriptive evaluation of students with likely STEM career outcomes reveals a clearer 

image of the participant sample, the differences in expected STEM occupation by perspective, and 

how the sample changes based on these taxonometric definitions. Figures 43-44 indicate a 

significant increase in both the far-term (n = 610) and near-term (n = 80) career outlooks 

between the 9th-grade and 11th-grade years. By running descriptive statistics (frequencies and 

proportions) on the student sample between these years by race, ethnicity, and gender the results 

in Tables 43-44 and Figures A.1-A.2 were generated. What is revealed by the data are significant 

drops overall between the secondary and postsecondary years (9th-grade through early 

postsecondary years; n = -2,370; n = -950). Proportional numbers additionally show a 36% and 

39% drop in expected STEM outcomes, respectfully (Figures A.1-A.2). 

Table 43. Descriptive Statistics for STEM code 1 – Sub-Domain Type (Far Term) 

Dependent Variable Category Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

X1STU30OCC_STEM1 Not a STEM Occupation 13,970 55.4 65.95 

 Life and Physical Science, 

Engineering, Info. Tech 

1,730 6.9 8.33 

 Health Occupations 4,350 17.3 19.44 

 Split Across 2 Sub-Domains 410 1.6 1.98 

 Missing/Non-Response/ 

Don’t Know 

4,750 18.8 4.30 

X2STU30OCC_STEM1 Not a STEM Occupation 12,990 51.5 63.82 

 Life and Physical Science, 

Engineering, Info. Tech 

1,880 7.5 9.20 

 Health Occupations 4,620 18.3 21.58 
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a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b Rounded per IES data security requirements. 

Table 44. Descriptive Statistics for STEM code 3 – Sub-Domain Type (Near Term) 

 Split Across 2 Sub-Domains 600 2.4 3.07 

 Missing/Non-Response/ 

Don’t Know 

5,120 20.3 2.33 

X4OCC30STEM1 Not a STEM Occupation 6,540 25.9 37.82 

 Life and Physical Science, 

Engineering, Info. Tech 

1,190 4.7 6.56 

 Health Occupations 2,650 10.5 14.22 

 Split Across 2 Sub-Domains 280 1.1 1.79 

 Missing/Non-Response/ 

Don’t Know 

14,550 37.7 39.61 

Dependent Variable Category Frequency 

Unweightedb 

Percent 

Unweightedb 

Percent 

Weighteda 

X1STU30OCC_STEM3 Not a STEM Major 12,260 48.7 57.72 

 Science 840 3.3 3.85 

 Engineering 710 2.8 3.24 

 Non-Science & Engineering 890 3.5 4.43 

 Missing/Non-Response/ 

Don’t Know 

10,500 41.7 30.76 

X2STU30OCC_STEM3 Not a STEM Major 12,050 47.8 58.94 

 Science 800 3.2 3.84 

 Engineering 960 3.8 4.68 

 Non-Science & Engineering 760 3.0 3.95 

 Missing/Non-Response/ 

Don’t Know 

10,640 43.9 28.59 

X4OCC30STEM3 Not a STEM Major 9,190 36.5 52.15 

 Science 470 1.9 2.69 

 Engineering 530 2.1 2.70 

 Non-Science & Engineering 500 2.0 2.96 
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a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b Rounded per IES data security requirements. 

 An evaluation of Tables A.4 – A.7 by race and gender reveals similar proportional trends 

between African American and Latin American participants. As the waves increase into the 

postsecondary years, there is a 2% jump in the proportion of European American participants 

whereas participants of color (including African American and Latin American students) remained 

at steady proportions.  

Research Question 2: What combination of influencing factors across student characteristic 

groupings contribute to expected STEM pursuit across secondary and postsecondary levels of 

education? 

 The combination of influencing factors predicting student anticipated STEM career 

outlooks was evaluated using the multinomial logistic regression models. Six final models were 

developed across three waves of longitudinal data (secondary and postsecondary waves) and two 

STEM taxonomies for career expectations, the near-term (STEM3) and far-term (STEM1). 

Following the detailed, iterative process outlined in Chapter 3, and Figure 17, a set of final models 

was obtained and is described in Tables 46-51. The decision to accept these models was made after 

individually testing model logits for fit using Receiver Operating Curves (ROCs)17 and comparing 

the results across the specialized diagnostic measures described in Chapter 3. The challenge with 

running diagnostic and fit tests is well-documented (Hosmer et al., 2013, pp. 284-287). However, 

following accepted procedures from Hosmer et al. (2013, pp. 233-242) an acceptable to excellent 

 
17 An ROC analysis was chosen as a test for fit since the study focuses on estimated probabilities – the expectation of 

choosing a STEM career at the age of 30. 

 Missing/Non-Response/ 

Don’t Know 

14,530 57.6 39.49 
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discrimination of fit was obtained. After a thorough evaluation of each model for fit and 

diagnostics the logit covariate coefficients were compared to the MNLR models using a percent 

difference formula. The results are displayed and categorized in Table 39-41 as “design-based” 

and “model-based” analyses.  

 Each fit and diagnostic test result is presented formally in Figures B.4 – B.27. Figure 19 

provides an example of an “excellent” discrimination of fit (Hosmer et al., 2013) as well as four 

diagnostic tests. As shown in the Appendix B figures, each ROC curve maintains an area greater 

than .70, which represents an acceptable discrimination between each STEM career category 

(Hosmer et al., 2013, p. 177), and has the characteristic left-right/right-left crossing curves without 

outliers. The first two waves of models have a high acceptable discrimination, whereas the final 

wave (post-secondary) model indicates an excellent discrimination (ROC > .80). The remaining 

graphs in Figures B.4-B.27 provide the MNLR diagnostics for goodness of fit18. Leverage (h), 

change in Pearson chi-square (), change in deviance (D), and cook’s distance () versus the 

model estimated probability () are shown (left-right and top-down, respectively) in Figures B.4-

B.27.  The shapes of plots  and D are distinguished by to crossing quadratic-like curves that 

correspond to the two distinct covariates with 𝑦 ≥ 1⁡⁡(left to right) and 𝑦⁡ = ⁡0 (right to left). 

Similarly, the plot of  illustrates the same pattern and contains values less than 1.0 (Hosmer et 

al., p. 197) after their identification (see Table 42) and their removal. This influence diagnostic is 

critical in determining outlying values and their effect on the model. With diagnostic and fit 

measures in-line with the expected results, it can be concluded that the STEM1 model provides a 

 
18 A Hosmer-Lemeshow goodness of fit test was not included in the analysis due to its high dependency on variable 

groupings in complex survey data (Long and Freese, 2013, pp. 223-224). 
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good approximation of the longitudinal changes in student expectations of a STEM career by the 

age of 30. 

Following the analysis of a “far-term” STEM1 taxonomy, the same covariate sets were 

then fitted to a “near-term” STEM3 perspective19. The results from the fit and diagnostics are 

shown in Figures B.4-B.20. Using the same taxonomy of STEM pursuit to this group of 

participants resulted in half the models (e.g., model 2 science and model 4 non-science and 

engineering) falling below the discrimination threshold of .70. Model 3 (engineering), however, 

maintained a discrimination value greater than .80 which illustrates “excellent discrimination” in 

the logit. The split-alignment between the fitted models for different taxonomies of expected 

STEM career at the age of 30 highlight how specific subjects or career foci affect model 

convergence by the students’ individual perspective. Additionally, the similar convergence of 

engineering models across both taxonomies acknowledges similarities in curriculum and outlooks.  

Figure 19. Individual Logit Fit and Diagnostics of STEM1 – Wave 4 Model 2 

 

 
19 The STEM3 variable was developed specifically for this study using the synthesized taxonometric approach in 

Figure 5.   
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Table 45. MNLR Final Model Results on Expected STEM Career Outcomes at 30 

Taxonomy Wave F Degrees of Freedom p 

df1a df2a 

STEM1 1 30.54 50 160 <.001 

 2 25.91 50 150 <.001 

 4 17.96 40 150 <.001 

STEM3b 1 7.88 50 150 <.001 

 2 11.55 50 150 <.001 

 4 17.96 40 150 <.001 

a Rounded per IES data security requirements. 

b Developed as a near-STEM outcome from HSLS:09 X1/X2/X4STU30OCC6 variables using Figure 5 and 

the BLS-SOC/CIP crosswalks as a guideline.   

Table 45 provides a statistical summary of the two taxonomies used to predict expected 

STEM careers at the age of 30. What emerges across each wave is the varied significance in 

predictor variables for student expectations of a STEM career (see Tables 46-51). Whereas a linear 

pipeline model for describing STEM career pursuit was initially built around educational policies 

that subsumes a consistency of student factors, it excludes the evolving student dynamic that is 

revealed across the three waves of results. For example, in the students’ 9th grade year science 

identity, science utility (wave 1: t = 2.77, p = .006; wave 2: t = 5.64, p < .001), gender, and parent-

student expectations for graduate school or higher predict early anticipated STEM occupations. 

However, moving into the 11th grade year science efficacy, math identity, science utility (wave 1: 

t = 5.02, p < .001; wave 2: t = 7.92, p < .001), gender matching, and teacher gender bias emerge 

as model predictors. Finally, at the post-secondary level a shift in predictors shows a strong 

evolution in student expectations of a STEM career. Teacher gender bias remains as a significant 

covariate (wave 1: t = 2.09, p = .028; wave 2: t = 2.46, p = .015) along with parent expectations, 
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STEM major (or those considering a STEM major), gender, science utility, and math identity in 

the 11th-grade year.     

Table 46. MNLR for Expected Occupation at Age 30 (X1STU30OCC_STEM1)  

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X1PAREDEXPCT 1.01 .01 .075 .20 .845 -.13 .16 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.16 

.78 

 

.15 

-.25 

 

.209 

.223 

 

.73 

-1.10 

 

.468 

.272 

 

-.26 

-.69 

 

.56 

.19 

 X1SCIID_1 a 1.30 .26 .041 6.48 <0.001 .18 .34 

 X2SCIID_2 a .84 -.17 .030 -5.49 <0.001 -.23 -.11 

 S1M8GRADE 

B 

C 

D 

Below D 

 

.71 

.59 

.18 

.76 

 

-.34 

-.54 

-1.71 

-.28 

 

.218 

.329 

.585 

3.08 

 

-1.54 

-1.63 

-2.93 

-.09 

 

.125 

.105 

.004 

.929 

 

-.77 

-1.2 

-2.87 

-6.35 

 

.09 

.11 

-.56 

5.8 

 X1SES 1.05 .05 .099 .50 .615 -.15 .24 

 X1SCIUTI 1.28 .25 .089 2.77 .006 .07 .42 

 X1SEX .62 -.47 .193 -2.47 .015 -.85 -.10 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.55 

.84 

.76 

 

-.59 

-.18 

-.27 

 

.493 

.435 

.384 

 

-1.20 

-.41 

-.71 

 

.233 

.684 

.481 

 

-1.56 

-1.04 

-1.02 

 

.38 

.68 

.49 

 Constant .16 -1.85 .582 -3.18 .002 -3.00 -.70 

2 X1PAREDEXPCT 1.27 .24 .067 3.61 <.001 .11 .37 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.41 

4.16 

 

.34 

1.43 

 

.157 

.160 

 

2.17 

8.91 

 

.031 

<.001 

 

.03 

1.11 

 

.65 

1.74 

 X1SCIID_1 a 1.27 .12 .041 2.92 .004 .04 .20 

 X2SCIID_2 a .92 -.09 .030 -2.87 .005 -.15 -.03 

 S1M8GRADE 

B 

C 

 

1.00 

.67 

 

.004 

-.41 

 

.127 

.226 

 

.03 

-1.80 

 

.977 

.073 

 

-.25 

-.85 

 

.25 

.04 
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D 

Below D 

.45 

.74 

-.79 

-.31 

.469 

.733 

-1.68 

-.42 

.094 

.676 

-1.71 

-1.75 

.14 

1.14 

 X1SES .97 -.03 .097 -.32 .753 -.22 .16 

 X1SCIUTI 1.63 .49 .087 5.64 <.001 .32 .66 

 X1SEX 2.69 .99 .12 8.08 <.001 .75 1.23 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.94 

1.06 

1.21 

 

-.06 

.06 

.19 

 

.28 

.28 

.20 

 

-.23 

.22 

.94 

 

.821 

.829 

.350 

 

-.61 

-.49 

-.21 

 

.48 

.61 

.59 

 Constant .06 -2.85 .36 -7.91 <.001 -3.56 -2.14 

3 X1PAREDEXPCT 1.07 .07 .16 .40 .691 -.26 .39 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

2.54 

2.54 

 

.93 

.93 

 

.41 

.40 

 

2.29 

2.32 

 

.023 

.021 

 

.13 

.14 

 

1.73 

1.72 

 X1SCIID_1 a 1.16 .15 .09 1.70 .090 -.02 .31 

 X2SCIID_2 a .90 -.11 .07 -1.65 .100 -.24 .02 

 S1M8GRADE 

B 

C 

D 

Below D 

 

.67 

.42 

.55 

<.001 

 

-.39 

-.86 

-.60 

-20.26 

 

.29 

.44 

14.68 

1.21 

 

-1.34 

-1.94 

-.04 

-16.70 

 

.182 

.054 

.976 

<.001 

 

-.97 

-1.73 

-29.56 

-22.66 

 

.19 

.01 

28.35 

-17.87 

 X1SES .98 -.023 .21 -.11 .913 -.44 .39 

 X1SCIUTI 1.26 .23 .13 1.82 .070 -.02 .48 

 X1SEX .60 -.52 .30 -1.74 .083 -1.10 .07 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.34 

2.02 

1.38 

 

-1.07 

.70 

.32 

 

2.61 

.52 

.44 

 

-.41 

1.36 

.73 

 

.682 

.175 

.466 

 

-6.22 

-.32 

-.55 

 

4.08 

1.72 

1.19 

 Constant .03 -3.60 .69 -5.20 <.001 -4.97 -2.23 

a Fitted using fractal polynomials 
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Table 47. MNLR for Expected Occupation at Age 30 (X2STU30OCC_STEM1) 

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X2SCIEFF 1.12 .11 .099 1.12 .263 -.08 .21 

 X2SCIUTI    ‡ 6.54 1.304 5.02 <.001 3.97 9.11 

 X2SCIID 1.54 .43 .445 .97 .336 -.45 1.31 

 X2MTHID 1.52 .42 .082 5.13 <.001 .26 .58 

 S1MTCHMFDIFF .73 -.31 .276 -1.13 .259 -.86 .23 

 X1MGENMATCH 1.20 .19 .138 1.35 .179 -.09 .46 

 X1SEX .52 -.66 .149 -4.44 <.001 -.95 -.37 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.55 

1.15 

 

.43 

.14 

 

.147 

.202 

 

2.95 

.69 

 

.004 

.489 

 

.14 

-.26 

 

.73 

.54 

 X1SES 1.11 .11 .081 1.33 .184 -.05 .27 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.71 

.95 

.90 

 

-.35 

-.05 

-.10 

 

.337 

.305 

.205 

 

-1.04 

-.16 

-.51 

 

.302 

.872 

.612 

 

-1.01 

-.65 

-.50 

 

.32 

.55 

.30 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

1.26 

1.15 

1.10 

.75 

 

.23 

.14 

.09 

-.28 

 

.468 

.461 

.511 

.600 

 

.49 

.31 

.18 

-.47 

 

.621 

.760 

.854 

.636 

 

-.69 

-.77 

-.91 

-1.46 

 

1.15 

1.05 

1.10 

.90 

 X2SCIEFF*X2SCIID .93 -.07 .077 -.91 .364 -.22 .08 

 Constant .17 -1.79 .362 -4.95 <.001 -2.50 -1.08 

2 X2SCIEFF .89 -.11 .057 -1.97 .050 -.22 .01 

 X2SCIUTI    ‡ 7.82 .99 7.92 <.001 5.88 9.77 

 X2SCIID 1.70 .53 .32 1.64 .102 -.11 1.17 

 X2MTHID 1.06 .05 .042 1.31 .190 -.03 .14 

 S1MTCHMFDIFF 1.17 .16 .161 1.00 .317 -.16 .48 

 X1MGENMATCH 1.18 .16 .093 1.76 .080 -.020 .35 

 X1SEX 3.61 1.28 .101 12.77 <.001 1.09 1.48 

 X1STUEDEXPCT 

Master’s Degree 

 

1.60 

 

.47 

 

.118 

 

4.00 

 

<.001 

 

.24 

 

.70 
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Ph.D./M.D./Prof. 3.92 1.37 .149 9.17 <.001 1.07 1.66 

 X1SES .89 -.12 .065 -1.80 .074 -.25 .01 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

1.31 

1.32 

1.15 

 

.27 

.28 

.14 

 

.213 

.197 

.157 

 

1.27 

1.42 

.88 

 

.206 

.157 

.381 

 

-.15 

-.11 

-.17 

 

.69 

.67 

.45 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

.93 

.91 

.86 

.68 

 

-.07 

-.09 

-.15 

-.38 

 

.334 

.332 

.352 

.414 

 

-.21 

-.28 

-.43 

-.92 

 

.833 

.778 

.666 

.360 

 

-.73 

-.75 

-.85 

-1.20 

 

.59 

.56 

.54 

.44 

 X2SCIEFF*X2SCIID .98 -.02 .050 -.44 .662 -.12 .08 

 Constant .07 -2.64 .24 -11.08 <.001 -3.12 -2.17 

3 X2SCIEFF 1.03 .03 .112 .23 .820 -.20 .25 

 X2SCIUTI 21.36 3.06 1.73 1.77 .078 -.34 6.46 

 X2SCIID 1.67 .51 .299 1.70 .090 -.08 1.10 

 X2MTHID 1.02 .02 .116 .13 .897 -.21 .24 

 S1MTCHMFDIFF 1.44 .37 .294 1.25 .214 -.21 .95 

 X1MGENMATCH 1.05 .05 .204 .24 .812 -.35 .45 

 X1SEX 1.44 .37 .204 .24 .812 -.35 .45 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

3.47 

3.89 

 

1.24 

1.36 

 

.247 

.269 

 

5.05 

5.07 

 

<.001 

<.001 

 

.76 

.83 

 

1.73 

1.89 

 X1SES .74 -.30 .15 -2.00 .047 -.60 -.01 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.69 

1.25 

1.13 

 

-.38 

.23 

.12 

 

.484 

.448 

.337 

 

-.78 

.50 

.36 

 

.439 

.614 

.719 

 

-1.33 

-.658 

-.545 

 

.580 

1.11 

.79 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

.66 

.56 

.39 

.59 

 

-.41 

-.59 

-.95 

-.53 

 

.331 

.366 

.513 

.440 

 

-1.25 

-1.60 

-1.84 

-1.20 

 

.213 

.111 

.067 

.231 

 

-1.07 

-1.31 

-1.96 

-1.40 

 

.24 

.14 

.07 

.34 
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 X2SCIEFF*X2SCIID .98 -.02 .099 -.23 .816 -.22 .17 

 Constant .02 -4.11 .476 -8.63 <.001 -5.05 -3.17 

‡ Data not meeting IES standards for reporting (standard errors > 70% of the recorded value). 

Table 48. MNLR for Expected Occupation at Age 30 (X4OCC30STEM1) 

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X4RFDGMJ123a .43 -.84 .118 -7.15 <.001 -1.07 -.61 

 X1SES 1.04 .04 .144 .27 .789 -.25 .32 

 X1SEX .80 -.22 .266 -.84 .405 -.75 .30 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

.99 

 

-.01 

 

.247 

 

-.05 

 

.957 

 

-.50 

 

.47 

 S1MTCHMFDIFF 3.61 1.28 .614 2.09 .038 .07 2.49 

 X2SCIUTI 18.72 2.93 2.127 1.38 .170 -1.27 7.12 

 S3FIELD_STEM 

Considering a STEM 

Major 

 

5.17 

 

1.64 

 

.317 

 

5.18 

 

<.001 

 

1.02 

 

2.27 

 X1MGENMATCH .87 -.14 .242 -.56 .576 -.61 .34 

 X2MTHID 1.34 .29 .093 3.15 .002 .11 .48 

 X1SEX*S1MTCHMFDIFF 4.63 1.53 1.04 1.47 .143 -.52 3.59 

 X2SCIUTI*X1SES .73 -.32 1.97 -.16 .872 -.422 .34 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.75 

.67 

.90 

 

-.29 

.40 

-.10 

 

.63 

.39 

.26 

 

-.47 

-1.01 

-.40 

 

.642 

.315 

.688 

 

-1.53 

-1.18 

-.62 

 

.94 

.38 

.41 

 Constant .16 -1.81 .724 -2.50 .013 -3.24 -.38 

2 X4RFDGMJ123a .50 -.69 .060 -11.62 <.001 -.81 -.58 

 X1SES 1.00 -.01 .105 -.03 .977 -.210 .204 

 X1SEX 3.42 1.23 .193 6.37 <.001 .85 1.61 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

1.84 

 

.61 

 

.159 

 

3.84 

 

<.001 

 

.30 

 

.92 

 S1MTCHMFDIFF 3.16 1.15 .468 2.46 .015 .23 2.07 

 X2SCIUTI   ‡ 5.91 1.39 4.25 <.001 3.17 8.65 

 S3FIELD_STEM  

.66 

 

-.41 

 

.249 

 

-1.66 

 

.098 

 

-.904 

 

.08 
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Considering a STEM 

Major 

 X1MGENMATCH .75 -.29 .184 -1.53 .127 -.64 .08 

 X2MTHID 1.04 .04 .077 .47 .636 -.11 .19 

 X1SEX*S1MTCHMFDIFF 4.67 2.24 1.441 1.56 .122 -.601 5.08 

 X2SCIUTI*X1SES 9.40 2.24 1.441 1.56 .122 -.65 .08 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.61 

.52 

.64 

 

-.50 

-.66 

-.44 

 

.349 

.264 

.189 

 

-1.44 

-2.48 

-2.35 

 

.152 

.014 

.020 

 

-1.19 

-1.18 

-.82 

 

.19 

-.14 

-.07 

 Constant .37 -1.00 .482 -2.08 .039 -1.95 -.05 

3 X4RFDGMJ123a .60 -.51 .103 -4.98 <.001 -.72 -.31 

 X1SES 1.22 .20 .236 .83 .410 -.27 .66 

 X1SEX 1.06 .06 .430 .14 .886 -.787 .91 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

1.73 

 

.55 

. 

358 

 

1.52 

 

.130 

 

-.16 

 

1.25 

 S1MTCHMFDIFF 2.92 .66 6.157 .11 .915 11.48 12.80 

 X2SCIUTI 64.99 4.17 3.70 1.13 .261 -3.13 11.48 

 S3FIELD_STEM 

Considering a STEM 

Major 

 

.83 

 

-.28 

 

.571 

 

-.49 

 

.624 

 

-1.41 

 

.85 

 X1MGENMATCH 1.14 .13 .305 .44 .662 -.47 .74 

 X2MTHID .83 -.19 .187 -1.02 .310 -.56 .18 

 X1SEX*S1MTCHMFDIFF 2.92 1.07 6.66 .16 .872 -12.07 14.21 

 X2SCIUTI*X1SES .88 -2.47 4.27 -.58 .563 10.90 5.95 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.47 

.61 

.50 

 

-.76 

-.50 

-.70 

 

.685 

.779 

.409 

 

-1.12 

-.64 

-1.70 

 

.266 

.524 

.090 

 

-2.12 

-2.04 

-1.50 

 

.587 

1.04 

.11 

 Constant .14 -1.94 6.306 -.31 .759 -14.37 10.50 

a Coded as a comparison from traditional STEM majors 

‡ Data not meeting IES standards for reporting (standard errors > 70% of the recorded value). 
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Table 49. MNLR for Expected Occupation at Age 30 (X1STU30OCC_STEM3) 

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X1PAREDEXPCT 1.03 .025 .098 .26 .796 -.167 .218 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.54 

.97 

 

.430 

-.028 

 

.280 

.308 

 

1.54 

-.09 

 

.126 

.927 

 

-.122 

-.636 

 

.981 

.580 

 X1SCIID_1a 1.21 .190 .056 3.38 .001 .079 .301 

 X2SCIID_2 a .90 -.110 .041 -2.65 .009 -.191 -.028 

 S1M8GRADE 

B 

C 

D 

Below D 

 

1.00 

1.21 

.41 

.39 

 

.005 

.189 

-.888 

-.929 

 

.247 

.334 

2.947 

13.531 

 

.02 

.56 

-.30 

-.07 

 

.984 

.573 

.764 

.945 

 

-.482 

-.470 

-6.699 

-27.611 

 

.493 

.847 

4.924 

25.753 

 X1SES .87 -.139 .120 -1.16 .248 -.375 .097 

 X1SCIUTI 1.03 -.031 .103 .30 .766 -.172 .233 

 X1SEX .94 -.064 .179 -.36 .722 -.418 .290 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.33 

.93 

1.04 

 

-1.094 

-.074 

.039 

 

.601 

.478 

.270 

 

-1.82 

-.15 

.15 

 

.070 

.877 

.884 

 

-2.278 

-1.017 

-.494 

 

.091 

.869 

.572 

 Constant .03 -3.688 .421 -8.76 <.001 -4.518 -2.858 

2 X1PAREDEXPCT 1.09 .084 .106 .79 .430 -.126 .294 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.03 

.34 

 

.030 

-1.088 

 

.222 

.340 

 

.13 

-3.20 

 

.894 

.002 

 

-.409 

-1.758 

 

.468 

-.419 

 X1SCIID_1 a 1.24 .212 .059 3.58 <.001 .095 .328 

 X2SCIID_2 a .88 -.130 .043 -3.05 .003 -.215 -.046 

 S1M8GRADE 

B 

C 

D 

Below D 

 

.56 

.20 

02 

1.03 

 

-.574 

-1.633 

-3.704 

.031 

 

.308 

.519 

5.006 

4.802 

 

-1.86 

-3.14 

-.74 

.01 

 

.064 

.002 

.460 

.995 

 

-1.182 

-2.657 

-13.576 

-9.438 

 

.033 

-.609 

6.169 

9.500 

 X1SES 1.28 .246 .138 1.78 .076 -.026 .519 
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 X1SCIUTI 1.12 .118 .107 1.10 .272 -.093 .329 

 X1SEX .08 -2.495 .271 -9.20 <.001 -3.029 -1.960 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

1.68 

2.58 

1.14 

 

.518 

.950 

.127 

 

.564 

.524 

.346 

 

.92 

1.81 

.37 

 

.359 

.071 

.713 

 

-.593 

-.083 

-.554 

 

1.630 

1.983 

.809 

 Constant .06 -2.875 .539 -5.33 <.001 -3.938 -1.812 

3 X1PAREDEXPCT .88 -.124 .106 -1.16 .246 -.334 .086 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.40 

.58 

 

.337 

-.553 

 

.346 

.339 

 

.98 

-1.63 

 

.330 

.104 

 

-.344 

-1.22 

 

1.019 

.115 

 X1SCIID_1 a 1.18 .167 .050 3.37 .001 .070 .265 

 X2SCIID_2 a .89 -.113 .0383 -3.01 .003 -.188 -.039 

 S1M8GRADE 

B 

C 

D 

Below D 

 

.74 

.90 

.60 

.38 

 

-.296 

-.100 

-.519 

-.975 

 

.221 

.427 

2.280 

13.778 

 

-1.34 

-.23 

-.23 

-.07 

 

.183 

.815 

.820 

.944 

 

-.733 

-.942 

-5.016 

-28.144 

 

.141 

.742 

3.978 

26.194 

 X1SES 1.12 .109 .127 .86 .391 -.142 .361 

 X1SCIUTI 1.09 .084 .102 .82 .414 -.118 .285 

 X1SEX .66 -.415 .244 -1.70 .091 -.896 .066 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.30 

.56 

.51 

 

-1.219 

-.574 

.683 

 

.697 

.604 

.582 

 

-1.75 

-.95 

-1.17 

 

.082 

.343 

.242 

 

-2.594 

-1.764 

-1.831 

 

.156 

.616 

.465 

 Constant .17 -1.759 .831 -2.12 .035 -3.398 -.121 

a Fitted using fractal polynomials 
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Table 50. MNLR for Expected Occupation at Age 30 (X2STU30OCC_STEM3) 

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X2SCIEFF 1.02 .024 .114 .21 .831 -.200 .248 

 X2SCIUTI 8.30 2.117 1.854 1.14 .255 -1.539 5.772 

 X2SCIID 2.10 .744 .487 1.53 .129 -.218 1.705 

 X2MTHID .76 -.278 .102 -2.72 .007 -.479 -.077 

 S1MTCHMFDIFF 1.11 .104 .335 .31 .756 -.555 .764 

 X1MGENMATCH 1.02 .017 .159 .11 .915 -.297 .331 

 X1SEX .97 -.025 .197 -.13 .898 -.414 .362 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

2.35 

1.81 

 

.852 

.594 

 

.233 

.253 

 

3.66 

2.34 

 

<.001 

.020 

 

.394 

.094 

 

1.311 

1.093 

 X1SES 1.03 .025 .110 .23 .817 -.191 .242 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.67 

.74 

1.01 

 

-.402 

-.306 

.008 

 

.385 

.335 

.248 

 

-1.04 

-.91 

.03 

 

.298 

.363 

.974 

 

-1.161 

-.967 

-.482 

 

.357 

.355 

.498 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

.71 

.67 

.40 

.43 

 

-.344 

-.397 

-.925 

-.834 

 

.483 

.490 

.590 

.530 

 

-.71 

-.81 

-1.57 

-1.57 

 

.477 

.420 

.119 

.117 

 

-1.295 

-1.364 

-2.088 

-1.881 

 

.608 

.571 

.239 

.212 

 X2SCIEFF*X2SCIID 1.09 .088 .072 1.22 .223 -.054 .230 

 Constant .04 -3.232 .472 -6.85 <.001 -4.163 -2.301 

2 X2SCIEFF 1.31 .270 .141 1.92 .056 -.007 .548 

 X2SCIUTI    ‡ 7.381 1.982 3.72 <.001 3.473 11.290 

 X2SCIID .88 -.131 .309 -.43 .671 -.740 .477 

 X2MTHID 1.85 .617 .156 3.97 <.001 .311 .924 

 S1MTCHMFDIFF .55 -.698 .423 -1.42 .159 -1.432 .235 

 X1MGENMATCH 1.16 .152 .173 .88 .381 -.190 .494 

 X1SEX .15 -1.894 .235 -8.07 <.001 -2.357 -1.432 

 X1STUEDEXPCT 

Master’s Degree 

 

1.34 

 

.289 

 

.204 

 

1.42 

 

.158 

 

-.113 

 

.691 
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Ph.D./M.D./Prof. .46 -.784 .324 -2.42 .017 -1.422 -.144 

 X1SES 1.44 .363 .127 2.86 .005 .1112 .614 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.63 

1.22 

.84 

 

-.469 

.196 

-.174 

 

.478 

.468 

.292 

 

-.98 

.42 

-.59 

 

.328 

.676 

.553 

 

-1.411 

-.726 

-.750 

 

.473 

1.118 

.403 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

1.68 

1.30 

1.29 

.71 

 

.518 

.259 

.253 

-.346 

 

.304 

.303 

.574 

.545 

 

1.71 

.86 

.44 

-.64 

 

.089 

.393 

.660 

.526 

 

-.080 

-.338 

-.878 

-1.420 

 

1.117 

.857 

1.384 

.728 

 X2SCIEFF*X2SCIID .88 -.129 .090 -1.43 .154 -.306 .049 

 Constant .17 -1.771 .605 -2.93 .004 -2.964 -.577 

3 X2SCIEFF 1.05 .049 .130 .38 .706 -.208 .306 

 X2SCIUTI .77 -.258 1.676 -.15 .878 -3.562 3.046 

 X2SCIID 1.30 .261 .463 .56 .573 -.651 1.174 

 X2MTHID 1.67 .514 .098 5.23 <.001 .320 .709 

 S1MTCHMFDIFF .98 -.023 .306 -.07 .941 -.627 .582 

 X1MGENMATCH .94 -.066 .187 -.35 .725 -.436 .304 

 X1SEX .35 -1.041 .193 -5.41 <.001 -1.421 -.661 

 X1STUEDEXPCT 

Master’s Degree 

Ph.D./M.D./Prof. 

 

1.36 

.55 

 

.309 

-.602 

 

.201 

.248 

 

1.54 

-2.43 

 

.126 

.016 

 

-.088 

-1.091 

 

.706 

-.114 

 X1SES .93 -.073 .144 -.51 .611 -.358 .211 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.66 

.95 

.82 

 

-.419 

-.052 

-.192 

 

.391 

.348 

.238 

 

-1.07 

-.15 

-.81 

 

.285 

.882 

.419 

 

-1.189 

-.738 

-.661 

 

.352 

.635 

.276 

 S1M8GRADE*X2SCIID 

A 

B 

C 

D 

 

1.04 

.91 

1.31 

1.17 

 

.035 

-.089 

.271 

.159 

 

.475 

.482 

.533 

.674 

 

.07 

-.19 

.51 

.24 

 

.941 

.853 

.612 

.814 

 

-.902 

-1.040 

-.780 

-1.171 

 

.972 

.861 

1.323 

1.489 



 

 

 

130 

 X2SCIEFF*X2SCIID .97 -.029 .088 -.33 .744 -.203 .145 

 Constant .11 -2.227 .364 -6.11 <.001 -2.945 -1.508 

‡ Data not meeting IES standards for reporting (standard errors > 70% of the recorded value). 

Table 51. MNLR for Expected Occupation at Age 30 (X4OCC30STEM3) 

Logit Covariate OR Coeff. Std. Err. t p 95% CI 

1 X4RFDGMJ123a .69 -.369 .090 -4.12 <.001 -.546 -.192 

 X1SES .82 -.195 .172 -1.13 .259 -.534  

 X1SEX .79 -.230    .283     -.81   .418     -.788     .328 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

1.13 

 

.121 

 

.323 

 

.38 

 

.708 

 

-.516 

 

.758 

 S1MTCHMFDIFF 2.33 .844 .849 .99 .322 -.831 2.52 

 X2SCIUTI 3.50 1.25 1.88 .67 .505 -2.45 4.96 

 S3FIELD_STEM 

Considering a STEM 

Major 

 

2.18 

 

.77 

 

.330 

 

2.36 

 

.019 

 

.127 

 

1.43 

 X2MTHID .95 -.054 .121 -.45 .655 -.292 .184 

 X1SEX*S1MTCHMFDIFF 2.48 .907 1.01 .90 .371 -1.086 2.900 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.55 

.72 

.86 

 

-.606 

-.333 

-.156 

 

.481 

.564 

.352 

 

-1.26 

-.59 

-.44 

 

.209 

.555 

.658 

 

-1.553 

-1.445 

-.849 

 

.342 

.778 

.537 

 Constant .07 -2.593 .902 -2.88 .004 -4.371 -.815 

2 X4RFDGMJ123a .27 -1.319 .487 -2.70 .008 -2.283 -.356 

 X1SES 1.19 .178 .173 1.03 .306 -.164 .519 

 X1SEX .35 -1.063 .356 -4.15 <.001 -1.568 -.558 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

.73 

 

-.321 

 

.245 

 

-1.31 

 

.192 

 

-.805 

 

.162 

 X2SCIUTI 1.98 .682 2.017 .34 .735 -3.29 4.66 

 S3FIELD_STEM 

Considering a STEM 

Major 

 

5.77 

 

1.753 

 

.370 

 

4.74 

 

<.001 

 

1.024 

 

2.482 

 X2MTHID 1.82 .596 .124 4.83 <.001 1.024 2.482 

 X1SEX*S1MTCHMFDIFF 7.04 1.951 2.400 .81 .417 -2.783 6.686 
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 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

.99 

1.52 

1.24 

 

-.006 

.418 

.214 

 

.740 

.513 

.330 

 

-.01 

.82 

.65 

 

.993 

.416 

.518 

 

-1.466 

-.593 

-.438 

 

1.453 

1.430 

.865 

 Constant .03 -3.413 .865 -3.95 <.001 -5.120 -1.707 

3 X4RFDGMJ123a .63 -.464 .136 -3.41 .001 -.733 -.196 

 X1SES 1.21 .193 .151 1.27 .205 -.106 .491 

 X1SEX .39 -.949 .332 -2.86 .005 -1.602 -.295 

 X1PAREDEXPCT 

Ph.D./M.D./Prof. 

 

.612 

 

-.491 

 

.331 

 

-1.48 

 

.139 

 

-1.144 

 

.162 

 S1MTCHMFDIFF 1.52 .419 .834 .50 .616 -1.227 2.066 

 X2SCIUTI .13 -2.052 2.362 -.87 .386 -6.712 2.607 

 S3FIELD_STEM 

Considering a STEM 

Major 

 

4.54 

 

1.512 

 

.433 

 

3.50 

 

.001 

 

.659 

 

2.366 

 X2MTHID 1.12 .116 .155 .74 .457 -.191 .422 

 X1SEX*S1MTCHMFDIFF .44 -.826 6.719 -.12 .902 -14.077 12.425 

 X1RACE 

Black/African Am. 

Hispanic/Latin Am. 

White/Euro. Am. 

 

2.02 

.79 

1.00 

 

.701 

-.235 

.000 

 

.764 

.649 

.270 

 

.92 

-.36 

<.00 

 

.360 

.718 

1.000 

 

-.805 

-1.1514 

-.533 

 

2.207 

1.044 

.533 

 Constant .08 -2.548 1.046 -2.44 .016 -4.610 -.485 

a Coded as a comparison from traditional STEM majors 

‡ Data not meeting IES standards for reporting (standard errors > 70% of the recorded value). 

Research Question 3: What influencing factors across student characteristic groupings act as 

supports for or barriers to an anticipated STEM career across secondary and postsecondary 

levels of education? 

 Several tests were run independently after obtaining good discrimination on the fit and 

diagnostic statistics for each STEM definition. These tests focused on the marginal effects between 

the predictor variable (expected STEM career at the age of 30) and each exogenous variables fit 
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to the models. Marginal effects seek to identify the instantaneous rate of change of a predictor with 

an individual covariate under defined conditions. For example, a marginal effect measure for early 

mathematics identity of Black/African American students in the 9th-grade year would describe 

graphically the rate of change of identity with respect to each type of expected STEM career. 

Although these “predicted probabilities” show the changes amongst each outcome with respect to 

each other, they won’t indicate any internal dynamics between the outcomes. Odds ratios balance 

the marginal effects by providing a full view of the covariate effects on the outcomes.   

Tables 46-51 use bolded formatting to identify significant coefficient and odds ratio results 

for each STEM perspective by wave and model. However, much of the results lying between the 

waves and logits emerged after using multinomial logit plots with graphical discrete changes and 

significance levels developed by Long and Freese (2014, pp. 435-444). Figure 20 is an example 

of a partial set of variables20 from the second wave of the STEM1 set of outcomes by race and 

gender. 

Figure 20. Example mlogitplot on Wave 2 Outcomes (STEM1) 

       

 
20 A maximum of eight covariates may be run at one using an mlogitplot (Long and Freese, 2014). 
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Results by Gender 

 Across each wave and amongst both STEM perspective, there exists a significant divide 

between female and male students, irrespective of race and ethnicity. Figures 21-23 show this 

effect through the predicted probabilities graphs. Relative to the case of a non-STEM career 

expectation, female students have significantly less odds (.62 odds ratio) of expecting traditional 

STEM careers. The data also highlights the role of early math/science identity and student/parent 

expectations on near-term and far-term perspectives. Health-related careers (viewed as long-term 

in this study) are preferred by female student participants (2.69, 3.61, and 3.42 odds ratios) over 

male students. The long-term nature of medical professions which require a Ph.D./professional 

degree are positively supported by parent expectations in the 9th-grade (1.27 odds ratio), followed 

by an evolving student expectation in the 11th-grade (3.92 odds ratio).   

Figure 21. Wave 1 MNLM by Gender for STEM1  
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Figure 22. Wave 2 MNLM by Gender for STEM1  

 

Figure 23. Wave 4 MNLM by Gender for STEM1 
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 Another significant finding based on gender shows as the far-term effects of early gender 

bias (Figures 26-27) in the 9th-grade mathematics courses on the expectations of traditional and 

health STEM careers in the postsecondary years (traditional = 3.61 odds ratio; health = 3.16 odds 

ratio). Gender bias in the study is shown to effect both male and female students, with the latter 

most affected (see Figures 26-27). The far-term results are a shifting expectation amongst female 

students toward health and medical professions. These results coincided with the large significant 

effect of positive science utility in the 11th-grade on female students’ anticipated STEM career at 

the age of 30 in the health and medical professions (t = 7.92, p < .001). 

Figure 24. Wave 1 Outcomes mlogitplot (STEM1) 
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Figure 25. Wave 4 Outcomes mlogitplot (STEM1) 

 

Figure 26. Wave 4 MNLM by Gender (Female) and Gender Bias for STEM1 

 

Note. Significance in health and medical careers (F(1,100) = 33.05, p < .001). 
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Figure 27. Wave 4 MNLM by Gender (Male) and Gender Bias for STEM1 

 

Figure 28. Wave 4 MNLM by Gender (Female) and Parent Expectations for STEM1 

 

Note. Significance in health and medical careers (F(1,190) = 5.99, p = .015). 
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Figure 29. Wave 4 MNLM by Gender (Male) and Parent Expectations for STEM1 

 

Results by Race and Ethnicity 

The results by race and ethnicity are less statistically significant than those by gender, which 

dominate the analysis. Overall, though, there does exist factors of significant marginal change in 

model covariates by race and gender. For example, early anticipated career expectations of 

Black/African American students show greater odds of anticipating a non-STEM career when 

compared to similar White/European American students (Figure 20, 24-25). In the 11th-grade year, 

Black/African American students showed increased odds (Figure 20) of holding a positive 

anticipated STEM career in the health and medical fields versus more traditional STEM careers. 

Architecture, social science, health, and technician occupations showed more of an effect (Tables 

46-48) on Latin American and European American subpopulations of the survey sample versus 

African American students.    
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Research Question 4: What typological models predict the successful pursuit of 

underrepresented groups of students into STEM fields? 

 Current research on student interest (Su & Rounds, 2015) and ability (Yang & Barth, 2017) 

typologies has been proven to predict student choices throughout their pursuit of a STEM career 

longitudinally. Su and Rounds (2015) description of how interests in people-oriented (e.g., health, 

medical, and social science) versus product-producing (e.g., engineering and the physical science) 

careers have explained pathways for female students pursuing STEM careers (Su & Rounds, 

2015). Using tested typologies as well as evolving new ones, the research herein shows an 

explanatory alignment for underrepresented populations of students using a typological 

methodology.  

 Examining the relationship between people oriented versus product-producing careers 

underlines this typology as a significant predictor of pursuit for female students (see Figures 20-

25). However, breaking apart this abstracted typology reveals that early math teacher and parental 

influence factors have a direct effect on this far-term typological generalization (illustrated in 

Figures 26 and 27). Although early parental expectations have a significant effect on the far-term 

STEM career expectations of students in their postsecondary years (1.27 and 1.84 odds ratios 

respectively), these give way to student-defined expectations in the 11th-grade year (3.92 odds 

ratio). What emerges from the results is a layered typological perspective. Longitudinally localized 

factors in the near-term (e.g., 9th- and 11th-grade) are shown to affect the far-term expectations 

(postsecondary years) of an anticipated STEM career path, when employing a STEM1 taxonomy. 

In addition to the layered perspective, STEM career outlooks undergo a transition from parent-

influenced to independent career choices. Utilizing a STEM3 taxonomy reveals only one well-

fitted model – an anticipated STEM career in engineering. This result reveals the interdisciplinary 
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nature of the discipline. The modern engineer has both academically- and experientially orientated 

practices gained throughout their pursuit of a career in engineering. The alignment of model factors 

between near- and far-term expectations based on the STEM1 taxonomy illustrates a stability in 

the model (see fit and diagnostic measures in Figures B.16-B.27) regardless of perspective.     

Research Question 5: Is there a STEM taxonomy that encompasses inclusive typologies for 

underrepresented groups of students? 

 A comparison between STEM1 and STEM3 taxonomies reveal a significant difference 

between models, waves, and perspectives. Two definitions of STEM – a BLS SOC career- versus 

a CIP college-focused one – produces two distinct model sets which align only along the expected 

engineering occupation at the age of 30. Both sets of taxonomies produce gradations of inclusive 

typologies for underrepresented groups of students, revealing significant findings (Tables 46-51) 

about current and longitudinal factors affecting women and students of color shown in Research 

Question 3.   

 Emerging, however, from both perspectives is the far-term (STEM1) approach. Although 

the marginal effects analysis reveals a significant longitudinal pull of underrepresented students 

into the health and medical professions due, in part, to early mathematics teacher gender bias 

(F(1,99) = 33.05, p < .001), the focus of this perspective on future career outlooks (the applied 

sciences) highlights its significance to underrepresented students. Conversely, in the near-term 

(STEM3) perspective, only the engineering model emerges, another highly applied and pathway-

aligned course of study. The results, therefore, show how an applied versus theoretical typology 

for STEM pursuit is inclusive of underrepresented students.  

 Another feature of the far-term taxonomy is the emergence of predictive variables that 

mirror the literature explored on motivation and persistence across a longitudinal continuum. 
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Unlike the near-term perspective, the far-term approach includes both barriers and supports to 

expectations of a STEM career for underrepresented students. For example, early math and science 

identities are predictors of early student STEM career expectations in the 9th-grade year. Similarly, 

parental expectations in the early secondary years yields to student STEM career expectations by 

the 11th-grade. Following the SCCT model for student career development, these variables shape 

and re-form perspectives that remain aligned within the STEM1 taxonomy.         

Research Question 6: How do these model results compare to traditional pipeline approaches 

to STEM pursuit? 

 Traditional pipeline models subsume that a large initial supply of STEM capable students 

(in their early educational career) would select STEM majors and enter the respective careers. 

Giving rise to the “leaky pipeline” metaphor is the difference between the supply and production 

of students entering STEM careers. However, in this study, Tables A.4 – A.7 (and Figures A.1–

A.2) indicate a fluctuation across the longitudinal waves with the significant addition of students 

(n = 610) with an expectation of a STEM career by the age of 30 during their 11th-grade year. 

These results alone dissolve the supply-side nature of a STEM pipeline for adequately predicting 

the movement of students into STEM careers. Moreover, since the movement of students across 

varying demographics is represented by a dynamic process, a linearized pipeline approach proves 

to be highly fallible in predicting STEM career pursuit. As indicated in Tables A.4 – A.7, if STEM 

pursuit is reduced to a supply-side input and demand-pulling output, a significant decrease in 

students with STEM career expectations emerges (n = -2,370), just as the leaky-pipeline model 

predicts. A more detailed, nuanced look at STEM career expectations throughout the pursuit 

continuum reveals the factors and effects on all students, in particular those who are historically 

underrepresented.   
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This study considered how two separate STEM taxonomic models would affect the 

expectation of a STEM career at the age of 30. Historical models maintained in the tradition, such 

as science, engineering, and mathematics, would not have revealed the typological connections 

between factor predictors of an anticipated STEM career, and gender and race representation as 

organized. A view of student pursuit at too high level of abstraction, has shown to be less 

productive in understanding student motivation and career attainment. Recent studies have shown 

large groups of “pipelined” students entering STEM health and medical positions (STEM1) which 

is not captured in the early models nor accounted for within the pipeline. This has led many 

researchers (Lucena, 2005; Teitelbaum, 2003) to acknowledge how pipeline model estimates are 

(a) flawed toward the supply-side, (b) one-dimensional with respect to career paths, and (c) 

represent a homogonous field (Hammonds & Subramaniam, 2003) of STEM professionals. These 

assessments are also reflected in this study. The differences between the fitted study factors across 

waves 1, 2, and 4 reveals the flaws in assuming a one-dimensional course pathway to a STEM 

career. Regardless of the perspective taken between STEM1 and STEM3 taxonomies, a clear 

distinction aligns against a one-dimensional approach to predicting STEM occupational 

expectations and towards a far-term outlook. Considering multiple student perspectives on career 

expectations leads to impactful results, these results support the unraveling of the manifold 

connections between students and their pursuit of STEM careers.  
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Chapter 5. Conclusions and Discussion 

 The purpose of the study herein was to develop a set of models describing the influencing 

factors that predict student pursuit patterns of STEM careers throughout their secondary and 

postsecondary careers. Prior research and scholarship around pursuit has provided a backdrop to 

developing an inclusive list of factors for a well-fitted, taxonometric-discriminating longitudinal 

model. Early mathematics self-concept (Howard, 2016; Sax et al., 2015; Wang et al., 2017) and 

parental involvement (Howard et al., 2019), course taking (Sadler et al., 2012), mathematics 

teacher gender bias (Starr et al., 2020), gender matching (Chen et al., 2020), and perspectives on 

viewing STEM pursuit supporting underrepresented groups of students (Su & Rounds, 2016; Yang 

& Barth, 2017) were particularly influential in the study. The results not only describe the 

experiences of students pursuing STEM careers throughout their secondary and postsecondary 

years but identifies important teacher/counselor practices and policy implications for supporting 

underrepresented students. Limitations inherent in the study will be discussed later in the Chapter 

as well as opportunities for future research in the coming years as more NCES data is released for 

HSLS:09.     

Fit of Research Findings 

Existing Literature and Conceptual Frameworks 

As described in Chapter 2, the literature most aligned to the study are the factors that either 

support or are barriers to the longitudinal pursuit of a STEM career. An evaluation of current 

research over the last two decades provided a comprehensive list of potential factors (see Table 

34) aligned to a social cognitive career theoretical construct that have been shown to alter the 

evolution of an expected STEM career outcome. Each factor was broken down into five major 

categories: (1) educational goals and outcomes; (2) psychometric influences; (3) experiential and 
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learning influences; (4) contextual-environmental influences; and (5) demographic influences 

based on the research and underlying theories on motivation and retention (Table 2). Lent et al. 

(2002) has shown in their social cognitive theoretical framework that students are actively shaped 

by and shape their environment. This was particularly evident in the results showing significance 

across each model and data collection wave. Contextual-environmental influences had the greatest 

collective impact on positive and negative expectations of a STEM career at the age of 30. For 

example, parental/student expectations are specifically tied to career expectations and academic to 

career pursuit such as the connection between parental expectations of a Ph.D. and student pursuit 

of health and medical career outcomes. The corollary are parental expectations of a master’s degree 

and the pursuit of a degree in the traditional STEM majors. Applied to the SCCT model, a bi-

directional triadic relationship exists. It can be seen from the results that early parental expectations 

give way to student expectations in the 11th-grade. Additionally, self-efficacy, self-concept, and 

identity (personal determinants) are shown in the findings to be directly linked to expectations of 

a specific STEM career. As students are “products and producers of their environment” (Wood & 

Bandura, 1989), they also have an ability for self-regulation which fuels this triadic relationship 

undergirding Social Cognitive Career Theory. Compared to Expectancy-Value Theory post hoc, 

the SCCT framework provides a more complete explanation for this evolving set of constructs 

with underrepresented students.       

STEM Pipeline 

The educational goals and outcomes were further disaggregated into STEM taxonomies (see 

Table 1) using the BLS SOC, Bureau of Labor Statistics O*NET, NSF, Census Bureau, 

Department of Homeland Security, and ACT criteria that aligned to two distinct student 

perspectives, far-term (Figure 4) and near-term (Figure 5). Using the HSLS:09 general outcomes 
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for STEM career expectations, near-term and far-term perspectives were evolved. The results 

provided a good fit and discrimination for each wave (F(50,160) = 30.54, p < .001; F(50,150) = 25.91, 

p < .001; F(40,150) = 17.96, p < .001) of the far-term student perspective on expectations of a STEM 

career. The near-term perspective, using the same modeled covariates in the former outcome 

models, produced a consistent result in the engineering category (F(50,150) = 7.88, p < .001; F(50,150) 

= 11.55, p < .001; F(40,150) = 17.96, p < .001). What is discerned from the analysis is an agreement 

to the differences in student perspectives on STEM career expectations and how those anticipations 

of a STEM career change across secondary and postsecondary years. This development is in stark 

contrast to the STEM pipeline models pushed around policy circles over that time. The inclusion 

of health and medical careers highlighted the observed up-and-down movement in students’ career 

expectations within their secondary schooling. These results are consistent with the analysis of 

Lucena (2005), Teitelbaum (2003), and Xie and Killewald (2013).  

Xie and Killewald (2013) considered if American science was in decline. Their discoveries, 

however, prompted a larger conversation around a surplus (not a shortage) when comparing STEM 

graduates to available careers. The upward jump in the current research showing an increase in 

11th-grade STEM career expectations and subsequent drop (n9th-11th = +610; n9th-postsecondary = -

2,370) in the postsecondary years reveals a similar trend across educational levels. On the surface 

it appears to be a significant overall drop (34%), however students are applying to degree programs 

available that far exceed supportable figures (Watanabe, 2022). Figures A.1-A.2 shows the 

changes between the 11th-grade and early postsecondary years by frequency and percentage across 

student demographic groupings. The drop is generated, at least in part, to the transition of students 

into higher educational majors. Although further research would need to be conducted to develop 

a strong correlation between the two, the remaining questions about a shortfall of qualified STEM 
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students (those leaking out of the STEM pipeline) should be directed toward statewide policies 

that may “filter” students into available higher education majors. 

Pursuit Factors 

During the secondary years, a general reshuffling of STEM career expectations is evolving. 

This movement can be attributed to either the supports provided, or the barriers placed in front of 

students depending on the direction of move. Moreover, the decision point of choosing a STEM 

major is a significant milestone in the pursuit journey (.43, .50, and .60 odds ratios of not choosing 

a STEM major). As student STEM career expectations change, model factors also push and pull 

at this bifurcating career decision. Gender biases in the mathematics classroom were shown in the 

literature to be a large detractor for pursuing STEM careers (Starr et al., 2020). This effect was 

shown throughout the study as a becoming significant barrier in the longitudinal pursuit of STEM 

careers in the sciences, engineering, and information technology sectors. In fact, the results show 

using marginal effects, that gender biases push female students (with an interest in science) into 

health and medical related careers (2.69, 3.61, and 3.42 odds ratios). These effects are not 

contained to female students, as male students are also likely to choose different career paths when 

faced with gender biases in the mathematics classroom.  

Science utility also emerged within the study as a highly significant factor in predicting 

student expectations of a STEM career in the health and medical professions. For female students, 

the odds of having an anticipated STEM career in the health-related professions dominated the 

analysis. These findings in connection with prior research by Rozek et al. (2017) and others, 

highlight the value of promoting STEM topics, research, and applications. A high science utility 

clearly increases students’ career pursuit which is tied to motivations and achievement. However, 

the push into health and medical professions may not be as rosy as they seem. Figures 26-27 
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provides evidence that early mathematics teacher gender bias on female students who have an 

interest in STEM, pushes this group into health-related careers. These results have a significant 

implication on the effect secondary classroom teacher practices and local policies.  

Although parental involvement – a scale which considers how parents involve themselves 

in discussing relevant topics on careers, college applications, and courses – follows alongside 

current research (Howard et al., 2019) as not proving to be a significant factor on predicting STEM 

career pursuit. However, parental expectations of a Master’s or Ph.D./professional degree did 

emerge as a pursuit factor in the early educational years (1.41 and 3.92). There is strong agreement 

in the literature (Howard et al., 2019; Jaynes, 2007) on the role of parental expectations and student 

attainment. The marginal effects plots (Figures 28-29) show how a higher parental expectation 

affects the academic achievement for female versus male students. Additionally, as a longitudinal 

effect, the models indicate the influences of parental expectations on student career pursuit by 

changing significance from one (parental expectation in the 9th-grade year; 1.41 odds ratio) to the 

other (student expectations in the 11th-grade year; 1.60 odds ratio).  

Lastly, mathematics identity predicted greater significant odds of having an anticipated 

traditional STEM career in life and physical science, engineering, and/or information technology 

(1.52 odds ratio) in the 11th-grade. This important finding closely parallels the early work of 

Boaler et al. (2000) and later that of Ma et al. (2021) which both show a distinct connection 

between positive mathematics identity and student achievement. What is significant in this study 

is the connection to the life/physical sciences, engineering, and information technology 

professions. These results have further implications to policy and practice. 
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Policy and Practice 

 The implications of the study findings with practical classroom and curricular approaches 

with policy practices loom large. Early seminal reports on the state of STEM education shared 

commonly understood conclusions, with the following misunderstood beliefs: (1) the U.S. was 

producing lower quality science and engineering students and (2) the U.S. would be quickly 

surpassed by other nations in innovation, basing future policy decisions on this forecast. The 

resulting domination of the economic models used to make such future forecasts has transformed 

the educational landscape through a supply-side oriented model of human capital – the STEM 

pipeline. Views on the predictive capabilities of the STEM pipeline have long been challenged, 

however, lacking a clear operationalized definitions of STEM left the door open for many 

interpretations. STEM, STEAM, and SEM programs have flooded the elementary and secondary 

educational landscape over the last 20 years. However, a lack of understanding on how to define, 

implement, and connect these programs across educational levels has perpetuated the 

misrepresentation of STEM pursuit. For example, would an arts-based STEM program (referred 

to as STEAM) be appropriate at the secondary level for students interested in a STEM-based 

preparation program? Moreover, calling the aforementioned a preparation program in locales with 

a high concentration of underrepresented students is especially irresponsible as educators. There 

must be an operational redefinition of STEM at the federal level first, then devolved to the 

individual states and districts through policies such as the America COMPETES Act. The result 

could serve to assuage the large gradations of STEM across primary and secondary levels and 

avoid the conflicting messages portrayed to students who are in the process of discovering their 

agency.  
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    Vertical alignment between levels of schooling continues to evolve based on new 

research and the resulting curricular changes. With the recent implementation of Common Core 

State and Next Generation Science Standards, a longitudinal set of 6-12th-grade math and science 

practices is leading a national push for a standard set of abilities and understandings. Synthesizing 

prior and current research has shown that identity building in math and science occurs within and 

beyond the formal classroom. Since positive early math and science identity results in an increased 

expectation of a STEM career, providing programs which center around the STEM subjects within 

a unique social culture (such as competition robotics or place-based scientific research, human-

centered design projects for community problem solving, and/or industry internships) can build 

identity and self-efficacy in these critical discipline areas. Districts with secondary schools (middle 

and high) should identify vertical alignment in formal and informal settings so that these early 

identities don’t fade by the 11th-grade year. Similarly, developing or continuing scientific research 

in the 10th-12th grades have the opportunity to grow the scientific utility amongst students – 

particularly those who are underrepresented in STEM. Providing practical applications to current 

student work is highly empowering and must be a constant in the educational curricular policies 

implemented in the future.      

Limitations and Recommendations for Future Research 

 This study had several limitations which have the potential to be addressed with future 

research and the release of additional information from the HSLS survey data set. First, the data 

in the study considered a longitudinal range of measurement points from their 9th-grade through 

their postsecondary years of schooling. This limitation is model constraining since a final STEM 

career disposition cannot be gathered for the participant group to solidify the predictive nature of 

the study results. Since this occurs at a singular point in the data collection process (i.e., the twelfth 
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year following the participant groups’ high school graduation), capturing student dispositions of a 

STEM career as an “expected” outcome variable was necessary within the analysis. Although this 

approach was taken in-line with current research efforts, the release of future career data in 2025, 

the final wave of the High School Longitudinal Study, will further validate the predictive results 

herein with the actual careers obtained by the study participants.  

 Another longitudinal limitation is the clustering of contextual factors within the early 

secondary academic years. Although the decision to cluster these factors within the first year of 

data collection (2009) is based on current research, it provides a limitation to the study by 

constraining the factors that can be assessed longitudinally across secondary and postsecondary 

settings. However, longitudinal research on psychometric factors, such as identity change (Cassidy 

et al., 2001), shows stability across secondary and postsecondary transitions. 

 Second, the survey questions were tied to self-assessments and aligned to an Expectancy-

Value Theory of motivation and academic attainment. Whereas a social cognitive career 

theoretical construct was employed in determining an initial set of STEM career predictive factors, 

other methodologies may produce differing results. SCCT was used as a methodology due to its 

current positive association to underrepresented groups of students. However, future researchers 

should be cautioned that deviating from this construct while using the collection of factors could 

produce differing results.  

 Third, there exists many survey participants who either did not select a response to to which 

occupation they expect or plan to have at the age of 30. Although these numbers represent a 

significant limitation on the study sample, it illustrates how expected outcomes evolve based on 

individual student experiences. Throughout the longitudinal pursuit of a STEM career, our 
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thoughts on future career outcomes are constantly evolving as we build agency from the many 

influencing factors affecting our motivational behaviors.   

 Fourth, many constructs were limited to specific waves of data collection. Each of the 

psychological influences retain in the study were assessed in the first and second waves. This 

decision point by Ingels et al. (2018) was a constraint to the final wave model results. For example, 

early constructs that had a significant effect on the predictions of an anticipated STEM career (such 

as mathematics identity, science utility, math teacher gender bias, and mentorship) could not be 

paired with their current assessment in the latter models. Future research on the longitudinal 

changes in these factors could provide a more granulated understanding of underrepresented 

students’ chosen majors of study and career choices by comparing changes in psychological factors 

throughout secondary and postsecondary schooling. The lack of a more robust data collection 

effort on student mentorship, throughout this same period, would have also provided insightful 

evidence into the contextual-environmental influences on students’ STEM careers. A series of 

mentorship questions exists in HSLS, with some of them retained in the univariate analysis, 

however, these occur in either the 9th-grade or 11th-grade years and are mostly school-centered 

rather than student-centered. Mentorship at the postsecondary level has been proven to support 

student career development and entry into the traditional STEM careers (Tai et al., 2017). 

Providing more data on mentorship could prove especially valuable in understanding the 

postsecondary relationships with STEM career pursuit.  

 Fifth, teacher instructional methods were considered for inclusion within the study, 

however they were eliminated prior to the univariate analysis. Due to the data collection start date, 

an assessment of important STEM skills – such as those associated with mathematics identity and 

science utility – could not be directly understood or implemented into the secondary models. With 
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recent changes to the math and science curriculum through the adoption of Common Core State 

Standards and Next Generation Science Standards nationwide, it is not clear how these 

methodological shifts are affecting student entry into STEM majors and careers. Future research 

should seek answers to the roles of student psychological influences on their career expectations 

through these large-scale shifts in teaching practice.  

 Finally, defining STEM careers by varying the taxonometric lenses used in a model 

building approach may produce additional positive typologies for underrepresented groups of 

students. Another perspective may be attained by utilizing the STEM2 coded variables in HSLS. 

These variables look at the far-term (BLS SOC dominated) taxonomy from the perspective of 

STEM career skills. Another final research direction lies in the development of more qualitive and 

grounded theoretical studies to expand the nuanced ways in which students view their pursuit of 

STEM careers from the influences detailed in this study.   

Conclusion 

 This study led to the identification, comparison, and development of multiple models for 

understanding and predicting STEM career pursuit longitudinally. Implications to traditionally 

underrepresented groups of students were explored through the establishment of positive 

typologies that included internal pursuit factors (such as motivation and persistence) as well as 

external environmental, school, and parental ones. Additionally, two taxonomies for STEM career 

pursuit were informed through a review of the literature, designed based on a synthesis of results, 

and implemented in the final model analysis. Depending on the near-term or far-term perspective 

on STEM careers, variations were discovered in the pathways to STEM pursuit, the impacts by 

gender and race/ethnicity, and an unraveling of the STEM pipeline. For decades policy makers 

have focused on an abstracted view of student pursuit of STEM careers. These approaches have 
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routinely enveloped a false view of who enters the STEM “pipeline”, why these students continue 

to pursue STEM career outcomes, their manifold pathways toward pursuit, and what defines a 

STEM career. The broad utilization of a “leaky path” pipeline analogizes a systemic laziness in 

the policy sphere for understanding, empathizing, and solving the underrepresented problem in 

STEM pathways and careers.  

 Echoing a call from some researchers to policy makers, STEM must be clearly defined. 

The addition of specific health and medical professions exist in the STEM workforce and are 

critical to the development of our collective future. With the COVID-19 global pandemic, we are 

witness to a sizable punctuation event. As seen within this study, policy windows will begin to 

open that could connect the health and medical professions to the mainstream STEM careers. 

National funding for the research and development of future global pandemic prevention measures 

will undoubtedly reveal a shortage of qualified health and medical professionals including 

managers, technicians, clinicians, and researchers. The door is open for resetting our understanding 

of STEM. Operationalizing STEM will go a long way in aligning its stratified uses throughout 

education. Continuing to develop educational policies alongside public perceptions on the status 

of the STEM workforce would continue to be deleterious. Removing pipeline analogies that 

promote unsupported outlooks present in the current data and their associated large-scale supply-

side pushes for students will support policies and practices that positively promote 

underrepresented students into STEM career pathways to pursuit. Forecasting the manifold 

relationships between students and their pursuit of STEM careers reveals both the complex 

dynamics involved in achieving these career outcomes and how the power of a STEM pipeline 

model has drifted from its early origins in wake of our collective fear of failure.       
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Appendices 

Appendix A. Descriptive Statistics 

A.1 Descriptive Statistics for STEM Code 1 by Gender and Race 

The following data tables and figures provide a detailed view of student participants in the study 

by race and gender. 

Table A.1. Descriptive Statistics for X1STU30OCC_STEM1 by Student Demographics 

(X1SEX) 

bSTEM  

Sub-Domain 

Female Male 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .61 .012 .59 .64 .77 .010 .75 .78 

2 .06 .005 .05 .13 .12 .006 .10 .13 

3 .31 .011 .29 .33 .09 .007 .08 .11 

4 .02 .003 .01 .02 .02 .004 .02 .03 

Total 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, 

engineering, mathematics, and IT occupations; (3) health occupations; and (4) split across two sub-domains. 
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Table A.2. Descriptive Statistics for X2STU30OCC_STEM1 by Student Demographics 

(X1SEX) 

bSTEM  

Sub-Domain 

Female Male 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .58 .010 .56 .60 .73 .010 .71 .75 

2 .05 .005 .04 .06 .14 .008 .13 .16 

3 .34 .010 .32 .36 .10 .007 .09 .12 

4 .04 .003 .03 .04 .03 .004 .02 .04 

Total 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, 

engineering, mathematics, and IT occupations; (3) health occupations; and (4) split across two sub-domains. 

Table A.3. Descriptive Statistics for X4OCC30STEM1 by Student Demographics (X1SEX) 

bSTEM  

Sub-Domain 

Female Male 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .53 .017 .50 .57 .72 .012 .70 .75 

2 .06 .006 .05 .08 .16 .010 .14 .18 

3 .37 .069 .08 .11 .09 .007 .08 .11 

4 .03 .005 .03 .05 .02 .004 .02 .03 

Total 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, 

engineering, mathematics, and IT occupations; (3) health occupations; and (4) split across two sub-domains. 
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Table A. 4. Descriptive Statistics for X1STU30OCC_STEM1 by Race/Ethnicity 

bSTEM  

Sub-Domain 

Black/African American Hispanic/Latin American White/European American 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .72 .025 .67 .766 .70 .024 .65 .75 .68 .008 .67 .70 

2 .05 .010 .04 .08 .07 .01 .05 .10 .10 .004 .09 .11 

3 .22 .021 .18 .26 .20 .023 .16 .25 .20 .007 .18 .21 

4 .01 .006 .004 .03 .02 .007 .01 .04 .02 .003 .02 .03 

Total 1.00 – – – 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, engineering, mathematics, and IT 

occupations; (3) health occupations; and (4) split across two sub-domains. 

Table A.5. Descriptive Statistics for X2STU30OCC_STEM1 by Race/Ethnicity 

bSTEM  

Sub-Domain 

Black/African American Hispanic/Latin American White/European American 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .64 .025 .59 .69 .66 .021 .61 .70 .66 .008 .64 .67 

2 .07 .012 .05 .10 .08 .012 .06 .11 .10 .006 .09 .12 

3 .27 .022 .22 .31 .23 .017 .19 .26 .21 .006 .20 .22 

4 .02 .008 .01 .05 .04 .009 .03 .06 .03 .003 .03 .04 

Total 1.00 – – – 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, engineering, mathematics, and IT 

occupations; (3) health occupations; and (4) split across two sub-domains. 
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Table A.6. Descriptive Statistics for X4OCC30STEM1 by Race/Ethnicity 

bSTEM  

Sub-Domain 

Black/African American Hispanic/Latin American White/European American 

Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI Proportion Std. Err.a 95% CI 

1 .61 .031 .55 .67 .64 .029 .58 .69 .63 .01 .61 .65 

2 .07 .02 .05 .11 .10 .013 .07 .13 .12 .008 .11 .14 

3 .28 .033 .22 .35 .23 .030 .17 .29 .22 .009 .21 .24 

4 .04 .01 .02 .07 .04 .011 .02 .07 .03 .003 .02 .03 

Total 1.00 – – – 1.00 – – – 1.00 – – – 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (1) not a STEM occupation; (2) life and physical science, engineering, mathematics, and IT 

occupations; (3) health occupations; and (4) split across two sub-domains. 

Table A.7. Descriptive Statistics for STEM Code 1 by Race/Ethnicity and Gender 

Wave bSub-Domain Black/African American Hispanic/Latin American White/European American 

Prop. Std. Err.a Prop. Std. Err.a Prop. Std. Err.a 

1 2 .04 (.07) .011 (.016) .04 (.10) .011 (.019) .06 (.13) .005 (.007) 

 3 .31 (.09) .028 (.015) .31 (.09) .031 (.024) .31 (.09) .010 (.007) 

 4 .01 (.02) .004 (.014) .02 (.03) .009 (.011) .02 (.03) .003 (.004) 

2 2 .04 (.10) .013 (.019) .04 (.12) .012 (.021) .05 (.16) .004 (.009) 

 3 .39 (.11) .031 (.020) .35 (.10) .029 (.017) .33 (.10) .009 (.007) 

 4 .03 (.01) .013 (.005) .02 (.05) .007 (.015) .04 (.02) .004 (.004) 

3 2 .05 (.11) .018 (.03) .06 (.14) .014 (.023) .07 (.18) .010 (.011) 

 3 .41 (.08) .045 (.022) .36 (.09) .046 (.020) .36 (.09) .013 (.008) 

 4 .04 (.03) .017 (.011) .04 (.03) .020 (.013) .03 (.02) .004 (.005) 
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a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM sub-domains correspond to the following: (2) life and physical science, engineering, mathematics, and IT occupations; (3) health 

occupations; and (4) split across two sub-domains. Each entry is broken by gender, formatted as “female(male)” for maximum category values. Not 

a STEM occupation was excluded in the table. 

Note. (1) is omitted to only include accepted STEM sub-domains. 

Table A.8. Descriptive Statistics for STEM Code 3 by Race/Ethnicity and Gender 

Wave bSub-Domain Black/African American Hispanic White/European American 

Prop. Std. Err.a Prop. Std. Err.a Prop. Std. Err.a 

1 2 .030(.040) .006 (.007) .072 (.033) .007 (.007) .064 (.060) .004 (.004) 

 3 .006 (.076) .003 (.009) .006 (.075) .002 (.008) .009 (.102) .001 (.005) 

 4 .034 (.057) .006 (.008) .047 (.078) .006 (.008) .041 (.084) .003 (.004) 

2 2 .056 (.022) .008 (.005) .065 (.034) .007 (.006) .072 (.045) .004 (.003) 

 3 .017 (.088) .004 (.010) .017 (.097) .004 (.009) .020 (.124) .002 (.006) 

 4 .029 (.057) .006 (.008) .036 (.072) .005 (.008) .026 (.077) .003 (.004) 

3 2 .044 (.028) .008 (.007) .050 (.030) .008 (.007) .050 (.043) .004 (.004) 

 3 .013 (.065) .004 (.011) .017 (.066) .004 (.009) .022 (.089) .003 (.005) 

 4 .021 (.049) .006 (.010) .020 (.068) .005 (.009) .024 (.066) .003 (.005) 

a Balanced Repeated Replication (BRR) analysis for the complex survey data. 

b STEM occupational types correspond to the following: (2) science; (3) engineering; and (4) non-science and engineering. Each entry is broken by 

gender, formatted as “female(male)” for maximum category values. Not a STEM occupation was excluded in the table. 
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Figure A.1. Percentages of Students Identifying a STEM Career by Race (X1RACE) and 

Gender (X1SEX) for Each Wave (1,2, and 4) 
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Figure A.2. Frequencies of Students Identifying a STEM Career by Race (X1RACE) and 

Gender (X1SEX) for Each Wave (1,2, and 4) 
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Appendix B. Model Development Statistics 

B.1  Fit and Diagnostics 

B.1.1 Linearization of Continuous Covariates 

Below are a set of figures showing the linearization of continuous covariates throughout each 

wave (1, 2, and 3) in the STEM code 1 model. 

Figure B.1. Wave 1 Linearization of Continuous Covariates 
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Figure B.2. Wave 2 Linearization of Continuous Covariates

 

 

Figure B.3. Wave 4 Linearization of Continuous Covariates 
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B.1.2 Fit and Diagnostics for STEM Code 1 

Figure B.4. Individual Logit Fit and Diagnostics of STEM1 – Wave 1 Model 1 
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Figure B.5. Individual Logit Fit and Diagnostics of STEM1 – Wave 1 Model 2 
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Figure B.6. Individual Logit Fit and Diagnostics of STEM1 – Wave 1 Model 3 
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Figure B.7. Individual Logit Fit and Diagnostics of STEM1 – Wave 1 Model 4 
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Figure B.8. Individual Logit Fit and Diagnostics of STEM1 – Wave 2 Model 1 
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Figure B.9. Individual Logit Fit and Diagnostics of STEM1 – Wave 2 Model 2 
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Figure B.10. Individual Logit Fit and Diagnostics of STEM1 – Wave 2 Model 3 
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Figure B.11. Individual Logit Fit and Diagnostics of STEM1 – Wave 2 Model 4 
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Figure B.12. Individual Logit Fit and Diagnostics of STEM1 – Wave 4 Model 1 
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Figure B.13. Individual Logit Fit and Diagnostics of STEM1 – Wave 4 Model 2 
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Figure B.14. Individual Logit Fit and Diagnostics of STEM1– Wave 4 Model 3 
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Figure B.15. Individual Logit Fit and Diagnostics of STEM1 – Wave 3 Model 4 
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B.1.3 Fit and Diagnostics for STEM Code 3 

Figure B.16. Individual Logit Fit and Diagnostics of STEM3 – Wave 1 Model 1 
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Figure B.17. Individual Logit Fit and Diagnostics of STEM3 – Wave 1 Model 2 

 

 

 

 

 

 

 

 

 

 



 

 

 

199 

Figure B.18. Individual Logit Fit and Diagnostics of STEM3 – Wave 1 Model 3 
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Figure B.19. Individual Logit Fit and Diagnostics of STEM3 – Wave 1 Model 4 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

201 

Figure B.20. Individual Logit Fit and Diagnostics of STEM3 – Wave 2 Model 1 
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Figure B.21. Individual Logit Fit and Diagnostics of STEM3 – Wave 2 Model 2 
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Figure B.22. Individual Logit Fit and Diagnostics of STEM3 – Wave 2 Model 3 
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Figure B.23. Individual Logit Fit and Diagnostics of STEM3 – Wave 2 Model 4 
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Figure B.24. Individual Logit Fit and Diagnostics of STEM3 – Wave 4 Model 1 
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Figure B.25. Individual Logit Fit and Diagnostics of STEM3 – Wave 4 Model 2 
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Figure B.26. Individual Logit Fit and Diagnostics of STEM3 – Wave 4 Model 3 
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Figure B.27. Individual Logit Fit and Diagnostics of STEM3 – Wave 4 Model 4 
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