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ABSTRACT 

Novel techniques for quantifying secondhand smoke 

diffusion into children's bedroom 

by Sunil Ramchandani 

The impact of secondhand smoking to health of general population, and specifically children, is a 

well-known phenomenon that researchers have studied for years. In this dissertation, I extend 

work done within a secondhand smoke intervention to understand and quantity the impact of 

intervention on flow of smoke air particle concentration from the main room where smoking 

generates air particle contamination to a room where a child living in the home sleeps. The paper 

also explores potential modelling techniques to proactively identify and the impact of the smoke 

air particles with the intent to discourage adults from smoking in the home and thus potentially 

minimizing the impact to children’s health. The data was analyzed using hierarchical linear 

models to quantify the impact of intervention.  The analysis finds that smoke air particles 

attenuated, on average, by 31.6% from the main room to the child’s room. Using hierarchical 

linear models, I also quantified the effect of intervention where the relationship between the 

main room and child’s room concentrations decreased once the intervention became active (-

0.146 to -0.034 based on random slope versus random intercept). I also developed an LSTM 

model that can proactively identify whether a smoking event would be an impact children’s 

health. The results of the model are very encouraging, with an accuracy of approximately 80% 

when using less than 4 minutes of main room data. The two key outcomes from this study are 1) 

I can quantify the impact of intervention on the flow of air particle concentration between the 
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main room and child’s room and 2) I am able to develop a modelling approach that can 

proactively identify the potential impact of SHS to health of the child. The study open doors for 

several possibilities including use of the findings by practitioners in counselling sessions to 

provide metrics to smoking adults and advice on the potential impact of smoking to the health of 

the child. The modelling approach also lays a foundation for future research to implement 

proactive, real time monitoring and notification in smart homes.  
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 1 Background 

1.1 Introduction 

Smoking combustible tobacco products causes cardiovascular disease (heart disease and stroke), 

more frequent and severe asthma attacks, fatal diseases such as cancer and chronic obstructive 

pulmonary disease (COPD)3. Besides having negative outcomes for smokers, smoking also 

produces second-hand smoke (SHS), a combination of mainstream smoke exhaled from smokers 

and smoke emitted from smoldering tobacco.9–13 There is substantial evidence that demonstrates 

the harm that short and long-term exposure to SHS represents to the respiratory and 

cardiovascular health of adults and children4. Studies show that there is no such thing as a "risk-

free" level of SHS exposure5. The smoke may expose bystanders to harmful constituents such as 

nicotine, heavy metals, ultrafine particulates, volatile organic compounds, and other toxicants.7,8 

Children have some of the highest SHS exposure rates in society, with 40% of children aged 

between 3-11 being exposed to tobacco SHS.5 SHS is particularly unsafe for children due to 

biological characteristics (higher breathing rates, immature lungs, and underdeveloped immune 

systems), making it challenging to filter toxins.4,5 Furthermore, children inhale a larger volume 

of air per body mass than adults, which results in higher relative doses of inhalation-related 

exposure. Studies suggest the health outcomes associated with children's exposure to SHS 

include sudden infant death syndrome, acute respiratory infections, and increased asthma 

severity.1,38  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464049/#R8
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The home is the primary location where children are exposed to tobacco SHS, especially when 

their parents smoke.38,47–51 People are indoors for an average of 80% to 90% of their day,46 with 

younger children spending most of that time in their home. Children are at risk of SHS exposure 

even if they are not in the same room as the smoking parent. Bedtimes for children are typically 

in the early evening, with one study indicating that grade K-4 children, on average, go to bed at 

8:27 pm.52 In contrast, American adult’s average in-bed time is 11:12 pm,5 which leaves nearly 

three hours for smoking, on average, while children sleep. Previous studies have reported the 

presence of a "daily dip-evening incline" class of smokers, with an elevated frequency of 

smoking later in the evening, possibly due to increased nicotine dependence.53 If children are 

sleeping during a late evening smoking event, there is the potential for SHS to infiltrate into their 

bedrooms, potentially without parents' knowledge. In addition to late evening cigarettes likely 

impacting children's sleeping environments, smokers often engage in night smoking after they 

have gone to bed, but before waking up to begin their day. For example, over four weeks, 41% of 

smokers attempting to quit reported a night smoking event, with these individuals' night smoking 

on 26% of nights.54 Beyond sleeping times, children likely spend a significant proportion of 

remaining in-home time in their bedroom while playing, studying, or engaged in other activities. 

During these periods, SHS infiltrating into the bedroom from in-home smoking locations could 

pose a health risk. 

Research indicates that parents reduce SHS exposure when they know that it is impacting their 

children's health.55 For example, an increase in pulmonary functionality was reported after 

surgery for children with a history of SHS exposure, but not for children who were not exposed 

to SHS.56-58 Typically, in everyday scenarios without severe indicators of vulnerability such as 

asthma or surgery, parents are less able to discriminate accurately and subsequently mitigate the 
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risks of SHS.59–61 There have been several studies over time that have called for the transmission 

of detailed microenvironment information concerning the impact associated with SHS exposure 

to help parents understand the true scope of risks and develop appropriate strategies to protect 

their children.11,63 However, this intervention approach is hampered by an insufficient 

understanding of  SHS diffusion dynamics, with much of our knowledge gained via experiments 

in controlled environment64 and computational models.65,70  

This dissertation aims to provide a more comprehensive assessment of children's potential for in-

home SHS exposure, more specifically assessing how SHS diffuses from smoking areas into 

sensitive, latent environments. SHS has typically been assessed via retrospective questionnaires 

or objective measures, such as air particle data, collected over short periods in a single location 

for a limited number of participants. Such designs do not allow SHS diffusion from smoking 

areas into other locales to be assessed. In contrast, this work will be performed in the context of a 

secondary analysis (i.e., collecting the data that has been part of an earlier study) of air particle 

data from a previously conducted SHS reduction trial. It focuses on  

a.) Quantifying the relationship between smoking occurring within a home and subsequent 

impact on the children's bedrooms. 

b.) Assessing changes in this relationship as a function of initiating the feedback delivered in the 

intervention.  

c.) Identifying household characteristics (e.g., home size or presence of cannabis smokers) that 

affect if/how tobacco smoke infiltrates children’s environments. 
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d) A mechanism to proactively identify the potential impact of SHS on health of child based on 

presence of smoke air particles within a home. 

There are several factors that can impact the health of child. The broader impact of this 

dissertation will be to help reduce SHS exposure to improve children's health. The aim is for the 

knowledge gained from this study to be used to design early notification systems will alter the 

parents' smoking behavior and potential reduce the impact the protect children’s health.  
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 2 Data Description & Pre-Processing 

2.1 Introduction to data  

The data used for the dissertation was generated by Project Fresh Air (PFA),27,28 a multiple 

baseline/randomized control trial aimed at reducing SHS in the households of smokers from a 

low-socioeconomic status (SES) population. The study enrolled 298 homes with at least one 

adult who generated indoor SHS (typically via cigarette smoking) and at least one SHS-exposed 

child living in the home (See Table 1 for sample demographics). Two Dylos DC1700 air particle 

monitors were installed inside each home to monitor air quality and calibrated to detect particles 

with sizes consistent with SHS. One monitor was installed in the main smoking room (MNR), 

and another was placed in the child’s bedroom (CHD), with both locations self-reported. To 

construct a site plan (Figure 1), project personnel used laser distance measurements to record 

each room’s dimensions and the home’s physical characteristics, including the distance between 

the monitors. The concentration of fine air particulate matter (PM 2.5)110 was measured every ten 

seconds by both monitors. In half of the homes, designated as the experimental condition, the 

monitors were fitted with programmed devices to deliver aversive visual and auditory feedback 

(yellow/red lights and tones) when air particle concentrations exceeded a threshold. For these 

homes, the trial was stratified into two phases: 1) baseline, a period during which monitor 

feedback was not active, and 2) treatment, the period during which the feedback was activated. 

The other half of the homes were enrolled in a control condition, where the monitors passively 

measured indoor air throughout the study.  
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The trial lasted approximately three months for each household, with the baseline phase 

representing, on average, the first two weeks of enrollment. Additionally, after both the first and 

last week in the study, trained staff administered a comprehensive computer-assisted face-to-face 

interview to gather data about smoking-related behaviors.  It included questions asked about each 

household member's smoking habits, other potential particle-generating behaviors (e.g., burning 

candles), and mitigation activities (e.g., opening windows) during the prior seven days. Parents 

also kept air diaries during this period. 
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Figure 1 : Generic layout of a sample home with monitors in main smoking room (MNR) 
and child's room (CHD). 
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Race/Ethnicity % or Mean (Standard Deviation) 
   Hispanic 34.20% 
   Other 23.70% 
   White 22.40% 
   Black 19.70% 
Marital Status  
   Married 36.00% 
   Single/Never Married 28.40% 
   Divorced/Separated 17.20% 
   Not married but living with a partner 17.20% 
   Widowed 1.20% 
Single Parent  
Yes 46.84% 
No 53.15% 
Marijuana   Consumption  
   Yes 15.30% 
   No 84.70% 
Home Type  
Apartment/Condo 52.19% 
Detached House 33.56% 
Townhouse 8.89% 
Duplex   4.06% 
Trailer/Mobile Home 1.26% 
# Adults 2.56 (1.09) 
# Children 2.16 (1.23) 
Average distance between rooms  in a home ( feet) 12.02 (10.68) 
# Rooms 5.90 (2.33) 

Table 1 : Demographic Information 

 

2.2 Preliminary data cleaning 

The air particle data for the 298 homes are stored in a separate file for each home.  The particle 

count, along with the capture time (time stamp) is reported. (Figure 2) illustrates a small sample 

of the data for a single home.  
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Figure 2: Particle count format for each home 

 

Before proceeding with analysis, two data issues were required to be addressed. The first is the 

presence of outliers in air particle monitor measures. There are 45 homes where select air particle 

measurements are greater than 3 standard deviations away from the home-specific mean particle 

count. Previous experience with the devices indicates that these measures are likely due to errors 

with the air particle devices, so I eliminated them from consideration in subsequent analyses. The 

second issue was incorrect timestamps. Seven homes had the CHD measurements with a 

timestamp in 2013, but the MNR measures with a timestamp in 2000. Each file was inspected, 

and the timestamp issue fixed manually.  

2.3 Main room (MNR) peak extraction 

A large proportion of the air particle data collected by the monitors consists of low-level, 

ambient concentrations associated with air particles' background levels. I am interested in the 

diffusion of particle concentration of diffusion of SHS primarily caused by cigarette smoking 

between MNR and CHD locations and therefore are most interested in time periods with elevated 

measures (i.e., peaks) that are reflective of poor air quality and are most likely representative of 

smoking events28.  Therefore, the first task in quantifying the relationship between the air particle 
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quality in the two rooms was to identify the time intervals associated with peaks within each 

home's time series to extract the relevant data. Because most smoking is expected to be initiated 

in the MNR location, I chose to extract peaks from the data in this location and then to extract 

data from corresponding times in the CHD location.  

Peak extraction methodologies can be based on various criteria, such as level thresholds106, 

variance105, and Fourier coefficients104. The level threshold is an adaptive technique where I 

apply a certain threshold to peaks selected by the algorithm and ignore spurious peaks. The 

variance technique is based on the principle of statistical dispersion, where a peak is a data point 

that is '𝑥𝑥' standard deviations away from the moving mean. The Fourier coefficient technique 

removes noise from the signal using an adaptive short-time discrete Fourier transform. The peaks 

with the highest intensity among the peak clusters are then recorded based on the signal-to-noise 

ratio. Since I am specifically interested in peaks that are generally consistent with smoking 

events, I decided to use a threshold technique as it was the simplest, and the results aligned with 

the suspected smoking events when I visually inspected the results.  

To implement the threshold algorithm, I began by smoothing the air particle data to reduce noise 

in the signal. The exponential weighted moving average was applied to smooth the signal with a 

span of 5 minutes. Figure 3 shows an example for a sample signal. A simple mean approach 

would apply uniform weights to the peaks, but I was more interested in the value of the signal 

values near the peak maximum. So, I selected the exponential weighted moving average to 

smooth the signal.    
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Figure 3 : The effect of exponential weighted moving average (top half) to a raw signal 
(bottom half)  

 

The find_peaks101 method from the Scipy package in Python was then used to identify the 

smoking events. This approach finds all local maxima by a simple comparison of neighboring 

values. A peak or local maximum is defined as any sample whose two direct neighbors on either 

side have a smaller amplitude. For flat peaks (more than one sample of equal amplitude wide), 

the middle sample index is returned (rounded down if the number of samples is even). Peak 

identification using this algorithm is an iterative process with three fundamental parameter 

values that need to be adjusted to identify the peaks.  
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Figure 4 : Key parameters to identify peaks. (1. Threshold Value, 2. The horizontal 
distance, 3. Prominence) 

As shown in Figure 4, these parameters are:  

 Threshold value:  minimum required height of the peak 

 Minimum horizontal distance:  measured in samples between neighboring peaks.  

 Prominence:  how well a peak stands out from the signal's surrounding baseline. It is the 

vertical distance between the peak and its lowest contour line. The contour line for a peak 

is identified by finding the lowest point of the adjacent peaks.  

I visually compared the peaks identified with various sets of parameters for randomly selected 

peaks from homes with both few and many peaks. This analysis indicated that the following 

values: a threshold value of 10,000 counts; minimal distance of 5,000; and prominence of 15 

optimally identified peaks with a shape and duration roughly consistent with tobacco smoking. 

This was determined by the domain expertise of PFA personnel. Since I am interested in peaks 

that represent smoking events, I used the above-outlined parameters.    

Once the peak locations were identified, I then moved to extracting the peak’s start and end time, 

which is vital for obtaining the dynamics of infiltration of SHS from the MNR to the CHD 
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location. To complete this task, I leveraged Python’s SciPy package and its find_widths function 

to identify the peak's start and end times. The algorithm to calculate a peak's width is as follows: 

1. Calculate the evaluation height  ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 with the formula ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 – 𝑃𝑃 * 𝑅𝑅 where  

ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the height of the peak itself, 𝑃𝑃 is the peak's prominence and 𝑅𝑅 a positive ratio 

specified with the argument relative height 

2. Draw a horizontal line starting with peak evaluation height ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and extending it in both 

directions until it intersects the signal.  

3. Calculate the width as the horizontal distance between the chosen endpoints on both 

sides. As a result of this, each peak's maximal possible width is the horizontal distance 

between its bases. 

I passed the location of each peak, along with the relative height (i.e., 𝑅𝑅) of 0.8, which 

preliminary visual analysis indicated was an appropriate value to use. I then labeled each of the 

peaks for a home from 1…𝑁𝑁, where 𝑁𝑁 is the total number of peaks in the home. The labeling of 

the peak helps with the analysis (e.g., I can precisely find out metrics for a particular peak). It 

also helps with visualizing the data (e.g., I can label peaks to understand exactly which peak I am 

referring to in a home) and in more in-depth analysis leveraging machine learning techniques to 

run the model over specific peak data. The labelling also helps to troubleshoot the analysis 

Figure 5 represents sample data for a home with peaks identified (red points) in the MNR and 

CHD location along with a start (yellow line) and end times (green line). 
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Figure 5: Peak start and end time for MNR and CHD. The red points are peak values in 
the MNR and CHD along with a start (yellow line) and end times (green line) 

 

2.4 Extraction of CHD location data and defining peak lag 

The analysis so far has been focused on the information from the MNR location, but I also need 

to extract the corresponding data from the CHD location. In our modeling efforts, I focus on 

defining the time between an MNR peak and the presence of elevated particle levels in the CHD 

room, which I call the lag. I calculate this property by considering the start and end time of a 

given MNR peak and identifying the maximum CHD air particle concentration value within this 

time interval. The lag is defined as the time between the   MNR peak maximum value and the 

time of this maximum CHD value.  As a representative example, in home 288, peak 2 starts at 

07:07:am and ends at 9.36 am with the maximum value at 7.54 am. The corresponding CHD data 

for the peak 2 has a maximum value is at 8.05 am, so the lag, in this case, is (8.05 am – 7.54 am) 

i.e., 11 minutes. 
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2.5 Peak characteristics 

Table 2 below provides summary statistics of the peaks extracted from the data. A total of 7,495 

MNR peaks identified over all homes, for an average of 261 peaks per home throughout their 

enrollment.  The average peak duration was 310 minutes and median was 188 minutes. The 

average maximum value of particle concentration in the MNR location was 44,992 and the CHD 

location was 15,618. The average lag between the timestamp of peak occurrence in the main 

room and the child room was 38.70 minutes.  

Statistic Mean Standard 

Deviation 

# Peaks per home 261.58 106.11 

Duration of peaks (Minutes) 310.87  1357.62 

Max value of peaks in MNR (Counts) 449,92.62 362,086.60 

Max value of peaks in CHD (Counts) 15,618.94 14,429.23 

Lag of peak between MNR and CHD location (Minutes) 38.70 96.81 

Table 2 : Descriptive statistics of the smoke particle data. 

 

2.6 Computationally efficient algorithm for data extraction 

Due to the volume of data (~1 million measures per monitor per home), it is important to identify 

an efficient way to analyze data. Relevant information from the CHD data was obtained by 

extracting the air particle data that corresponds to the times for every peak in the MNR. This 

process takes 4-5 hours to perform for the 298 homes in the study.  A Python code was 

implemented to take advantage of vectorization, a technique of implementing array operations 
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without using for loops. In addition, I used functions defined by various modules which are 

highly optimized that reduces the running and execution time of code. Vectorized array 

operations are typically faster than their base Python equivalents, with the biggest impact in any 

kind of numerical computations since Python is an interpreted language and most of the 

implementation is slow. The main reason for this slow computation comes down to the dynamic 

nature of Python and the lack of compiler level optimizations which incur memory overheads. In 

addition to vectorization, I leverage a Python package swifter that uses the CPU's multiple cores 

to run the process parallelly.  These optimization techniques reduced the runtime from 4-5 hours 

to approximately 30 minutes, a speedup of a factor of 8-10. All the preprocessed data and 

derived attributes were then stored in JSON files for future analysis. This approach to store data 

in key value pairs provide a flexible structure where we can add additional attributes without the 

need to modify the data structure to store the data. 

2.7 Data inclusion and exclusion 

I next identified peaks that were outliers in each home's data, which was accomplished by 

examining the mean and standard deviation of the maximum value for all peaks in a home. 

Outliers were defined as peaks with the maximum particle concentration greater than three 

standard deviations away from a home mean for all peaks. I identified these peaks and excluded 

them from the data analysis. I also found 10 peaks in the MNR location that do not have 

corresponding air particle data in the CHD location, i.e., there is no data in the CHD location that 

corresponds to the peak duration of the MNR location.  These peaks were eliminated from all 

subsequent analysis. This process is different than the deletion of outliers mentioned in the 

‘Preliminary data cleaning’ section.  The latter functioned over the measurement level, where 
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outliers were identified s based on the mean value of air particle concentration in the MNR 

location. The former excludes peaks in MNR that do not have corresponding peaks in the CHD 

location.   
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 3 Quantifying the relationship between 
MNR and CHD concentrations  

3.1 Introduction 

The analysis in this chapter is focused on quantifying the overall relationship between PM2.5 in 

the MNR and CHD and to assess changes in this relationship associated with the introduction of 

the PFA intervention. More specifically, I would like to understand i.) whether SHS diffuses into 

the CHD location, ii.) how quickly this occurs, iii.) how much does the intensity of SHS 

contamination decline when it reaches the CHD location, and iv) what effect does the 

intervention have on these relationships. To investigate these questions, I implemented the 

following analytic approaches. The presence of SHS diffusion into the CHD location was 

investigated by examining Granger causality. The time required for infiltration into the CHD 

location was answered by the analysis of data and understanding the mean, variance of time 

difference when peak maximum occurs in the MNR and the corresponding peak maximum in the 

CHD location. The magnitude of the decrease was investigated by building a linear model that 

predicts the average concentration in the CHD as predicted by the associated MNR data. The 

effect of the intervention was assessed by performing a hierarchical linear mixed model.    

Below, I outline issues for each analysis, describe the methodology used to investigate, and 

detail results with both data visualizations and results from statistical tests.   
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3.2 Relationship between the MNR and CHD air particle concentrations 

It does not make sense to quantify the diffusion of air particles from the MNR to the CHD 

locations if there is no relationship between the respective data from these locales. I therefore 

performed Granger causality tests102 to determine whether the particle concentration in the main 

room influences the CHD particle concentration data. The Granger Causality tests the ability of 

one time series to predict another. In this test, with a time-series 𝑋𝑋1  and 𝑋𝑋2 the auto-regressive 

models can be written as  

𝑋𝑋1(𝑡𝑡) = ∑𝑗𝑗=1
𝑝𝑝 𝐴𝐴11, 𝑗𝑗𝑋𝑋1(𝑡𝑡 − 𝑗𝑗) + ∑𝑗𝑗=1

𝑝𝑝 𝐴𝐴12, 𝑗𝑗𝑋𝑋2(𝑡𝑡 − 𝑗𝑗) + 𝐸𝐸1(𝑡𝑡) 

𝑋𝑋2(𝑡𝑡) = ∑𝑗𝑗=1
𝑝𝑝 𝐴𝐴21, 𝑗𝑗𝑋𝑋1(𝑡𝑡 − 𝑗𝑗) + ∑𝑗𝑗=1

𝑝𝑝 𝐴𝐴22, 𝑗𝑗𝑋𝑋2(𝑡𝑡 − 𝑗𝑗) + 𝐸𝐸2(𝑡𝑡) 

𝑝𝑝 is the number of elements that we want to compare in the time series; 𝐴𝐴 is the model’s 

coefficient, and 𝐸𝐸 is the residual. If the variance of 𝐸𝐸1 / 𝐸𝐸2 is reduced by the inclusion of the 𝑋𝑋2 / 

𝑋𝑋1 terms, then it is said that 𝑋𝑋2 / 𝑋𝑋1Granger causes 𝑋𝑋1 / 𝑋𝑋2. The test returns a p-value. If this is 

less than a significance level of 0.05 null hypothesis is rejected, and it can be concluded that 

there exists a relationship between the two time series (i.e., the MNR and CHD air particle 

concentration). When there is no relationship between the data points for the time series in the 

MNR and the CHD location, it can be concluded that the peaks did not have Granger causal 

relationship meaning there was no relationship between the data. 

I used the grangercausalitytests module from the stats model package in Python for this analysis. 

We passed the MNR and CHD data for each peak in each home into the Granger causal model. 

This process requires the value of maximum lag (i.e., 𝑝𝑝 in the above formula) to be identified, 

which limits what lags are evaluated as we examine the time series for causality. We set the 
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maximum lag to 1 based on an iterative process where we looked at the failure rate by including 

different values of this parameter. A value of 1 yielded the fewest failures  

I performed the Granger causality test for all sets of peaks in the dataset (7,495 peaks), and 7.6% 

(576) did not have Granger causal relationship. We excluded these peaks from subsequent 

analysis since we only want to include peak data where the particle concentration in the MNR 

location influenced the CHD location concentration. 

 
Figure 6: Granger Causality Results, x axis indicates mean air particle concentration in 
CHD location y axis indicates the density, the blue bars represent peaks for that failed 

and the brown bars represents peaks for that passed the granger causality test 

Figure 6 represents the distribution of the mean value of particle concentration in the CHD 

location. The data is for each of the peaks that have passed or failed the Granger Causality test.  

The finding is 93% of the peaks pass the test, with most of the failures being where the peak 

values are in the lower range of MNR air particle concentration. This result is expected as it 

indicates less impact to the CHD location for a lower concentration of smoke particles in the 

MNR. For average particle concentration above 20,000 in the MNR, there was always an impact 
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on the CHD location. The fact that only low MNR air particle concentrations were associated 

with a non-Granger causality relationship between the MNR, and CHD signals lends face 

validity to the use of Granger causality to establish a relationship between the two rooms. 

3.3 Diffusion between MNR and CHD location 

I am interested in understanding the how quickly the particles diffuse from the MNR to CHD 

location. I measure this by looking at the lag time, i.e., the difference between the timestamp 

when the peak maximum occurs in the MNR and the corresponding peak in the CHD.  

 

 
Figure 7: Mean (a) and Variance (b) of lag between MNR and CHD location, x axis 
indicates the mean and variance in lag between peak of main and child’s room y axis 

indicates the density. 

 

(a) 

(b) 
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Figure 7 represents the mean and variance of the lag between the main and CHD location for all 

the peaks across the complete dataset. The mean value of lag across all the homes is 38.70 

minutes, meaning that after smoking in MNR, nearly 39 minutes elapses until air particle 

concentration reaches highest level in CHD.  

I  also examined select  demographic variables that could potentially affect the lag between the 

MNR and CHD and to understand their impact.The number of rooms in the home could 

influence the rate at which smoke air particles diffuses from MNR to CHD, the more the rooms 

the slower the diffusion.The number of adults in a home could provide insight into if highly 

populated homes have any influence on the smoke air particle difussion. The correlations 

between the mean lag and the number of adults in the home, the number of rooms in the home, 

and the presence of a single parent  and the mean lag  are 0.0122, 0.0144, and 0.00147, 

respectively.  These values indicate that there is low impact of these selected demographic 

variables to time it takes for the health of the child to be impacted across all the homes in the 

study. 

3.4 Attenuation in maximum values in MNR and CHD location 

I was also interested in quantifying the attenuation in air particle concentration that occurs as the 

smoke diffuses from the MNR to the CHD location. To address this, I fit the following linear 

regression model: 

𝑌𝑌 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑋𝑋, 

where beta coefficient (𝛽𝛽1) of the quantifies the rate of the decline. Assume that (𝛽𝛽1)  =1. Then 

the air particle concentration in the CHD location matches the air particle concentration in the 
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MNR location, up to an additive constant. If (𝛽𝛽1) >1, this means that the air particle 

concentration in the CHD location is higher than the air particle concentration in the MNR 

location If (𝛽𝛽1)  <1, then air particle concentration in the CHD location is less than the air 

particle concentration in the main room, which represents attenuation of the peak level.  I found 

that 𝛽𝛽0 is the intercept, was 182.91 and a 𝛽𝛽1 was 0.684391. This result indicates that on average 

for a given peak is 68% as high in the CHD room versus MNR, which represents a 32% 

reduction in mean particle count. 
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Figure 8: Joint plot to represent relationship between main and CHD location particle 
concentration. x axis indicates the mean air particle concentration in the MNR location y 

axis indicates the air particle concentration in the CHD location 

Figure 8 displays the results of the regression graphically. represents the particle concentration's 

relationship and distribution in the MNR and CHD location.  The data is for all the peaks in both 

the control and experimental homes. Each dot in the center plot represents particle 

Beta = 0.6824 



 

- 25 - 

concentration's peak value in the MNR and CHD location. The blue line in the center plot 

represents the linear regression.  The linear regression equation is  

𝑌𝑌 =  182.91 +  0.6824 ∗ 𝑋𝑋 

3.5 Graphical Assessment of Intervention 

Before analyzing the effect of the PFA intervention analytically, I explore visualizations that 

illustrate features of the data both before and after the intervention. While not as rigorous as 

statistical analysis, visualization often allows aspects of the data that are missed with statistical 

analysis to be seen, which in turn allows for a greater understanding of the research findings.     
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Figure 9: Mean (a) and Variance (b) of particle concentration between MNR and CHD, x 

axis indicates the mean and variance in air particle concentration y axis indicates the 
density, the blue line for baseline and the brown line is for treatment group. 

 

In Figure 9, the distribution of the mean particle count difference, calculated for each peak as the 

mean value of the MNR peak subtracted by the mean value of the CHD peak, is presented for all 

peaks across all homes. The distribution of the variance of this metric is also provided.  The 

information is presented before (blue line) and after (brown line) intervention. Based on the 

calculation, positive values represent reduction in air particle concentration in the CHD location 

and negative values represent increase in air particle concentration in CHD location 

Concordantly, I would expect an effective intervention to be reflected in a positive value for this 

(a) 

(b) 
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metric. The figure shows that distribution has shifted to the right after the intervention, and the 

variance is trending downwards, with the mean value before intervention being 5532 and after 

intervention is 5881. This is a small shift, so I ran the Kologromov-Smirnoff test to examine if 

the differences between the distributions were statistically significant. The calculated statistic 

was 0.0563 and p value was 8.8368e-05, less than 0.05 so I can conclude than the two 

distributions are significantly different.  

3.6 Quantification of Intervention Effect 

To quantify the intervention effect more thoroughly, I now support the above graphical analysis 

with inferential statistics. For this analysis, I used mixed linear models,103which are mainly used 

when there is non-independence in the data, such as a hierarchical structure or repeated measures 

s. Linear mixed models are an extension of simple linear models that allow both fixed and 

random effects.  Fixed effect variables are those for which all variable levels of interest are 

available and compared to each other. For example, in the current trial, study groups (i.e., control 

vs. experimental) is a fixed effect. Random effect variables, on the other hand, have many 

possible levels, only a small number of which are represented in the data. Therefore, the level-

specific characteristics (e.g., participant means of a repeatedly measured variable) are assumed to 

be drawn from a normal distribution. In the current trial, participant Id is a random variable, 

since there are many different individuals who could be included in the study, only a small 

number of which were recruited. I do not wish to compare one participant versus another, but 

only model participant specific variables (e.g., mean daily particle counts) being drawn from a 

common distribution. 
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As part of the PFA intervention, the homes were randomly assigned to either the control or 

experimental groups in blocks of two to ensure the same sample size across home conditions. In 

the experimental home, the study enrollment was easily stratified into "Baseline/Post-Baseline" 

time frames corresponding to when the intervention was initiated. In control homes, data was 

passively recorded, and such a delineation did not exist; therefore, the "Baseline/Post-Baseline” 

designation was assigned to that of its corresponding experimental home. This assignment is a 

fixed effect and is a vital part of the analysis to understand the intervention event's behavior and 

impact.  

For a two-level mixed linear model, first-level equation is written as 

𝑌𝑌𝑖𝑖,𝑗𝑗 =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋𝑖𝑖,1 + 𝛽𝛽𝑗𝑗,2𝑋𝑋𝑖𝑖,2  +  𝜀𝜀𝑖𝑖,𝑗𝑗 , 

where 𝑌𝑌𝑖𝑖,𝑗𝑗 is the 𝑖𝑖𝑡𝑡ℎobservation collected from for the 𝑗𝑗𝑡𝑡ℎ  unit.   𝛽𝛽0 is the overall intercept, 𝛽𝛽1 is 

the regression coefficient for the fixed effect associated with the 𝑖𝑖𝑡𝑡ℎ measurement of variable 𝑋𝑋1, 

𝛽𝛽𝑗𝑗,2 is the regression coefficient for a random effect for the 𝑗𝑗𝑡𝑡ℎ  unit, and 𝜀𝜀𝑖𝑖,𝑗𝑗  is the residual, such 

that 𝜀𝜀𝑖𝑖,𝑗𝑗 ~ 𝑁𝑁(0,𝜎𝜎0). The second level equation is written as 

𝛽𝛽𝑗𝑗,2 =  𝛽𝛽0,2 + 𝛾𝛾𝑗𝑗 ,   

such that 𝛾𝛾𝑗𝑗  ~ 𝑁𝑁(0,𝜎𝜎1). This example demonstrates that, in a mixed linear model, the effects for 

each home are assumed to be normally distributed around some grand mean, i.e., 𝛽𝛽0,2. 

For the existing analysis, the dependent variable is mean CHD location particle concentration 

( 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the independent variables are mean MNR location particle concentration ( 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), 

the experimental condition (control/experimental) 𝐻𝐻𝑐𝑐/𝑒𝑒 and the intervention status 
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(baseline/during intervention) 𝐼𝐼𝑏𝑏/𝑎𝑎. As stated above, participant ID is a random variable. Within 

this framework, I implemented bivariate, full regression, and two-way interaction, and three-way 

interaction between experimental/treatment home, before/after intervention event and particle 

concentration respectively. The models evaluate the relationship between the mean value of 

particle concentration in the CHD location as predicted by the mean value of particle 

concentration in the MNR, control home vs. experimental home, and before vs. after the 

intervention.  The equations for each of these models are as follows (for clarity we eliminated the 

𝑖𝑖 and 𝑗𝑗 subscripts in the hierarchical regression equations): - 

Model 1. Bivariate  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒   

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗  𝐼𝐼𝑏𝑏/𝑎𝑎   

Model 2. Full regression 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  + 𝛽𝛽2 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒  +  𝛽𝛽3 ∗ 𝐼𝐼𝑏𝑏/𝑎𝑎   

Model 3. Two-way interaction 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  + 𝛽𝛽2 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒  +  𝛽𝛽3 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐼𝐼𝑏𝑏/𝑎𝑎   

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  + 𝛽𝛽2 ∗ 𝐼𝐼𝑏𝑏/𝑎𝑎  +  𝛽𝛽3 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒   

Model 4. Three-way interaction 
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𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  + 𝛽𝛽2 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒   +  𝛽𝛽3 ∗ 𝐼𝐼𝑏𝑏/𝑎𝑎  +  𝛽𝛽4 ∗  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗  𝐻𝐻𝑐𝑐/𝑒𝑒  +  

𝛽𝛽5 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐼𝐼𝑏𝑏/𝑎𝑎   + 𝛽𝛽6 ∗ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝐻𝐻𝑐𝑐/𝑒𝑒  ∗  𝐼𝐼𝑏𝑏/𝑎𝑎;      

where 𝛽𝛽0 is the intercept and 𝛽𝛽1 , 𝛽𝛽2 , 𝛽𝛽3 and 𝛽𝛽4 are the coefficients of the independent variables.  

The bivariate models capture each independent variable's individual effects. The full regression 

model allows capturing the combined effect of the independent variables while controlling for 

each other. The two-way interaction allows us to examine the combined effect of before/after 

intervention and experimental/treatment home independent variables. The three-way interaction 

allows capturing the combined effect of all independent variables. 

Lastly, we also controlled for select demographic variables (marijuana usage in the home, adult 

in the home is single parent, the race and ethnicity of the family, the number of children and 

adults in the home and the type of home i.e., single family, condo, townhouse) by including them 

as independent variables during the model evaluation. The hierarchical mixed linear models were 

run using both random intercept and random slope formulations for the participant ID random 

effect.  The effect of each independent variable constant in the random intercept model and the 

intercept changes based on the intervention variables' effects.  In the random slope model, both 

the slope and the intercept are varied to capture the intervention’s effect. 

3.7 Hierarchical Model Results 

Table 3 summarizes numerical results of the random intercept hierarchical linear mixed models 

(bivariate, full regression, two way and three-way interaction) and visualizes results illustrating 

the relationship between MNR and CHD location monitors for the three-way interaction.  In 

Models 1-3, all regression coefficients were significant, with the exception of a control vs. 
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experimental home. There was a positive coefficient for MNR particle count, meaning as higher 

particle concentration in MNR results in higher particle concentration in CHD location. There 

was a negative coefficient for the effect of switching from the baseline to treatment period, 

indicating that indicates there is drop in the air particle concentration in the CHD location 

associated with the onset of the intervention. Both effects signs were in accordance with what we 

expected to see. 

 Model1 
(Bivariate) 

Model2 ( Full 
Regression) 

Model3 (Two Way 
interaction) 

Model4 (Three 
Way 
interaction) 

 Coefficent(CHD location Particle Count – Mean) ( Standard Error) 

MNR Particle Count(Mean)  0.476 (0.023) 0.475(0.018) 0.462(0.020) 0.420(0.023) 

Experimental Home ( ref = Control Home) -0.012(0.024) 0.010(0.003) 0.006(0.003) 0.022(0.003) 

Treatment Phase (ref = BL Phase) -0.084(0.022) -0.051(0.024) -0.049(0.020) -0.035(0.033) 

MNR Particle Count(Mean) * Exp Home   0.029(0.023) 0.112(0.036) 

MNR Particle Count(Mean) * Treatment 
Phase 

  0.009(0.010) 0.071(0.031) 

MNR Particle Count(Mean) * Treatment 
Phase * Exp Home 

   -0.146(0.047) 

Table 3 : Hierarchical Linear Mixed Model (Random Intercept) results. 

*Values in bold indicate significant values 

  

 



 

- 32 - 

 

 
Figure 10 : Hierarchical Linear Mixed Model (Random Intercept) results, x indicates the 
air particle concentration in the main room and y indicates the air particle concentration 

in the CHD location. The four quadrants capture the effort of the before and after 
intervention effect in the control/ treatment home for three way interaction model.  

 

I now provide a detailed description of the Model 4 results, which allow changes in the MNR-

CHD location relationship according to the experimental group and treatment phase to be 

examined. The 𝛽𝛽values quantify the interaction level between MNR and CHD location air 

particles. The high value (< 0.05) defines a significant relationship. Figure 10 shows the fitted 

relation between MNR and CHD location air particle concentration before and after intervention 

in both baseline and treatment homes (based on the 𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)  ∗

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∗  𝐸𝐸𝐸𝐸𝐸𝐸 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 interaction term and values of categorical variables.). 

Because I used standardized values, I examined +/-3 SDs from the mean for main room in these 

figures as reflective on the X-axis. As shown in the top-left panel, the relationship between the 
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MNR and CHD location monitors for a control home during the baseline phase is captured by the 

MNR particle count (𝐵𝐵1 = 0.420). The overall effect of the transition from the baseline to 

treatment phase on CHD location mean particle counts for a control home is given by 𝐵𝐵3=-0.035, 

which is not significant. The change in the relationship between MNR and CHD location mean 

particle count when transitioning from baseline to treatment phase for a control home is given by 

the non-significant interaction coefficient 𝐵𝐵5 = 0.071. These effects are shown in the top-right 

panel of Figure 10. The relationship between the MNR and CHD location monitors for an 

experimental home during the baseline phase is shown in the bottom-left panel of Figure 10. The 

overall effect is given by (𝐵𝐵2 = 0.022), which is not significant. The overall effect of 

transitioning from baseline to treatment in an experimental home is defined by the interaction 

coefficient (𝐵𝐵4 = 0.112)., while the effect on the relationship between MNR and CHD location is 

defined by the interaction coefficient ( 𝐵𝐵6 = -0.146). This is visualized in the bottom right panel. 

Overall, I see that as the air particle concentration in the main room increases, there is a 

corresponding increase in the CHD location.  The slope in the two left panels of Figure 10 is also 

almost identical (𝐵𝐵2 =  0.022 which is not significant), which is expected since during the 

baseline since there is no difference for control and treatment homes in how the particles traverse 

between the MNR and CHD locations. The slopes on the top two panels are also similar (𝐵𝐵3=-

0.035 which is not significant), which is expected since there was no intervention in the control 

homes. Any change in smoking behavior could be attributed to the reactive effect108.  As shown 

in the bottom two panels, after the intervention has been initiated in the experimental homes, 

there is a significant change in relationship between MNR and CHD location monitors. This 

negative change in slope is very important and signifies that there is an impact on the main 

room's smoking influence on the particle levels in the CHD location because of the intervention. 
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I can quantify this effect by the three-way interaction term listed in Figure 10. The negative 

value (𝐵𝐵6   is -0.146 which is significant) of the three-way interaction indicates a slope in the 

downward direction, I can conclude that there is 14% decrease in the air particle concentration in 

the CHD location of an experimental home after an intervention event. 

 

 
Figure 11 : Hierarchical Linear Mixed Model 4 (Random Intercept) Residual plot, x axis 

indicates predicted values y axis indicates the residuals. 

 

The residual plot in Figure 11 has most of the predictions centered around 0 and shows few 

outliers. The dark blue variance line is aligned near-zero, indicating that the residuals are spread 

evenly across overestimating and underestimating the actual child particle concentration values. 

This behavior indicates a well-fitted model.  
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Table 4 illustrates a random slope model result. In Models 1-3, except for the term associated 

with Control vs. Experimental home, the regression coefficients are significant. Coefficient signs 

were in accordance with what we expect to see (e.g., positive coefficient for main room particle 

count and negative coefficient for the effect of switching from the baseline to treatment period). 

The coefficients for interactive terms are not significant, but they demonstrate expected behavior 

(e.g., the coefficients are negative from the experimental home and after intervention).  

 Model1 
(Bivariate) 

Model2 ( Full 
Regression) 

Model3 (Two Way 
interaction) 

Model4 
(Three Way 
interaction) 

 Coefficent(CHD location Particle Count – Mean) ( Standard Error) 

MNR Particle Count(Mean)  0.531 (0.021) 0.529(0.046) 0.575(0.036) 0.600(0.042) 

Experimental Home ( ref = Control Home) -0.016(0.026) 0.015(0.026) 0.027(0.023) 0.026(0.035) 

Treatment Phase (ref = BL Phase) -0.060(0.027) -0.056(0.031) -0.057(0.019) -0.051(0.031) 

MNR Particle Count(Mean) * Exp Home   -0.098(0.053) -0.084(0.061) 

MNR Particle Count(Mean) * Treatment 
Phase 

  -0.056(0.036) -0.042(0.052) 

MNR Particle Count(Mean) * Treatment 
Phase * Exp Home 

   -0.034(0.021) 
 

Table 4 : Hierarchical Linear Mixed Model (Random Slope) results. 

*Values in bold indicate significant values 
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Figure 12 : Hierarchical Linear Mixed Model (Random Slope) Results, x indicates the air 
particle concentration in the MNR location and y indicates the air particle concentration 

in the CHD location. The four quadrants capture the effort of the before and after 
intervention effect in the control/ treatment home. The table below quantifies the effect. 

For this model, I also provide a detailed description of the Model 4 results, which allow changes 

in the MNR-CHD location relationship according to the experimental group and treatment phase 

to be examined. Similar to Figure 10, the top-left panel of Figure 12 displays the relationship 

between the main and child room monitors for a control home during the baseline phase. This 

relationship is captured by coefficient (𝐵𝐵1 = 0.600).  The overall effect of the transition from the 

baseline to treatment phase on CHD location mean particle counts for a control home is given by 

𝐵𝐵3=-0.051. The change in the relationship between MNR and CHD mean particle count when 

transitioning from baseline to treatment phase for a control home is given by the interaction 

coefficient 𝐵𝐵5 = -0.042, which is not significant. The effects are shown in the top-right panel of 

Figure 13. The relationship between the MNR and CHD monitors for an experimental home 

during the baseline phase is shown in the bottom-left panel of Figure 12. The overall effect is 
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given by (𝐵𝐵2 = 0.026), which is not significant and the effect of transitioning from control to 

experimental home on the MNR-CHD monitor relationship is defined by the interaction 

coefficient (𝐵𝐵4 = -0.084), which is not significant. The transition from baseline to treatment 

phase in an experimental home is defined by the interaction coefficient ( 𝐵𝐵6 = -0.034), which is 

not significant. This is visualized in the bottom right panel. The slope in all the panels is 

identical, with a small shift in the lower right panel. While these results are not significant, they 

are in the expected direction and provide corroborating evidence for the random-intercept results 

shown above.  
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Figure 13 : Hierarchical Linear Mixed Model 4 (Random Slope) Residual plot, x axis 

indicates predicted values y axis indicates the residuals. 

 

The residual plot in Figure 13 displays a pattern where the model overestimates the CHD 

location particle concentration when the standardized values are between -1 and 1 and 

underestimating the values when the standardized value is greater than 1. Overall, the dark blue 

line is almost flat indicating that we have a well fit model. 
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Demographic Variable Random Intercept Model  Random Slope Model 

 Coefficient (Standard Error) 

Race Ethnicity (Hispanic) 0.064(0.036) 0.066(0.034) 

Race Ethnicity (White) 0.014(0.037) 0.028(0.035) 

Race Ethnicity (Other) 0.069(0.037) 0.076(0.035) 

Single Parent 0.007(0.024) 0.001(0.023) 

# Of Children in the home 0.009(0.010) 0.004(0.009) 

# Of Adults in the home -0.005(0.011) -0.002(0.011) 

Table 5 : Hierarchical Linear Mixed Model - Coefficient of demographic variables  

We also capture the information of demographic variables. Table 5 summarizes the effect of 

demographic variables for Random Intercept and Random Slope model. These variables are 

controlled by including them in the hierarchal linear model as independent variables. Single 

parent and Race Ethnicity (Other) are significant (p value < 0.05).  

3.8 Summary 

The analysis of quantifying the relationship between the air particle concentration in MNR and 

CHD location was focused around four goals. 

i.) whether SHS diffuses into the CHD location, ii.) how quickly this occurs, iii.) how much does 

the intensity of SHS contamination decline when it reaches the CHD location, and iv) what effect 

does the intervention have on these relationships. The analysis (section 3.3) indicates that that 

SHS does diffuse into the CHD location. The average lag is 38.70 minutes for the existing 

dataset. For a given peak, there is a  68% reduction in mean particle count in the CHD versus the 
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MNR location.The hierarchial linear mixed model demonstrates the impact of the intervention 

event where there is a reduction in the SHS after a intervention event. I am also able to quantify 

the change as displayed in Figures (10 & 12).   

There is evidence from the data analysis the particle concentration is reduced in the CHD 

location after the intervention event. There are still some questions around if this is due to the air 

particle monitors' notification or any other factors that cause this behavior change. An example 

to illustrate this point is the strong relationship between PM2.5 in the MNR and CHD location 

before the intervention event in some treatment homes. We would expect that there should be a 

near-identical relationship before intervention in the control home as there is no intervention 

event, only the monitor is placed in the home. We see from the analysis that that is not the case.  

This behavior could be attributed to the effect of reactivity107, where there is a change to the 

smoking behavior by just placing the monitor in the person's room.  

As future research activity several aspects of with work remain to be investigated, including a 

more detailed account of the impact of the intervention mechanism on smoking behavior. The 

current study activates the notification (audio or visual) when the particle concentration reaches a 

specific threshold value (>= 15,000) in the main room and if there is an impact on the CHD 

location particle concentration if we lower the intervention threshold below 15,000. We know 

from the Granger causality tests that 8% of the peaks fail the test (i.e., particle concentration in 

the CHD location does not depend on the particle concentration in the MNR location), and most 

of these failures are lower particle concentration in the main room. In future work, I will explore 

the earliest we can predict the threshold will reach 15,000 counts in the CHD location.  
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The effect of demographic variables should also be further explored in the future. I would like to 

evaluate whether different behavior exists between homes with marijuana smokers versus the 

rest. It will also be interesting to evaluate if the number of children at home impacts the smoke 

particle concentration between the MNR and CHD location.  As part of the paper's enhancement, 

I will look at clustering techniques and understand if these demographic variables impact 

smoking behavior. 
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 4 Predicting child’s room air particle 
concentration from main room 

4.1 Introduction 

The previous analysis demonstrated that the PFA trial successfully increased air particle quality 

in enrolled homes by deploying an intervention that immediately emitted audio/visual 

notification upon detecting air particle levels above a 15,000 counts threshold.  Earlier analysis 

(section 3.7) indicated a reduction in smoke particles after the air monitor feedback was 

activated.  While this is undoubtedly a step in the right direction, there are many opportunities to 

improve upon this intervention system, including that the fact that on an average it will take 

approximately 39 minutes (section 3.3) before we know that there is a potential impact to the 

child health in the CHD location. Smokers may be unaware of this risk, especially if they cease 

smoking in response to monitoring feedback and fail to take steps to protect children's health, 

either by mitigating the risk associated with the recent smoking event or reducing indoor 

smoking events.   Consequently, I aim to develop a proactive mechanism to quickly identify 

if/when a smoking event in the main room can potentially impact the child's bedroom 

environment and possibly their health.  The Granger causality tests outlined in Section 3.2 

indicates an established relationship between air particle quality in the MNR and the CHD 

locations.  Every home has a varied relationship for diffusion into the child’s bedroom depending 

on factors such as distance between rooms the square footage of homes. In this chapter, I develop 

a model that can identify the potential diffusion of SHS into a CHD location as quickly as 
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possible so that appropriate mitigation activities can be initiated to reduce potential risks to the 

'child's health.  

There are three considerations that I accounted for as I built the model. The first issue revolves 

around reducing false negatives, which correspond to the model failing to identify an instance of 

the CHD being impacted by an MNR smoking event. I want to minimize the events where the air 

particle concentration is above the threshold and model fails to detect this event. It is critical to 

minimize the occurrence of false negatives. A naïve way to eliminate false negatives would be to 

score every peak as impacting the child’s environment, but this would reduce the accuracy of the 

model and likely introduce numerous false positives. This would result in a “boy who cried 

wolf” effect where caregivers may ignore critical notifications when there are too many false 

positives. This competition between false negatives and false positives leads to the second 

consideration in the model building exercise - identifying a set of parameter values that 

sufficiently balance accuracy and false negatives. The third model building consideration is 

whether to approach the modeling as a prediction or classification problem. For the former, I can 

focus on training a model to accurately predict the particle concentration in the CHD location. 

But this approach may be needlessly complex, caregivers are likely to find a binary impact vs. 

non-impact outcome based on some particle threshold to be useful 115.   Below, we explore the 

parameterization that best balances false negatives and false positives and explore both 

continuous and dichotomous model outcomes. 

4.2 Raw vs feature engineering 

The data for the study is time series data that can be primarily analyzed in two ways. I can 

analyze at the raw data or extract features from the raw data and analyze the features. In this 
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approach, the raw data is data as it is collected by the sensors (after being smoothed), but I only 

consider the peaks that are extracted (i.e., all the data points between start and end of the peak) 

according to the methodologies outlined in Chapter 2. The input to the models is the raw data set, 

i.e., all data from an extracted peak will be used to classify whether a CHD location is impacted. 

In feature analysis I extract characteristics from the peak data, which represent aggregate metrics 

from the data that are fed into a model.  I ran a preliminary analysis using the raw data and 

features for both continuous and dichotomous outcomes for several feature based approaches + 

Long Short Term Memory (LSTM) model, which is standard to identify a model that provides 

the best accuracy and low occurrence of false negatives. 

4.3 Feature selection and modeling approach 

I explored basic features, like mean, median, standard deviation, minimum, maximum, mode, 25 

percentile, 75 percentile of air particle measures over an entire peak, as well as more complex 

features primary derived from the tsfeatures package in Python. Table 6 shows summary of 

features that were considered. 

 

 

 

 

 

 



 

- 45 - 

Feature Description 
acf_features This is a vector that represents the sum of the first ten squared 

autocorrelation coefficients. 
pacf_features The feature produces a vector of 3 values, which represents the first 

5 partial autocorrelation coefficients of the original series, the first 
differentiated series and the second order differentiated series. 

heterogeneity The variability of time series data is captured in a vector of 4 
values. 

nonlinearity The feature measures the linearity of the time series data. The 
feature has a large value when the data is non linear and trends 
towards 0 for linear data. 

entropy This feature quantifies the amount of regularity and 
unpredictability of changes in time series data. 

lumpiness and stability The stability is variance of means and lumpiness is the variance of 
the variances of time series data that is tiled over non overlapping 
windows. 

max_level_shift, max_var_shift  These features represent the max shift and max variance between 
times series data that is tiled over non overlapping windows. 

crossing_points The feature captures the numbers of times the time series crosses 
the median line. 

flat_spots The feature computes the maximum length between each interval 
where the time series is divided into ten equal intervals. 

hurst The hurst exponent measures if the time series is persistent ( value 
> 0.5) , anti persistent ( value < 0.5) and random ( value = 0.5). 

stl_features The stl features captures the trend and seasonality of the time series 
data. 

ac_9 The feature captures the auto correlation coefficient at lag 9. 
firstmin_ac The first minimum value in the auto correlation function 
firstzero_ac The first zero crossing of an auto correlation function 
binarize_mean The existing time series is converted into a value of zero(below the 

mean) and one (above the mean) 
outlierinclude_mdrmd The feature capture the median of the outliers  

Table 6 :  List of time series features. 

As discussed in Section 4.1, I am seeking to build a generic model that will help be proactive to 

predict the potential impact to health of child based on the information in the MNR location. An 

ideal model will be highly accurate, minimize the false negatives and provide the prediction 

quickly with minimal information. I approach the evaluation as both a prediction and 

classification problem. As a prediction problem I try the model to predict the value of the air 

particle concentration in the CHD location. As a classification problem I identify a suitable 

threshold above which the value of air particle concentration will cause potential impact of the 
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child health, so the output from the model is the binary variable who values are Y or N where Y 

is potential impact to child’s health and N where the air particle concentration does not 

potentially impact the health of child in his/her room. We look at prediction and classification 

methods to identify the model. 

4.4 Preliminary feature engineering analysis – continuous outcomes 

In prediction modelling approach, I implemented models that predict the value of the air particle 

concentration in the CHD based on the air particle concentration in the MNR location.  In this 

section, the approach is to run several standard models and gain a bird’s-eye view to the 

accuracy of the results and the time it takes to run the model. Using the extracted features 

identified above, I considered all models that are include in Python’s  lazy predict package.108 I  

compared  models to find the one that that best fits the data set and lends itself to the 

development of  a proactive mechanism to quickly identify if/when a smoking event in the MNR 

can potentially impact the child’s bedroom environment..   It should be noted that each of the 

models described in this section were run with default parameters and it is likely possible to 

tweak the parameters to further improve the accuracy of the results. 
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Table 7 :  Performance statistics of regression models implemented using lazy predict 
package. R- Squared – statistical measure that determines the proportion of variance in 
the dependent variable that can be explained by the independent variable. Adjusted R-

Squared – modified version of R-squared, which adjusts for predictors that are not 
significant a regression model. RMSE – Root Mean Square Error. Time taken (seconds) – 

Time taken to run the model in seconds. 

Table 7 illustrates the results of this modeling effort and is sorted by RMSE (Root Mean Square 

Error), but time taken to run the model is also considered in the evaluation of the model, since I 
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am seeking a model that is accurate and provide the results in the shortest amount of time. It is 

clear that Gradient Boosting performs the best in terms of fitting a model to the existing data. 

Depending on the deployment strategy I could also chose the LGBM Regressor (Light Gradient 

Boosting Machine Regressor) that provides a slight lower accuracy but runs 30x faster than the 

Gradient Boosting Regressor model. The overall values of 𝑟𝑟2 are low indicating that the model is 

not good at explaining the variability in the existing dataset.  

4.5 Preliminary feature engineering analysis – binary outcomes 

As opposed to the previous model where I attempted to predict the resulting CHD concentration 

based on an MNR peak, in the classification modelling approach, I look at a problem from a 

standpoint of the potential impact to the child’s health as a binary yes-no outcome.   Based on 

expertise from thesis involved in the PFA study, I defined a threshold for potential impact to 

children’s health of any air particle level in the CHD location over 15,000 during the entire 

duration of an MNR peak. As long as the classification model can predict a value accurately if 

the air particle concentration is above or below this threshold, I have an effective model. I am not 

interested if the model can predict the accurate value of air particle concentration in the CHD 

location. This is an effective approach as it gives a flexibility of reduced accuracy in comparison 

to the performance of the model or minimizing the false negatives. Like the prediction models I 

run a set of classification models from Python’s lazy predict package. The results (Table 8) are 

sorted in the order of model accuracy and the time take to run the model. I also ran the LSTM 

model (details provided in the next section) that provides an accuracy of 81%.   
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Table 8 : Performance statistics of classification models implemented using lazy predict 
package. Accuracy – The accuracy of model. ROC (AUC) – The area under curve 

represents, how much the model is capable of distinguishing between the classes. F1 
Score – Represents the balance between precision and recall of a model. Time taken 

(seconds) – Time taken to run the model in seconds. 

Based on the initial results of the prediction and classification models, I find that the best 

prediction model Gradient Boosting has an  𝑟𝑟2 of 7,306 and take 36 seconds to run for the data 

set. The best classification model Passive Aggressive Classifier has an accuracy of 0.72. The 

LSTM model provides and accuracy of 0.81. I am interested in further exploring the LSTM 

Model Accuracy ROC(AUC) F1 Score Time Taken (Seconds)
PassiveAggressiveClassifier 0.72 0.71 0.72 0.08

RandomForestClassifier 0.74 0.71 0.74 3.87
LGBMClassifier 0.74 0.71 0.73 0.99

NearestCentroid 0.73 0.71 0.73 0.06
NuSVC 0.74 0.7 0.73 7.45

AdaBoostClassifier 0.73 0.7 0.73 4.84
ExtraTreesClassifier 0.73 0.7 0.73 1.09

XGBClassifier 0.73 0.7 0.73 2.53
SVC 0.74 0.7 0.74 5.48

LogisticRegression 0.74 0.7 0.73 0.17
LinearSVC 0.74 0.69 0.73 2.45

BernoulliNB 0.71 0.69 0.71 0.07
LinearDiscriminantAnalysis 0.74 0.69 0.73 0.25

CalibratedClassifierCV 0.74 0.69 0.73 9.14
RidgeClassifier 0.74 0.68 0.73 0.08

RidgeClassifierCV 0.74 0.68 0.73 0.23
SGDClassifier 0.73 0.68 0.72 0.2

KNeighborsClassifier 0.71 0.68 0.71 3.58
BaggingClassifier 0.72 0.67 0.71 5.92

ExtraTreeClassifier 0.67 0.65 0.67 0.07
DecisionTreeClassifier 0.67 0.65 0.67 0.99

LabelSpreading 0.66 0.64 0.66 1.62
LabelPropagation 0.66 0.63 0.66 1.33

Perceptron 0.59 0.6 0.6 0.1
QuadraticDiscriminantAnalysis 0.41 0.52 0.33 0.29

GaussianNB 0.36 0.5 0.2 0.08
DummyClassifier 0.52 0.49 0.53 0.05
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model as it provides better accuracy than the other classification models and try to evaluate 

additional scenarios and understand the performance of the model. 

4.6 LSTM (Long Short Term Memory) model 

The prediction and classification learning approaches (Section 4.3) provides encouraging results, 

so I now turn our attention to the use of machine learning for time series data109.  Supervised 

models, where the models require training data, have parameters that are internal to the learning 

and are estimated from the data during training as the model used tries to learn the mapping 

between the input features and the labels or targets.  The process often involves a tuning process 

where you start with random parameters values for the model and fine tune as the model trains to 

fit the outcome in the training data set.  I use Keras Python package115 for designing and tuning 

the LSTM model. These packages have a structured approach to initiating with default values 

and tuning to fit the model. We just pass the minimum parameters (e.g., epoch i.e., the number of 

interactions that we want the model to run to identify the optimal parameters and batch size i.e., 

the number of samples that will be propagated through the model network). 

There are data sets (e.g., time series) where the predicted next value in the series is dependent on 

the prior values. The type of machine learning models that learn from prior data points are called 

RNN (Recurrent Neural Networks). The RNN are very effective when the model needs to learn 

from few prior values, but as predictions go further into the future, the RNN model run into 

issues. During the training of RNN, the information repeatedly loops which results in very large 

updates to neural network model weights. This is due to the accumulation of error gradients 

during an update and hence, results in an unstable network. At an extreme, the values of weights 
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can become so large as to overflow and result in NaN values. LSTM models excel at extracting 

patterns in input feature space where the input data spans over long sequences. The gated 

architecture has the ability to manipulate its memory state, making them ideal for such problems 

(Figure 14). LSTMs can almost seamlessly model problems with multiple input variables. This 

adds a great benefit in time series forecasting, where classical linear methods can be difficult to 

adapt to multivariate or multiple input forecasting problems.  

 

Figure 14 : Schematic of LSTM architecture implemented in this trial. X_t represents the 
current input, σ indicates the sigmoid layer, X is the scaling of information, tanh is the 

tanh layer, h(t-1) is the output from last LSTM unit. 
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4.7 Aggregate model 

I first seek to establish a generalized approach that would be able to be deployed in any home 

and be able to proactively notify if the child's health's would be potentially impacted due the 

presence of smoke air particles in MNR. An aggregate model is a generic model that combines 

the different characteristic of homes and predict the potential impact to the health of the child. 

These models are challenging as there are several variables that could impact the performance of 

the model such as distance between MNR and CHD, the number of rooms, square footage of the 

house etc. In the below aggregate model, I pass the input as the air particle concentration data for 

the main room in all the homes and the output is a classification based on some particle count 

threshold.  

For all homes, I extract the peaks (Section 2.4) and fed the raw data from the main room into the 

LSTM model. I assumed that an air particle concentration of over 15,000 counts causes impact to 

child’s health (Section 3.8), but also explored running the model at lower thresholds, from 7,500 

to 15,000 counts in increments of 2500. An intervention that is triggered when the air particle 

concentration is below the recommended threshold would be an overly cautious approach and 

overprotective of child’s health. I decided to examine the effects of lowering the threshold to be 

more proactive understanding the potential impact of soke air particle on the health of the child. 

The only downside of this approach is that the frequency of false alarms may increase at lower 

threshold, and we may have a false positive impact where the notifications may be ignored.  

I am interested in making a determination of the impact to the CHD area as quickly as possible 

so, for each MNR peak, I considered windows of input data ranging from the first one minute of 

data to up to 60 minutes, in 5-minute increments.  This was done to determine if the accuracy of 
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the model decreased or there is an increase in false negatives as I train the model on less data. 

For each of these time windows, a separate model was fit, each of which received all data for 

each peak across all the homes as its input. This data was trained (70% training data, 30% test 

data) and then used to predict the value of particle count in the child's room. Based on the 

threshold selected, I convert this to a classification approach where an air particle concentration 

value is above the threshold. In the scenario where we have existing peak data less than the 

minimum (e.g., the peak has only 40 minutes of data when we are considering 60 minutes of data 

to be feed into the model), I pass an air particle concentration of zero for the missing minutes.  

The initial LSTM model was designed with 32 units and a dropout rate of 0.2. The accuracy, 

false negative rate and the distribution of the CHD potential impact were calculated, which are 

shown in Figure 15. The first plot is the heat map of the accuracy of the model based on the 

minutes of data fed into the model and the threshold values in the child room.  The second plot is 

the false negative values, which is when the CHD environment is actually impacted, and the 

model predicts that it is not. It is desirable to have these values to be as close to zero as possible 

to minimize the situations where the model is not able to detect air particle concentration greater 

than the set threshold.  
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Figure 15 : Summary of model metrics for aggregate data across all the homes. x axis 
indicates the amount of data as an input to the model and the y axis indicates the 

thresholds above which the value of air particle concentration indicates impact to the 
child’s health; Color represents the accuracy in the first plot (a) and the percentage of 
false negatives in the second plot (b). Modeling results are provided for 24 threshold x 

training minutes parameter combinations represented by the cross product {7,500, 10000, 
12500,1500} x {1,2,3,4,5,10}. 

 

(a) 

(b) 
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Overall, the model performs better at higher thresholds values. This is likely because the 

distribution of the instances where the child health is potentially impacted (21%) is unbalanced. 

The model best performs with parameters of 4 minutes of MNR peaks and 15,000 thresholds 

(80% accuracy and 24% of false negative rate).  

The other aspect to note is the accuracy of model does not change much as I feed more data into 

the model (81% when I have 1 minute of data to 80% when we have 10 minutes of data at 

15,000 threshold). I hypothesize that this is due the fact that all data points are within the peak 

and based on the peak start/end time, the timing and concentration at the beginning of the peak is 

directly corelated with the peak maximum value, so in practice we are using a transformed value 

of the peak maximum value to predict the value of particle count in the CHD location. 
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Figure 16 : Particle concentration in the main and child's room, 𝑥𝑥 axis indicates the 

timestamp of collection of air particle concentration and the 𝑦𝑦 axis indicates the particle 
concentration, the yellow area in top plot are all the point for particular peak that starts 
from the golden line and ends with the green line, the bottom plot are the corresponding 

values of air particle concentration in the child’s room. 

This point is further illustrated in Figure 16, which shows particle concentrations in the main and 

child room for a home.  The way to identify the start and end of the peak is based on the relative 

height and prominence (0.8) based on the peak value (Section 2.4). For an area under peak 

(highlighted in yellow) each point is in the proximity of the maximum value. As I pass more data 

into the model, I am in essence adding more data that is similar to the maximum value, so I do 

not see a substantial difference in the accuracy of the model. 
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4.8 Impact of distance between main and child room  

One of the key aspects of the experiment is that air particle concentration needs to travel from 

the MNR to CHD location. The earlier model was an aggregate for peaks in all the homes. I want 

the model to be effective across all the homes. It would add validity to the approach to 

understand if there is an impact to the accuracy of model as distance between MNR and CHD 

increases. The approach to evaluate the impact of distance between rooms to the effectiveness of 

the model is by comparing the results of an aggregate model one of the homes where the distance 

between rooms is less than that of the median of the sample and the other where the distance is 

greater than the median. I selected median over the mean because there are outliers in the data 

which I did not want to impact the results. Plus, the median splits the sample into two groups of 

equal size.  
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Figure 17 : Summary of model metrics for aggregate data across all the homes where distance 
between main and child room is less than the median distance for all homes. x axis indicates the 
amount of data as an input to the model, y axis indicates the thresholds above which the value of 
air particle concentration indicates impact to the child’s health; Color represents the accuracy in 
the first plot (a) and the percentage of false negatives in the second plot (b). Modeling results are 

provided for 24 threshold x training minutes parameter combinations represented by the cross 
product {7,500, 10000, 12500,1500} x {1,2,3,4,5,10}. 

 

(a) 

 

(b) 
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Figure 18 : Summary of model metrics for aggregate data across all the homes where 
distance between main and child room is greater than the median distance for all homes.  
x axis indicates the amount of data as an input to the model and the y axis indicates the 
thresholds above which the value of air particle concentration indicates impact to the 
child’s health; Color represents the accuracy in the first plot (a) and the percentage of 
false negatives in the second plot (b). Modeling results are provided for 24 threshold x 

training minutes parameter combinations represented by the cross product {7,500, 10000, 
12500,1500} x {1,2,3,4,5,10}. 

 

(a) 

(b) 
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Figures 17 and 18 represents the accuracy, false negative rate, and the distribution for the models 

where distance between MNR and CHD is less than the median distance and greater than median 

distance for all the homes respectively.  Interestingly, even when the distance between the rooms 

is larger, there is not much change in the accuracy (~ 80%) of the model. I would have expected 

for the model be less accurate as the distance between the room is increased. While the model 

accuracy does not change, the false negative rates increase (e.g., from 0.13 to 0.38 for 1 minute 

of training data at 15,000 threshold). This is a consistent pattern across as I increase the amount 

of data that we use for training the model and is an important finding as it reaffirms the approach 

of looking at false negatives in addition to accuracy when identifying the right model.  

4.9 Single Home Model 

I transition from aggregate to single home models, i.e., I build a model for each home rather than 

the aggregate data for all the homes. While this is more effort, I take this approach as I want to 

determine if this approach is more effective for each home. Within this approach, it is necessary 

to consider the number of peaks needed to train the model on for optimal results, which will 

allow future implementations of this model to gauge how much training data is required to be 

collected before an accurate early warning system can be activated. In addition, addiction levels 

are stronger for people who smoke more and/or live with other smokers116. Therefore, the 

dynamics of smoking and children's exposure to SHS may differ according to the frequency of 

smoking. To investigate this possibility, I examined 25 homes where there were at least 70 

peaks. To investigate this characteristic, I trained the model on 10,2,0,20,40 and 50 peaks and 

examined the accuracy in each case to determine if the number of training peaks impacts the 

performance of the model. As I train on model with a greater number of peaks, there is less data 
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available for testing and that impacts on how I view the accuracy of the model. For a home with 

70 peaks, so I train the model on 10 peaks, I have 60 peaks to test the model against versus if I 

train on 50 peaks I have only 20 peaks to test the model against. The accuracy numbers (Figure 

19 and Figure 20) from a model tested on 60 peaks (accuracy = 72.32%) versus the model tested 

on 20 peaks (accuracy = 69.59%) will influence on the effective model that I would plan to 

deploy. I look at more peaks to test the model is as we get further away from the training peaks, I 

want to evaluate if the accuracy is affected by the predictions made in the future. The total 

number of peaks in a home limit how far in the future we can test the model. In addition, as the 

model predicts on a greater number of peaks the time between the training and test peaks is 

longer and longer and the influence of training data diminishes. A model trained on air particle 

concentration between 7am to 7.30am will have more influence on prediction at 8.00 am versus 

7.00 pm i.e., 12 hours later than the time the training data was captured. 
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Figure 19 : Accuracy of model where distance between rooms is less than median 
distance across all homes that have at least 70 peaks, 𝑥𝑥 axis indicates the # of peaks that 
are we predict the impact in the child room  and the 𝑦𝑦 axis indicates the accuracy of the 
results, each individual lines in the plot indicates the number of peaks that are used to 

train the model. 

 

 

Figure 20 : Accuracy of model where distance between rooms is greater than median distance 
across all homes that have at least 70 peaks, 𝑥𝑥 axis indicates the # of peaks that are we predict the 
impact in the child room  and the 𝑦𝑦 axis indicates the accuracy of the results, each individual lines 

in the plot indicates the number of peaks that are used to train the model. 
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The results for each home are aggregated and presented as one measure per peaks trained 

on/peaks predicted combination. The model performs as expected with the accuracy improving 

as I train model with more peaks. The interesting aspect is that even with training on just 10 

peaks the model has a high accuracy near 75%. The model with training of 40 peaks improves in 

accuracy as I test with more peaks. These model behaviors with help us understand how these 

models can be deployed in various homes. The results indicate that it is possible to predict the 

impact on the CHD location after seeing only 10 peaks, with relatively small effects on the 

accuracy. 
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Figure 21 : Model (single home) accuracy (a) and false negative (b) for homes where 
distance between rooms is less than median distance for all homes. 

 

(a) 

(b) 
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Figure 22 : Model (single home) accuracy (a) and false negative (b) for homes where 
distance between rooms is greater than median distance for all homes. 

(a) 

(b) 
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Next, the accuracy of the model and false negative rate where the distance between rooms is 

greater and less than median distance across all homes was investigated.  (Figure 21 and Figure 

22). The accuracy of the model is overall less for homes where the distance between the MNR 

and CHD locations is greater than the median distance (66% for model trained on 10 peaks, 

depending on the number of training peaks) in comparison to homes where the distance is less 

than the median distance (71%). This is expected as the distance between MNR and CHD 

location increases there is less smoke particle that reach the CHD location and there could be 

introduction of noise (other air pollutants) that could impact the accuracy of the model. The other 

aspect is that is notably visible is the downward trend of the accuracy of the model for model that 

is trained on 40 peaks. This phenomenon should be investigated before deploying these models 

in homes where there is a large distance between rooms. Since this model may struggle to predict 

future smoke events.  

4.10 Transformer Model 

Over the last decade, there is neural network has gained popularity in the field of Natural 

language processing (NLP) and computer vision. One of the limitations of the neural nets was 

the inability to memorize things. This is important in the field of sequence to sequence 

applications like machine translation, NLP etc. This was overcome by recurrent neural networks 

(RNN). RNN have limitations like vanishing gradients, exploding gradients, handling long-term 

dependencies, etc. These limitations have been addressed by LSTM models. Transformers are 

neural nets that use attention layer are the primary building block.  They focus only on the 

required features instead of focusing on all features. 
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Transformers with Self-Attention mechanism were introduced in 2017 by a team at Google 

with Vaswani et al., in a paper entitled Attention is All You Need116.  

 

Figure 23 : Structure of a transformer model. 

The basis structure of the model is depicted in Figure 23.  The architecture uses an encoder, 

decoder mechanism. Each encoder (blue box) consists of a self-attention and feed forward 

component. The self-attention component focuses on storing the context in addition to the 

important features. The feed forward component is similar to the cell of neural network.  Each 

https://arxiv.org/abs/1706.03762
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decoder (green box) represents that self-attention, encoder decoder attention and the feed 

forward component. The self-attention and the feed forward have the same functionality as in the 

encoder layer. The encode decoder attention will compute the attention between encoder and 

decoder and tell us how important each encoder vector component is in predicting the next 

output. One of the major differences between how the traditional neural nets and transformer 

models are designed, is the way in which information is passed between the layers. In a tradition 

CNN, the information is passed between each layer, in a transformer model each layer is connect 

to every other layer creating a global representation of the first layer.  

I ran the transformer model on the data set for both the aggregate and single home models. I used 

the same approach as I used to evaluate the LSTM models. The results (Figure 24 and 25) 

indicate that the models do not perform well on the existing dataset in comparison to the LSTM 

approach. The best accuracy is 59% with high false negative rate 0.78 for an aggregate model. In 

addition, for a single home model we best accuracy of 54% with a false negative rate of 0.27.  

There could certainly be opportunities to fine tune these models or may perform better on a 

different data set. For the current study LSTM better performs and would be a recommend 

approach.  
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Figure 24 : Summary of model metrics for aggregate data across all the homes. x axis indicates 

the amount of data as an input to the model and the y axis indicates the thresholds above which 

the value of air particle concentration indicates impact to the child’s health; Color represents the 

accuracy in the first plot (a) and the percentage of false negatives in the second plot (b).  

(a) 

(b) 
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Figure 25 : Summary of single home model metrics for aggregate data across all the homes. x 

axis indicates the amount of data as an input to the model and the y axis indicates the thresholds 

above which the value of air particle concentration indicates impact to the child’s health; Color 

represents the accuracy in the first plot (a) and the percentage of false negatives in the second 

plot (b).  

(a) 

(b) 
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4.11 Summary 

In this chapter I evaluated various approaches to identify a model that will address the study goal 

of quickly and proactively predicting the potential impact of smoke air particle concentrations in 

the main room on a child’s sleeping environment. There are three considerations that we 

accounted for as we built the model: i.) reducing false negatives, ii.)  ensuring the model 

provides accurate overall results, and iii.)  whether to approach the modeling as a prediction or 

classification problem. I extracted features from the raw data and evaluated various models that 

provide continuous outcomes. Two models stood out in this analysis. It is clear that Gradient 

Boosting performs the best in terms of fitting a model to the existing data. It has RMSE 7306 and 

time taken is 36.89 seconds. Depending on the deployment strategy we could also chose the 

LGBM Regressor (Light Gradient Boosting Machine Regressor) that provides a lower accuracy 

but runs 30x faster than the Gradient Boosting Regressor model. I also evaluated models that 

provide a binary outcome. The best classification model Passive Aggressive Classifier has an 

accuracy of 0.72. I ran LSTM as an aggregate model on all the homes, which provided best result 

(80% accuracy and 24% of false negative rate) with parameters of 4 minutes of MNR peak data 

and a 15,000 threshold value for air particle concentration. This is an important finding as it will 

allow smokers to know relatively quickly the potential impact smoke air particles to the child 

health.  

I ran the LSTM model on all the home data (aggregate model) and model on each home and 

aggregated the results. I took this approach as we want to ensure that the model is effective for 

each home. I found the model to be effective with accuracy above 74% and false negative of less 

than 0.24. The impact of distance between the MNR and CHD location on the performance of 
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the model was also evaluated to assess if having a CHD location further away from the MNR 

location can reduce the potential impact of secondhand smoking to the health of the child. 

Interestingly, even when the distance between the rooms is large, there is not much change in the 

accuracy (~ 80%) of the aggregate model (Figure 17 and Figure 18). However, in the single 

home models (Figure 21 and Figure 22) I did see model accuracy is around 72% for homes 

where distance is less than median distance and 74% when distance between rooms is greater 

than median distance. While the model accuracy did not change for the aggregate model, the 

false negative rates increase (e.g., from 0.13 to 0.38 for 1 minute of training data at 15,000 

threshold) For single home model the false negative is 0.19 for homes where distance is less than 

median distance and 0.2 when distance between rooms is greater than median distance.   
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 5 Summary 

Smoking combustible tobacco products and exposure to second-hand smoking are known to 

impact the health of adults and children. Children are particularly at risk due to their biological 

characteristics. This is a pernicious problem in homes where adults smoke during evening or at 

night when the child is sleeping, since adults often fail to recognize the potential impact to 

children’s health. Therefore, it would be beneficial to identify an approach that would help to 

proactively mitigate the impact to children’s health. The study focused on understanding and 

quantifying the relationship between smoking occurring within a home and subsequent impact on 

the children's bedrooms. This work is foundational and will help us lay the groundwork for 

future studies that characterize in-home microenvironments so that caregivers have actionable 

information by which to protect children’s health.  

The data used for the dissertation was generated by Project Fresh Air (PFA), a multiple 

baseline/randomized control trials aimed at reducing SHS in the households of smokers from a 

low-socioeconomic status (SES) population. The data is time series and I had to clean it by 

removing outliers and preparing the data for analysis. One of the key tasks was to identify peaks 

within the data i.e., the range of air particle concentration which identifies a smoking event. I 

smoothed the time series data and identified peaks by implementing an algorithm that uses a 

combination of threshold value, a horizontal distance between peaks and prominence. I identified 

peaks in the MNR and using this information as a reference we extracted the corresponding 

peaks in the CHD location. These are computationally expensive operations, and I leveraged the 

vectorization techniques and build in python packages (e.g., SciPy) to improve the performance 
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of the analysis. These techniques reduce to the computation time by approximately a factor of 

10. 

To create an effective solution to reduce the potential impact of SHS on health of the child I need 

to focus to understand if second-hand smoke diffuses to the child’s room, how quickly this 

happens, is there a loss of intensity and does intervention change these relationships?  I 

performed Granger causality test to determine whether the particle concentration in the MNR 

influences the CHD particle concentration data. It tests the ability of air particle concentration in 

the MNR to predict the air particle concentration in the CHD. I found that 92.4% of peaks passed 

the granger causality test. A linear model with beta coefficient of 0.684 indicates that the 

maximum particle level from a CHD peak is 68.4% that of an MNR peak. I ran a hierarchical 

linear model to understand and quantify the impact of intervention event. There was a positive 

coefficient for main room particle count, meaning as higher particle concentration in MNR 

results in higher particle concentration in CHD. There was a negative coefficient for the effect of 

switching from the baseline to treatment period, indicating that there is a drop in the air particle 

concentration in the CHD associated with the onset of the intervention. The three-way interaction 

results indicate a negative slope and a 14% decrease in the association between MNR and CHD 

monitors of an experimental home after an intervention event. 

An effective solution would be to quickly identify the air particle concentration in the CHD  

based on the data in the MNR then an intervention can be proactively triggered,  which would 

mitigate  the potential impact to child health  An approach that looks at aggregate data for all the 

homes would provide a flexible model that can be deployed at any home. I examined several 

continuous and classification model approaches and examined the accuracy of the model, the 

time it takes to run and false negative ratio in identifying the best model for the study. An 



 

- 75 - 

aggregate LSTM model provided best result (80% accuracy and 24% of false negative rate) with 

parameters of 4 minutes of MNR peak data and a 15,000 threshold value for air particle 

concentration.  

I also evaluated if the distance between the MNR and CHD location had any impact on the 

performance of the model.  I compared homes that have distance less than the median distance of 

the complete data set to the homes that have distance greater than the median distance. 

Interestingly, even when the distance between the rooms increases, there is not much change in 

the accuracy of the model. We would have expected for the model be less accurate as the 

distance between the room is increased. While the model accuracy does not change, the false 

negative rates increase (e.g., from 0.13 to 0.38 for 1 minute of training data at 15,000 threshold). 

We also try to understand the model performance by running on individual homes and 

aggregating the results. To optimally train and test the model I identified homes with at least 40 

peaks. The accuracy of the model is overall less (68.92%) for model trained on 10 peaks, in 

comparison to the rooms that are closer to each other (71.57%). This is expected as the distance 

between MNR and CHD location increases there is less smoke particle that reach the CHD and 

there could be introduction of noise (other air pollutants) that could impact the accuracy of the 

model. 

There are limitations to this work that are worth mentioning as we explore to deploy these 

techniques. The data was collected from low-socioeconomic status (SES) population of 298 

homes.  The device that was used to capture the air particle concentration data is subject to 

disruptive behavior by participants (e.g., covering the device with a hat to prevent it for detecting 

the accurate amount of air particle concentration) The peaks in the CHD are identified by finding 

the maximum value of air particle concentration in the CHD for the corresponding peaks in the 
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MNR. This approach limits capturing peaks where the maximum value of air particle 

concentration in the CHD location is outside the start and end time of peak in the main room. 

The models we used assume a linear relationship between the input and output variables and are 

prone to underfitting. In addition, they are sensitive to outliers. Other sources setting off the 

monitor, smoking not originating in the MNR - could start smoking in CHD location or some 

other area, other smokers in the home besides the participant may affect results. 

The two key outcomes from the study are 1) I was able to quantify the impact of intervention on 

the flow of air particle concentration between the MNR and CHD location and 2) I was able to 

develop a modelling approach that can proactively identify the potential impact of SHS to health 

of the child. The study open doors for several possibilities. For instance, this information can be 

used by practitioners in counselling session to provide metrics to smoking adults and advice on 

the potential impact of smoking to the health of the child.  

Several opportunities exist for future work. There are devices that can understand the air particle 

chemical compostion114 ,which  can be leveraged  to segregate the smoke air particles from non-

smoke air particles ( e.g. burning candles, cooking smoke, incense sticks etc.) to further fine tune 

the models The computational domain in changing rapidly, we have new modern techniques and 

modelling approaches developed at a rapid scale, we can explore the latest techniques to future 

improve the accuracy and scalability of the model presented in the paper.   The model can also 

be integrated with existing smart home monitoring systems like carbon monoxide monitoring, 

Internet of Things to build a capability to real time notification system. Lastly, there is a need to 

understand and quantify the impact of third hand smoking (e.g., where smoking contamination is 

present in the environment long after the smoker has left and potentially places household 

occupants, including children, at risk.)  
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The study is a small contribution to existing efforts to understand and reduce the potential impact 

SHS on children’s health and broadly discourage the use of harmful smoking products in the 

society. I hope that practitioners working in this area   can leverage the findings presented in this 

paper to inform their tobacco control methodologies.  
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