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Chapter 1
On the representation of Boolean magmas
and Boolean semilattices

P. Jipsen, M. E. Kurd-Misto and J. Wimberley

Abstract

A magma is an algebra with a binary operation ·, and a Boolean magma is a
Boolean algebra with an additional binary operation · that distributes over
all finite Boolean joins. We prove that all square-increasing (x ≤ x2) Boolean
magmas are embedded in complex algebras of idempotent (x = x2) magmas.
This solves a problem in a recent paper [3] by C. Bergman. Similar results
are shown to hold for commutative Boolean magmas with an identity element
and a unary inverse operation, or with any combination of these properties.

A Boolean semilattice is a Boolean magma where · is associative, com-
mutative, and square-increasing. Let SL be the class of semilattices and let
S(SL+) be all subalgebras of complex algebras of semilattices. All members
of S(SL+) are Boolean semilattices and we investigate the question of which
Boolean semilattices are representable, i.e., members of S(SL+). There are
79 eight-element integral Boolean semilattices that satisfy a list of currently
known axioms of S(SL+). We show that 72 of them are indeed members of
S(SL+), leaving the remaining 7 as open problems.

1.1 Introduction

The study of complex algebras of relational structures is a central part of
algebraic logic and has a long history. In the classical setting, complex al-
gebras connect Kripke semantics for polymodal logics to Boolean algebras
with normal operators. Several varieties of Boolean algebras with operators
are generated by the complex algebras of a standard class of relational struc-
tures. For example it is well known that
• the variety of relation algebras is generated by complex algebras of ternary

atom structures,
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2 P. Jipsen, M. E. Kurd-Misto and J. Wimberley

• the variety of representable relation algebras is generated by complex al-
gebras of Brandt groupoids,

• the variety of group relation algebras is generated by complex algebras of
groups,

• the variety of modal algebras is generated by complex algebras of binary
relations, and many subvarieties are determined by first-order definable
subclasses,

• the variety of tense algebras is generated by complex algebras of a binary
relation and its converse,

• the variety of 2-dimensional cylindric algebras is generated by complex
algebras of two orthogonal equivalence relations and the identity relation,
and for the variety of n-dimensional cylindric algebras similar first-order
classes of n-ary relations exist.

Hajnal Andreka and Istvan Nemeti have published many deep and im-
portant results about these and related varieties of Boolean algebras with
operators. In this chapter we discuss several varieties that are determined by
complex algebras of well-known classes of algebras and partial algebras.

Given a class K of structures of the same signature, we denote the class of
complex algebras by K+, and the variety it generates by V(K+) = HSP(K+).

In general it is a difficult problem to decide if this variety is finitely ax-
iomatizable, or to find a specific equational basis for it. Even when the class
K is a variety of algebras with a straightforward finite equational basis and
a decidable equational theory, the variety V(K+) may not be finitely based
and may have an undecidable equational theory. The variety of group relation
algebras is such an example [2, 8, 9].

We will consider classes K of algebras with a binary operation · and pos-
sibly constants e, o and a unary operation −1 determined by a subset of the
following six common equational properties:

(a) associative (xy)z = x(yz),
(c) commutative xy = yx,
(i) idempotent x2 = x,
(n) inverse xx−1 = e = e−1 and x−1−1 = x,
(u) unital xe = x = ex.

Combinations of these identities define several varieties of algebras de-
noted by Ka...u where the subscripts show which identities are assumed. They
include the variety of groups (Kanu), semigroups (Ka), semilattices (Kaci),
unital semilattices (Kaciu), as well as many varieties of algebras with a nonas-
sociative binary operation. If the constant e or the unary operation −1 do not
occur in the defining identities, we assume they are not in the signature of the
algebras. Hence the variety K∅ contains all groupoids, also known as mag-
mas (since the term “groupoid” more commonly refers to a small category
in which every morphism is an isomorphism). All the varieties determined
by these identities are distinct, except Kainu and Kacinu since they are both
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equal the variety of one-element algebras: x = xe = xxx−1 = xx−1 = e.
Hence there are a total of 31 varieties determined by subsets of {a, c, i, n, u}.

The aim is to determine which of these classes V(K+) is finitely based
and/or has a decidable equational theory. In many cases this is still an open
problem, but in a few cases the answers are known, and some of these re-
sults are due to the work of Hajnal and Istvan and their collaborators. We
also investigate when it is decidable whether a finite algebra is a member of
V(K+).

A partial magma M = ⟨M, ·⟩ is a set with a partial binary operation ·. A
partial magma is

(t) total (or a magma) if the binary operation · is totally defined and
(f) finite if the set M is finite.

We allow (partial) magmas to have an extended signature with constants
e, o and with a unary total operation −1. The class of all magmas is denoted
Mag and the class of all partial magmas is denoted PMag. A partial magma
M satisfies an identity s = t, written M |= s = t, if for all assignments to
the variables in s, t, either both sides are defined and equal, or both sides
are undefined. For total magmas this agrees with the usual interpretation of
satisfaction.

Given a set Σ of identities (using possibly the extended signature of mag-
mas),

Mod(Σ) = {M ∈ Mag : M |= Σ} and
PMod(Σ) = {M ∈ PMag : M |= Σ}

A Boolean magma is an algebra of the form B = ⟨B,∧,∨,−, 0, 1, ·⟩ such
that ⟨B,∧,∨,−, 0, 1⟩ is a Boolean algebra and · is a binary operator, i.e.,
distributes over joins in each argument:

x · (y ∨ z) = (x · y) ∨ (x · z),
(x ∨ y) · z = (x · z) ∨ (y · z)

and is normal: x · 0 = 0 · x = 0. Hence Boolean magmas form a variety of
Boolean algebras with a binary operator. A Boolean magma is complete and
atomic if the Boolean algebra is complete and atomic.

A Boolean magma with a constant e that is an identity element is called a
unital Boolean magma, and if it has a unary normal operator −1 that satisfies

(n′) x ̸= 0 =⇒ e = e−1 ≤ xx−1, and x−1−1 = x

then it is called an inverse Boolean magma. A Boolean magma is integral if
it satisfies

(t′) x · y = 0 =⇒ x = 0 or y = 0.
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As usual, Boolean magma homomorphisms preserve all the Boolean opera-
tions and the operator ·, as well as e and −1 if they are present.

A partial magma M is called associative, commutative, idempotent, inverse
or unital if it satisfies the identities (a), (c), (i), (n), (u) respectively. In the
case of (a), (c) and (u) it follows that M+ also satisfies these identities,
but the formulas (i) and (n) need not be preserved by the complex algebra
construction. However, for any idempotent magma, the complex algebra is

(i′) square-increasing x ≤ x · x,

and for any inverse magma the complex algebra satisfies

(n′) x ̸= 0 =⇒ e = e−1 ≤ xx−1, and x−1−1 = x,

where ≤ is interpreted as ⊆ in the complex algebra. Let C denote the set of
conditions {(a), (c), (f), (i), (n), (t), (u)}, and for any (ϕ) ∈ C −{(i), (n), (t)},
let (ϕ′) = (ϕ). For any S ⊆ C we define S′ to be the corresponding subset of
C′ = {(ϕ′) | (ϕ) ∈ C}.

For a partial magma M = ⟨M, ·⟩, define the complex algebra

M+ = ⟨P(M),∩,∪,−, ∅,M, ·⟩

where X · Y = {x · y : x ∈ X, y ∈ Y } for X,Y ⊆ M is the complex operation
in M+. If M has an additional constant e or a unary operation −1, then the
complex algebra has a constant e = {e} or a unary operator X−1 = {x−1 :
x ∈ X}.

More generally, the complex algebra construction applies to ternary rela-
tional structures U = ⟨U,R⟩ where R ⊆ U3, by defining X · Y = {z ∈ U |
(x, y, z) ∈ R for some x ∈ X and y ∈ Y } and U+ = ⟨P(U),∩,∪,−, ∅, U, ·⟩.

It is straightforward to check that M+ and U+ are Boolean magmas,
possibly with constants and inverse, and if M is total then M+ is integral.

Let U = ⟨U,R⟩ and V = ⟨V, S⟩ be ternary relational structures. From
modal logic it is well known that a Boolean magma homomorphism from
V+ to U+ is uniquely determined by a map h : U → V that is a bounded
morphism, i.e., for all x, y, z ∈ U and x′, y′ ∈ V

(x, y, z) ∈ R =⇒ (h(x), h(y), h(z)) ∈ S and
(x′, y′, h(z)) ∈ S =⇒ ∃x, y ∈ U(h(x) = x′, h(y) = y′ and (x, y, z) ∈ R).

Moreover, the correspondence between complete and atomic Boolean mag-
mas with homomorphisms and ternary relational structures with bounded
morphisms is a categorical equivalence that is essentially due to [6].

A Boolean magma B is said to be represented by a (partial) magma M if
there exists an embedding of B into the complex algebra of M. A Boolean
magma is represented by a class K of (partial) magmas if it is represented by
some member of K.
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Theorem 1 ([3, 4])

• Boolean magmas are represented by partial magmas.
• Integral Boolean magmas are represented by magmas.
• Finite Boolean magmas are represented by finite magmas.
• Commutative Boolean magmas are represented by commutative partial

magmas.

More generally, Boolean magmas that satisfy any subset S′ of {(c′), (f ′), (t′)}
are represented by partial magmas that satisfy the corresponding subset S.

The following connection between complex algebras of partial magmas and
total magmas is useful for extending representability results to axiomatizing
varieties generated by classes of magmas. For any partial magma M, define
the total one-point extension magma Mo = M ∪ {o} by

x ·Mo y =

{
xy if xy is defined in M

o otherwise.

Lemma 2

1. The map h : M+
o → M+ defined by h(X) = X ∩M is a Boolean magma

homomorphism, hence (PMod(Σ))+ ⊆ H((Mod(Σ))+).
2. Let Σ be a set of magma identities. Then M |= Σ =⇒ Mo |= Σ.
3. Suppose V is a subvariety of Boolean magmas such that every member of

V is representable by (PMod(Σ))+ and (Mod(Σ))+ ⊆ V. Then V is the
variety generated by complex algebras of models of Σ.

We now extend Theorem 1 to the remaining 14 varieties of non-associative
magmas determined by subsets of {(c), (i), (n), (u)}.

1.2 Representable Boolean magmas

Problem 3.7 in [3] asks whether the variety generated by complex algebras of
idempotent magmas is finitely based, and whether square-increasing Boolean
magmas can be represented by idempotent partial magmas.

Our first result shows that both of these questions have positive answers.
Similar results for unital and inverse magmas are considered subsequently.
The concept of canonical extension for Boolean algebras with operators is
due to [6] and a brief definition and relevant properties can be found in [3]. A
formula is called canonical if it is preserved by taking canonical extensions.

Theorem 3 Every square-increasing Boolean magma B is representable by
an idempotent partial magma M. Moreover,

1. if B is finite we can take M to be finite,
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2. if B is integral then we can take M to be a total magma,
3. if B is commutative we can take M to be commutative, and
4. if B is commutative and integral we can take M to be a total commutative

magma.

Proof Let B be a square-increasing Boolean magma. By Theorem 2.3, 2.4 of
[3] we can assume that B is complete and atomic since the square-increasing
law is canonical.

Let A be the set of atoms of B, and let + be a group operation on A, with
identity 0 ∈ A and inverse of a ∈ A written as −a. Since any set can be the
carrier of a group, this is always possible. Define a partial magma operation
· on M = A×A by

(a, x) · (b, y) =

{
(a− x+ y, x) if a− x+ y ≤ a ·B b

undefined otherwise.

This definition implies that (a, x) · (a, x) = (a − x + x, x) = (a, x) since
a − x + x = a ≤ a ·B a follows from B being square-increasing. Hence M =
⟨M, ·⟩ is an idempotent partial magma.

A map e : B → M+ is defined on atoms by e(a) = {(a, x) : x ∈ A}
and lifts to all elements of B by mapping joins in B to unions in M+. Since
A×A is partitioned by the sets e(a) for a ∈ A, this map is a Boolean algebra
embedding, and it suffices to show that e(a ·B b) = e(a) · e(b) for all a, b ∈ A.
Equivalently we need to show that the first projection π1 : M → A is a
bounded morphism, i.e., for all u, v ∈ A

(u, v) ∈ e(a) · e(c) if and only if u ≤ a ·B b.

For the forward implication assume (u, v) ∈ e(a) · e(b). Then (a, x) · (b, y) =
(u, v) for some x, y ∈ A, so from the definition of · in M we deduce u =
a − x + y ≤ a ·B b. For the reverse implication, assume u ≤ a ·B b and let
v ∈ A be given. Take x = v and y = v− a+ u. Then u = a− v+ v− a+ u =
a− x+ y ≤ a ·B b, hence (a, x) · (b, y) = (u, v) from which (u, v) ∈ e(a) · e(b)
follows.

Now (1) holds by construction. For (2) observe that if B is integral then
we can define a function g : M → A such that g(a, b) ≤ a ·B b for all a, b ∈ A.
Redefine · on M by

(a, x) · (b, y) =

{
(a− x+ y, x) if a− x+ y ≤ a ·B b

(g(a, b), 0) otherwise

and repeat the above argument to show that the map e is still an embedding.
(3) requires redefining M = A × A × {0, 1}. Let ⪯ be any total order on

A, and extend it lexicographically to an order on A× {0, 1} by

(a, i) ⪯ (a′, i′) ⇐⇒ a ≺ a′ or (a = a′ and i ⪯ i′).
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Then the set U = {((a, i), (a′, i′)) : (a, i) ⪯ (a′, i′)} has cardinality |U | ≥ |M |,
since if |A| is finite then

|U | = 1

2
(|A× {0, 1})2 + |A× {0, 1}|) = 2|A|2 + |A| = |M |+ |A|

and otherwise |A| = |M |. Hence for every a ∈ A we can define a surjective
function fa : U → M such that fa((b, i), (b

′, i′)) = (a, b, i) if b = b′ and i = i′

(fa can be arbitrary on other elements of U , as long as the map is surjective).
We now define · : M2 → M by (a, b, i) · (a′, b′, i′) =

fa((b, i), (b
′, i′)) if (b, i) ⪯ (b′, i′) and π1(fa((b, i), (b

′, i′))) ≤ a · a′

fa((b
′, i′), (b, i)) if (b′, i′) ⪯ (b, i) and π1(fa((b

′, i′), (b, i))) ≤ a′ · a
undefined otherwise.

It is easy to check that this binary operation is commutative and idempotent.
The embedding of B into M+ is defined on atoms by e(a) = {(a, x, i) : x ∈
A, i ∈ {0, 1}}. The proof that this is a Boolean semilattice embedding is
similar to the argument for (1).

Finally, (4) is proved by modifying (3), in the same way that (1) was
modified to obtain a proof of (2). □

· e a b −1

e e a b e

a a a∨b e∨a∨b b

b b e∨a∨b b a

↪→

· e aa0 aa1 ab0 ab1 bb0 bb1 ba0 ba1 −1

e e aa0 aa1 ab0 ab1 bb0 bb1 ba0 ba1 e

aa0 aa0 aa0 bb0 bb1 ba0 e bb0 bb1 ba0 bb1

aa1 aa1 bb0 aa1 ba1 bb0 aa0 e ba1 bb0 bb0

ab0 ab0 bb1 ba1 ab0 bb1 aa1 ab0 e bb1 ba1
ab1 ab1 ba0 bb0 bb1 ab1 ab1 aa0 aa1 e ba0

bb0 bb0 e aa0 aa1 ab1 bb0 bb0 bb1 ba0 aa1

bb1 bb1 bb0 e b0 aa0 bb0 bb1 ba1 bb0 aa0
ba0 ba0 bb1 ba1 e aa1 bb1 ba1 ba0 bb1 ab1

ba1 ba1 ba0 bb0 bb1 e ba0 bb0 bb1 ba1 ab0

B M

Table 1.1 An integral commutative square-increasing inverse unital Boolean magma
B and the corresponding commutative idempotent inverse unital magma M (a triple
(x, y, i) is denoted by xyi).

Corollary 4 The variety of square-increasing Boolean magmas is generated
by all complex algebras of idempotent magmas.

The variety of commutative square-increasing Boolean magmas is generated
by all complex algebras of commutative idempotent magmas.

The technique of Theorem 3 is easily extended to cover the formulas (n)
and (u) which leads to the following general result.
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Theorem 5 Let BMag denote the variety of Boolean magmas. For any S ⊆
C − {(a)} we have BMag ∩ Mod(S′) = S(Mod(S)+).

For any S ⊆ {(c), (i), (u)} we have BMag ∩ Mod(S′) = HSP(Mod(S)+).

We now discuss what happens if associativity (a) is included as one of the
axioms. As mentioned before, magmas that satisfy (a), (n), (u) are groups,
hence the complex algebras generate the variety GRA of group relation al-
gebras. However the variety of Boolean magmas generated by models of
(a), (n′), (u) is the variety IRA of integral relation algebras. Since the complex
algebra construction preserves (a) and (u), and replaces (n) by (n’), clearly
GRA ⊆ IRA, but Monk [9] showed that GRA is not even finitely axiomatizable
over IRA. Monk’s result also shows that this situation persists if commutativ-
ity (c) is added. In a comprehensive monograph [2], Hajnal Andreka, Steve
Givant and Istvan Nemeti show that many subvarieties of GRA have unde-
cidable equational theories. This includes GRA, commutative GRA and the
variety generated by complex algebras of groups of exponent 2.

In [5] a result of Hajnal Andreka [1] is used to show that the variety
generated by complex algebras of semigroups (or commutative semigroups)
is not finitely axiomatizable. Building on work of P. Reich [10], it is also
shown in [5] that all Boolean semigroups with ≤ 4 elements are representable
in the complex algebra of a semigroup, but for larger Boolean semigroups
there is so far no algorithm for deciding if a particular Boolean semigroup is
representable by some (perhaps infinite) semilattice. For other subsets of C
that include (a), the situation is not so clear.

1.3 Representable Boolean semilattices

A Boolean semilattice is a Boolean magma satisfying the additional axioms

(x · y) · z = x · (y · z) x · y = y · x and x ≤ x · x.

The complex algebra of a semilattice is always a Boolean semilattice since
associativity and commutativity are preserved by passing from a magma
to its complex algebra, while idempotence of the magma operation implies
that the complex operation is square-increasing. A Boolean semilattice B is
representable if there exists a semilattice S such that B is isomorphic to a
subalgebra of S+.

Let S(SL+) be the class of subalgebras of complex algebras of semi-
lattices. Algebras in S(SL+) are of the form ⟨A,∨,∧,−, 0, 1, ·⟩ such that
(A,∨,∧,−, 0, 1) is a Boolean algebra and · is a commutative, associative
operator (distributes over ∨ and x0 = 0). It is an open problem to find an
axiomatization for the variety V(SL+) generated by all complex algebras of
semilattices.

Let LSL be the class of linearly ordered semilattices.
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Theorem 6 (Bergman [3]) The variety V(LSL+) generated by complex al-
gebras of linearly ordered semilattices is the variety of Boolean algebras with
a commutative associative idempotent binary operator.

Hence V(LSL+) is finitely axiomatized relative to all Boolean semilattices
by the single identity xx = x.

The next lemma shows that representable Boolean semilattices have some
unexpected equational and quasiequational properties. The notation x − y
abbreviates x ∧ −y.

Lemma 7 Representable Boolean semilattices satisfy the following formulas:

(1) x ∧ y1 ≤ xy
(2) x(xy − x) ≤ x2 ∨ (xy − x)2

(3) x ≤ yw =⇒ xz ≤ x(yz ∧ v) ∨ w(yz − v)
(3’) (x ∧ yw)z ≤ (x ∧ yw)(yz ∧ v) ∨ w(yz − v)
(4) xy ≤ x ∨ y =⇒ x2 ∧ y2 ≤ xy
(5) yz ≤ u ∨ v =⇒ xy ∧ zw ≤ xu ∨ wv
(5’) xy ∧ zw ≤ x(yz ∧ u) ∨ w(yz − u)
(6) x ≤ xy, yz ≤ v ∨ y, xv ∧ xz = 0, v ≤ xy ∧ yz =⇒ v ≤ y2

(7) x ≤ xy, xv ∧ xz = 0 =⇒ x1 ∧ wz ≤ w(yz − v)

Moreover (3) ⇔ (3’) ⇒ (2), and (5) ⇔ (5’) ⇒ (4), whereas (1) ̸⇒ (2), (1)–(2)
̸⇒ (3), and (1)–(3) ̸⇒ (4).

Proof Let B be representable and x, y, z, u, v, w ∈ B. Then B is a subalgebra
of S+ for some semilattice S, hence x, y, z, u, v, w are subsets of S.

(1) Assuming p ∈ x ∧ y1, we have p ∈ x and p = y′q for some y′ ∈ y
and q ∈ S. Hence p ≤ y′ in the semilattice S, from which it follows that
p = py′ ∈ xy.

For (2), let p ∈ x(xy − x). Then p = x′q for some x′ ∈ x and q ∈ xy − x.
Hence q = x′′y′ for some x′′ ∈ x, y′ ∈ y. If x′y′ ∈ x then p = x′q = (x′y′)x′′ ∈
x2. If x′y′ /∈ x then x′y′ ∈ xy − x, so p = (x′y′)q ∈ (xy − x)2.

For (3), assume x ≤ yw and let p ∈ xz. Then p = x′z′ for some x′ ∈ x and
z′ ∈ z. From x ≤ yw we deduce x′ = y′w′ for some y′ ∈ y, w′ ∈ w. If y′z′ /∈ v
then y′z′ ∈ yz − v, so p = (y′w′)z′ = w′(y′z′) ∈ w(yz − v). If y′z′ ∈ v then
p = (y′w′)z′ = (y′w′)(y′z′) ∈ x(yz ∧ v).

(3’) is an identity equivalent to (3), obtained by replacing x in (3) by
x ∧ yw. To see that (3) implies (2), replace in (3) x by xy − x, w by x, z by
x and v by −x.

To prove (4), assume xy ≤ x∨y and let p ∈ x2∧y2. Then p = x′x′′ = y′y′′

for some x′, x′′ ∈ x, y′, y′′ ∈ y. Since x′y′ ∈ xy we have x′y′ ∈ x or x′y′ ∈ y.
In the first case, p = (x′y′)y′′ ∈ xy and in the second case p = x′′(x′y′) ∈ xy.

(5) is a generalization of (4), since if we replace x, y, z, u, v, w in (5) by
x, x, y, y, x, y then the result is (4). To see that (5) implies the identity (5’),
take u := yz ∧ v and v := yz − v in (5), then yz ≤ u ∨ v and we get the
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desired conclusion. Conversely, if (5’) holds and yz ≤ u ∨ v, then yz ∧ u ≤ u
and yz − u ≤ (u ∨ v)− u ≤ v so (5’) implies (5).

(6) is left as an exercise, with the hint that its proof is similar to (7).
To prove (7), assume x ≤ xy, xv ∧ xz = 0 and p ∈ x1 ∧ wz. Then p =

w′z′ ≤ x′ for some w′ ∈ w, z′ ∈ z and x′ ∈ x. Since x ≤ xy, we have x′ ≤ y′

for some y′ ∈ y. Hence x′z′ ≤ y′z′, so x′z′ = x′y′z′. Now xv ∧ xz = 0 implies
x′z′ /∈ xv, whence y′z′ ∈ yz − v. Finally p ≤ x′ ≤ y′ implies p = py′ =
w′z′y′ = w′(y′z′) ∈ w(yz − v).

To see that part of the list is irredundant, we provide Boolean semigroups
Ci that satisfy (1)–(i) but fail (i+ 1) (for i ≤ 4):

· a b

a a b
b b 1
C1

x = a
y = b

· a b c

a a∨b 1 1
b 1 a∨b 1
c 1 1 1

C2

x = a
y = a

· a b c

a 1 a∨b 1
b a∨b 1 1
c 1 1 1

C3

x = u = a
y = z = b
v = b∨c

· a b c

a a∨c a∨b 1
b a∨b b∨c 1
c 1 1 1

C4

x = a
y = b

□

There exist 16-element counterexamples showing that (6),(7) are not im-
plied by (1)–(5). It is not known at this point whether (5) is strictly stronger
than (4), or whether (6), (7) are independent (in the presence of (1)–(5)).

Up to isomorphism, there is a unique Boolean semilattice with 2 elements,
denoted by A0. It is the complex algebra of the 1-element semilattice, and
is term-equivalent to the two element Boolean algebra since x · y = x ∧ y.
Figure 1.2 shows all integral Boolean semilattices with 4 elements (1 = a∨ b)
and their semilattice representations (a = ◦, b = •):

· a

a a
A0

· a b

a a a

b a b
A1

· a b

a a a

b a 1
A2

· a b

a a 1

b 1 b

A3

...
· a b

a a 1

b 1 1

A4

...
...

· a b

a 1 1

b 1 1

A5

...
...

...
...

Fig. 1.2 Nontrivial Boolean semilattices with ≤ 4 elements (hence ≤ 2 atoms)

Note that A1,A2 are represented by finite semilattices, while the other
three cannot be represented by a finite semilattice. The following lemmas
provide a simple criterion for a Boolean semilattice that implies any repre-
senting semilattice is necessarily infinite.

Lemma 8 Suppose B is a Boolean semilattice and there exist two non-zero
elements a, b ∈ B such that a ∧ b = 0 and a ∨ b ≤ ab. If S is any semilattice
and e : B → S+ is an embedding then S is infinite.
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Proof From the assumption that a ∧ b = 0 and a, b ≤ ab it follows that
e(a)∩ e(b) = ∅ and e(a), e(b) ⊆ e(a)e(b). Hence for any a1 ∈ e(a) there exists
b1 ∈ e(b) such that a1 < b1, and for any b1 ∈ e(b) there exists a2 ∈ e(a) such
that b1 < a2. Continuing by induction, we obtain two infinite sequences of
distinct elements. Since all these elements are in the semilattice S, the set S
is infinite. □

For any Boolean semilattice, define the relation ⊑ by x ⊑ y if and only if
x ≤ xy.

Lemma 9 Let B be a Boolean semilattice.

1. ⊑ is reflexive on B.
2. ⊑ is transitive on B if and only if B satisfies x ∧ 1y = x ∧ xy.
3. If B is representable by a finite semilattice then ⊑ is antisymmetric on the

atoms of B.

Proof (1) holds since x ≤ xx. For (2), assume ⊑ is transitive and x ≤ y1.
Then x ≤ xx ≤ xy1, and y1 ≤ yy1 = y1y. Hence x ⊑ y1 ⊑ y, so by
transitivity x ⊑ y, i.e. x ≤ xy.

Conversely, assume x ≤ y1 =⇒ x ≤ xy holds for all x, y, and let x ⊑ y ⊑
z. Then x ≤ xy and y ≤ yz, whence x ≤ xyz ≤ 11z = 1z. By assumption,
x ≤ xz.

Since distinct atoms are always disjoint, (3) follows from Lemma 8. □

1.4 Constructions of representable Boolean magmas

We now consider some constructions on Boolean magmas that preserve rep-
resentability. As in [3], the atom-structure of a complete and atomic Boolean
semilattice B is denoted by B+ = ⟨B+, R⟩ where B+ is the set of atoms of
B and R = {(a, b, c) ∈ (B+)

3 : c ≤ a · b}.
The tensor product A ⊗B of two complete and atomic Boolean magmas

A,B is defined as (A+×B+)
+. Note that if A and B are Boolean semilattices,

so is A⊗B.

Theorem 10 If A is representable by a magma MA, and B is representable
by a magma MB then A⊗B is representable by MA ×MB.

Proof Assume e : A ↪→ M+
A and f : B ↪→ M+

B are the embeddings that
show A,B are representable. Then there are bounded epimorphisms e+ :
MA ↠ A+ and f+ : MB ↠ B+, hence we can define a surjective map
g : MA × MB ↠ A+ × B+ by g(x, y) = (e+(x), f+(y)). This is easily seen
to be a bounded morphism, whence g+ is the required embedding into the
complex algebra of the semilattice MA ×MB. □
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Table 1.3 shows the tensor product A3 ⊗A3 and its representation in the
semilattice N×N. Note that A5 is a subalgebra of this tensor product, hence
A5 is also representable in N× N.

· a b

a a 1

b 1 b

A3 ⊗

· a b

a a 1

b 1 b

A3 =

· aa ab ba bb

aa aa aa ∨ ab aa ∨ ba 1

ab aa ∨ ab ab 1 ab ∨ bb
ba aa ∨ ba 1 ba ba ∨ bb

bb 1 ab ∨ bb ba ∨ bb bb

A3 ⊗A3

a

b

a

b

a

⊗

A3

a

b

a

b

a

=

A3

aa

ab

bb

ba

aa

ab

aa

ba

aa

ab

aa

ab

aabbbb

A3 ⊗A3

Table 1.3 Tensor product of two Boolean magmas and their representations. The no-
tation aa, ab, etc. abbreviates (a, a), (a, b) . . . .

The notation A(n) is used for the repeated tensor product with n factors
of A, i.e., A(1) = A and A(n+1) = A(n) ⊗A. Table 1.4 gives the operation
table on the atoms of A(3)

3 , which is representable in N3.
This representation was used to represent the algebra B41 (see Figure 1.5).

Previously this Boolean magma was not known to have a semilattice repre-
sentation.

The ordinal sum of two magmas M,N is M⊕N = ⟨M ⊎N, ·⟩ where

x · y =


xy if x, y ∈ S or x, y ∈ T

x if x ∈ S, y ∈ T

y if y ∈ S, x ∈ T .

If both M,N are associative, commutative or idempotent then so is their
ordinal sum. In particular, if both M,N are semilattices then the ordinal
sum is a semilattice that stacks a copy of M below a copy of N.



1 On the representation of Boolean magmas and Boolean semilattices 13

· a b c d f g h k

a a a∨b a∨c a∨b∨c∨d a∨f a∨b∨f∨g a∨c∨f∨h 1
b b a∨b∨c∨d b∨d a∨b∨f∨g b∨g 1 b∨d∨g∨k
c c c∨d a∨c∨f∨h 1 c∨h c∨d∨h∨k
d d 1 b∨d∨g∨k c∨d∨h∨k d∨k
f f f∨g f∨h a∨b∨c∨d
g g a∨b∨c∨d g∨k
h h h∨k
k k

f

a

b

g h

c

d

k

Table 1.4 Operation table and representation of A3 ⊗A3 ⊗A3 = A
(3)
3

· a b c

a a 1 1

b b 1
c 1

B41

= c
= b
= a

··
·
··
·
··
·

··
·

· ·
·

· ·
·

· ·
·

· ·
·

··
·

Fig. 1.5 The semilattice representation of B41

The construction can be adapted for Boolean magmas, Boolean semigroups
or Boolean semilattices. The ordinal sum A⊕B of Boolean magmas A and
B is an algebra C such that C = A × B, where the Boolean operations are
defined pointwise and

(a, b) ·C (c, d) =


(ac ∨ a ∨ c, bd) if b, d ̸= 0

(ac ∨ a, bd) if b = 0, d ̸= 0

(ac ∨ c, bd) if b ̸= 0, d = 0

(ac, bd) if b = 0 = d.

Theorem 11 If A and B are Boolean semigroups or semilattices then A⊕B
is a Boolean semigroup or a Boolean semilattice respectively.

Furthermore, if A is representable by a semigroup or semilattice SA, and
B is representable by a semigroup or semilattice SB then the ordinal sum
SA ⊕ SB gives a representation of A⊕B.

Proof Assume A and B are Boolean semilattices. Then clearly the magma
operation ·C is idempotent and commutative. To see that it is associative
consider the following calculation for b, d, g ̸= 0



14 P. Jipsen, M. E. Kurd-Misto and J. Wimberley

((a, b) ·C (c, d)) ·C (f, g) = ((ac ∨ a ∨ c)f ∨ ac ∨ a ∨ c ∨ f, bdg)

= (acf ∨ af ∨ cf ∨ ac ∨ a ∨ c ∨ f, bdg) and
(a, b) ·C ((c, d) ·C (f, g)) = (a(cf ∨ c ∨ f) ∨ a ∨ cf ∨ c ∨ f, bdg)

= (acf ∨ ac ∨ af ∨ cf ∨ a ∨ c ∨ f, bdg)

The remaining 7 cases when one or more of b, d, g are 0 can be checked
similarly. Moreover, (a, b)·C(0, 0) = (a0∨0, b0) = (0, 0) and assuming b, d, g ̸=
0 we have

(a, b) ·C ((c, d) ∨ (f, g)) = (a(c ∨ f) ∨ a ∨ c ∨ f, b(d ∨ g))

= (ac ∨ a ∨ c ∨ af ∨ a ∨ f, bd ∨ bg)

= ((a, b) ·C (c, d)) ∨ ((a, b) ·C (f, g)).

Now suppose h : A ↪→ S+
A and k : B ↪→ S+

B are the embeddings that show
A,B are representable. An embedding l : A ⊕ B ↪→ S+

A ⊕ S+
B is defined by

l(a, b) = (h(a), k(b). This is clearly an injective Boolean morphism, and we
compute

l((a, b) · (c, d)) = l(ac ∨ a ∨ c, bd)

= (h(ac ∨ a ∨ c), k(bd))

= (h(a)h(c) ∨ h(a) ∨ h(c), k(b)k(d))

= (h(a), k(b)) · (h(c), k(d))
= l(a, b) · l(c, d)

So to show that A⊕B is representable, it suffices to show that S+
A ⊕ S+

B is
isomorphic to (SA ⊕ SB)

+. The isomorphism maps a pair (U, V ) to U ⊎ V ,
and it is straight forward to check that this preserves · and the Boolean
operations. □

An example of this construction is given in Figure 1.6. The lower part of the
diagram is a representation of A4 in an infinite semilattice. The upper part
is A0, a 2-element Boolean algebra, represented by a 1-element semilattice.
The 8-element Boolean magma B1 is isomorphic to A0 ⊕ A4, hence B1 is
representable.

Let B be a Boolean semigroup and define the countable ordinal sum B⊕

to have the same elements and Boolean operations as B and

x ·B
⊕
y =

{
(x ·B y) ∨ x ∨ y if x, y ̸= 0

0 if x = 0 or y = 0.
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· a b c

a a b c
b b b∨c
c b∨c

B1

··
·

Fig. 1.6 An ordinal sum representation of B1
∼= A0 ⊕A4

Theorem 12 (Countable ordinal sum of B) For any Boolean semigroup
B, B⊕ is a Boolean semigroup and if B is commutative then B⊕ is a Boolean
semilattice.

Moreover, if SB is a semigroup that represents B then the countable ordinal
sum ⊕k∈NSB is a semigroup representation of B⊕.

Proof If suffices to show associativity, so let x, y, z ∈ B and denote x ·B⊕
y

by xy. If any one of x, y, z is 0, then (xy)z = 0 = x(yz), and if they are all
nonzero, then

(xy)z = (x·y ∨ x ∨ y)·z ∨ (x·y ∨ x ∨ y) ∨ z

= x·y·z ∨ x·z ∨ y·z ∨ x·y ∨ x ∨ y ∨ z

= x·(y·z ∨ y ∨ z) ∨ x ∨ (y·z ∨ y ∨ z) = x(yz).

Assume e : B → S+
B is an embedding that represents B. Let T be the

countable ordinal sum of SB, and for s ∈ SB, let si be the copy of s in the ith

disjoint summand of T . The representation of B⊕ is defined by e′ : B⊕ → T+

where e′(x) = {si | s ∈ e(x) and i ∈ N}. It is straight forward to check that
this is a Boolean semigroup homomorphism. □

As an application, we note that in Figure 1.2 A3 = A⊕
1 and A4 = A⊕

2 .
Similarly several of the 8-element Boolean semilattices in the Appendix have
representations based on the countable ordinal sum construction.

For the last general construction, let B be a Boolean semigroup and define
B2 to be the Boolean algebra B× 2 with binary operation

(x, i) · (y, j) = (xy ∨ xj ∨ iy, i ∧ j)

where 2 is identified with the subset {0, 1} of B.

Theorem 13 (The doubling extension of B) If B is a Boolean semigroup
or Boolean semilattice then the same holds for the algebra B2.

If B is represented by a semigroup SB, then B2 is represented by the
product SB × 2, where 2 is the semilattice with 2 elements.

Proof Associativity of · follows from associativity of B and the calculation
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((x, i)(y, j))(z, k) = (xy ∨ xj ∨ iy, i ∧ j)(z, k)

= ((xy ∨ xj ∨ iy)z ∨ (xy ∨ xj ∨ iy)k ∨ ijz, i ∧ j ∧ k)

= (xyz ∨ xjz ∨ iyz ∨ xyk ∨ xjk ∨ iyk ∨ ijz, i ∧ j ∧ k)

= x(yz ∨ jz ∨ yk) ∨ xjk ∨ i(yz ∨ yk ∨ jz), i ∧ j ∧ k)

= (x, i)(yz ∨ yk ∨ jz, j ∧ k) = ((x, i)(y, j))(z, k).

Similarly one can check that · is an operator that also preserves commutativ-
ity and the square-increasing law. Given an embedding e : B → S+

B, define
e′ : B2 → (SB × 2)+ by e′(x, i) = (e(x) × {0}) ∪ δ(i), where δ(0) = ∅ and
δ(1) = SB×{1}. Then e′ is injective, and to see that it preserves · we compute

e′((x, i)(y, j)) = e′(xy ∨ xj ∨ iy, i ∧ j)

= e(xy ∨ xj ∨ iy)×{0} ∪ δ(i ∧ j)

= e(xy)×{0} ∪ e(xj)×{0} ∪ e(iy)×{0} ∪ δ(i)δ(j)

= (e(x)e(y))×{0} ∪ (e(x)×{0})δ(j) ∪ δ(i)(e(y)×{0}) ∪ δ(i)δ(j)

= (e(x)×{0} ∪ δ(i)) · (e(y)×{0} ∪ δ(j)) = e′(x, i) · e′(y, j).

Similar calculations show that e′ is a Boolean homomorphism. □

Note that if B is a Boolean semilattice then SB is a semilattice, hence B2
is also a Boolean semilattice. The Boolean semigroup B2 differs from B⊗ 2
since the atom-structure of B2 has an extra atom while B⊗ 2 is isomorphic
to B.

As an application we observe that the Boolean semilattice B13 is repre-
sentable since it is isomorphic to A42 (see Figure 1.7).

· a b c

a a b∨c b∨c
b b b∨c
c b∨c

B13
= c

= b

= a

··
· ··

·

Fig. 1.7 A representation given by the doubling construction of B13
∼= A42

A semilattice is a tree-semilattice if its partial order is a tree, i.e., has a
bottom element and every principal downset is a chain. So a tree-semilattice
satisfies x, y ≤ z =⇒ x ≤ y or y ≤ x.

A Boolean semilattice is tree-representable if it is embedded in the complex
algebra of a tree-semilattice.
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Theorem 14 If B is a tree-representable Boolean semilattice then the identity
(x ∧ y1)z − x ≤ yz holds in B.

Proof Assume B is a subalgebra of T+ for some tree-semilattice T. Let p ∈
(x ∧ y1)z − x. Then p /∈ x and p = x′z′ for some x′ ∈ x, z′ ∈ z and x′ ≤ y′

for some y′ ∈ y. If x′ ≤ y′z′ then x′ = x′y′z′ = py′ = p, contradicting p /∈ x.
Since T is a tree-semilattice and y′ is an upper bound for both x′ and y′z′,
it follows that y′z′ ≤ x′. Hence p = x′z′ = x′y′z′ = y′z′ ∈ yz. □

We note that A0,A1,A2,A3 are tree-representable (Figure 1.2). In the
appendix all 8-element tree-representable Boolean semilattices are given in
Figures 1.12, 1.11.

A computer calculation shows that there are (up to isomorphism) 79
integral Boolean semilattices with 8 elements that satisfy the formulas in
Lemma 7. Of these, 72 are known to be representable (listed with represen-
tations in the Appendix). The representation of B40 (Figure 1.8) was found
by Miklos Maroti [7]. It is an open problem whether the remaining 7, shown
in Table 1.9, are representable.

· a b c

a a 1 1
b b 1

c c

B40

= c
= b
= a

··
·

··
·

··
···

·
··

··
·

··
···

·

··
·

··
·

Fig. 1.8 A Boolean semilattice with a representation found by M. Maroti [7]

· a b c

a a a∨c a∨c
b b∨c a∨c
c a∨c

B17

· a b c

a a a∨b 1

b b∨c 1

c 1
B32

· a b c

a a a∨b 1
b a∨b 1

c b∨c
B34 = B⊕

17

· a b c

a a∨c b∨c b∨c
b b∨c b∨c
c b∨c

B45

· a b c

a a∨c 1 a∨c
b b∨c 1
c a∨c
B46 = B⊕

45

· a b c

a a∨c 1 1
b a∨b 1

c b∨c
B48

· a b c

a a∨c 1 1
b a∨b 1

c 1

B49

Table 1.9 Seven 8-element Boolean semilattices without known representations.
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1.5 Appendix: Known representations for 8-element
Boolean semilattices

For each of the tables below, we provide (where known) a semilattice with the
elements partitioned into three disjoint subsets a, b, c such that the complex
products of these subsets give the values in the table. Note: a = , b = ,
c = .

· a b c

a a b c
b b b∨c
c b∨c

B1 = A4 ⊕A0

...
· a b c

a a b c
b b∨c b∨c
c b∨c
B2 = A5 ⊕A0

...
· a b c

a a b b∨c
b b b∨c
c c

B3

...
...

· a b c

a a b b∨c
b b b∨c
c b∨c

B4

...
... · a b c

a a b b∨c
b b∨c b∨c
c c

B5

...
......

· a b c

a a b b∨c
b b∨c b∨c
c b∨c

B6

...
...

...
......

· a b c

a a b a∨c
b b b
c b∨c

B7

...
· a b c

a a b a∨c
b b b
c 1

B8

... · a b c

a a b 1
b b b
c c
B9

... · a b c

a a b 1
b b b
c b∨c

B10

...

· a b c

a a b 1
b b b
c 1
B11

...
· a b c

a a b∨c b∨c
b b b∨c
c c

B12

...

... · a b c

a a b∨c b∨c
b b b∨c
c b∨c

B13

...
...

· a b c

a a b∨c b∨c
b b∨c b∨c
c b∨c

B14

...
...

......

· a b c

a a a a
b b∨c 1
c a∨c

B15

...
· a b c

a a a a
b b∨c 1
c 1

B16

...
...

...
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· a b c

a a a∨c a∨c
b b∨c a∨c
c a∨c
B17 Rep.?

· a b c

a a a∨b a∨c
b b b∨c
c b∨c
B18 = Bf⊕

1

...
· a b c

a a a∨b a∨c
b b b∨c
c 1

B19

... · a b c

a a a∨b a∨c
b b 1
c c

B20 = Bft⊕
1

...

· a b c

a a a∨b a∨c
b b 1
c a∨c
B21 = Bft⊕

2

... · a b c

a a a∨b a∨c
b b 1
c 1

B22 = Bft⊕
6

· a b c

a a a∨b a∨c
b b∨c b∨c
c b∨c
B23 = Bt⊕

4

· a b c

a a a∨b a∨c
b b∨c 1
c a∨c
B24 = Bf⊕

4

· a b c

a a a∨b a∨c
b b∨c 1
c 1
B25 = B⊕

16

· a b c

a a a∨b a∨c
b a∨b 1
c 1

B26 = Bft⊕
9

· a b c

a a a∨b a∨c
b 1 1
c 1
B27 = Bt⊕

7

· a b c

a a a∨b 1
b b 1
c c
B28 = B⊕

12

· a b c

a a a∨b 1
b b 1
c 1
B29 = Bt⊕

10

...
... · a b c

a a a∨b 1
b b∨c b∨c
c c

B30

...
...

...
...
· a b c

a a a∨b 1
b b∨c b∨c
c b∨c

B31

......
...

...
... · a b c

a a a∨b 1
b b∨c 1
c 1
B32 Rep.?

· a b c

a a a∨b 1
b a∨b 1
c c
B33 = B⊕

13

· a b c

a a a∨b 1
b a∨b 1
c b∨c
B34 = B⊕

17

· a b c

a a a∨b 1
b a∨b 1
c 1
B35 = Bt⊕

11

...
...

... · a b c

a a a∨b 1
b 1 b∨c
c c

B36

...
...

...
...

...

· a b c

a a a∨b 1
b 1 1
c c

B37 ≤ A
(3)
3

· a b c

a a a∨b 1
b 1 1
c b∨c

B38 ≤ A
(2)
3 ⊗A4

· a b c

a a a∨b 1
b 1 1
c 1

B39 ≤ A
(4)
3

· a b c

a a 1 1
b b 1
c c

B40 Maroti[7]

· a b c

a a 1 1
b b 1
c 1

B41 ≤ A
(3)
3
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· a b c

a a 1 1

b b∨c b∨c
c b∨c
B42 = B⊕

14

· a b c

a a 1 1
b b∨c 1
c 1

B43 ≤ A
(4)
3

· a b c

a a 1 1
b 1 1

c 1
B44

...
...

...
...

...
· a b c

a a∨c b∨c b∨c
b b∨c b∨c
c b∨c

B45 Rep.?

· a b c

a a∨c 1 a∨c
b b∨c 1
c a∨c

B46 = B⊕
45

· a b c

a a∨c 1 1
b b∨c 1
c 1

B47 ≤ A
(3)
3 ⊗B23

· a b c

a a∨c 1 1
b a∨b 1

c b∨c
B48 Rep.?

· a b c

a a∨c 1 1
b a∨b 1

c 1

B49 Rep.?

· a b c

a a∨c 1 1
b 1 1
c 1

B50 ≤ A
(3)
4

Fig. 1.10 Representations for B1–B50, except B17, B32, B34, B45, B46, B48, B49

· a b c

a a b c
b b b∨c
c c

Bt
1 = A3 ⊕A0

...
· a b c

a a b a∨c
b b b

c c
Bt

2 = A0 ⊕A3

... · a b c

a a b a∨c
b b b

c a∨c
Bt

3 = A0 ⊕A4

...
...

...
...

· a b c

a a a a

b b∨c b∨c
c b∨c
Bt

4 = A0 ⊕A5

...
...

...
...

· a b c

a a a a

b a∨b 1

c a∨c
Bt

5

...
... · a b c

a a a a

b a∨b 1

c 1
Bt

6

...
...

...
...

· a b c

a a a a

b 1 1
c 1

Bt
7

...
...

...
... · a b c

a a a a∨c
b a∨b a∨c
c c

Bt
8

... · a b c

a a a a∨c
b a∨b a∨c
c a∨c

Bt
9

...
...
...

... · a b c

a a a∨c a∨c
b 1 a∨c
c c

Bt
10

...

· a b c

a a a∨c a∨c
b 1 a∨c
c a∨c

Bt
11

...
...

...
... · a b c

a a a∨b a∨c
b b b∨c
c c

Bt
12 = Bft⊕

3

... · a b c

a a a∨b a∨c
b a∨b 1

c a∨c
Bt

13

...
...

...
...

· a b c

a a∨c a∨c a∨c
b 1 a∨c
c a∨c

Bt
14

...
...
...

...
...
...

...
...

· a b c

a a∨c 1 a∨c
b 1 1
c a∨c

Bt
15

...
...

...
... · a b c

a 1 1 1

b 1 1
c 1

Bt
16

...
...

...
...

Fig. 1.11 Algebras representable by infinite tree semilattices
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· a b c

a a c c

b b c
c c

Bft
1

· a b c

a a c c

b b∨c c
c c

Bft
2

· a b c

a a b c

b b c
c c

Bft
3

· a b c

a a b a

b b b
c a∨c

Bft
4

· a b c

a a b a∨b
b b b
c b∨c

Bft
5

· a b c

a a b a∨b
b b b
c 1

Bft
6

· a b c

a a a a
b a∨b a
c a∨c

Bft
7

· a b c

a a a a
b a∨b a∨c
c a∨c

Bft
8

· a b c

a a a a
b a∨b a∨b
c 1

Bft
9

Fig. 1.12 Algebras representable by finite tree semilattices

· a b c

a a b c

b b b
c b∨c

Bf
1

· a b c

a a b b∨c
b b b
c c

Bf
2

· a b c

a a b b∨c
b b b
c b∨c

Bf
3

· a b c

a a a a

b b∨c a∨c
c a∨c

Bf
4

Fig. 1.13 Algebras representable by finite (non-tree) semilattices
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