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ABSTRACT 

Machine-Learning-Based Approach to Decoding Physiological and Neural Signals 

by Elnaz Lashgari 

 

In recent years, machine learning algorithms have been developing rapidly, becoming increasingly 

powerful tools in decoding physiological and neural signals. The aim of this dissertation is to 

develop computational tools, and especially machine learning techniques, to identify the most 

effective methods for feature extraction and classification of these signals. This is particularly 

challenging due to the highly non-linear, non-stationery, and artifact- and noise-prone nature of 

these signals.  

Among basic human-control tasks, reaching and grasping are ubiquitous in everyday life. I 

investigated different linear and non-linear dimensionality reduction techniques for feature 

extraction and classification of electromyography (EMG) during a reach-grasp-lift task. The 

results highlighted the advantages of completely automated feature-learning by Laplacian 

Eigenmaps over manual feature engineering, especially when combined with classification, to 

achieve high accuracy with few training samples. The ability to decode and reduce the complexity 

of EMG could enable new practical applications for EMG in basic science and in the clinic. It 

could also help design humanoid and other robots. 

Beyond EMG, a key objective of my dissertation was to decode brain activity during the decision-

making processes that lead to voluntary action. This was based on electroencephalography (EEG) 

and holds the promise for improved brain-computer interfaces (BCIs), particularly related to motor 

imagery (MI). We developed an end-to-end convolutional neural network with attentional 



 

vii 

mechanism together with different data augmentation techniques on two benchmark MI datasets. 

I also collected a new dataset, recorded using high-density EEG, and containing both MI and motor 

execution (ME) tasks. This enabled us to directly compare the decodability of MI and ME, 

investigate optimal channel configurations, and much more. In particular, this facilitates the 

analysis and decoding of MI on the fly—online and in in real time. 

Another potential use of EEG is measuring brain activity of people who are floating in body-

temperature water in a sensory-deprivation-tank float pod. We compared lying in the float pod 

versus lying in bed (a control condition). And we found differences between the two, especially in 

the gamma band. More research is required to understand what these findings mean for levels of 

stress in the float pod. 

 
 
 
 



 

viii 

 

TABLE OF CONTENTS 

  Page 

ACKNOWLEDGEMENTS ........................................................................................... IV 

LIST OF PUBLICATIONS ............................................................................................. V 

ABSTRACT .................................................................................................................... VI 

LIST OF TABLES ......................................................................................................... XII 

LIST OF FIGURES ..................................................................................................... XIV 

1 INTRODUCTION ....................................................................................................... 1 

2 DIMENSIONALITY REDUCTION FOR CLASSIFICATION OF OBJECT WEIGHT 
FROM ELECTROMYOGRAPHY ........................................................................... 7 
2.1 Introduction ........................................................................................................ 7 
2.2 Materials and Method ...................................................................................... 10 

2.2.1 Dataset .................................................................................................... 12 
2.2.2 Pre-processing ........................................................................................ 14 
2.2.3 Segmentation and feature selection ........................................................ 14 
2.2.4 Feature Extraction using dimensionality reduction ................................ 14 
2.2.5 The Laplacian Eigenmap algorithm ....................................................... 16 
2.2.6 Classification .......................................................................................... 21 
2.2.7 Running-window analysis ...................................................................... 22 

2.3 Results ................................................................................................................ 23 
2.3.1 Parameter settings ................................................................................... 23 
2.3.2 Classifier Performance ........................................................................... 27 
2.3.3 Evolution of classification accuracy over time ....................................... 28 

2.4 Discussion .......................................................................................................... 32 
2.5 Conclusion, Limitations and Future Work .................................................... 35 

3 DATA AUGMENTATION FOR DEEP-LEARNING-BASED 
ELECTROENCEPHALOGRAPHY ....................................................................... 36 
3.1 Introduction ...................................................................................................... 36 
3.2 Methods ............................................................................................................. 40 

3.2.1 Search method for identification of related studies ................................ 40 
3.2.2 Data Extraction and presentation ............................................................ 42 



 

ix 

3.3 Results ................................................................................................................ 42 
3.3.1 Origin of the selected studies .................................................................. 42 
3.3.2 EEG classification task ........................................................................... 43 
3.3.3 Data and Reproducibility ........................................................................ 45 
3.3.4 Pre-processing and Feature extraction .................................................... 45 
3.3.5 Input Formulation ................................................................................... 47 
3.3.6 Deep learning architectures .................................................................... 48 

3.4 Data Augmentation methods ........................................................................... 51 
3.4.1 Noise addition ......................................................................................... 52 
3.4.2 Generative adversarial network .............................................................. 58 
3.4.3 Sliding window or overlapping window ................................................ 71 
3.4.4 Sampling ................................................................................................. 75 
3.4.5 Fourier Transform ................................................................................... 78 
3.4.6 Recombination of Segmentation ............................................................ 80 
3.4.7 Other ....................................................................................................... 81 

3.5 Accuracy gains of data augmentation ............................................................. 85 
3.6 Discussion .......................................................................................................... 87 

3.6.1 Rationale ................................................................................................. 88 
3.6.2 Data ......................................................................................................... 88 
3.6.3 EEG pre-processing ................................................................................ 89 
3.6.4 Deep-learning methodology ................................................................... 90 
3.6.5 Data augmentation .................................................................................. 90 
3.6.6 Guidelines for reporting results in papers ............................................... 93 

3.7 Limitations ........................................................................................................ 94 
3.8 Conclusions ........................................................................................................ 95 

4 AN END-TO-END CNN WITH ATTENTIONAL MECHANISM APPLIED TO RAW 
EEG IN A BCI CLASSIFICATION TASK .......................................................... 122 
4.1 Introduction .................................................................................................... 122 
4.2 Related work ................................................................................................... 124 
4.3 Methods ........................................................................................................... 127 

4.3.1 Proposed CNN-based neural-network architecture .............................. 127 
4.3.2 Hyperparameter Optimization and Training ......................................... 131 
4.3.3 Data augmentation ................................................................................ 135 

4.4 Dataset and experimental protocol ............................................................... 138 
4.5 Channel selection ............................................................................................ 142 
4.6 Results .............................................................................................................. 144 

4.6.1 Performance of the proposed CNN (Neural architectures vs. Neural 

architectures) .................................................................................................... 144 
4.6.2 Properties of our collected dataset ........................................................ 149 
4.6.3 Motor Imagery vs. Motor Execution .................................................... 150 
4.6.4 Channel selection .................................................................................. 153 



 

x 

4.6.5 Data augmentation ................................................................................ 154 
4.6.6 Different portions of dataset ................................................................. 158 
4.6.7 Combination of participants’ EEG signals ........................................... 159 
4.6.8 Leave-one-participant out and transfer learning ................................... 161 

4.7 Discussion ........................................................................................................ 163 

5 A SYSTEMATIC REVIEW ON RESTRICTED ENVIRONMENTAL STIMULATION 
THERAPY (REST) FLOATATION ...................................................................... 174 
5.1 Introduction .................................................................................................... 174 
5.2 Methods ........................................................................................................... 176 

5.2.1 Search method for identification of related studies .............................. 176 
5.2.2 Data extraction and presentation .......................................................... 178 

5.3 Results .............................................................................................................. 178 
5.3.1 Origin of the selected studies and different applications of float pod .. 178 
5.3.2 Sample characteristics .......................................................................... 180 
5.3.3 Experiment design ................................................................................ 181 
5.3.4 Treatment delivery ................................................................................ 182 
5.3.5 Questionnaire ........................................................................................ 184 

5.4 Float pod application ...................................................................................... 186 
5.4.1 Positive effects of float pod .................................................................. 187 
5.4.2 Pain ....................................................................................................... 200 
5.4.3 Anxiety ................................................................................................. 205 
5.4.4 Physiological ........................................................................................ 207 
5.4.5 Consciousness ....................................................................................... 213 
5.4.6 Sleep ..................................................................................................... 217 
5.4.7 Psychology ............................................................................................ 217 

5.5 Discussion ........................................................................................................ 218 
5.6 Limitations and strengths .............................................................................. 221 
5.7 Future research and potential implications ................................................. 222 

6 SHORT-TERM FLOATATION-REST (RESTRICTED ENVIRONMENTAL 
STIMULATION TECHNIQUE) REDUCES STRESS: ANALYSES BASED ON 
NEURAL AND CARDIAC COMPONENTS ....................................................... 274 
6.1 Introduction .................................................................................................... 274 
6.2 Methods and Materials .................................................................................. 277 

6.2.1 Participants Recruitment and Randomization ...................................... 277 
6.2.2 Data acquisition and pre-processing ..................................................... 277 
6.2.3 Heart-beat detection and the RR time-series ........................................ 278 
6.2.4 Extraction of the root mean of successive heart beats differences ....... 279 
6.2.5 Power Spectrum of RR time-series ...................................................... 280 
6.2.6 EEG signal processing .......................................................................... 280 
6.2.7 Statistical Analysis ............................................................................... 281 
6.2.8 Sliding-window Analysis ..................................................................... 282 



 

xi 

6.3 Results .............................................................................................................. 282 
6.3.1 Temporal and spectral analysis of RR intervals ................................... 283 
6.3.2 Spectral Analysis of the EEG signal ..................................................... 286 
6.3.3 Sliding-window analysis ....................................................................... 289 

6.4 Discussion ........................................................................................................ 292 

REFERENCE ................................................................................................................. 296 

APPENDICES ................................................................................................................ 316 

 

 



 

xii 

LIST OF TABLES 

  Page 

Table 1. The number of trials for each class and each subject ........................................ 13 

Table 2. The number of dimensions that leads to the highest F1-score (obtained using grid 

search; for k-NN, which was the best classifier; see also Figure 8) vs. different dimensionality 

reduction techniques for each subject. The mean and standard error (SE) over all subjects for the 

different methods are also given. ..................................................................................... 25 

Table 3. Performance of Laplacian Eigenmaps (simple-minded) and different classifiers vs. 

different number of neighbors (k) on the EMG signals (F1 score ± SE) ........................ 31 

Table 4. Performance of different classifiers vs. different dimensionality-reduction methods on 

EMG signals (F1 score ±	SE). See S1 Table 4 for post-hoc t-tests for this table. .......... 31 

Table 5. Data items extracted for each article selected ................................................... 42 

Table 6. All reviewed papers that used noise addition as their DA technique ................ 56 

Table 7. All reviewed papers that used GAN as their DA technique .............................. 67 

Table 8. Details of all the papers that we found for our review paper. In Data Augmentation 

column: NA: Noise addition, SW: Sliding window, S: Sampling, FT: Fourier-transform, 

Recombination of Segmentation: RS, O: Others and in EEG task column: ER: Emotion 

recognition, MW: Mental workload, MI: Motor imagery, S: Seizure, SS: Sleep stages, IT: 

Imagery task, VT: Visual task and in input formulation column: S: signal, I: Images and CF: 

Calculated features. Some studies used different dataset or different DA techniques and we show 

them separately. ............................................................................................................... 97 

Table 9 Summary of the proposed CNN with attentional mechanism parameters (“-1” represents 

a flexible shape, essentially the batch size) ..................................................................... 130 

Table 10. The hyperparameter space ............................................................................... 134 

Table 11. Hyperparameter tuning by SHERPA for 3 the datasets (BCI 2a, BCI 2b and our 

experimental dataset) for 3 different models (Dense, CNN dense, and CNN attention dense) 

 ......................................................................................................................................... 135 

Table 12. DA techniques that are used on the MI task .................................................... 136 

Table 13. Summary of the 3 datasets used in this study: Our experimental dataset, BCI 2a, and 

BCI 2b .............................................................................................................................. 140 



 

xiii 

Table 14. Participant-by participant comparison of the proposed CNN with attentional 

mechanism—with and without DA—against Dai et al. [145] results on the BCI 2a and BCI 2b 

datasets. ............................................................................................................................ 147 

Table 15. Comparison of our proposed method (with and without data augmentation) with other 

state-of-the-art methods. All methods were run on the same dataset (BCI 2a and/or BCI 2b).

 ......................................................................................................................................... 148 

Table 16. Validation accuracy for different channel selections on our dataset for single 

participants and the average over all participants. For each participant, we present mean ± SE 

over trials. In the bottom row, we present mean ± SE over participants. ........................ 154 

Table 17. Comparison of different DA techniques with different magnification factors and 

hyperparameters for BCI 2a, BCI 2b, and our experimental dataset (for 64 channels and 18 

channels) .......................................................................................................................... 157 

Table 18. Accuracies for different proportion of our dataset with different DA techniques158 

Table 19. Leave-one-out and transfer-learning validation accuracy for BCI 2a, BCI 2b, and our 

dataset (64 and 18 channels) ............................................................................................ 162 

Table 20. Data items extracted from each selected article .............................................. 178 

Table 21. Treatment delivery for different application of float pod ................................ 182 

Table 22. Different questionnaires used in this review paper ......................................... 184 

Table 23. Details of all the papers that we found for our review paper. ......................... 226 

 

  



 

xiv 

LIST OF FIGURES 

  Page 

Figure 1. Processing pipeline for EMG signal classification .......................................... 11 

Figure 2. EMG preprocessing. (Top) Pre-processed EMG signals of 5 muscles (Anterior Deltoid, 

Brachoradial, Flexor Digitorum, Common Extensor Digitorum, and First Dorsal Interosseus). 

(Bottom) Rectified and filtered EMG signals by band-pass Butterworth filter (4th order) in the 5-

450 Hz range on the full wave rectified and normalized signals from each muscle. ...... 11 

Figure 3. Raw EMG signals of 5 muscles (Anterior Deltoid, Brachioradialis, Flexor Digitorum, 

Common Extensor Digitorum, and First Dorsal Interosseous) for 3 different weights (165, 330, 

and 660 g) ........................................................................................................................ 13 

Figure 4. Manifold learning techniques. MDS, ISOMAP, LLE, t-SNE, and Spectral embedding 

(SE) or Laplacian Eigenmaps on 2000 points randomly distributed on the surface of a sphere. 

Computation time in seconds is given after each method's name in parentheses. The first column 

for SE is simple-minded constructing weight matrix and the last column is for heat kernel.

 ......................................................................................................................................... 20 

Figure 5. Example of an out-of-sample extension via the Nyström approximation in embedded 

space by Laplacian Eigenmaps with k = 8 and σ = 1. The train / test ratio was 90% / 10%.

 ......................................................................................................................................... 21 

Figure 6. Visualization of the effect of k (top row) and ( (bottom row) on the training dataset for 

Subject 1 in the embedded space ..................................................................................... 24 

Figure 7. Visualization of the embedding process: EMG visualization using the 2 most prominent 

components of different dimensionality-reduction technique (The x-axis is the most prominent 

component, and the y-axis is the second most prominent component) ........................... 26 

Figure 8. Average accuracy (across all 12 subject) as a function of the number of eigenvectors 

obtained with different dimensionality reduction techniques for the best classifier—k-NN (see 

also Table 3). We included PCA, ISOMAP, LLE, Laplacian Eigenmaps, and t-SNE. The LDA 

dimensionality-reduction technique was not included in these curves because the maximal 

dimension for LDA is equal to the number of classes minus one. .................................. 27 

Figure 9. Sliding-window analysis of Laplacian Eigenmap dimensionality reduction and k-NN 

classification before touching the object (a) and after touching it (b). We used a 100 ms sliding 

window with a step size of 40 ms. In both panels, the onset of touching the object is designated 

by a vertical red line at time 0. Table 3. Performance of Laplacian Eigenmaps (simple-minded) 

and different classifiers vs. different number of neighbors (k) on the EMG signals (F1 score ± 

SE) ................................................................................................................................... 30 

Figure 10. Selection process for the papers ..................................................................... 41 



 

xv 

Figure 11. EEG classification task. (A) Number of publications per domain of EEG task per year. 

(B)The percentage of different EEG classification task across all studies. ..................... 44 

Figure 12. Frequency range used in EEG analysis for each identified study, organized by EEG 

task type. .......................................................................................................................... 46 

Figure 13.  Input formulation across all reviewed papers. (A) The inner circle shows the general 

input formulation, while the outer circle shows more specific details. (B) Number of papers for 

general input formulation compared across different tasks. ............................................ 48 

Figure 14. Deep learning architecture across all studies ................................................. 49 

Figure 15. Aggregated information of deep learning architectures. The inner circle shows the 

general DL architecture, the middle circle, shows the primary design features, such as the hidden 

layers or convolutional layers, and the outer circle shows the last layer of DL architecture. FC: 

Fully connected, hid: Hidden layers, softmax: Softmax function. .................................. 50 

Figure 16. The percentage of input formulation by chosen DL architecture .................. 51 

Figure 17.  DA across all studies. (A) Number of publications per domain of DA per year. (B) 

The percentage of different DA methods across all studies. Note that we only collected data until 

January 2020. ................................................................................................................... 53 

Figure 18. Diagram of Generative Adversarial Network ................................................ 60 

Figure 19. Data augmentation methods across all reviewed papers. The inner circle shows the 

general DA methods, and the outer circle shows the deep learning architecture strategy used.

 ......................................................................................................................................... 82 

Figure 20. Number of papers for general EEG tasks compared across different DA techniques

 ......................................................................................................................................... 85 

Figure 21. (A) The improvement score, or the fraction of variance left unexplained by the 

original DL method that was explained when training the model using DA, for different DA 

techniques (mean ± 95% confidence intervals). Here is the number of studies everywhere except 

GAN, Sampling, and Other, where there were more than one analysis, with different accuracies, 

reported in each study; hence there ‘n’ is the number of accuracies. (B) Same as A but the 

improvement is over EEG tasks. Here “n” is the number of studies everywhere except “emotion 

recognition”, where there were 9 studies, 2 of which ran multiple DA analyses; hence “n” there 

is the number of analyses. No motor-task studies included accuracy before and after DA, so that 

task is not included in this figure. .................................................................................... 87 

Figure 22. Our proposed CNN with attentional mechanism. (A) The sliding window (length is 

1000 ms and step-size is 100 ms) applied to 64 EEG channels. (B) The 64 segments of raw EEG 

signal, depicted in orange in (A). Each time window and channel are separately sent through 

shared convolution layers. The embedded features I (C x E) applied to self-attention. The output 

of self-attention passes through 2 dense layers. (C) An expansion of the self-attention block.

 ......................................................................................................................................... 130 



 

xvi 

Figure 23. The experimental paradigms for our experimental dataset, BCI 2a, and BCI 2b.

 ......................................................................................................................................... 142 

Figure 24. Four different electrode configurations on the actiCAP—which included 3, 7, 18, and 

all 64 electrodes ............................................................................................................... 144 

Figure 25. Comparison the average validation accuracy (±SE) on the BCI 2a and BCI 2b 

datasets with Dense, CNN, Dai et al. (2020), and CNN-Attention-Dense (See section 2.1 and 

2.2). .................................................................................................................................. 145 

Figure 26. Validation accuracy of sliding-window analysis in ME (top), MI (middle), and ME 

and MI combined (bottom). The left column is the accuracy over time averaged across all 7 

participants. The right column depicts the accuracy for the participant with the highest overall 

accuracy in the ME condition (Participant 4). ................................................................. 152 

Figure 27. Validation accuracy for different channel configurations on the 7 participants of our 

dataset .............................................................................................................................. 154 

Figure 28. Our proposed cGAN model. In the generator (G), the prior input noise and label are 

combined into a hidden representation. In the discriminator (D), Real Data (i.e., raw EEG data) 

and the Label are presented as inputs to a discriminative function. The contents of all purple 

boxes in the architecture are the same and are expanded at the bottom left. ................... 156 

Figure 29. (Top)Validation accuracies for combinations of participants for BCI 2a, BCI 2b, and 

our experimental dataset. (Bottom) line plots of differences between mean validation accuracies 

of consecutive groups for the 3 datasets. The x axis labels are the smaller groups; so, differences 

between 2 participants and one are plotted above the label “1 participant”, between 3 and 2 

participants above “2 participants”, and so on. ............................................................... 161 

Figure 30. Validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels) with 

and without transfer learning ........................................................................................... 163 

Figure 31. Selection process for the papers ..................................................................... 177 

Figure 32. The percentage of different journals categories across all reviewed studies . 179 

Figure 33. Different applications of float pods. (Left) Number of publications per domain for 

different applications of float pods. (Right) Percentage of different applications of float pods 

across all studies .............................................................................................................. 180 

Figure 34. Total number of participants in each application of float pod across 46 studies181 

Figure 35. Experiment design for 46 studies ................................................................... 182 

Figure 36. Aggregated information of different questionnaires across different types of float pod 

applications ...................................................................................................................... 186 



 

xvii 

Figure 37. (Left) A customized 6-channel LiveAmp mobile EEG amplifier from Brain Products 

GmbH was used to collect EEG signal from the frontal lobe and bipolar ECG signal. (Right) 

Sensory deprivation tank. ................................................................................................ 278 

Figure 38. (Top) Raw ECG signal, (Middle) RR tachograms, (Bottom) ))*+ and )),+ 

components for 40 seconds RR time series. .................................................................... 279 

Figure 39. Power spectrum of RR time series for subject 4, interval 3 in pod (left) and bed (right) 

for 3 frequency bands (VLF: 0.0033–0.04 Hz, LF: 0.04–0.15 Hz, and HF: 0.15–0.40 Hz)280 

Figure 40. Point estimates of the RR intervals in the three intervals in both the bed and the pod; 

the vertical lines denote 95% confidence intervals. ........................................................ 284 

Figure 41. Point estimates of the RMSSD in the three intervals in both the bed and the pod; the 

vertical lines denote 95% confidence intervals. .............................................................. 285 

Figure 42. Point estimates of the LF/HF ratio in the three intervals in both the bed and the pod; 

the vertical lines denote 95% confidence intervals. ........................................................ 286 

Figure 43. (a) Distribution of the dependent variable.  (b) Distribution of the model’s residuals. 

(c) Residual distribution vs. predicted values suggesting residuals’ heteroscedasticity. 287 

Figure 44. (a) Differences in total PSD between the bed and pod. (b) Differences in total PSD 

across the six channels. (c) Differences in total PSD between the three frequency bands. The 

vertical lines denote 95% confidence intervals. .............................................................. 288 

Figure 45. (a) Differences in total PSD between the six channels and the condition. (b) 

Differences in the PSD between alpha, beta, and gamma bands in the bed and pod conditions. 

The vertical lines denote 95% confidence intervals. ....................................................... 289 

Figure 46. Sliding window with length 60 s and step size of 10 s on the EEG signals of 17 

subjects. The plot represents three time intervals and two EEG channels (AF7 and AF8). Each 

column represents specific frequency band (left to right: alpha, beta and gamma). The shaded 

area depicts the 95% confidence band. ............................................................................ 291 

  



 

xviii 

Abbreviation Meaning 

AASM American Academy of Sleep Medicine 

ANS Autonomic Nervous System  

BCI Brain-Computer Interfaces 

BP Blood Pressure  

cBEGAN Conditional Boundary Equilibrium GAN  

cDCGAN Conditional Deep Convolutional Generative Adversarial Network 

CNN Convolutional Neural Networks 

CSF Cerebrospinal Fluid  

CSF Cerebrospinal Fluid  

CSP Common Spatial Pattern 

DA Data Augmentation 

DADA Deep Adversarial Data Augmentation 

DL Deep-Learning 

ED Euclidean Distance 

EEG Electroencephalography 

EMG Electromyograms 

ERS Event-Related Synchronization  

FBCSP Filter-Bank Common Spatial-Patterns  

FFT Fast Fourier Transform 

FID Frechest Inception Distance 

fMRI Functional Magnetic Resonance Imaging  

FN False Negative 



 

xix 

FP False Positive 

GAN Generative Adversarial Network 

HCI Human-Computer Interaction 

HF High Frequency 

HRV Heart Rate Variability 

ICU Intensive Care Unit  

k-NN  K-Nearest Neighbors 

LDA Linear Discriminant Analysis 

LE Laplacian Eigenmaps 

LF Low Frequency 

LLE Locally Linear Embedding 

LPD Lateralized Periodic Discharges  

LRDA Lateralized Rhythmic Delta Activity  

LSTM Long Short-Term Memory 

MDS Multi-Dimensional Scaling 

ME Motor Execution 

MI Motor Imagery 

MLP Multi-Layer Perceptron 

MW Mental Workload 

NN Neural Networks 

PCA Principal Component Analysis 

PNS Parasympathetic Nervous System  

PSD Power Spectral Density  



 

xx 

PSD Power Spectral Density  

PSG Polysomnography  

REM Rapid Eye Movements 

REST Restricted Environmental Stimulation Technique  

RMSSD Root Mean Square of Successive Differences  

RNN Recurrent Neural Network 

SAE Stacked Auto Encoders 

SMR Sensorimotor Rhythms  

SNR Signal-To-Noise Ratio 

SNS Sympathetic Nervous System 

SSVEP Steady State Visual Evoked Potential  

STD Standard Deviation  

SVM Support Vector Machine 

t-SNE  T-Distributed Stochastic Neighbor Embedding 

TN True Negative 

TP True Positive 

VAE Variational Auto-Encoder  

VLF Very Low Frequency 

WAD Whiplash Associated Disorders  

WD Wasserstein Distance 

WGAN Wasserstein Generative Adversarial Network 



 

1 

 1 Introduction 

Neural decoding is an important tool for understanding how neural activity relates to the 

outside world and for engineering applications such as BCI. Advances in BCI technology 

in the past decade have led to exciting developments and made BCI a key research area in 

applied neuroscience and neuro-engineering. Non-invasive BCI facilitates new methods of 

neurorehabilitation for physically disabled people (e.g., paralyzed patients and amputees) 

and patients with brain injuries (e.g., stroke patients). BCI systems utilize recorded brain 

activity to directly communicate between the brain and computers to control the 

environment in a manner compatible with the individual’s intentions. However, the ability 

to decode intentions is also an important tool for basic neuroscientific research. And, more 

specifically, decoding intentions in real time would open the door to interesting 

experimental possibilities, such as interventions to facilitate or frustrate intentions and 

intention-contingent stimulation. Technological advances of recent decades—such as 

untethered, wireless recording, machine-learning-based analysis, and real-time analysis of 

raw EEG signals—have increased the interest in BCI based on electroencephalography 

(EEG). EEG has proved to be the most popular brain-imaging method for BCI because it 

is inexpensive, noninvasive, directly measures neural activity (as opposed to Functional 

magnetic resonance imaging (fMRI) for example) and can facilitate portability to clinical 

use. EEG signals thus serve as pathways from the brain to various external devices, 

resulting in brain-controlled assistive devices for disabled people and brain-controlled 



 

2 

rehabilitation devices for patients with strokes and other neurological deficits. One of the 

most challenging topics in BCI is finding and analyzing the relations between recorded 

brain activity and underlying models of the human body, of biomechanics, and of cognitive 

processing. 

The investigation of relations between EEG signals and upper limb movement has gained 

more attention in recent years. Think back to this morning: turning off the alarm, getting 

dressed, brushing your teeth, making coffee, drinking coffee, and locking the door as you 

left for work. Now imagine doing all those things again, without the use of your hands. 

Patients who have lost hand function due to amputation or neurological disabilities wake 

up to this reality every day. Restoring a patient's ability to perform these basic activities of 

daily life with a (BCI) prosthetic device would greatly increase their independence and 

quality of life. Currently, there are no realistic, affordable, or low-risk options for 

neurologically disabled patients to directly control external prosthetics with their brain 

activity. Better understanding the relations between EEG signals and hand movements is 

critical to developing a BCI device that would give patients with neurological disabilities 

the ability to move through the world with greater autonomy. The neuromuscular 

activations associated with hand movement can be noninvasively recorded by surface 

electromyograms (sEMG). Therefore, decoding and finding optimal feature vectors 

therefore plays an important role in EMG classification and hand movement. 

 



 

3 

In Chapter 2, I used the WAY_EEG_GAL open public dataset, which is freely available 

and commonly used to test techniques for decoding during a reach-grasp-lift task. In 

particular, our aim was to decode the weight of an object (165, 330, or 660 g) from the 

time-domain EMG data of twelve subjects, who reached for and lifted the object. A key 

objective of our study was to compare different—linear and nonlinear—dimensionality 

reduction techniques and different classification techniques over the EMG data. In 

addition, previous work on the WAY_EEG_GAL dataset included either EEG alone or 

EEG together with EMG, whereas we wanted to investigate to what extent we could 

classify the weights in this reach-grasp-lift task using EMG alone. Although deep learning 

(DL) does enable automatic end-to-end learning of preprocessing, feature extraction, and 

classification modules, DL models are also typically complex—i.e., have many free 

parameters (or degrees of freedom) to fit—and therefore require large amounts of data to 

overcome the risk of overfitting those models to specific quirks of the training set. They 

thus limit the generalizability of the model to an independent test set (although data 

augmentation might ameliorate these issues). By directly manipulating EMG signals, our 

study therefore shifts the focus from manual (human-based) feature engineering to 

completely automated feature-learning even when only few training samples are available. 

To better understand the suitability of this method for real-time decoding—for example to 

control a powered prosthesis—we also tracked the evolution of the classification accuracy 

over time.  
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Chapter 3, unfortunately, high-grade data collection requires relatively expensive hardware 

and a lot of participant time.  At the same time, access to large, especially clinical, dataset 

is often limited by privacy and proprietaries concerns. Therefore, large, openly available 

datasets are uncommon. One general challenge of physiological and neural signal 

decoding, especially with DL models, is obtaining enough data to train the numerous 

parameters in these large statistical models. But participants are easily fatigued and thus 

cannot produce a large amount of data in each experimental session. Bringing participants 

in for multiple sessions runs into issues of participant attrition for example. We addressed 

the above issue by carrying out a systematic review on data augmentation (DA) for deep-

learning-based electroencephalography. Applying DL to EEG has shown great promise in 

processing these complex signals due to its capacity to learn good feature representations 

from raw data through successive non-linear transformations. DA comprises the generation 

of new samples to augment an existing dataset by transforming existing samples in a 

manner that increases the accuracy and stability of the classification. This review strived 

to identify trends and highlight available approaches in DA for DL in EEG to address the 

following critical questions: (1) What DA approaches exist for EEG? (2) Which dataset 

and EEG classification tasks have been explored with DA? (3) Are there specific DA 

methods suitable for specific tasks measured by EEG? (4) Which of the input features in 

EEG are used for training the deep neural networks with DA? 
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In Chapter 4, after getting insight on DA for DL-based EEG, I focused on decoding activity 

for the purpose of decision-making processes that lead to voluntary movement. The 

prediction in movement onset is promising in EEG-based BCIs, particularly motor-

imagery (MI), which have the potential to become groundbreaking technologies in both 

clinical and entertainment settings. We proposed an end-to-end CNN-based neural network 

with an attentional mechanism together with different DA techniques on two benchmark 

MI datasets. In addition, I collected a new dataset, recorded using high-density EEG, and 

containing both MI and motor execution (ME) tasks to investigate various aspects of EEG 

decoding critical for neuroscience and BCI, such as finding optimal channel configurations and 

the best DA techniques, as well as combining data across participants and the role of transfer 

learning. 

Another potential use of EEG is measuring brain activity of people who are floating in 

body-temperature water in a sensory-deprivation-tank float pod. The literature suggests 

that floatation, or Restricted Environmental Stimulation Technique (REST) tanks may 

increase originality, imagination, intuition, and creativity as well as reduce stress. 

However, proper measurement of physiological and neural signals during floatation, which 

may facilitate more objective tests of claims of the benefits of floatation, has been lacking. 

Hence, Chapter 5 offers a systematic review on the available studies on float pods to obtain 

some insight about recent trends and application as well as to better understand the 

potential of this possible therapy. What is more, we have been developing physiological 
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and neural signals during floatation, measuring EEG and electrocardiography (ECG) data 

during REST. Therefore, in Chapter 6, we analyzed the ECG and EEG in the float-pod, 

and we compare the results with a control condition, lying in bed. We found some 

differences between the conditions, especially in the gamma band. However, more research 

is required to understand what these findings mean for claims about reduced stress levels 

in the float pod. 
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 2 Dimensionality Reduction for Classification of Object Weight 
from Electromyography  

2.1 Introduction 

The neuromuscular activations associated with the contraction potentials of the skeletal muscles 

generate electrical fields that can be noninvasively recorded and are termed surface 

electromyograms (EMG) [1]. EMG signals are non-stationary in nature and are affected by the 

structural and functional characteristics of muscles [2]. They have been widely used in various 

research, industrial, and clinical settings [3, 4]. Potential applications for signal classification and 

surface EMG include control of robotic arms and fingers, electric wheelchairs, multifunction 

prostheses and in particular neural prostheses, virtual keyboard and mouse, navigation in virtual 

worlds, and more [3]. 

Among the above basic human-control tasks, reaching and grasping are ubiquitous in everyday 

life and also serve as human interfaces for controlling robotic systems [5-7]. Identification of hand 

movements from EMG measurements has been used in video games, robotic exoskeleton devices, 

power prostheses and more [8-11]. A large number of these studies focus on feature selection for 

EMG movement classification and include a dimensionality-reduction step followed by machine-

learning-based classification.  

These studies have suggested that successful classification and pattern recognition of EMG signals 

require three main steps in the following order: (i) data preprocessing, (ii) feature extraction, and 

(iii) classification. Common EMG data preprcoessing steps include low- and high-pass filtering, 

whereas feature extraction is a method of finding intrinsic and  meaningful information that may 
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be latent in the EMG signal [12, 13]. Over the past few decades, various manual EMG feature-

extraction methods have explored in the time and/or frequency domains [14].  Finding optimal 

feature vectors therefore plays an important role in EMG classification because appropriate feature 

extraction tends to result in considerably high classification accuracy [12, 15].  

A common method to extract features from signals is dimensionality reduction, or learning low-

dimensional embeddings from samples in high dimensional space [16-18]. Most dimensionality-

reduction techniques are linear and relate to Principal Component Analysis (PCA) [19] or Multi-

Dimensional Scaling (MDS) [20]. While applying PCA may result in a lower-dimensional 

representation that captures more relevant information, such linear techniques have various 

limitations when applied to EMG. They are often less reliable and more sensitive to the number of 

samples in the training set. In addition, linear techniques by nature model linear relations, which 

may not describe EMG signals well. Last, linear techniques are global by nature, which means that 

they cannot preserve local structures in the original feature space [21].  

More modern, non-linear dimensionality-reduction techniques include Locally Linear Embedding 

(LLE) [22]. The LLE algorithm computes the basis of a low-dimensional space, though the 

dimensionality of the embedding often needs be given as a parameter [23]. Moreover, the output 

is an embedding for the specific given dataset and not a general mapping from the original to the 

lower-dimensional space. LLE is also not isometric and often fails by mapping distant points close 

to each other. Another non-linear technique, ISOMAP, is an extension of MDS that uses geodesic 

instead of Euclidean distances and can therefore be applied to non-linear manifolds [24]. The 

geodesic distances between points are approximated by graph distances. Then, MDS is applied on 

the geodesic distances to compute an embedding that strives to preserve distance between points.  
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Here we used the Laplacian Eigenmaps algorithm [25]. It computes the normalized graph 

Laplacian of the adjacency graph of the input data, which is an approximation of the Laplace-

Beltrami operator on the manifold. It exploits locality-preserving properties that were first 

observed in clustering. The Laplacian Eigenmaps algorithm can be viewed as a generalization of 

LLE, as the two are identical when the weights of the graph are chosen according to the criteria of 

the latter. Much like LLE, the dimensionality of the manifold also needs to be provided; the 

computed embeddings are not isometric, and a general mapping between the two spaces is not 

output. In the past, EMG-based classification using non-linear dimensionality reduction techniques 

was more often applied to human gait [26, 27] than to the more complex reach-and-grasp 

movements, which also utilize more degrees of freedom [21]. 

In this study, we used the WAY_EEG_GAL open public dataset, which is freely available (see 

Materials and Methods) and commonly used to test techniques for decoding during a reach-grasp-

lift task. In particular, our aim was to decode the weight of an object (165, 330, or 660 g) from the 

time-domain EMG data of twelve subjects, who reached and lifed the object. After preprocessing, 

we automatically extracted the features, reduced the dimensionality, and fed the resulting data into 

a machine-learning classifier. A key objective of our study was to compare different—linear and 

nonlinear—dimensionality reduction techniques and different classification techniques over the 

EMG data. In addition, previous work on the WAY_EEG_GAL dataset included either EEG alone 

or EEG together with EMG, whereas we wanted to investigate to what extent we could classify 

the weights in this reach-grasp-lift task using EMG alone. However, we did not focus our study 

on deep-learning (DL) techniques. Although DL does enable automatic end-to-end learning of 

preprocessing, feature extraction, and classification modules, DL models are also typically 

complex—i.e., have many free parameters (or degrees of freedom) to fit—and therefore require 
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large amounts of data to overcome the risk of overfitting those models to specific quirks of the 

training set. Therfore, they limit the generalizability of the model to an independent test set 

(although data augmentation might emiliorate these issues) [28]. 

By directly manipulating EMG signals, our study therefore shifts the focus from manual (human-

based) feature engineering to completely automated feature-learning even when only few training 

samples are available [29-31].  

2.2 Materials and Method 

Our methodology for EMG signal classification is illustrated in Fig 1 and detailed below. Briefly, 

EMG signals were first preprocessed and segmented into the first 8 s of each trial before feature 

extraction. This segmentation ensured that the subject started from home position and returned to 

the home position, removing noise after returning to the home position (Fig 2). The components 

corresponding to the highest eigenvalues from the output of the dimensionality-reduction 

algorithms were extracted as the dominant features. Thereafter, these intrinsic features were used 

for classification.  
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Figure 1. Processing pipeline for EMG signal classification 

 

Figure 2. EMG preprocessing. (Top) Pre-processed EMG signals of 5 muscles (Anterior 

Deltoid, Brachoradial, Flexor Digitorum, Common Extensor Digitorum, and First Dorsal 

Interosseus). (Bottom) Rectified and filtered EMG signals by band-pass Butterworth 

filter (4th order) in the 5-450 Hz range on the full wave rectified and normalized signals 

from each muscle. 



 

12 

2.2.1 Dataset 

The WAY_EEG_GAL dataset is freely available and has become somewhat of a benchmark to 

test techniques that decode sensation, intention, and action from surface EMG and scalp EEG in 

humans performing a reach-grasp-lift task (https://doi.org/10.6084/m9.figshare.c.988376) [32]. 

Here we focus exclusively on EMG data. The EMG signals were sampled at 4 kHz. In each trial, 

the participants rested their hand in the home position. Then they were cued to reach for the object, 

grasp it with the thumb and index finger, lift it straight up in the air and hold it for a few of seconds. 

They were then instructed to put the object back on the support surface, let go of it, and return the 

hand to a designated home position [32]. The state of the LED indicated to the participant to start 

and terminate a trial. The object’s weight varied between 165, 330, and 660 g and the surface 

material varied between sandpaper, suede, or silk. We used all available 2,645 trials of EMG 

signals, across all 12 subjects, including trials with different weights (840 trials for 165 g, 1122 

trials for 330 g, and 683 trials for 660 g). The number of trials for each subject was 220 or 221, 

and the highest imbalance-ratio between classes for any subject was 0.61 (Table 1). The material 

in all trials was always sandpaper, as per the original design of the experiment [32]. Five EMG 

electrodes recorded the activity from 5 muscles (Figs. 2, 3).  
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Figure 3. Raw EMG signals of 5 muscles (Anterior Deltoid, Brachioradialis, Flexor 

Digitorum, Common Extensor Digitorum, and First Dorsal Interosseous) for 3 different 

weights (165, 330, and 660 g) 

 

Table 1. The number of trials for each class and each subject 

ID 165g 330g 660g 
imbalance-

ratio 

Total trials for 

each subject 

Subject 1 70 93 57 0.61 220 

Subject 2 70 94 57 0.61 221 

Subject 3 70 93 57 0.61 220 

Subject 4 70 94 57 0.61 221 

Subject 5 70 94 57 0.61 221 

Subject 6 70 93 56 0.60 219 

Subject 7 70 94 57 0.61 221 

Subject 8 70 93 57 0.61 220 

Subject 9 70 93 57 0.61 220 

Subject 10 70 94 57 0.61 221 

Subject 11 70 94 57 0.61 221 

Subject 12 70 93 57 0.61 220 

Total 840 1122 683 Mean: 0.61 2645 
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2.2.2 Pre-processing 

All processing was carried out on a PC (3.4 GHz Intel® CoreTM i7-6700 CPU) using Python 3 

and MATLAB 2019b.  

EMG signals are typically contaminated by various types of noise and artifacts. Therefore, 

preprocessing prior to feature extraction was important. We used a band-pass Butterworth filter 

(4th order) in the 5-450 Hz range on the full-wave rectified and normalized signals from each 

muscle (Fig 2).  

2.2.3 Segmentation and feature selection 

The time required to reach, grasp, and lift varied among trials and subjects. So, we focused on the 

first 8 seconds for every trial. Doing so also removed noise that appeared at the end of the trial, 

after the subject returned their hand to the home position. For feature selection, we concatenated 

the signals of the 5 muscles (as in Fig. 3). We then subsampled, taking every 5th sample for 

increased processing speed (lowpass filtering was already carried out before the subsampling, as 

part of the band-pass filter during preprocessing). We ended up with 5 x 8 x 800 (muscle x time 

(second) x samples) = 32,000 features. 

2.2.4 Feature Extraction using dimensionality reduction 

EMG signals are complex, high-dimensional, and non-linear and hence hard to study in their 

original form. Effort has therefore been put into finding meaningful, low-dimensional features of 

these signals. Classical dimensionality-reduction techniques include linear methods, such as 

principal component analysis (PCA) [33] and linear discriminant analysis (LDA) [34]. These 
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techniques preserve global structure of the data but at the cost of obscuring local features and 

preventing any local manipulation of the data.  

In contrast, manifold learning is a non-linear technique for recovering a low-dimensional 

representation from high-dimensional data [23, 35]. The literature on manifold learning is 

dominated by spectral methods. These have a characteristic computational pattern. The first step 

involves the computation of the k-nearest neighbors (k-NN) of all N data points. Then, an N×N 

square matrix is populated using some geometric principle. This characterizes the nature of the 

desired low-dimensional embedding. The eigenvalue decomposition of this matrix is then used to 

obtain the low-dimensional representation of the manifold. 

A trade-off between preserving local and global structures must often be made when inferring the 

low-dimensional representation. Manifold learning techniques such as Locally Linear Embedding 

(LLE) [22], Laplacian Eigenmaps [25], and t-Distributed Stochastic Neighbor Embedding (t-SNE) 

[36] are considered to be local methods because they are designed to minimize some form of local 

distortion and hence result in an embedding that preserves locality. Methods such as ISOMAP [23] 

are considered global because they preserve all geodesic distances in the low-dimensional 

embedding. All spectral techniques are parameter less (except for neighborhood size; see below) 

and hence do not characterize the map that generates them. In this study, we compared different 

algorithms for manifold learning—Global: ISOMAP; and local: LLE, t-SNE, Laplacian 

Eigenmaps—and further compared them with linear dimensionality-reduction techniques, PCA 

and LDA (the latter is the only supervised dimensionality-reduction technique). In the next section, 

we explain the Laplacian Eigenmaps algorithm in more details. 
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2.2.5 The Laplacian Eigenmap algorithm 

The Laplacian Eigenmap algorithm plays a larger role in this study, hence we describe it in more 

detail, following Belkin et al. (see [25]). Given k points -!, … , -" in )#, it finds a set of points 

0!, … , 0" in ℝ$ (2 ≪ 4) such that 0% represents -%. Therefore, -!, … , -" ∈ 7 and M is a manifold 

embedded in ℝ#. The Laplacian Eigenmaps (spectral embedding) is based on the following steps: 

 

Algorithm 1. Laplacian Eigenmaps 

Input: 

 

 

Output: 

High-dimensional data-points of the manifold: 

{-% ∈ ℝ#}, : = 1, 2, … , < 

 

Low-dimensional embeddings of data points: 

{0% ∈ ℝ$}, 2 ≪ 4, : = 1, 2, … , < 

 

Step1. Constructing the graph: 

We put an edge between nodes : and = if -% and -& are >-nearest neighbors. Thus, nodes : and = 

are connected by an edge if : is among the >-nearest neighbors of =, or = is among >-nearest 

neighbors of :. This then leaves us with a connected graph. 

 

Step 2. Choosing the weights. There are two possible ways for choosing the weights: 
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a. Heat Kernel: ?&% =	@
'	
!"#$	"&!

'

'(' , if vertices i and j are connected by an edge; and ?&% =

0, if vertices i and j are not connected by an edge. The only parameter in the Heat-

Kernel equation is (, which defines the extent to which distant neighbors influence the 

embedding of each point. The choice of parameter ( is data-dependent and is typically 

tuned empirically. 

b. Simple-Minded: ?:= = 1, if	vertices	:	and	=	are	connected	by	an	edge	and	?&% =

0	if	vertices	:	and	=	are	not	connected	by	an	edge. 

Step 3.  Eigenmaps: Compute eigenvalues (R) and eigenvectors (f) for the generalized 

eigenvector problem:  

*S	 = 	RTS, 

where D is a diagonal weight matrix, and its elements are column (or row, since W is 

symmetric) sums of W. 

T%% 	= ∑ ?&%& , *	 = 	T	– 	? is the Laplacian matrix (symmetric, positive semidefinite). 

 

We leave out the eigenvector corresponding to eigenvalue 0 and use the next m eigenvectors for 

embedding in m-dimensional Euclidean space: -% → S!(:), … , S$(:). The m eigenvectors will be 

considered features of the dataset.  

The core algorithm is relatively simple. It has a few local computations (in the matrix) and one 

solution to the sparse eigenvalue problem. The solution reflects the intrinsic geometric structure 

of the manifold. It requires a search for neighboring points in a high-dimensional space. The 
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justification for the algorithm comes from the role of the Laplace Beltrami operator in providing 

an optimal embedding for the manifold. The manifold is approximated by the adjacency graph 

computed from the data points. The Laplace Beltrami operator is approximated by the weighted 

Laplacian of the adjacency graph, with weights chosen appropriately. The key role of the Laplace 

Beltrami operator in the heat equation enables us to use the heat kernel to choose the weight decay 

function in a principled manner. Thus, the embedding maps for the data approximate the 

eigenmaps of the Laplace Beltrami operator, which are maps intrinsically defined on the entire 

manifold. For more information about the justification for Laplacian algorithm and the role of the 

Laplace Beltrami operator in providing an optimal embedding, see Supplementary Methods. The 

low dimensional representation of the data set that optimally preserves local neighborhood-

information may be viewed as a discrete approximation to a continuous map that naturally arises 

from the geometry of the manifold. It is worth highlighting some aspects of Laplacian Eigenmaps 

here: 1) The algorithm reflects the intrinsic geometric structure of the manifold, which is simple 

with few local computations and one sparse eigenvalue problem. 2) The justification for the 

algorithm comes from the role of the Laplace-Beltrami operator in providing an optimal 

embedding for the manifold. The key role of the Laplace-Beltrami operator in the heat equation 

that enables us to use the heat kernel is to choose the weight decay function in a principled manner. 

Thus, the embedding maps for the data approximate the Eigenmaps of the Laplace-Beltrami 

operator, which are maps that intrinsically depend on the entire manifold. 3) The locality 

preserving character of the Laplacian Eigenmap algorithm makes it relatively insensitive to 

outliers and noise. Close connections to spectral clustering algorithms were developed in machine 

learning and computer vision. To help gain intuition about manifold-learning algorithms, we 

demonstrate their use on a simple, spherical dataset (2000 random points on the surface of a 3D 
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sphere) and on a “Swiss roll” (The 2000 points chosen at random from the Swiss roll; Fig 4). We 

used the Scikit-learn Python package [37] and Matlab toolbox [38, 39] for dimensionality 

reduction. Laplacian Eigenmaps are termed Spectral Embedding (SE) in Scikit-learn and the 

embedding is not strictly the adjacency matrix of a graph but more generally an affinity or 

similarity matrix between samples [40]. It has 2 different methods (heat kernel and simple-minded) 

for constructing the weight matrix. The kernel function for the Heat-Kernel (?%& 	= 	 @
'	
!"#$	"&!

'

'(' ) 

in this package is a Gaussian radial basis function kernel (RBF) with Y =
!
)*', where	 γ	 is	 a	

parameter	 that	 sets	 the	 “spread”	 of	 the	 kernel.	 The results of various manifold-learning 

techniques for 8 neighbors in 2D space are shown in Fig 4. Laplacian Eigenmaps (simple-minded), 

or SE, is the fastest algorithm; the computation time for SE-rbf is 5.5 times longer for a sphere and 

31.7 times longer for a Swiss roll. It appears that the construction of the weight matrix drives this 

difference in computation time. For more information about the properties of techniques for 

dimensionality reduction, see Supplementary Methods. 
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Figure 4. Manifold learning techniques. MDS, ISOMAP, LLE, t-SNE, and Spectral 

embedding (SE) or Laplacian Eigenmaps on 2000 points randomly distributed on the 

surface of a sphere. Computation time in seconds is given after each method's name in 

parentheses. The first column for SE is simple-minded constructing weight matrix and 

the last column is for heat kernel. 

An important requirement for dimensionality reduction techniques is the ability to embed new 

high-dimensional datapoints into an existing low-dimensional data representation. However, there 

is no explicit projection function between the original data and their low dimensional 

representations in the original LE algorithm, which makes out-of-sample extension difficult. To 

find projection of any additional samples, LE needs to be run on all the data together with the 

additional samples, resulting in considerable computational cost, especially when applying it to 

large scale data pattern recognition. Fortunately, various methods have been developed to mitigate 

the out-of-sample problem [5]. Nyström approximation supports out-of-sample extensions for 

spectral techniques such as ISOMAP, LLE, and Laplacian Eigenmaps. In Supplementary Methods, 

we explain Nyström approximation in greater details. In Fig 5 we depict the embedding of 

additional, out-of-sample points (there termed “test dataset”). As is apparent, the out-of-sample 
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points are mapped to plausible locations in the low-dimensional space. For more information about 

the out-of-sample extension, see Supplementary Methods. 

 

Figure 5. Example of an out-of-sample extension via the Nyström approximation in 

embedded space by Laplacian Eigenmaps with k = 8 and σ = 1. The train / test ratio was 

90% / 10%.  

2.2.6 Classification 

After finding an optimal feature set, we tested commonly used classification algorithms: k-NN 

[41], linear and RBF SVM [30] (C=32, Y = 0.01 for RBF SVM), and Random Forest [42]. We 

evaluated the performance of each classifier on the data after running the above dimensionality-

reduction techniques. We ran the analysis on each subject separately. The dataset was divided into 

disjoint training and testing sets, which consisted of 90% and 10% of the total trials, respectively. 

For each subject, we further ran 10-fold cross-validation on the training dataset. Table 1 shows the 

details of trials for each class and subject. The results we report are therefore averaged over all 

subjects on the testing dataset.  



 

22 

Another common method for EMG classification, on top of those above, is deep learning [43]. We 

tested several deep learning architectures on our selected feature set. However, we ran into severe 

overfitting issues resulting in accuracies very close to chance level. This result is likely due to the 

relatively small features-to-samples ratio for our dataset. Consequently, we did not include deep-

learning results in our analyses.  

As the dataset was imbalanced (the highest imbalanced ratio was 0.6), we used the F1-score as a 

metric of accuracy [44]. The F1-score provides a way to combine both precision and recall into a 

single measure that captures both properties. Once precision and recall have been calculated for a 

binary or multiclass classification problem, the two scores can be combined into the calculation of 

the F1-score. 

F1-score =	 )		∙	,-./%0%12	∙	3./4##,-./%0%125	3./4##  , 

where Z[@\:]:^> = 	
6,

(6,58,)  and )@\_44 = 	
6,

(6,58:) . Here TP is number of true positives, FP is 

number of false positives, and FN is number of false negatives. This is the harmonic mean of the 

two fractions. The F1-Score is a very common metric for imbalanced classification problems [45]. 

2.2.7 Running-window analysis 

In this section we describe an additional, running-window analysis that we performed on this 

dataset. This section helps to get more insight into the temporal dynamics of the current model’s 

classification accuracy. In the analysis, we used a 100 ms sliding window with a step size of 40 

ms. We tested various step sizes (between 10 and 50 ms) and 40 ms resulted in the best 

visualization (though the visual differences between the step sizes were minute). 
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We applied the proposed pipeline in a sliding-window manner to estimate the extent to which the 

prediction accuracy would be stable over consecutive time windows. Laplacian Eigenmaps 

(simple-minded k=8), 120 dimensions after embedding with k-NN (number of neighbors k=8), 

was applied on the preprocessed EMG signal. The minimum length of the sliding window that is 

possible to run on this dataset is 100 ms. Below this length, the adjacency graph of the input data 

appears not to be fully connected (Supplementary Methods). For example, a row (and a column, 

since this is symmetric) can be all zeros and therefore one of the nodes will not be connected, 

resulting in a warning.  

We therefore segmented the dataset based on the events (onset of touching the object, LED on, 

LED off). There was variability among subjects’ speed in this task. The minimum time across 

subjects was 0.74 s before touching the object and 1.82 s after touching the object.  

2.3 Results 

2.3.1 Parameter settings 

The proposed framework has 2 parameters: the number of nearest neighbors in Laplacian 

Eigenmaps to construct the Laplacian matrix (either using the direct number of neighbors, k, or 

using a heat kernel approach, `) and the number of eigenvectors used for data mapping, i.e. the 

dimensions of the mapped space. The number of nearest neighbors in Laplacian eigenmaps, k, was 

tuned to 4, 5, 6, …, 20—i.e., using a grid search. We also tested values of ` in the range 0.1, 1, 

10, 100,1000, again using a grid search. Figure. 6 shows the effect of different k and ` values on 

the training dataset for Subject1. The number of eigenvectors or dimensions is tuned in the range 
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of 1,5, 10, …, length (training trial), once more using a grid search. (see S1 Table 1. Properties of 

techniques for dimensionality reduction) 

 

Figure 6. Visualization of the effect of k (top row) and ( (bottom row) on the training 

dataset for Subject 1 in the embedded space 

Table 2 shows the optimal number of eigenvectors for each dimensionality-reduction method 

across all subjects. As a sanity check, we also used the maximum likelihood estimator (MLE) as 

the intrinsic dimensionality estimator in the Matlab toolbox for dimensionality reduction [39]. The 

number of eigenvectors varied between 110 and 170 over the 12 subjects for different 

dimensionality-reduction techniques. We also visualized the embedded EMG using our six 

dimensionality-redution methods (PCA, LDA, ISOMAP, LLE, Laplacian Eigenmaps, and t-SNE). 

Figure 7 shows the 2 most prominent components for each of these methods.  
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Table 2. The number of dimensions that leads to the highest F1-score (obtained using 

grid search; for k-NN, which was the best classifier; see also Figure 8) vs. different 

dimensionality reduction techniques for each subject. The mean and standard error (SE) 

over all subjects for the different methods are also given. 

ID PCA ISOMAP LLE 
LE(simple 

minded) 

LE(rbf) 
t-SNE 

Subject 1 160 180 135 115 120 180 

Subject 2 170 155 110 115 110 155 

Subject 3 165 175 125 125 125 170 

Subject 4 190 180 90 115 90 190 

Subject 5 170 180 120 120 105 175 

Subject 6 155 130 110 115 145 130 

Subject 7 175 120 100 140 120 175 

Subject 8 125 145 120 120 125 185 

Subject 9 110 100 95 125 95 140 

Subject 10 170 160 135 140 155 185 

Subject 11 170 185 110 125 105 170 

Subject 12 165 190 95 115 110 140 

[Min Max] 

Mean± SE 

[110 190] 

160.4±6.4 

[100 190]        

158.3±8.4 

[90 135] 

112.1±4.4 

[115 140] 

122.5±2.6 

[90 155] 

117.9

±5.5 

[130 190] 

166.3±5.8 
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Figure 7. Visualization of the embedding process: EMG visualization using the 2 most 

prominent components of different dimensionality-reduction technique (The x-axis is the 

most prominent component, and the y-axis is the second most prominent component) 
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Figure 8. Average accuracy (across all 12 subject) as a function of the number of 

eigenvectors obtained with different dimensionality reduction techniques for the best 

classifier—k-NN (see also Table 3). We included PCA, ISOMAP, LLE, Laplacian 

Eigenmaps, and t-SNE. The LDA dimensionality-reduction technique was not included in 

these curves because the maximal dimension for LDA is equal to the number of classes 

minus one.  

2.3.2 Classifier Performance 

We computed the average accuracy using PCA, ISOMAP, LLE, Laplacian Eigenmaps, and t-SNE 

for the classifier that produced the highest accuracy—k-NN (Figure. 8). In Table 3, the 

performance of Laplacian Eigenmaps (simple-minded) and different classifiers vs. different 

number of neighbors (k) is shown. It demonstrates that k=8 fits well for this dataset. 
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Table 4 details the prediction accuracies of the different classification algorithms on the test set 

for the various dimensionality-reduction techniques over all 12 subjects. On average, Laplacian 

Eigenmaps (especially with a heat kernel) is the algorithm with the highest accuracy across all 

dimensionality-reduction methods—78.15%. And k-NN is the classification method resulting in 

the highest mean accuracy across all classification algorithms—80% on average—and 

significantly higher than linear SVM and RBF-SVM and marginally higher than Random Forest 

(repeated-measures ANOVA F(3)=15.5, p<0.001; post-hoc t-tests suggest all comparisons are 

significant at the 0.05 level except Random Forest vs. k-NN, which was p=0.053; and RBF-SVM 

vs. Random Forest, p=0.685—see S1 Table 4 and  S1 Table 5; we further found no evidence that 

the pairwise differences are not normally distributed—Shapiro-Wilk test was not significant). 

Interestingly, the intersection of Laplacian Eigenmaps and k-NN has the highest overall accuracy, 

at 88%. We also ran a statistical analysis on the different dimension reduction techniques to 

compare the linear and non-linear techniques. However, there wasn’t significant difference 

between them, maybe because of the low number of subjects (see S1 Table 2 and S1 Table 3). 

2.3.3 Evolution of classification accuracy over time 

So far, we focused on optimizing the dimensionality reduction and classification accuracy on the 

entire movement duration. However, another interesting aspect of this dataset is the evolution of 

the dimensionality reduction and classification accuracy over time within each trial. A running-

window analysis of our best combination of dimensionality reduction technique and classification 

method (Laplacian Eigenmap and k-NN) suggests that there is little to no information in the EMG 

of the muscles before the subject touches the object (Figure. 9a). The mean accuracy over our 100 

ms window during that time was 43.39% (±9.79). It is not surprising that the accuracy is slightly 
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above chance, as some of the experiment was carried out in a blocked design; hence, the weight 

often did not change between consecutive trials [46]. So, subjects may therefore have begun 

preparing their hand posture while reaching for the object based on the weight they anticipated 

from the previous trial. And we were able to capture this preparatory muscle activity with our 

algorithm.  

Perhaps more interesting is the running-window analysis after the subjects grasped the object. 

With such a small window, we expected a much lower accuracy than that over the entire movement 

window. Indeed, the mean accuracy was only 57.65% (±11.59). But interestingly, the accuracy 

was above chance level already in the first 100 ms window (Figure. 9b). And it was generally 

stable throughout much of the duration when the subject held the object, though there appears to 

have been a small decrease in accuracy toward the end of that time duration.  
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Figure 9. Sliding-window analysis of Laplacian Eigenmap dimensionality reduction and 

k-NN classification before touching the object (a) and after touching it (b). We used a 

100 ms sliding window with a step size of 40 ms. In both panels, the onset of touching 

the object is designated by a vertical red line at time 0. Table 3. Performance of Laplacian 

Eigenmaps (simple-minded) and different classifiers vs. different number of neighbors 

(k) on the EMG signals (F1 score ± SE)
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Table 3. Performance of Laplacian Eigenmaps (simple-minded) and different classifiers vs. different number of neighbors (k) 
on the EMG signals (F1 score ± SE) 

Different number of 
neighbors(k) 

4 6 8 10 12 15 20 

Laplacian Eigenmaps 
(simple-minded) + k-NN 

43.42(±9.2)% 71.98(±4.9)% 88.2(±3.5)% 79.32(±6.7)% 71.76(±4.5)% 63.64(±7.8)% 58.31(±6.3)% 

Laplacian Eigenmaps 
(simple-minded) + RBF 

SVM 

32.88(±6.4)% 74.68(±2.7)% 77.6(±2.3)% 76.98(±3.1)% 76.46(±8.5)% 73.52(±4.3)% 68.23(±8.1)% 

Laplacian Eigenmaps 
(simple-minded) + 

Linear SVM 

43.42(±5.3)% 62.98(±3.9)% 63.6(±2.2)% 63.59(±2.7)% 63.06(±1.5)% 63.64(±7.8)% 58.31(±6.2)% 

Laplacian Eigenmaps 
(simple-minded) + 

Random Forest 

59.21(±3.2)% 72.28(±4.3)% 79.5(±2.8)% 78.54(±2.4)% 77.76(±4.5)% 77.64(±3.9)% 68.22(±2.3)% 

 
Table 4. Performance of different classifiers vs. different dimensionality-reduction methods on EMG signals (F1 score ±	SE). 

See S1 Table 4 for post-hoc t-tests for this table. 

 k-NN RBF SVM Linear SVM Random Forest Average (%) 

PCA 75.3(±2.8)	% 64.3(±1.2)% 63.5(±4.9)% 75.4(±3.2)% 69.62(±3.3)% 
LDA 78.2(±15.3)% 72.7(±13.2)% 67.2(±12.2)% 76.2(±9.3)% 73.57(±2.4)% 

ISOMAP 77.4(±7.2)% 74.4(±2.2)% 57.7(±3.9)% 73.9(±4.9)% 70.85(±4.4)% 
LLE 84.6(±7.9)% 82.3(±4.1)% 58.5(±4.1)% 76.7(±3.8)% 75.52(±5.9)% 

Laplacian Eigenmaps (simple-
minded k=8) 88.2(±3.5)% 78.2(±2.3)% 63.6(±2.2)% 72.6(±2.8)% 77.7(±3.8)% 

Laplacian Eigenmaps (rbf, ! = #$ 
) 84.2(±3.9)% 71.2(±5.3)% 61.3(±4.7)% 79.9(±2.9)% 78.15(±3.7)% 

t-SNE 75.8(±4.2)% 73.2(±2.1)% 71.1(±8.3)% 69.3(±8.7)% 72.35(±1.3)% 

Average (±&'))% 80.53(±1.9)% 75.24(±2.3)% 65.24(±2.1)% 
74.85(±1.2)

% 
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2.4 Discussion 

Our goal in this study was to decode to which of 3 weight classes an object in a reach-grasp-lift 

task belonged using only EMG data from the arm and hand. In particular, we compared the 

performances of various linear and non-linear dimensionality-reduction techniques, combined 

with several classification methods. We worked on pre-processed EMG signals directly, 

automatically extracting the features for the classification phase. The dimensionality-reduction 

algorithms we used lowered the dimensionality of our data from 32,000 to less than 200—i.e., 

more than 160-fold. We then applied various classification techniques on this 3-way classification 

problem and discovered that the combination of Laplacian Eigenmaps (simple-minded, k=8) with 

the k-NN classifier resulted in the highest classification accuracy (F1 score 88.2±3.5%). As a 

result, we used automatic feature-extraction directly from the pre-processed EMG time-domain 

signal [20, 47-52]. Importantly, our approach to extract features from EMG signal resulted in 

relatively high decoding accuracy.  

Other studies that relied on the same dataset that we used mostly focused on EEG [47-50]. 

However, Cisotto et al. used both EEG and EMG to classify the same dataset [51]; though they 

attempted classification of only 2 of the 3 available classes (the most extreme weights: 165 and 

660 gr). They also reported their results in terms of accuracy, even though their classes were 

imbalanced (imbalance ratio of 0.81 between the number of trials in the 2 classes). They reported 

a maximal accuracy of 94% (using only the Brachoradial muscle). Running our analysis as is 

(using all muscles and without any parameter optimization) with only the 2 weight classes they 

used, and a reporting accuracy instead of F1 score, we get an accuracy of 90.9 ± 2.5%. This 

accuracy is statistically indistinguishable from theirs (t-test: t(11)=-1.33, p=0.21). Therefore, even 

though we used only EMG and not EEG, and we did not focus our analysis on a binary 
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classification problem, we were able to achieve comparable results. These might be due to the 

superiority of our method—perhaps our automatic feature extraction or our dimensionality-

reduction algorithm. Another, not mutually exclusive, reason might be that the high classification 

accuracy that Cisotto et al. we were able to achieve owes much to the EMG signals that they used 

in conjunction with the EEG signals [51]. Hence, at least for this dataset, the addition of the EEG 

signals may not have added that much to the decoding accuracy. 

The increasing adoption of DL tehcniques in machine learning is shifting the focus from feature 

engineering to feature learning [8, 52]. Nevertheless, the black-box nature of DL makes it hard to 

understand what information is learned by the network and how it relates to handcrafted features. 

At the same time, the application of DL on insufficiently large datasets risks overfitting. In 

additional, the high variability of EMG recordings between participants often makes deep-learned 

features generalize poorly across subjects. 

The range of mean accuracies among the dimensionality reduction algorithms we used was 70-

78% (Table 4). Interestingly, Laplacian Eigenmaps not only performed best on average; its simple-

minded version also generally required the shortest computing time (see Materials and Methods). 

The average accuracies of the different classifiers varied from 65.24% to 80.53%. It appears that 

the linearity of linear-SVM was detrimental for EMG signal decoding, while the most non-linear 

technique, k-NN, faired best. 

It also appears that dimensionality-reduction techniques relying on local embedding were better 

for this dataset than those that used global embedding. Such local methods strive to map nearby 

samples on the original manifold to nearby samples in the low-dimensional space (and vice versa 

for far away samples). Global methods, in contrast, strive for a faithful representation of the data’s 
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global structure. As reach-grasp-lift motion is composed of different phases of movement, local 

methods may better preserve the varying geometry across phases. Local methods are also 

computationally more efficient, involving only sparse matrix computations. It may further not be 

surprising that k-NN works best with local dimensionality-reduction methods. These methods keep 

nearby samples close to each other, facilitating nearest-neighbor approaches like k-NN.  

Our method, therefore, resulted in relatively high accuracy on 3-way classification while 

maintaining automatic feature extraction. What is more, the methodology proposed in this paper 

is well suited to real-time operation, potentially in combination with EEG [53], because the 

computational load in training and testing the model is relatively low. In addition, the variability 

in many datasets could be due to just a small number of factors. If that is the case, the samples 

from these datasets may well lie on or near some low-dimensional manifold embedded in the high 

dimensional space. For instance, natural signal variation among different subjects, fatigue, and 

delay in performing the tasks are very poorly approximated by changes in linear basic functions. 

However, previous studies suggest that manifold learning could capture these changes, and, using 

affine transformations, may even tolerate the effect of variations [54, 55]. 

To better understand the suitability of this method for real-time decoding—for example to control 

a powered prosthesis—we needed to better understand the evolution of the classification accuracy 

over time. One pertinent question is how soon after touching the object would there be information 

in the muscle about the weight of the object that is decodable using this technique. For a running-

window analysis, the shortest time-window possible using our technique (100 ms) suggested that 

the information exists in the muscle already within the first 100 ms after the subjects touch the 

object (Figure. 9b). We also saw that the accuracy of our method was generally stable over the 

time duration when the subject grasped and moved the object. Achieving a stable decoding 
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accuracy quickly after touching the object bodes well for the use of this technique in real time, 

though the relatively low accuracy over small time windows is a limitation worth noting. 

Therefore, constructing a combination of dimensionality reduction and classification techniques 

to specifically manage classification over small time windows is an interesting area of 

investigation for future studies.  

2.5 Conclusion, Limitations and Future Work 

This study proposes a complete, automated pipeline for the preprocessing, feature selection, 

feature extraction, and classification of objects of 3 different weights in a reach-grasp-lift task, 

where the only input was pre-processed EMG data from 5 muscles. Besides showcasing relatively 

high classification accuracy (F1 score 88.2±3.5%), our study highlights the importance of 

properly combining feature selection and classification algorithms to achieve this high accuracy.  

The findings of our study are limited by a few factors. First, we used the open-source dataset, 

which has only 12 subjects, so the results of our statistical analyses should be interpreted 

cautiously. We have also left an analysis of the effect of fatigue on weight decoding for future 

studies. Nevertheless, given the high accuracy of our method overall, it is likely that the effect of 

fatigue on decoding accuracy is not dramatic. Similarly, the lower decoding accuracy of our 

method on smaller time windows deserves additional scrutiny. 
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 3 Data Augmentation for Deep-Learning-Based 
Electroencephalography 

3.1  Introduction 

Electroencephalography (EEG) measures electric fluctuations in the brain. One use of EEG is to 

measure rhythmic oscillations, which reflect synchronized activity of substantial populations of 

neurons. Changes in these rhythmic oscillations during cognitive tasks correlate with task 

conditions, including perceptual, cognitive, motor, emotional, and other functional processes. This 

renders such task monitoring tractable using EEG [56]. Several reasons make EEG a useful tool 

for studying neurocognitive processes. First, it captures cognitive dynamics in the time scale at 

which cognition occurs—tens to hundreds of milliseconds. Second, EEG can directly measure 

complex patterns of neural activity within small fractions of a second after stimulus onset. Third, 

the EEG signal is multidimensional, comprising time and frequency, power, and phase, across 

many electrodes over the scalp. This multidimensionality facilitates specifying and testing 

hypotheses that are rooted both in neurophysiology and in psychology [57]. Nevertheless, EEG 

also suffers from several limitations. First, it is an aggregate signal emanating from the aggregated 

neuronal activity of millions or more cells, which has been transduced through several layers of 

tissue, fluid, bone, etc. EEG also suffers from low signal-to-noise ratio (SNR) [56-59]. Though 

various filtering and de-noising techniques strive to decrease the noise in favor of the underlying 

neural activity. What is more, EEG is a non-stationary signal—its statistics varying over time [56, 

60, 61]. This is especially problematic for online, real-time analysis, where it is inherently models 

that were trained on past neural data that are used to decode present neural activity. Further, for 

complex machine-learning models, model training time might be lengthy. Hence, not only is it 
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well outside the scope of real-time analysis, necessitating off-line training, but the statistics of the 

relevant brain activity may change considerably by the time the model is trained. There have been 

some attempts at adaptive machine-learning techniques to better track the changing statistics of 

the signal [62-64]. If that is not enough, EEG is generally recorded using tens to hundreds of 

electrodes recording simultaneously at hundreds or thousands of samples per electrode, whereas a 

typical dataset, at least in cognitive neuroscience, contains only some hundred to a few thousand 

samples (i.e., experimental trials) at the most. Hence, the initial ratio of samples to features is low. 

This problem is only exacerbated for datasets involving rare events, which tend to result in highly 

unbalanced classes of events versus non-events (e.g., for seizure detection or transitional sleep 

stages) [56]. Due to the above, classifiers trained on EEG datasets tend to generalize poorly to data 

recorded at different times, even on the same individual. 

Unfortunately, there are additional challenges: inherent variabilities in brain anatomy and 

dynamics across subjects considerably limit the generalizability of EEG analyses across 

individuals [56, 65]. In other words, even if a model is well trained on one experimental subject, 

it would tend to generalize poorly to other subjects. Thus, most EEG classifiers tend to be subject-

specific. Yet, even for a single subject, many time-consuming experimental sessions must be 

gathered to train the machine-learning models well enough to be useful. To overcome some of the 

above-mentioned limitations, processing pipelines with domain-specific approaches are often used 

to clean, extract relevant features from, and then classify, EEG data.  

Deep Learning (DL) is a subfield of machine learning that focuses on computational models that 

typically learn hierarchical representations of the input data through successive non-linear 

transformations—termed neural networks (NN) (because of their superficial resemblance to 
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biological neural networks in the nervous system) [56, 66, 67]. In the past few years, DL has 

achieved breakthrough accuracies and discovered intricate structures in complex and high-

dimensional data such as image classification [68-70], speech recognition [71-73], machine 

translation, and more [56]. The architecture of the neural networks, their training procedure, 

regularization, optimization, and hyper-parameter searches are all active research topics in DL, 

with advances often resulting in dramatic increases in decoding accuracy. DL typically thrives on 

problems where (1) there is a lot of data, and (2) The basic unit of information (e.g., a pixel, a 

letter) has little overall meaning; but potentially complex, hierarchical combinations of such units 

are useful in understanding the sample. Successful machine-learning classification also at least has 

the potential to make considerable impact on EEG decoding, remarkably simplifying its processing 

pipelines for example. It could possibly enable automatic end-to-end learning of preprocessing, 

feature extraction, and classification modules, while also reaching competitive performance on the 

target task [74, 75]. DL in particular has shown some promise for inter-subject generalization [76], 

which is especially important when only little data is available per subject. A critical question 

concerning the application of DL to EEG data is therefore “How much EEG data is enough for a 

desired accuracy level?” Unfortunately, high-grade EEG data collection requires relatively 

expensive hardware and a lot of participant time. At the same time, access to large, especially 

clinical, dataset is often limited by privacy and proprietariness concerns. Therefore, large, openly 

available EEG datasets are uncommon.  

Data augmentation (DA) comprises the generation of new samples to augment an existing dataset 

by transforming existing samples in a manner that increases the accuracy and stability of the 

classification. Exposing the classifiers to varied representations of its training samples makes the 
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model more invariant and robust to such transformations when attempting to generalize the model 

to new datasets [77-79]. DA has proven effective in many fields, such as image processing and 

object recognition. It has even been demonstrated that can give a higher accuracy boost very deep 

neural networks than the other standard approach, which is regularization [79]. 

New, augmented data is typically generated using two approaches. The first is by applying 

geometric transformations: translations, rotations, cropping, flipping, scaling, etc. The second is 

via the addition of noise to the existing training data. Note that increasing the size of the training 

set also facilitates training more complex models with additional parameters and/or reducing 

overfitting. However, unlike images, EEG is a collection of very noisy, somewhat correlated (in 

time and space), non-stationary time-series from different electrodes. And even if feature 

extraction is performed, geometric transformations are not directly suitable for EEG data because 

those may destroy time-domain features [78]. Also, while a human can easily decide whether an 

augmented dataset (e.g., of cats or other images) still resembles the original class, the same is not 

true of augmented EEG signals. In other words, correctly labeling augmented datasets can be 

difficult. Nevertheless, in recent years DA techniques have received widespread attention and 

achieved appreciable performance boosts when using DL on EEG signals.  

We ran a systematic review on DA in EEG and collected all the papers that we were able to find 

up to and including 2019. The earliest paper we could find was in 2015. And a testament to the 

growing importance of DA for EEG is that 37 out of 53 papers we found (70%) were from 2018 

and 2019 and 21 (40%) were from 2019 alone. This review paper strives to identify trends and 

highlight available approches in DA for DL in EEG to address the following critical questions: (1) 

What DA approaches exist for EEG? (2) Which dataset and EEG classification tasks have been 



 

 40  

explored with DA? (3) Are there specific DA methods suitable for specific tasks measured by 

EEG? (4) Which of the input features in EEG are used for training the deep NNs with DA?  

3.2 Methods 

3.2.1 Search method for identification of related studies 

The search was conducted on 3rd January 2020 within the Google Scholar, Web of Science, and 

PubMed databases using the following group of keywords: (‘Data Augmentation’) AND (‘Deep 

Neural Network’ OR ‘Deep Learning’ OR ‘Deep Machine Learning’ OR ‘Deep Convolutional’ 

OR ‘Representation Learning’ OR ‘Deep Recurrent’ OR ‘Deep LSTM’) AND (‘EEG’ OR 

‘Electroencephalography’). Only studies within the inclusion criteria are included below. Further, 

duplicates among these databases were removed from the search results. Full texts of the remaining 

studies were then screened.  

Inclusion criteria Exclusion criteria 

EEG classification—This review focused solely on 

classification based on EEG signals.  

Deep learning—In this review, DL is defined as learning 

using a neural network with at least one hidden layer 

EEG augmentation— This review focused on the 

augmentation of EEG signals. 

Other studies, such as power 

analysis and feature selection 

with no end classification, were 

excluded.  

review papers were excluded 
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English Journal and conference papers, as well as 

electronic preprints, published were chosen as the target of 

this review.  

Studies focusing only on �EEG� AND �DL� and �

DA� 

 

 

 

Figure 10. Selection process for the papers 

 

The database queries yielded 295 matching results. Of those, 32 were duplicated. After screening 

the others, we ended up with 75 papers. Based on our inclusion and exclusion criteria, 53 papers 

were selected for inclusion in this analysis, as shown in Figure 10. 
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3.2.2 Data Extraction and presentation 

For each selected paper, around 40 features were extracted covering 7 categories: Origin of the 

article, DA types, Dataset, Task information, Preprocessing, DL strategy, Results (Table 5). 

3.3 Results 

3.3.1 Origin of the selected studies 

Table 5. Data items extracted for each article selected 

Category Data item 

Article origin Type of publication (Journal article, conference article, or in 

an electronic preprint repository) 

Data augmentation (DA) DA technique used to generate new samples 

Parameters for DA 

Magnification factor (m) 

Dataset Quantity of data, subjects, classes, channels 

Task information Task type 

Preprocessing Frequency range used for analysis 

EEG signal features 

Deep-learning strategy Main characteristics of NN, such as number of convolutional 

layers, hidden layers, activation function of hidden layers and 

output. 

Results Decoding accuracy 

Our research methodology returned 26 journal papers,16 conference and workshop papers, and 11 

preprints (arXiv or bioRxiv) that met our inclusion criteria. There were 4 papers in IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 3 papers in Biomedical Signal 

Processing and Control and the rest of the papers were each in a different journal (see Table 8 for 

details). Interestingly, we found no papers that fulfilled our search criteria before 2015. Further, 
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testament to the growing importance of DA for EEG is the clear year-by-year rise in the number 

of papers answering our search criteria from 2015 to 2019 (Figure 11 A). 

3.3.2  EEG classification task 

The EEG tasks in these papers fell into 7 groups: seizure-detection (24%), motor imagery (21%), 

sleep stages (15%), emotion recognition (15%), mental workload (9%), motor task (8%), and 

visual task (8%) (Figure 11 11B). The following describes these EEG tasks (see Table 8 for more 

details): 

Seizure-detection studies. A seizure is a sudden, uncontrolled disturbance in the electrical activity 

of the brain. For seizure detection in epilepsy, EEG signals are recorded during seizure and non-

seizure periods. The goal of these studies is to detect upcoming seizure and preemptive notification 

to the patients [80, 81]. Seizure manifestations on EEG are extremely variable both inter- and intra-

patient. Naturally, non-seizure events are easy enough to record. But seizures tend to be rare. DA 

has been successful at increasing the number of rare events (seizures) in the dataset and thus at 

increasing the accuracy of seizure-detection algorithms. 

Motor imagery tasks. These studies instruct subjects to imagine moving their limbs, tongue, or 

other body parts. Motor imagery EEG decoding is an important method in brain-computer 

interfaces (BCI) that has the potential to help highly disabled people communicate with the outside 

world without relying on muscle activity (e.g. [82]). 

Sleep stages scoring tasks. Studies on sleep-stage classification record the EEG signal of subjects 

overnight. These signals are then scored and classified to wakefulness (W) and then 4 stages of 
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sleep based on the American Academy of Sleep Medicine(AASM) scoring manual: Rapid eye 

movements, or REM (R) and 3 non-REM stages (N1, N2, and N3) [83, 84]. The eventual 

application of this research focuses on sleep related disorders, such as sleep apnea, insomnia, and 

narcolepsy (e.g. [85, 86]). 

 

Figure 11. EEG classification task. (A) Number of publications per domain of EEG task 

per year. (B)The percentage of different EEG classification task across all studies. 

Emotion recognition tasks. Here subjects watch video clips, which have been categorized by 

experts as eliciting various emotions. Facial expressions and EEG signals are then recorded from 

the subjects. However, some subjects may hide their real emotions using misleading facial 

expressions. Therefore, EEG signals and emotion self-assessment typically follows. The result can 

be parsed into valence and arousal scales. Emotion recognition is a crucial problem in human-

computer interaction (HCI) for example: virtual reality, video games, and educational systems (e.g. 

[78]). 

Mental workload tasks. Subjects are here instructed to carry out different mental tasks of varying 

complexity. The results of these studies reflect the interaction between the human inner cognitive 



 

 45  

capacity and the level of task complexity. Research into mental workload has applications in BCI 

performance monitoring and in cognitive stress monitoring (e.g. [87]). 

Motor tasks. Here, subjects are instructed to either rest or move some parts of their bodies. 

Researchers use such tasks to design, modify or improve classification methods for different 

applications (e.g. [88]). 

Visual tasks. These studies focus on the detection and classification of the intentions and decisions 

of subjects while they watch rapidly changing sequences of pictures or letters. This helps to 

improved non-verbal communication systems and BCI (e.g. [89]). 

3.3.3 Data and Reproducibility 

We collected dataset information for 53 papers. This information included: 

§ Data quantity: Amount of data in the study (total hours of recording or number of samples)  

§ Number of Channels: Number of channels recorded and which of them were used for analysis 

§ Subjects: Number of recorded participants and which of them were analyzed 

§ Dataset: Publicly available, proprietary, etc. 

See Table 8 for more details. 

3.3.4 Pre-processing and Feature extraction 

The analysis of EEG signals is typically carried out by one of two methods. The first is event-

related potentials, which are fluctuations of the potentials over time that are locked to an event 

(e.g., to 'stimulus onset' or 'button press'). The second is spectral analysis of rhythmic oscillations, 

which reflect the synchronized activity of very large populations of neurons. Regardless of the 
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analysis method, it is an aggregate signal emanating from the neuronal activity of millions or more 

brain cells, which has been transduced through several layers of tissue, fluid, bone, etc. It also 

potentially includes undesired electrophysiological signals, such as electromyograms (EMG) of 

muscle contractions specifically eye blinks, heart beats, and others. Therefore, the EEG signal is 

inherently noisy. Though various filtering and de-noising techniques strive to decrease the noise 

in favor of the underlying neural activity. In the 53 studies we found, 85% (45 studies) removed 

the artifacts manually—mainly using high, low, and band pass filtering. A further 13% (7) of 

studies did not take any action to remove artifacts, and the remaining study (2%) did not address 

artifact removal. 

Most studies used frequency domain filters to limit the bandwidth of the EEG signals. This enabled 

them to focus on a certain frequency range that was of interest. Roughly, half of the reviewed 

papers low pass filtered the signal below low gamma band or 40 Hz. The filtered frequency ranges, 

organized by task type (Figure 12 12). We found that there were no studies that specifically check 

the role of this filtering for NN [75]. 

  

Figure 12. Frequency range used in EEG analysis for each identified study, organized by 

EEG task type. 
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3.3.5 Input Formulation 

The inputs to the NNs in the studies that fulfilled our inclusion criteria, fell into three categories. 

The first included raw EEG signals (in the time domain) (36%). The second calculated features 

from the raw signals and used those as inputs (49%). And the third used spectrograms, processed 

as images (15%). The selection of input formulation heavily depended on the task type and deep-

learning architecture. Thus, we can see that most of the studies used calculated features to train 

their proposed NNs. When attempting to find behavioral patterns, it is common to analyze specific 

frequency ranges of EEG signals. Wavelet, entropy, spatial filter, short-time Fourier transform 

(STFT), spatio-temporal features, and power spectral density were used in the reviewed papers to 

calculate the features of EEG the signals. Raw EEG values was another popular feature for training 

NN. It’s interesting that NNs can learn complicated features from large amount of raw data. Many 

NNs, especially RNN, used spectrogram and fast Fourier transform (FFT) to convert EEG signals 

to images (Figure 15). When we analyzed the studies that fulfilled our inclusion criteria based on 

the input formulation and on the EEG task, we found that (Emotion recognition, mental workload, 

motor imagery, and seizure) mostly used calculated features. Motor task, sleep stages, and visual 

task chose signal values as their input primarily (Figure 15). 
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Figure 13.  Input formulation across all reviewed papers. (A) The inner circle shows the 

general input formulation, while the outer circle shows more specific details. (B) Number 

of papers for general input formulation compared across different tasks. 

3.3.6 Deep learning architectures 

Deep learning is a subfield of machine learning based on artificial neural networks, which can be 

thought of as learn hierarchical representations of the input data through non-linear 

transformations. While beginning to rise to prominence in the late 2000’s, in the few years since, 

it has arguably revolutionized the field, achieving remarkable accuracy on, and discovering 

intricate structures in complex and high-dimensional data, such as image classification, speech 

recognition, and automated translation. Various deep learning architectures have been developed 

since, with this fast-moving research field routinely producing new architectures. We discerned 6 

different categories in deep learning: Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), Multi-layer perceptron (MLP), Stacked Auto Encoders (SAE), Long Short-

Term Memory (LSTM), and hybrid combinations of the above. By order of prevalence these were: 

CNN (62%), Hybrid (16%), MLP (8%), SAE (6%), LSTM (6%), and RNN (2%) (Figure 17). 
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Figure 14. Deep learning architecture across all studies 

Figure 15 visualizes the aggregated information about DL architecture of reviewed studies. This 

figure helps to understanding the trends in the formation of specific deep-learning architectures. 

For more details see Table 8.   
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Figure 15. Aggregated information of deep learning architectures. The inner circle shows 

the general DL architecture, the middle circle, shows the primary design features, such as 

the hidden layers or convolutional layers, and the outer circle shows the last layer of DL 

architecture. FC: Fully connected, hid: Hidden layers, softmax: Softmax function. 

 

Figure 16 visualizes the proportion of input formulation by DL architecture. As is apparent, the 

specific input formulation strategies varied significantly as a function of the type of the deep 

learning architecture. While there was not a clear consensus for all studies together, RNN and SAE 
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architectures used only images and calculated features as inputs, respectively. Hybrid, CNN and 

MLP studies included instances of all 3 information types. Interestingly MLP and CNN used 

directly signal values as inputs.   

 

Figure 16. The percentage of input formulation by chosen DL architecture 

3.4 Data Augmentation methods 

This section details the methods found for methods that have so far been used to augment EEG 

signal for machine learning. Data augmentation (DA) comprises the generation of new samples to 

augment an existing dataset by transforming the existing samples in a manner that increases the 

accuracy and stability of the classification or regression. Exposing the classifier to more variable 

representations of its training samples make the model more invariant and robust to 

transformations of the type that it is likely to encounter when attempting to generalize to unseen 

samples. Further, increasing the size of the training set facilitates training more complex models 

with additional parameters and/or reducing overfitting. In recent years, DA techniques have 
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received widespread attention and achieved appreciable performance boosts for DL on EEG 

signals. Here we cover all the papers that we were able to find up to and including 2019. The first 

paper was found in 2015. The testament to the growing importance of DA for EEG is that 37 out 

of 53 papers (72%) we found are from 2018 and 2019 (Figure 17).  

The DA for DL-based EEG in 53 papers fell into 7 categories in our analysis: noise addition (17%), 

GAN (21%), sliding window (24%), sampling (17%), Fourier transform (4%), recombination of 

segmentation (6%) and other (11%) (Figure 17). Below we discuss each DA method in much more 

detail.  

3.4.1 Noise addition 

In our research, we found two main categories for adding noise to the EEG signals in purpose of 

DA: (1) Add various types of noise such as Gaussian, Poisson, salt and pepper noise, etc. with 

different parameters (for instance: mean (() and standard deviation (*)) to the raw signal (2) 

Convert EEG signals to sequences of images and add noise to the images. Nine papers used noise 

addition method to increase training dataset. 
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Figure 17.  DA across all studies. (A) Number of publications per domain of DA per 

year. (B) The percentage of different DA methods across all studies. Note that we only 

collected data until January 2020. 

In 2015, Bashivan et al. transformed EEG signals into a sequence of topology-preserving multi-

spectral (2D feature images) in a specific time interval [90]. FFT was performed on the mental 

load EEG signals to estimate the power spectrum of the signal in three frequency bands of theta 

(4-7Hz), alpha (8,13Hz), and beta (13-30Hz). A single image was constructed from spectral power 

within three prominent frequency band which is extracted from each electrode location.  The 

sequences of image representations fed into the LSTM and CNN for the EEG classification. For 

addressing the unbalanced ratio between number of samples and number of model parameters, 

they randomly added various noise level to the images. However, augmenting the dataset did not 

improve the classification performance and even for higher value of noise, the error rate increased. 

Z. Yin et al. (2017) proposed an adaptive DL model based on Stacked Denoising AutoEncoders 

(SDAE), which was designed for cross-session Mental Workload (MW) classification using EEG 

[91, 92]. They could increase the accuracy of their model by adding Gaussian white noise to the 

EEG feature vector (µ = 0.01,m = 2,3,4,5, 6). This vector contains centroid frequency, log-

energy entropy, mean, five power components, Shannon entropy, sum of energy, variance, zero-
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crossing rate of each channel and power differences between four selected channel pairs. Their 

classification accuracy on an independent dataset improved from 76.5% (without DA) to 85.5% 

(with DA). The highest classification accuracy was achieved with m=6 and the lowest with m=0 

(without DA). They concluded that the number of samples (trials) in the original dataset was 

insufficient for training the NN. 

Wang et al. (2018) added Gaussian white noise to their training data (in the time domain) to obtain 

new samples for an emotion-recognition task [78]. In their experiments, EEG signals were 

recorded while subjects were watching emotionally loaded videos. They used differential entropy 

(DE) features to train their proposed classifiers. For EEG signals, the DE feature is equivalent to 

the logarithm of the energy spectrum in the delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta 

(14–30 Hz), and gamma (31–50 Hz) frequency bands. The authors opted for Gaussian noise due 

to concerns that adding some local noise (i.e., noise that affects EEG data locally) such as Poisson 

or salt-and-pepper may change the intrinsic features of EEG signals. The probability density 

function, P, of a Gaussian random variable, z, is defined by:  

!!(#) =
&

'√)*
+
"($"%)!
'(!  

where 2	represents the density level, 4 is the mean value and 5 is the standard deviation. The 

experimental results on SEED dataset showed that by augmenting training dataset 30 times, the 

accuracy of ResNet improved from 34.2% to 75%, better than LeNet (from 49.6% to 74.3%). 

R. Hussein et al. (2018) used another DL technique, using a recurrent neural network (RNN) and 

Long Short-Term Memory (LSTM) network. Their goal was automatic detection of epileptic 

seizures using EEG signals [93]. And they reported that they improved the robustness of their 
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model by adding Gaussian white noise, muscle artifacts and eye-blinking. Though they did not 

give any specific details about the DA methods they used. 

S. Kuanar et al. (2018) also used an LSTM with a convolutional neural network (CNN) to learn 

robust features and predict the levels of cognitive load from EEG recordings [87]. They 

transformed the EEG time-series into a sequence of multispectral images that carried spatial 

information—theta (4-7Hz), alpha (8-13Hz), and beta (13-30 Hz). The data was once again 

augmented by adding various Gaussian noise level to the images. Though they did not compare 

any specific details about the DA methods they used. 

E. Salama et al. (2018) generated the noisy EEG signals, by adding Gaussian noise with zero mean 

and unit variance to the original input EEG training dataset [94]. They set the signal-to-noise ratio 

(SNR) between original EEG signal and the noisy to 5. The DA phase enhanced the performance 

of the proposed 3D-CNN on emotion recognition dataset. For valence and arousal classification, 

they achieved 79.11% (without DA) and 88.49%(with DA). For 4 combinations of valence and 

arousal — (low valence-low arousal), (low valence-high arousal), (high valence-low arousal) and 

(high valence-high arousal) they obtained 79.11%(without DA) and 87.44%(with DA).  

Parvan et al. (2019) doubled the number of trials of BCI competition IV dataset 2b by adding 

gaussian noise with zero mean and a standard deviation of 0.15 to ovoid overfitting [95]. Their 

proposed CNN had 4 convolution layers as well as data augmentation and resulted in a 0.07 

improvement in the kappa coefficient [95]. 

Y. Li et al. (2019) emphasized the fact that increasing depth of CNN causes a higher classification 

accuracy. However, doing so may aggravate the vanishing-gradient problem and substantially 
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increase the number of trainable parameters to be tuned, and these models may tend to be 

overfitting easily [96]. For four-class motor imagery task, they exploit the standard deviation of 

Gaussian noise in the DA affects the classification result. The optimal standard deviation is 

0.001with zero mean on 2 imagery task datasets (Table 6). It is noticeable that for almost all 

subjects, the performance has been significantly improved after DA. Furthermore, by comparing 

confusion matrix before and after DA, they showed that for a specific imagery task, DA worked 

well except for one task(feet). Table 6 shows all the papers used noise addition as their DA 

technique. From this table, we can see that there is lack of information about noise addition 

parameters ((: mean, *: standard deviation), magnification factor (m) and reported accuracy 

before and after DA. Maybe this is because that their problem wasn’t DA topic and they wanted 

to increase just performance accuracy. 

Table 6. All reviewed papers that used noise addition as their DA technique 
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3.4.2 Generative adversarial network 

The term Generative Adversarial Network (GAN) was first demonstrated by Goodfellow, et al. as 

a new framework to learn the underlying distribution of data from two competing networks: the 
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generator (G) and the discriminator (D). While the generator makes “fake data”, the discriminator 

classifies the “fake data” as real or fake using the given label as if they were playing a minimax 

game [97].  

During the process, the generator gets better at generating data that are similar to the real data, 

until the discriminator fails to distinguish real from fake data Figure 18. The minimax game of a 

GAN is given by: 

min
!
max
"
@(B, C) = D#~%)*+*(#)[logB(H)] + D(~%,(()[1 − logB(C(2))], 

where K)*+*	is the distribution of the real data and K( is gaussian noise. B(H) gives a probability 

of an input H belonging to the real data, while C(2) produces fake samples that strive to trick B by 

learning how to produce data that appears to come from the distribution of the real samples, K)*+*. 

The optimization process utilized the Jensen-Shannon (JS) Divergence to find the minimum of the 

function [97]. 

GANs have been widely applied for generating data in many disciplines outside neuroscience and 

EEG. For example, In the method that Zhang et al. (2017) proposed a GAN was used to generate 

images from text [98]. Bousmalis, K., et al. (2017) strives to generate rendered images that are 

similar to images in a dataset [99]. Antoniou et al. (2017)used a GAN to create new data from 

three different popular image datasets: Omniglot, EMNIST, and VGG-face [100]. 

Specifically for augmenting EEG signals, Zhang et al. (2018) proposed a conditional deep 

convolutional generative adversarial network (cDCGAN) [101]. The cDCGAN is an improved 

version of the GAN that uses information from the labels and adds them to the model as conditional 

properties: 
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min
!
max
"
@(B, C) = D#~%)*+*(#)[logB(H|M()] + D(~%,(()N1 − logBOC(2|M))PQ, 

where M( and M) 	is the information from the corresponding labels. The dataset contained EEG 

signals recorded over 3 electrodes, and composed of 7 sessions, with 40 trials per second, each 

lasting 9 seconds. It was collected while subjects were asked to imagine moving either left or right. 

A CNN was trained to classify each EEG signal as Left or Right. 

 

Figure 18. Diagram of Generative Adversarial Network 

The EEG signals were preprocessed before feeding them into the CNN. Only 5 out of the 9 seconds 

of EEG in each trial were selected for processing and only alpha (7-15 Hz) frequency components 

were extracted as time-frequency features. Using data generated from the cDCGAN, classification 

accuracy increased from 83% to 86%. The authors compare the accuracies for models trained using 

different proportions of artificial data. However, the largest dataset only doubles the original 

dataset in the experiment (i.e. m=2), while others have used larger augmentation. 
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Piplani et al. (2018) used a GAN to generate more EEG data to increase the robustness of a 

“passthought authentication system” that uses the user’s EEG signals to securely log into devices 

[102]. The EEG signals were collected using a device with only a single channel at a sampling rate 

of 500Hz. The ‘negative’ samples were collected from 30 subjects who were asked to perform a 

series of mental task for 5 minutes while EEG was recorded. The ‘positive’ samples were collected 

from one subject while the subject was doing the same mental tasks for 5 mins and free to do any 

tasks for another 5 minutes. The dataset that trains the selected model, XGBoost, consists of 30,000 

negative samples and 40,000 positive samples. Each sample is a segment of the EEG signal. These 

data were augmented with 10,000 artificial EEG signals that were generated from a GAN. This 

increased the accuracy of the model from 90.8% to 95.0%, which is noteworthy for such high 

accuracies.  

Zhang et al. (2018) proposed a framework called Deep Adversarial Data Augmentation (DADA) 

for generating new data, allowing deep network classifiers to be trained on small datasets [103]. 

They further investigated and compared different traditional approaches for dealing with small 

datasets in DL applications—such as dimensionality reduction, semi-supervised learning, transfer 

learning, and data augmentation. DA was widely used for image data because images can be 

altered easily—maintaining their content on the one hand while increasing the variance of the 

representation of that content by rotating, cropping, scaling or just adding noise to the original 

dataset. However, these techniques are usually not suitable for non-image data such as EEG 

signals. One of the examples in this study focuses on increasing the size of an EEG dataset from a 

BCI competition [104]. This dataset contained 3 channels (C3, Cz, and C4) of EEG collected from 

400 trials of motor imaginary tasks. Time-frequency features were extracted from these EEG 

signals, which formed a 32 x 32 x 3 image for each EEG signal, which was in turn used for training 
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a CNN classifier. Compared to the traditional GAN, DADA was able to generate more diverse 

artificial data because of its redesigned loss function. A traditional GAN trains the discriminator 

on only 2 classes. In contrast, DADA uses 2K classes for the discriminator, K for each of the real 

and artificial datasets. They found that accuracy increased from 74.8%, using a traditional CNN 

as a benchmark, to 79.3%, using the DADA model. 

Hartmann et al. (2018) used a slightly modified version of the Wasserstein Generative Adversarial 

Network (WGAN) to generate new EEG signals [105]. Training an original GAN suffered from 

vanishing gradients while optimizing the JS Divergence [97]. A WGAN solved this problem by 

minimizing the Wasserstein distance: 

ROK)*+* , K,*-.P = 	D#~%)*+*[B(H)] − D#~%-*./[B(H)], 

where K,*-. is the distribution of the generator that generates fake (or artificial) samples. In 

addition, a gradient penalty term S(K#/) = T ∙ D#/~%0[VWH(0, ‖∇#/B(HZ)‖0 − 1)
0] was also added to 

produce a useful gradient, where K#/ is the distribution of HZ that are points on a line connecting the 

real and fake data. Hartmann et al. improved the model by scaling T, allowing the parameter to 

adjust its impact based on different Wasserstein distances [105]: 

[ = −ROK)*+* , K,*-.P + max \ROK)*+* , K,*-.P] ∙ 	S(K#/) 

The EEG signals were collected from a simple motor task experiment, in which subjects were 

asked to raise their left hand or to rest. There were 438 trials in total—286 were used for training, 

72 for validation, and 80 for testing. Only one channel, FCC4h, was included in this experiment. 

All total 438 signals were used to train the WGAN model. Unlike other studies that only used 
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classification accuracies to compare the quality of new generated data and the original data, four 

other evaluation metrics were used in this study: the inception score (IS) [106], Frechest inception 

distance (FID) [107], Euclidean distance (ED), and sliced Wasserstein distance (SWD) [108]. 

After comparing the different metrics, optimizing the GAN for good IS and FID produced the best 

EEG data approximations [105]. This method did not use any classification algorithms to validate 

the accuracy, therefore it is not included in Table 7 for accuracy comparison. 

A conditional version of the WGAN was used by Luo and Lu (2018) to augment EEG data. Similar 

to cDCGAN, WGAN also utilized the label information to infer the distribution of the real data 

[109]. The datasets used to test the WGAN model were SEED [110] and DEAP [111]; two popular 

public EEG datasets for emotion recognition. The EEG signals from the SEED dataset had 62 

channels. They were collected from 15 subjects while they were watching film clips selected to 

induce positive, negative, or neutral emotions. For each subject, 3394 epochs were recorded. The 

DEAP dataset had 32 channels of EEG signals recorded from 32 subjects, with 2400 epochs each 

while they were watching music videos. There were 2 classification tasks for the DEAP dataset: 

high vs low arousal and high vs low valence. Luo and Lu tried different sizes for the augmented 

data and found that doubling the data (m=2) provided the highest accuracy comparing to other 

attempts (m=0.5, 1.0, 1.5). An SVM classifier trained on the augmented dataset improved 2.97% 

for the SEED dataset from 83.99% to 86.96%. DA seemed to have a larger effect on the DEAP 

dataset. While classifying arousal, there was a 9.15% improvement in classification accuracy from 

69.02% to 78.71%. For valence classification, the improvement was even larger with a 20.13% 

increase from 53.76% to 73.89%. The method did not specifically mention the chance level 

accuracy for both datasets. For the SEED dataset, since there are three classes, we are assuming 
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that the chance level accuracy is 33.33%. For DEAP dataset, the chance level accuracy is 50% for 

binary classification.  

In 2019, Luo et al. adopted a conditional Boundary Equilibrium GAN (cBEGAN) to generate 

artificial differential entropy features of EEG signals on 2 popular emotion recognition dataset 

(SEED, SEED V) [112]. cBEGAN used the Wasserstein distance to measure the difference 

between two reconstruction loss distributions. The main advantage of cBEGAN is that it can 

overcome the instability of conventional GAN and has very quick convergence speed. They 

generated 50 to 2000 artifacts samples and added them to the original training dataset. With 2000 

added samples, the accuracy increases from 81.9% to 87.56% for SEED; and with 1000 samples, 

the accuracy increases from 54.3% to 62.8% for SEED V, respectively. 

Wei et al. (2019) used WGAN with gradient penalty to increase the sample diversity in seizure 

detection in the CHB-MIT Scalp EEG database (with 23 subjects) [113]. Testing the performance 

on one patient, they used generated data from the other 22 patients involved in the training. They 

employed a 12-layers CNN and achieved 81% accuracy (without DA) and 84% (with DA). 

 

Chang et al. (2019) used GAN to increase the size of dataset for a 2-class emotion recognition task 

[114]. The generator and discriminator of the GAN consists of three hidden layers, which consists 

of 50, 100, and 50 nodes, respectively. The number of nodes in each layer was determined after 

evaluations with multiple combinations of hyper parameters that showed the highest training 

speeds. The generator received random values between 0 and 1 and generated virtual EEG data. 

The discriminator received EEG collected through experiments and virtual data and distinguished 

the original data from the virtual data. Once the training was complete, the EEG data generated by 
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the generator were saved. The authors increased the number of trials from 32,000 to 92,000 and 

by that raised the final accuracy from 97.9% to 98.4%. 

Yang et at. (2019) augmentated dataset 2b competition IV BCI using a GAN network [115]. They 

used CNN-LSTM to classify left and right hand motor imagery task. The average accuracy for 9 

subjects was 76.4%. Unfortunately, they did not report the results without DA. 

Panwar et al. (2019) proposed using a class conditioned Wasserstein Generative Adversarial 

Network with gradient penalty (cWGAN-GP) to generate synthetic EEG data of a single channel 

[116]. The study claims that the cWGAN-GP method is able to counter instability and frequency 

artifacts problems while training an ordinary GAN [105]. The  Wasserstein distance and the 

gradient penalty stabilized the training process [117]. The class conditioned implementation 

allowed the generator and discriminator to avoid mode collapsing, which is responsible for 

trapping the data generated from the GAN in some specific modes [105]. The proposed 

architecture had two fully connected layers and two convolutional layers for the generators well 

as three convolutional layers and two fully connected layers for the discriminator. The dataset that 

the paper used to train the cWGAN-GP was collected during the BCIT X2 Rapid Series Visual 

Presentation (RSVP) experiment, where subjects were asked to identify target images in an image 

stream presented at 5Hz [118]. The dataset contained EEG signals from 10 subjects, with 5 

sessions and 1 hour of recording per session using a 256-channel BioSemi system. It had two 

classes, target and non-target, 967 samples each, which were pre-processed using the PREP 

pipeline [58]. The pipeline performed band-pass filtering from 0.1 to 55Hz, referencing, bad 

channel interpolation and baselining. One second of signal from each trial after image onset was 

extracted, down sampled to 64Hz and normalized using the mean and standard deviation from 
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each epoch. The paper used three different methods to evaluate the performance of the data 

generated from the cWGAN-GP: visual inspection, log-likelihood distance from Gaussian mixture 

models (GMMs), and classifier performance. The visual inspection and GMM results both showed 

that the generated data was of high quality. In classifier performance evaluation, the synthetic data 

size was 3828, and it was added to the training dataset during training. The classifier trained with 

the synthetic data shows an improvement of 5.18% (from 50.02% to 55.2%) on cross subject 

evaluation and 3.12% (from 60.8% to 64.08%) on same subject evaluation using a CNN with 3 

convolutional layers. 

Aznan et al. (2019) had subjects look at one of three different objects, each flickering at 10, 12, or 

15 Hz (each at a different frequency). Their goal was to detect which object the subject was looking 

at using BCI technology and then direct a humanoid robot toward that object. They compared three 

different methods: Deep Convolutional Generative Adversarial Network (DCGAN) [119], 

gradient panelized Wasserstein Generative Adversarial Network (WGAN-GP) [117], and 

Variational Auto-encoder (VAE) [120]. They then used those methods to generate synthetic EEG 

data to improve the classification accuracy on their Steady State Visual Evoked Potential (SSVEP) 

based BCI system [121]. The SSVEP-based classifier was able to pick up the corresponding 

frequency from the EEG. The dataset used to train the generative models is the video-stimuli 

dataset [121] that contains 50 samples of EEG signals collected from offline videos played to one 

subject, referring to subject 1 in the NAO dataset [121]. The NAO dataset has two portions—

offline and online—collected from tasks the same as in the Video-Stimuli dataset using a dry EEG 

device with 20 channels. The three generative models were trained only using the video-stimuli 

dataset, while the SSVEP classifier was tested on the NAO dataset. The generated EEG samples 

were used to pre-train the SSVEP classifier. The offline portion of the NAO dataset for each 
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subject was fed into the pre-train model to fine tune for that particular subject. After the classifier 

was trained, the online portion of the NAO dataset was used to test the performance of the 

classifier. Different sizes of augmentation were empirically tested and compared. The result 

showed that for all three methods, a sample size of 500 resulted in the best classification accuracy. 

Table 7 shows the performances of different methods. 

Table 7 shows all the papers used GAN as their DA technique. By reporting the magnification 

factor and accuracy before and after DA, we think that GAN technique is trending to use as DA 

technique for EEG signal.   

Table 7. All reviewed papers that used GAN as their DA technique 
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3.4.3 Sliding window or overlapping window 

O’shea et al. (2017) presented a novel end-to-end architecture that learns representations from raw 

EEG signal by CNN for the task of neonatal seizure detection [122]. Interpretation of neonatal 

EEG requires highly trained healthcare professionals, and it is limited to specialized units. They 

used overlapping window to augment 1389 seizures during 835 hours of EEG signal. Each trial 

split into 8s epochs with 50% overlapping to have more training sample for their proposed CNN. 

They obtained 97.1% accuracy; however, they didn’t evaluate their result without overlapping or 

different shift lengths. 
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N. Kwak et al. (2017) used CNN for the robust classification of a steady-state visual evoked 

potentials paradigm [89]. They recorded EEG for the brain-controlled exoskeleton under 

ambulatory conditions. For generating more training samples, they used overlapping window. In 

their results, different shift lengths from 10 ms to 60 ms out of 2-s window were compared. They 

found the training samples with smaller shifts, performed much better than larger ones. The highest 

accuracy was 99.28% for 5-class visual evoked potential task. 

For Schirrmeister et al. (2017), a key question was the impact of CNN training (e.g., training on 

entire trials or cropping within trials) on decoding accuracies [123]. The concept of overlapping 

window was pushed even further in this study: First, DA by overlapping windows share 

information was used to design an additional term to the cost function, which further regularizes 

the model by penalizing decisions that are not the same while being close in time. Second, 

redundant computations due to EEG samples being in more than one window were simplified, 

which ensured these computations were done once, thereby speeding up training. As a result, 

cropped training (segments of about 2 s length) increased the accuracy to 95% for CNN on high 

pass filtered data (The authors did not report the accuracies before DA). 

Ullah et al. used a 1D-CNN for research on epilepsy detection [124]. The number of trials collected 

in this study was not enough to train the CNN. And obtaining a large-enough dataset during seizure 

activity was not practical. At the same time, the available, small dataset resulted in overfitting. To 

overcome this problem, the authors proposed 2 methods for DA: 

(Note that the EEG signal length in this dataset was 4097): (Sliding window of length 512, stride 

64, leading to 87.5% overlap. Each of these windowed signals was treated as an independent 
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instance. Therefore, each trial was divided to 57 sub-signals (Sliding window of length 512 with 

stride 128, leading to overlap of 75%, leading to 29 sub-signals). 

The average accuracies were 96.45±0.13 and 95.40±0.35 using DA with 87.5% and 75% overlap, 

respectively (The authors did not report the accuracies before DA).  

N Truong et al. (2018) used GAN for semi-supervised seizure prediction [125]. They generated 

extra samples to balance the Freiburg and CHB-MIT datasets. As a result, training sets are 10 times 

larger than original one by using overlapping window. The extra generated training dataset is by 

sliding a 30-s window along the time with different shift length. However, they didn’t report the 

accuracy achieved by different shifting length. 

They achieved 60.91% and 72.63% accuracy (without DA) and 74.33%and 75.33% (with DA) for 

Freiburg hospital and CHB-MIT, respectively when training GAN on individual subjects.  

Majidov et al. (2019) proposed an efficient classification of Motor imagery EEG task by using 

CNN [126]. For DA, they used sliding window with different shifting length. However, their result 

lacks more details about DA. 

Z. Mousavi et al. (2019) proposed a single-channel EEG-based automatic sleep stage classification 

(2 to 6 classes) algorithm which processes the raw signals in order to learn features and 

automatically diagnose sleep stages using CNN [127]. The lack of balance between the data of 

each class was challenging situation which caused biasedness of classification results and degraded 

accuracy. Therefore, they used overlapping technique to augment their dataset. The training set 

was 50% of the dataset included 7592 epochs (30s), however after DA, they had 24162 epochs 

(3s). They achieved to 93.55% accuracy for classification 6 classes of sleep stages. In addition, to 
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evaluate the performance of the proposed DA, GAN was also implemented. However, according 

to their results, using GAN for the 6 sleep stages classification had achieved 72.33%, which is 

lower than overlapping window. 

Avcu et al. (2019) developed an end-to-end CNN for seizure detection [128]. They strove to 

minimize the number of channels used (just 2 channels—Fp1 and Fp2) and compared that to the 

result with all channels. EEG data of 29 pediatric patients diagnosed with a typical absence seizure 

were included in this study. In total, the data contained 1037 minutes of EEG with 25 minutes of 

seizure data distributed among 120 seizure onsets. To overcome the imbalance in the dataset, they 

applied different overlapping proportions according to existence or absence of seizures. Namely, 

while shifting with 5 seconds (no overlapping) was implemented to create interictal class, 0.075 

second shifting was used for ictal class to create balanced input for the CNN. The sensitivity for 

2-channel was 93.3% and for 18-channel was 95.8%. However, the result of DA was not reported 

in this study. 

 

Tayeb at al. (2019) developed three deep-learning models: LSTM, CNN, and RNN for decoding 

motor imagery [129]. This group used shifting window with 4s length to reflect the partial time 

invariance of the data and overcome the problem of overfitting. This cropping strategy increased 

the training dataset by a factor of 25. The CNN architecture showed better performance and 

achieved a mean accuracy higher than 84% over all the 20 participants. However, their result lacks 

more details about DA. 

Also, we found more papers which segmented the dataset to create more training data: Chambon 

et al. (2017) segmented the input data to 30s segment to create more dataset for each class of sleep 
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stage [86]. Tsiouris et al. (2018) used LSTM for the prediction of epileptic seizure [130]. To 

overcome unbalance problem of rare seizure event, the EEG segment from the interictal class were 

split into smaller subgroups of equal size to the preictal class. Tang et al. (2017), proposed CNN 

for the failure prediction [131]. To avoid multiple instances learning issue for their CNN, they 

used segmentation window to have sufficient new training dataset. The length of each segment 

was found by adaptive multi-scale sampling. Their result was improved from 70.9% (without DA) 

to 77.9% (with DA) on seizure dataset.  

Although many studies used this method, there seems to be no consensus on the best overlapping 

percentage to use, e.g., the impact of using a sliding window with 10% overlap versus 90% overlap. 

Some studies tried different shifting length; but this issue still is not clear. For more information 

refer to Table 8. 

3.4.4 Sampling 

Oversampling: R. Manor et al. (2015), presented a CNN model for the use of single trial EEG 

classification in five category rapid serial visual tasks [132]. They used oversampling of the minor 

class (bootstrapping) to balance the dataset. They mentioned that although this method caused 

some overfitting on the minor class, however, it provided a more balanced classification 

performance in their experiment. 

Drouin-Picaro et al. (2016), proposed a CNN model to classify saccades from frontal EEG signals 

to aim cursor control without the need for a separate eye tracking device in provide brain-computer 

interfaces [133]. In order to have a balanced dataset, horizontal saccades were sampled from 

without replacement so that the number of horizontal saccades in the dataset was the same as the 
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highest number of vertical saccade (either up or down). The other vertical direction was then 

augmented by sampling from it with replacement, to make the number of data points in each 

direction equal. Hence, the dataset contained roughly 3000 examples of each saccade direction.  

Supratak et al. (2017), used a CNN model, named DeepSleepNet, for automatic sleep stage scoring 

based on raw single-channel EEG. They extracted time-invariant features and used LSTM to learn 

transition rules among sleep stages automatically [134]. By duplicating the minority sleep stages 

in the original training set such that all sleep stage has the same number of samples they avoided 

overfitting. 

Dong et al. (2017), proposed a Mixed NN for temporal sleep stage classification [135]. Because 

of the inherent imbalance in occurrence of the different sleep stages, the authors used oversampling 

to generate a new balance dataset which every sleep stage is equally presented. 

Sors et al. (2018) used a CNN on raw single-channel EEG signal for scoring 5 class sleep stage 

[85]. They mentioned their dataset (SHHS) has a very imbalanced class distribution. In order to 

account for this, they tried cost-sensitive learning or oversampling but the overall performance 

using this approach did not improve. 

Ruffini et al. (2019), randomly replicated subjects from the minority class to balance their classes 

[136]. Their proposed model helps for diagnosis derived from a few minutes of eye-close resting 

EEG signal collected at baseline idiopathic patients. They didn’t compare the result with and 

without DA.  

Sun et al. (2019) scored the sleep stage automatically. This study presents a stage-classification 

method based on a two-stage neural network [137]. The first, feature learning stage can fuse 
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network-trained features with traditional hand-crafted features. A second, RNN stage is fully 

utilized for learning temporal information between sleep epochs and obtaining classification 

results. Oversampling was used to solve a serious sample imbalance problem. Sadly, the result 

lacked more details about DA. 

Subsampling: Thodoroff et al. (2016), evaluated the capacity of a deep NN to learn robust features 

of EEG to automatically detect seizures [138]. They randomly subsampled the majority samples 

of the dataset to re-balance the ratio between seizure and non-seizure data (from 1000/1 to 80/20) 

which facilitate the training. However, because seizure manifestations on EEG are extremely 

variable both intra- and intra-patients, a second challenge was the overlack of data for each patient 

(average of 8 seizures per patient). They trained the CNN by using 0.5 s window instead on 1 s. 

Using transfer learning, the general representation of a seizure on other patients learned first and 

then they trained the model to the specific patient using the weights previously learned as 

initialization. 

Sengur et al. (2019) employed deep feature extraction for focal EEG signals [139]. The deep 

features were extracted from spectrogram images using the AlexNet, VGG16, VGG19, and 

ResNet50 CNN models. The FC6 and FC7 activation layers were used for feature extraction 

resulting in 4096-dimensional feature vectors. The obtained feature vectors were used as input to 

various k-NN classification models. Random subsampling was performed as the DA technique (no 

other details were provided about the parameters). See Table 8 for more details about these studies. 
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3.4.5  Fourier Transform 

J. Schwabedal et al. (2018) proposed a new method for augmenting EEG signals when attempting 

sleep-stage classification [140]. They focused on imbalanced dataset in transitional sleep stages, 

such as S1 and S3, which are rare events with respect to more stable stages such as wakefulness 

or Rapid Eye Movement (REM) sleep. Cost-sensitive learning [85], oversampling of the minority 

class [132, 134, 141], and subsampling the majority class [138, 142] are common techniques to 

address imbalanced classes. But the overall performance using these approaches resulted in some 

biases in prediction and did not improve the accuracy [56]. Therefore, they used Fourier Transform 

Surrogates to augment the EEG data. The complex Fourier components of a signal x1 can be 

decomposed into amplitudes a1 and phases j1: 

x1 = a1e231 

Under the assumptions of linearity and stationarity of the signal, they generated a new signal which 

is statistically independent from the original signal. This happened by randomizing the Fourier-

transform phases [0, 2π] and then applying the inverse Fourier transform. The authors processed 

the CAPSLPDB sleep database, consisting of 101 overnight Polysomnography’s (PSGs), using a 

CNN for 6 sleep stage classification. They then used the above method to balance and augment 

the database to achieve better generalization. They improved the mean F1-score by 7% for sleep-

stage classification. 

Zhang et al. (2019), proposed a novel DL approach with DA to improve classification of motor 

imagery EEG signals [82]. They applied the empirical mode decomposition on the EEG frames 

and mixed their intrinsic mode functions to create new artificial EEG frames, followed by 
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transforming all EEG signals into tensors as input for the NN by complex Morlet wavelet s. 

Complex Morlet wavelets transformation of the EEG signals has been proved effective in recent 

motor imagery research, including tensor decomposition and wavelet-based combined feature 

vectors method. Their algorithm decomposes the original signals into a finite number of functions 

called intrinsic mode functions (IMFs). Each of these IMFs, represents a non-linear oscillation of 

the signal. Once the signal has been decomposed, it can be recovered by adding all IMFs and the 

residue without loss. The main idea in this study is that by mixing IMFs of the same class we can 

generate new samples from this class by preserving all intrinsic characteristics. This aims to 

decrease overfitting problem in training NN and eventually improves classification results. They 

used CNN and WNN (Wavelet Neural Networks) models to evaluate their results. 

They found that magnifying two times the original training sets had highest mean value and better 

stability in CNN. And as for the WNN, the highest magnification was achieved by 5. The average 

of the accuracy for CNN was better than WNN. They evaluated their method on BCI competition 

dataset. By magnification factor 5, the CNN accuracy was 77.9% without DA and 82.9% with DA 

and WNN reached 88% without DA and 84.3% with DA. The relatively low computational 

efficiency of the WNN was the limitation in their proposed work. This group worked very well on 

DA details. They used two more big motor imagery datasets to evaluate their methods. They found 

that WNN has better classification performance and smaller loss than the CNN. However, each 

iteration of the WNN model takes almost five times as long as the CNN. And they speculated that 

it’s because the WNN lacks the consideration of parallel computing. 

 



 

 80  

3.4.6  Recombination of Segmentation 

Said et al. (2017) presented a joint compression and classification method for EEG and 

electromyogram (EMG) using a multimodal auto encoder [143]. They conducted their experiments 

on the DEAP dataset. It included the modalities of EEG, EMG, and multiple physiological signals 

recorded from 32 participants during 63 seconds at 128 Hz. During experiments, volunteers 

watched 40 music videos and rated them on a scale of 1 to 9 with respect to four criteria: likeness 

(dislike, like), valence (unpleasant to pleasant), arousal (uninterested or bored to excited) and 

dominance (helpless and weak feelings to empowered feelings). Signals were normalized and 

segmented into 6 seconds segments. EEG and EMG modalities contained 23040 samples of 896 

features. They trained the multimodal auto encoder by adding zero values to one modality while 

keeping the original values for the other modality and vice-versa. Thus, one third of the training 

data was EEG only, another one third was EMG only, and the rest had both EEG and EMG data.  

Zhang et al. (2019) used common spatial pattern (CSP) and CNN to detect seizures [144]. They 

first split each training EEG trial into three segments, and then generate new artificial trials as a 

combination of segments coming from various, randomly selected trials. They achieved 90% 

average accuracy, but did not report their multiplication factor or the accuracy before DA. 

 

Dai et al. (2019) employed hybrid scaling CNN (HS-CNN) for motor imagery classification [145]. 

They varied the CNN kernel size between subjects and even between sessions. They found three 

kernel sizes for each selected frequency band: theta, mu, and beta. To improve the accuracy of HS-

CNN, they used a 3-stage DA method: (1) segment each trial to 3 segments; (2) recombine the 

segments within different trials in the time domain; (3) swap frequencies: after band-pass filtering, 
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the filtered trials (theta, mu, and beta) in the same frequency band were randomly swapped. Step2 

and 3 were repeated multiple times for a multiplication factor of 3. The average accuracy for 

dataset 2b of BCI competition IV increased from 86% to 87.6%. They tried other DA techniques, 

such as noise addition and sliding window resulting in average accuracies of 86.1% and 80.1%, 

respectively. 

3.4.7   Other 

Frydenlund et al. (2015) used video and EEG data from subjects to estimate emotional response 

to music video (120 one minute music videos) [146]. To reduce computational cost, the researchers 

often throw away part of the signal by down sampling. In this experiment, authors reused the data 

thrown away during down sampling as new trials. Down sampling by a factor of N would therefore 

allow an augmentation of N times. However, the authors did not explicitly frame this as a DA 

method. So, no direct comparison was made of the accuracy with and without using the down 

sampled data.  

Sakai et al. (2017), published a paper about DA methods for ML-based classification of bio-signals 

[88]. Their proposed DA methods for EEG signals includes: a) Shifting all-time data (±10ms) b) 

Amplifying all-time data (90% and 110%) c) Shifting near-peak value (±10ms) d) Amplifying 

near peak value (90% and 110%). Multiplication factors ranged from (±5% to ±50% every ±5% 

in b and d and ±5ms to ±5ms every 5ms). 
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Figure 19. Data augmentation methods across all reviewed papers. The inner circle shows 

the general DA methods, and the outer circle shows the deep learning architecture 

strategy used. 

Deiss et al. (2018) suggested swapping right and left electrodes to double the size of the dataset. 

They utilized a dataset of brain monitoring in an intensive care unit (ICU) for 5-way classification 

(Seizure, Lateralized Periodic Discharges (LPD), Generalized Periodic Discharges (GPD), 

Generalized Rhythmic Delta Activity (GRDA), Lateralized Rhythmic Delta Activity (LRDA)), 

and the last one corresponds to Other/Artifacts (O/A))on 155 patients [147]. The most challenging 

issue in their experiment was to make the model learn how to generalize to new patients. To 

simulate different patients, they kept three reference electrodes in the middle of the scalp 

unchanged and left/right flipped the remaining electrodes. Swapping electrodes in this manner 
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doubles the amount of data. The authors reported that this DA method did not affect classification 

for tasks with symmetrical signals between the brain hemispheres (The authors did not report the 

accuracies before DA). 

Shovon et al. (2019) applied STFT on EEG signals to transform signal to images for binary 

classification of motor-imagery signals [148]. They used rotation, flipping, zoom in and zoom out 

as DA techniques to overcome the overfitting problem in their proposed CNN model. Additional 

1000 augmented images increased the average accuracy to 89.19% (no accuracy before DA was 

reported). 

Freer et al. (2019) constructed a convolutional LSTM (C-LSTM) network based on filter bank 

common spatial patterns (FBCSP) for 4-way classification in a motor-imagery task [149]. The 

effects of several DA methods of data augmentation on different classifiers were explored, 

combining noise addition, multiplication, frequency shift, and phase shift. These DA methods 

improved the average overall accuracy of the classifiers by 5.3%. 

Finally, Mokatren et al. (2019) applied the discrete-wavelet transform to extract energy and 

entropy of 4 frequency bands: theta, alpha, beta, and gamma in an emotion-recognition task [150]. 

A 3-D array of size KxKxB was created, where the first two dimensions represent an image of 

KxK pixels corresponding with the channels positioning over the scalp, while the third dimension 

represents the number of features: energy and entropy for 4 frequency bands(B=8). They used 

image augmentation techniques, such as horizontal and vertical shifting, to improve the accuracy 

of their CNN. Their classification accuracy on the DEAP dataset improved from 86.47% (without 

DA) to 90.87% (with DA) for Arousal and 88.34% (without DA) to 91.33% (with DA) for valence. 
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This section shows that these authors tried to improve the accuracy of their classification method 

with different techniques but because we found just one case from each of this innovation, we 

grouped them together. Figure 19 displays the aggregated information on DA methods and DL 

architecture strategy. While there is no clear consensus when looking to all 53 studies together, 

studies that employed sliding window, sampling, and noise addition as DA method, mostly used 

CNN. We investigated the EEG task compared across different DA techniques Figure 24. 

Following our review, we conclude that, for seizure task, the sliding window method should be 

used. For Mental workload, noise addition achieved the best results. And for deciphering sleep 

stages, the sampling method is the best fit. In sum, we recommend that sliding windows should be 

used for seizure detection. We also found that noise addition works best for mental workload. And 

the sampling method appears optimal to classify sleep stages. 
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Figure 20. Number of papers for general EEG tasks compared across different DA 

techniques 

3.5 Accuracy gains of data augmentation 

The application of DA for DL on EEG is still nacent, with relatively few studies having been 

conducted. What is more, many of those studies unfortunately do not report the gain in accuracy 

that the DA method brought about or which parameters were used exactly (Table 8). Nevertheless, 

29 of the 53 papers we surveyed included a measure of accuracy before and after DA. We therefore 

computed an improvement score on those for each DA analysis, 
456
756. Here, “_” stands for the 

accuracy of the model when trained on the augmented dataset and “`” stands for the accuracy on 

the initial, non-augmented dataset. Hence, an improvement score of a suggests that, by training 

also on the augmented dataset, a fraction a of the gap between initial accuracy and perfect accuracy 

was covered by the model traiedn on the augmented dataset. The overall improvement score was 

0.29±0.08 (mean±s.e.m.). Though the score varied among the different DA techniques—from 0.08 
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for recombination of segmentation to 0.36 for noise addition (Figure 27 A). For tasks, it avaried 

from 0.14 for motor imagery to 0.56 for mental workload (Figure 27 B). The 95% confidence 

intervals for all tasks (except “visual task”) and DA tecniques did not include 0. It should be noted 

though that these statistics rely on relatively small number of analyses. And thus more studies are 

required to establish reliable DA imporvement score for different techniques and tasks.  
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Figure 21. (A) The improvement score, or the fraction of variance left unexplained by the 

original DL method that was explained when training the model using DA, for different 

DA techniques (mean ± 95% confidence intervals). Here is the number of studies 

everywhere except GAN, Sampling, and Other, where there were more than one analysis, 

with different accuracies, reported in each study; hence there ‘n’ is the number of 

accuracies. (B) Same as A but the improvement is over EEG tasks. Here “n” is the 

number of studies everywhere except “emotion recognition”, where there were 9 studies, 

2 of which ran multiple DA analyses; hence “n” there is the number of analyses. No 

motor-task studies included accuracy before and after DA, so that task is not included in 

this figure. 

3.6 Discussion 

Here we review the most important findings from our results section and discuss the significance 

and impact of various trends highlighted in the results. We also provide some recommendations 
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for the 7 tasks on which we analyzed DL_EEG: seizure detection, sleep stages, motor imagery, 

mental workload, emotion recognition, motor tasks, and visual tasks.  

3.6.1 Rationale 

The relatively small size of EEG datasets drastically decreases the effectiveness of DL. In the past 

few years, DA techniques have received widespread attention and achieved considerable 

performance gains for DL. Therefore, we focused our review on available DA methods for DL-

based EEG. Such augmented datasets facilitate training more complex models, with more 

parameters, while at the same time potentially reducing overfitting. We only considered papers 

that focused on DA in DL-based analysis of EEG.  

Previous review papers recommended that more targeted work be carried out to fully exploit the 

potential advantages of DL in EEG processing [56, 75]. It thus appears natural to explore the 

relation between performance and DA. Toward this goal, we carried out a systematic review of 

DA for DL-based EEG. Our goal was to address the following critical questions: (1) What DA 

approaches exist for EEG? (2) Which datasets and EEG classification tasks have been explored 

with DA? (3) Are specific DA approaches more suitable for particular tasks? (4) What input 

features are used for training deep networks with DA?  

3.6.2 Data 

A lingering critical question in machine learning is “how much data is enough data?”, and it is of 

special relevance when applying sophisticated DL techniques on limited size EEG datasets. 

Naturally, the amount of data is critical in achieving high DL performance. But, needless to say, 
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the quality of the data is also very important. To analyze this, we looked at dataset features such 

as the number of subjects, amount of EEG recorded (in trials or time), and the DA schemes used. 

We found that, for noise addition, the best results were obtained when a lower standard deviation 

was used. However, more generally, we did not find one specific, definitive answer to the data 

quantity question. That said, our analysis clearly suggests that DA techniques are typically 

successfully able to increase the performance of DL (Table 8).  

3.6.3 EEG pre-processing 

Most studies used frequency-domain filters to limit the bandwidth of the EEG signals. This enabled 

them to focus on specific frequency ranges that were of interest ( Figure 12). The filtered frequency 

ranges were organized by EEG task type. We found no studies that specifically tested the role of 

this filtering on NN. (This lacuna is discussed in other review papers [75].) The great majority of 

the reviewed papers preprocessed the EEG data before feeding it into NNs. Based on Figure 13, 

49% of the reviewed papers used calculated features such as wavelet, entropy, spatial filter, or 

STFT as the input to NNs. On top of that, 36% simply used the raw EEG time-series signal as the 

only input to the NN. This is not surprising as a key motivation for using NN for EEG processing 

is to automatically learn features. An analysis of the sort that we carried out could in principle give 

some sense of which input types should be used for these purposes. But a complete answer depends 

on many factors, including the EEG task. And it is therefore difficult to draw definitive conclusions 

when only 53 studies using DL and DA are currently available. 
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3.6.4 Deep-learning methodology 

Our analysis focused on architecture trends and input formulations for each architecture. However, 

the EEG task too is of importance, of course. CNN was the most popular NN architecture—likely 

because it is well suited for end-to-end learning, scales well to large datasets, and can exploit 

hierarchical structure in natural signals. The number of hidden layers in the different NN 

architectures varied case by case. Given the relatively small number of papers so far, we were able 

to aggregate information about DL architectures into a single figure, which we hope would help 

our colleagues gain some intuition about this nontrivial issue. Thus, the input formulation for RNN 

is images while for SAE it is calculated features. For LSTM, there are two input categories: signal 

and calculated features. CNN and MLP studies included instances of all input formulations, but 

the signal formulation was used most often for their inputs. There were also hybrid architectures 

that used a combination of two standard NN. The papers relying on such hybrid NNs commonly 

used calculated features and images as their inputs. 

3.6.5 Data augmentation 

Figure 14 is a testament to the importance of DA for EEG processing with DL. DA techniques 

have received widespread attention and achieved appreciable performance boosts for DL 

techniques on EEG. However, more work is required to clearly assess their advantages as well as 

their potential disadvantages. Here we covered all the available DA techniques that we could 

systematically source and grouped them into 7 categories: noise addition, GAN, sliding window, 

sampling, Fourier transform, recombination of segmentation, and other. Sliding windows, at 24%, 

was the most common. Nevertheless, there seems to be no consensus on the best overlapping 
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percentage to use between consecutive windows—e.g., the impact of using a sliding window with 

10% versus 90% overlap. Some studies tried different shifting lengths [89] [124] , but this issue 

remains unsettled. 

We found two main approaches for adding noise to EEG signals for DA: (1) adding various types 

of noise (Gaussian, Poisson, salt, and pepper, etc.) to the raw signal; (2) converting the EEG signals 

to sequences of images (spectrograms) and adding noise to these images. Though it has been 

reported that adding noise to the images did not improve the classification accuracy [90]. 

Unfortunately, some authors did not provide details about the accuracy before and after DA. In a 

similar vein, critical noise parameters (e.g., mean, standard deviation, the magnification factor of 

training dataset) were sometimes not reported. This made it more difficult to compare techniques 

and parameters across studies.  

Since 2018, GAN has become very popular for generating EEG signals that mimic real ones. 

Though GAN and related DL algorithms were used and discussed more for generating synthetic 

images for image classification tasks. EEG can often be analyzed and visualized in the frequency 

domain over time as spectrograms (through a Fourier or wavelet transformation). These 

spectrograms can then be treated like any other image, and therefore data augmentation methods 

that were developed for images can, at least in the technical sense, be directly applied to them. The 

spectrograms generated via the DA process is then converted back to an EEG signal of course.  

While GAN data augmentation for EEG shows some improvement of classification accuracy, it 

has still not been clearly demonstrated to be better than other, simpler methods—like noise 

addition. For example, from our results (Table 8), it appears that the mean increase in accuracy 

when using GANs is 5.7% (STD 5%) while for noise addition, the increase is 14.2% (STD 13%). 
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The GANs that we covered here mostly learned the underlying distribution of the training EEG 

signals and generated fake signals that are within the distribution. In this sense, it might be argued 

that it is not that different from adding noise to the original signals. In addition, whether we can 

treat a spectrogram as an image and simply apply image-based data augmentation techniques 

remains an open question. First, the “pixels” in spectrograms relay temporal and frequency 

information that images do not. Second, at least when using CNNs, the invariant filters that work 

well across images would often not be expected to work on the spectrograms. For example, there 

is no a priori reason to expect to find the same pattern in high gamma early in time and in theta 

later. Third, when using real images, the developer of a GAN can rely on her visual system to 

judge how well the GAN works for generating fake images that are like the real ones on which it 

is based. However, the same cannot be said for a GAN developed for EEG. What is more, we 

know too little about the characteristic of EEG for specific tasks (certainly across subjects and 

variants of the task) to develop a method that would judge the quality of an EEG GAN. So, this 

technique should be used with proper caution.  

Fourier transform was used in 2018 to augment EEG signals, very successfully. This method 

assumes linearity and stationarity of the EEG signals [140] . In 2019, Zhang and colleagues used 

these intrinsic features of EEG and decomposed the signal to its IMFs. By mixing IMFs, they 

generated new samples and decreased overfitting [82]. Sampling was used in many studies to better 

balance imbalanced datasets. Balancing the number of samples among classes may drastically 

improve the usefulness of a dataset. 

Figure 20 enables us to draw a few trends. We see that the sliding-window technique is used for 

the majority of papers that analyze seizure detection. Similarly, we found that noise addition is the 
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most common technique for mental workload. And sampling methods appear most often for 

classifying sleep stages. To what extent the more popular techniques are also more optimal is still 

unclear given the relatively small number of papers so far. 

But how useful is DA for DL-based EEG analysis? How much does it improve classifier accuracy? 

Before delving into the numbers, it is also worth bearing in mind that publication bias might be 

driving these numbers up. Unsuccessful attempts at improving DL accuracy with DA may be less 

likely to be published. That said, on average, training on the DA dataset helped make up almost 

3/10 of the gap that was left in accuracy between the original analysis and perfect accuracy. 

Though this improvement score varied widely among DA techniques and tasks (Figure 21). Too 

few studies reported both accuracy before and after DA and the parameters of their DA method 

for us to be able to carry out more in-depth statistical analyses. Those will be possible with 

additional publications.  

3.6.6 Guidelines for reporting results in papers 

Some papers clearly explained their methodology with respect to DA (e.g., [149]). Unfortunately, 

these were the exception. Of the reviewed papers, 45% did not report the accuracy before DA and 

38% did not report the parameters they modified in their DA method. It is also noteworthy that 

41% did not mention the magnification factor they used. This made surveying and comparing the 

literature rather difficult.  

Therefore, in order to improve the quality and reproducibility of the work in the field of DA on 

DL-based EEG, we recommend that authors follow the guidelines below when reporting their 

results in their studies.   
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Clearly describe the data augmentation method 

they used 

Method, parameters they change in their 

method, Magnification factor 

Clearly describe the dataset #subject, #trials, #classes 

Test their proposed method on an existing 

dataset 

Compare model performance and evaluate 

their results on a public dataset 

Clearly describe the architecture #layers, their widths, the activation functions 

used 

Report the accuracy and results Report the accuracy before and after using DA, 

report the results when changing the 

parameters of DA 

Share internal recording and reproducible code Whenever possible, including hyperparameter 

choices 

3.7 Limitations 

One clear limitation of our study is the relatively small number of papers published so far on this 

topic. This procludes us from carrying out mode detailed analyses than the above. What is more, 

another obvious limitation of our methodology, already discussed above, is that our analysis is 

only as good as the data on which it is founded. When little information is provided about the DL 

or DA methods, it directly and immediately limits our ability to analyze those data, as discussed 

above.  

In addition, although the search methodology we used to identify relevant studies is well-founded, 

it undeniably did not capture all of the existing literature on the topic. Since the field of DA for 

DL-based EEG is still young and the number of publications available at the time of writing this 
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manuscript was limited, we decided to include all the papers we could find (note that some of the 

newer trends are more visible in repositories such as arXiv and bioRxiv, as those manuscripts may 

be going through the publication process). They have been adopted by the DL community to 

quickly disseminate results and encourage a fast research-iteration cycle. Our goal was to provide 

a transparent and objective analysis of the trends in DA for DL-based EEG. 

We focused our analysis on the points that we thought would be most interesting, valuable, and 

impactful for the performance of DA on DL-based EEG. Therefore, we didn’t include 

normalization procedures, software toolboxes, loss function, training time etc., in this analysis. 

3.8 Conclusions 

DL has been successfully applied to many EEG tasks such as: sleep stages, motor imagery, mental 

workload, and emotion recognition tasks. Applying DL to EEG has shown great promise in 

processing these complex signals due to its capacity to learn good feature representations from raw 

data through successive non-linear transformations. However, DL is inherently limited over EEG 

datasets because of their relative smaller size. DA, in turn, increases the available training data, 

facilitating the use of more complex DL models. It can also reduce overfitting and increase the 

accuracy and stability of the classifiers. 

Looking at the inputs to the DL architectures, the most common technique is still to calculate 

features (49%) outside the NN and feed it into the network, though a sizable fraction of papers 

input the raw signals (36%) into the NN and let it extract features itself. In addition, while various 

architectures have been used successfully on EEG datasets, CNN is most often used (62%). Taking 

all of the above into account, our analysis of the literature suggests that DA was mainly used for 
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seizure detection(24%) and motor imagery(21%). In particular, sliding windows are favored for 

seizure detection. Noise addition is most common for mental workload. And sampling methods 

are the procedures of choice to classify sleep stages. 

Our attempt to compare results between different studies highlighted for us the high degree of 

variability in how results were reported across studies. We therefore made specific 

recommendations to ensure reproducibility and better comparison of the results when the authors 

use DA and DL. It is key to clearly describe the DA method, its parameters and their role in 

achieving the accuracy that the paper boasts. It is also critical to report the magnification factor as 

well as the accuracy before and after DA. 

In sum, we hope this review will constitute a good entry point for EEG researcher looking to apply 

DA for training DL algorithms on their datasets and will assist the field to produce high-quality, 

reproducible results. 
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Table 8. Details of all the papers that we found for our review paper. In Data Augmentation column: NA: Noise addition, SW: 
Sliding window, S: Sampling, FT: Fourier-transform, Recombination of Segmentation: RS, O: Others and in EEG task 

column: ER: Emotion recognition, MW: Mental workload, MI: Motor imagery, S: Seizure, SS: Sleep stages, IT: Imagery task, 
VT: Visual task and in input formulation column: S: signal, I: Images and CF: Calculated features. Some studies used different 

dataset or different DA techniques and we show them separately. 
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 4 An end-to-end CNN with attentional mechanism applied to 
raw EEG in a BCI classification task 

4.1 Introduction 

Advances in brain science and computer technology in the past decade have led to exciting 

developments in Brain-Computer Interfaces (BCI), thereby making BCI a key research area in 

applied neuroscience and neuro-engineering [151]. Non-invasive BCI facilitates new methods of 

neurorehabilitation for physically disabled people (e.g., paralyzed patients and amputees) and 

patients with brain injuries (e.g., stroke patients) [151]. BCI systems utilize recorded brain activity 

to directly communicate between the brain and computers to control the environment in a manner 

compatible with the individual’s intentions [152].  

However, the ability to decode intentions is also an important tool for basic neuroscientific 

research. In particular, it strongly enhances the scientific armamentarium used to investigate 

volition [153, 154]. And, more specifically, decoding intention in real time would open the door 

to interesting experimental possibilities, such as interventions to facilitate or frustrate intentions 

[13, 155, 156], and intention-contingent stimulation [153]. Technological advances of recent 

decades—such as untethered, wireless recording, machine-learning-based analysis, and real-time 

analysis of raw EEG signal  have increased the interest in electroencephalography (EEG) based 

BCI approaches [157]. 

EEG has proved to be the most popular brain-imaging method for BCI because it is inexpensive, 

noninvasive, directly measures neural activity (as opposed to fMRI for example), and can facilitate 

portability to clinical use [152]. EEG signals thus serve as pathways from the brain to various 
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external devices, resulting in brain-controlled assistive devices for disabled people and brain-

controlled rehabilitation devices for patients with strokes and other neurological deficits [151, 158, 

159]. One of the most challenging topics in BCI is finding and analyzing the relations between 

recorded brain activity and underlying models of the human body, of biomechanics, and of 

cognitive processing. The investigation of relations between EEG signals and—real and 

imagined—upper limb movement has gained more attention in recent years [160, 161].  

To implement an EEG-based BCI system for a particular application, a specific experimental 

protocol and paradigm must be chosen for all phases of the experiment. Typically, the participant 

first performs a particular task (e.g., a motor-imagery task, a visual task) to learn how to modulate 

their brain activity, while EEG signals are simultaneously recorded from their scalp. Using the 

recorded EEG as training data, a machine-learning-based neural decoder for the paradigm is then 

constructed [151]. Finally, the participant performs the task again, and the neural decoder is used 

for BCI control.  

The process for BCI systems based on motor imagery (MI) is similar. Though, in this case, the 

participant imagines the movement rather than actually executing it [160]. Previous studies have 

confirmed that imagination activates areas of the brain that are responsible for generating actual 

movement [151, 162]. The most common MI paradigms reported in literature are based on 

sensorimotor rhythms (SMR) and imagined body kinematics. In the SMR paradigm (e.g., [163, 

164] participants imagined kinesthetic movements of some body part—such as hands, feet, or 

tongue—which result in modulations of brain activity that are trackable using EEG [165]. 

Imagined movement in such SMR paradigms often causes event-related desynchronization (ERD) 

in mu (typically 8-12 Hz) and beta rhythms (roughly 12-30 Hz). In contrast, relaxing after MI 



 

 124 

results in event-related synchronization (ERS) [166]. The ERD and ERS modulations are most 

prominent in EEG signals acquired from electrode locations C3 and C4 (in the 10/20 international 

system); these electrodes are approximately above the motor cortices of both brain hemispheres.  

MI classification is one of the most popular EEG-based BCI paradigms. EEG MI classification 

generally consists of four parts: signal acquisition, feature extraction, classification, and control. 

Most existing feature-extraction methods depend on manually designed features, based on human 

knowledge. Feature extraction and classification of EEG signals for MI tasks have been attempted 

in the time, frequency, and space (electrodes) domains—not necessarily mutually exclusively. 

Time-frequency feature extraction in EEG has focused mostly on short-time Fourier transform 

[167, 168] or wavelets [169, 170]. In the space domain, filter-bank common spatial-patterns 

(FBCSP) has achieved notable performance [171, 172]. However, FBCSP uses a fixed temporal 

duration, ignoring difference between participants. As such, it does not make full use of time-

domain information. Moreover, these methods generally use handcrafted features and require 

heuristic parameter setting—e.g., predefined frequency bands—which often do not generalize well 

across tasks and participants [145]. As such, they often result in limited classification accuracy 

[169, 173, 174].  

4.2 Related work 

Recently, researchers have successfully used deep learning (DL) to perform automatic feature 

extraction [175] and classification [123, 145, 176, 177]. DL has achieved breakthrough accuracies 

and discovered intricate structures in various complex and high-dimensional data [178, 179]. In 

particular, it has provided promising results in the analysis and decoding of EEG signals [28]. 

Thus, NN architectures, their training procedures, regularization, optimization, and hyper-
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parameter settings are all active area of research in DL-based analysis of EEG, with advances often 

resulting in dramatic increases in decoding accuracy [28]. 

Recently, Zhang et al., proposed a hybrid DL architecture, which combined convolutional neural 

networks (CNNs) and long short-term memory (LSTM) models to handle sequential time domain 

data [180]. Even more recently, Dai et al., proposed an architecture composed of a CNN with a 

hybrid convolution scale (HS-CNN), which separates a signal into three frequency bands using 

bandpass filters at 4∼7 Hz, 8∼13 Hz, and 13∼32 Hz. The three frequency bands are then fed into 

the convolutional layers with different filter sizes [145]. The features, including different semantic 

information, were concatenated and then MI classification was carried out. In another study, Zhang 

et al., applied an attention module to LSTM to utilize long-range information for EEG-based hand-

movement classification [181].  

Despite their promise, these deep NN architectures are not easy to train from scratch, because they 

require large amounts of training data to achieve high classification accuracy. However, it is 

particularly challenging to obtain a large amount of training samples for MI classification. This is 

because gathering high-quality data requires training and experience as well as a state-of-the-art 

EEG machine and a noise-free environment. MI tasks are also time consuming and fatigue-

inducing for the participants. For example, during the task, participants must minimize, if not 

altogether avoid, eye movements and other muscle contractions, especially around the head. At 

the same time, they typically need to employ a great deal of concentration and attention during MI 

tasks. Thus, participants can only produce a limited amount of data at each session and must come 
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in for multiple sessions to construct a large dataset of EEG MI. This often results in attrition over 

the course of multiple sessions.  

Data augmentation (DA) can lead to considerable performance gains for DL, reducing overfitting 

and increasing overall accuracy and stability. DA generates new samples to augment an existing 

dataset by transforming existing samples in some systematic manner. Exposing the classifiers to 

various transformations of the training samples, as DA does, makes the models more robust and 

invariant to these and potentially other transformations when attempting to generalize beyond the 

training set [79, 82, 182].  

DA is an especially important technique for EEG-based BCI because of its specific combination 

of two factors: the dimensionality of EEG signals tends to be high, while the number of available 

training samples tends to be low. In a recent systematic review on DA in EEG, Lashgari et al. 

collected all the papers that used DA for NN-based analysis of EEG up to and including 2019 [28]. 

They showed that convolutional neural networks (CNN) were the most popular NN architectures 

for EEG MI classification and typically resulted in accurate decoding. This is likely because CNNs 

are well suited to end-to-end learning, scale well to large datasets, and can exploit hierarchical 

structure in natural signals. The review also found that the most common input formulation for 

motor tasks and MI was raw EEG signals [28].  

With these elements in mind, here we investigated the efficacy and generalizability of deep 

learning on EEG-based decoding of MI. We designed an end-to-end CNN with an attentional 

mechanism [183]. This is because a CNN with an attention-mechanism architecture can improve 
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classification performance using EEG signals by focusing on essential, task-relevant features on 

different time-steps.  

We begin by testing this architecture on 2 benchmark datasets (BCI Competition IV 2a and 2b) as 

well as on the dataset that we collected, which we share with the community. Then, we compare 

MI to ME on the dataset that we collected. Next, we tackled a common question when collecting 

EEG data: how many channels to record for optimal decoding accuracy? We thus compared the 

decoding accuracy for different numbers of channels. It has also been demonstrated that DA 

techniques hold promise for EEG decoding. So, we also tested how much DA can boost the 

accuracy of our method across the datasets. How much EEG data is needed to train deep NN is 

also not well understood, especially in relation to DA techniques. We therefore next investigate 

how the accuracy of our model depends on the amount of data on which we train and the type and 

amount of DA we use. Of course, structure and anatomical features vary across brains. So, we 

further investigated what happens to the decoding accuracy when we train and test it on EEG from 

single participants, on pair of participants, triplets, and so on. In the interest of understanding how 

well models of EEG decoding generalize to previously unseen participants, we also investigated 

what happens when we train the model on all but one participant and then test on that remaining 

participant, with and without transfer learning.  

4.3 Methods 

4.3.1 Proposed CNN-based neural-network architecture 

Convolutional models have been successful in many signal processing applications, as they allow 

temporally related inputs to be processed together via a sliding-window approach (Figure 22). This 
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produces shared weights, where the same weight kernel is applied across the temporal domain (for 

a 1D convolutional model over time). In our architecture (Figure 22), this reduces the number of 

parameters needed in such a model and enables the signal to maintain its spatial relations—across 

time within each electrode and across electrodes over the head. The signal from each electrode 

channel is fed through the same convolutional base to produce an output matrix of dimension 

" × $, where " is the number of electrodes (or channels) and $ is the size of the embedding 

dimension (Figure 22). Hence, the convolutional layers in effect reduce the dimension of the input 

to the embedding dimension, $.  

Now, in the self-attention part of the network [183, 184], we first initialize the weights for the 

Query (Q), Key (K), and Value (V). The magnitudes of Q, K, and V are derived by the product of 

the input (I) and the weights. The second step is to calculate the attentional score (S): % = '(!. 

The shape of S will be " × ".  The Softmax (W) of S is calculated to return a vector of C x 1. The 

third step is to find the weighted values (M), ) = *+!. Each input’s value for M is concatenated 

to return a shape of C x C, which will be the value for the final Attention. ,-.ℎ was used to 

produce the alignment score. In the following, the equations show more details: 
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 I     Input for self-attention, shape (number of channels (C) x the 

size of the embedding dimension (E)) 

Key, Value, Query Initialize weights for key, value and query with shape of input 

size (C x E) 

 

K = I x (01! 

V = I x +-230! 

Q = I x '3041! 

 

Derive key, query, and value 

Shape (C x C) 

% = 	'	 ⋅ 	(! Calculate attention score by dot product (C x 1) 

* = %789:-;(%) Calculate Softmax (C x 1) 

 

)	 = 	*	 × 	+ Multiply scores with value 

>	 = 	9-.ℎ	()	 ×	*!)     Linear transformation of M 

The attention layer discussed above is added after the convolutional base (Figure 22), so that each 

electrode channel is computed with every other channel to produce a matrix of scalar values. 

Summing across rows and normalizing these scalars produces a vector of attention scores. These 

scores are used to create a linear combination of all the electrode channel vectors, which is passed 

to the fully connected layers of the network for classification. A valuable part of this model is 

therefore its interpretability [155, 185, 186]. The attention scores for each electrode channel can 
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be examined to determine the importance of each electrode in the model's prediction. However, in 

this study we were not interested in the added interpretability that the attentional mechanism 

affords us. Instead, we relied on the attentional mechanism to improve the prediction accuracy of 

our architecture. This is because a CNN with attention-mechanism architecture can improve 

classification performance using EEG signals by focusing on essential, task-relevant features on 

different time-steps, via the sliding windows. Table 1 shows the summary of the proposed NN 

parameter.

 

Figure 22. Our proposed CNN with attentional mechanism. (A) The sliding window (length is 
1000 ms and step-size is 100 ms) applied to 64 EEG channels. (B) The 64 segments of raw EEG 

signal, depicted in orange in (A). Each time window and channel are separately sent through shared 
convolution layers. The embedded features I (C x E) applied to self-attention. The output of self-

attention passes through 2 dense layers. (C) An expansion of the self-attention block. 

 

Table 9 Summary of the proposed CNN with attentional mechanism parameters (“-1” 
represents a flexible shape, essentially the batch size) 

Layer (Type) Output Shape         Param # Shared convolutional layer 

Convolution 1D             [-1, 16, 64]             816 x64 
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Convolution 1D              [-1, 16, 6]  12,816 x64 

Max Pooling 1D             [-1, 16, 3]               0 x64 

1D Vector [-1, 48]              2,304 0 

Attention [[-1, 64, 48], [-1, 64, 64]] 4,608 0 

Dense [-1, 32]             98,336 0 

Dense [-1, 2]             66 0 
Total parameters 977,762 

  

4.3.2 Hyperparameter Optimization and Training 

When implementing NN there are several choices (or hyperparameters) that must be set prior to 

training—those range from the type of architecture to the depth and width of the layers, through 

to the neuronal activation-function in the different layers, and so on. Choosing hyperparameters 

arbitrarily is likely to lead to suboptimal results. To address this, we first created a 3-way split of 

our data into a training, validation, and test sets to identify reasonable architectures and parameter 

ranges. Then, guided by those preestablished ranges, we conducted NN optimization via a 

Bayesian hyperparameter search using SHERPA [187], a Python library for hyperparameter 

tuning. The Bayesian search has the advantage of learning a distribution over the hyperparameters 

of the network architecture, in relation to the task to be optimized. By employing this procedure, 

we were able to evaluate a large space of possible models and test many configurations.  

We detail the hyperparameters of interest in Table 10, as well as the range of available options 

during the search. The hyperparameters of interest consisted of the activation function, dropout 

percentage, learning rate, learning rate decay, nodes per layer, and the optimizer. Additional 

hyperparameters for convolutional models included the number of filters and the kernel size. We 

tried 250 different hyperparameter settings for each network architecture (Dense NN, Conv Net-
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Dense NN, Conv Net-Attention-Dense NN), for a total of 750 models over 3 different NN (Dense 

NN, Conv Net-Dense NN, Conv Net-Attention-Dense NN). Table 11 present the result of best 

hyperparameters tuning by SHERPA for the 3 datasets: BCI competition IV 2a (BCI 2a), BCI 

competition IV 2b (BCI 2b), and our dataset and for 3 different models (Dense, CNN-Dense, and 

CNN-Attention-Dense). 

For the 3 datasets examined in this study, we adhered to the following procedure. For each set of 

hyperparameters sampled in the search, we partitioned each subject's data into a training and 

validation set. The proposed architecture was thus trained on each subject separately. Then, to 

evaluate the architecture, we averaged the validation accuracy scores across subjects. We then 

selected the network architecture with the highest average accuracy score across all subjects. 

Critically, this process ensures that we find architectures that perform well across subjects, but 

which are not tailored to specific subjects or tasks. 

All networks were trained for 250 epochs using an early stopping condition—i.e., when the 

accuracy on the validation set did not improve for 25 epochs, training stopped. All models were 

trained using 10-fold cross-validation. The partitioning was stratified to ensure a constant ratio of 

representation amongst right and left examples—roughly 50/50—in keeping with the ratio in the 

data overall. This cross-validation procedure requires a given model to be trained 10 distinct times 

(re-initializing the network parameters each time) and ensures that, on the one hand, different 

subsets of the data are used for training and testing, while on the other hand, each datapoint serves 

as part of the training set (9 times) and in the test set (once). To be clear, when we performed cross 

validation, we used data partitions that were not used during the hyperparameter search. The 
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accuracies reported below are therefore always the average accuracies across the 10 validation sets 

described above.  

To double check our results, we carried one additional train/validation/test split of 75/15/10%, 

respectively. After this train/validation/test procedure, we ended up with neural architectures that 

were the same as those selected by the cross-validation procedure above—both in terms of the 

number of layers and the kernel size. This gave us confidence that our results are not due to some 

leakage between the training and test sets. Our cross-validation procedure allowed us to report 

confidence scores, in the form of average accuracies and standard deviations. It also demonstrated 

that we did not cherry pick a data partition in which the proposed architectures happened to 

perform well; rather, our models were robust across partitions.  

Training took place on NVIDA Titan V GPUs with 12GB of memory. Each epoch took less than 

a minute to complete. Training for a single fold typically completed within 30 minutes.  
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Table 10. The hyperparameter space 

Name  Range Type 

Activation (ReLU, ELU) Choice 

Dropout (0, 0.9) Continuous 

Kernel Size (25, 50, 75) Choice 

Learning Rate (0.0001, 0.1) Continuous 

Learning Rate 
Decay 

(0.5, 1.0) Continuous 

Number of Dense 
Nodes 

(8, 512) Discrete 

Number of Filters (16, 32, 64) Choice 

Optimizer Adam, SGD, 
RMSProp 

Choice 
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Table 11. Hyperparameter tuning by SHERPA for 3 the datasets (BCI 2a, BCI 2b and our 
experimental dataset) for 3 different models (Dense, CNN dense, and CNN attention 

dense) 

dataset Model 

K
er

ne
l S

iz
e 

A
ct

iv
at

io
n 

D
ro

po
ut

 

Le
ar

ni
ng

 R
at

e 

Le
ar

ni
ng

 R
at

e 
D

ec
ay

 

N
um

be
r 

of
 fi

lte
rs

 

D
en

se
 N

od
es

 

O
pt

im
iz

er
 

BCI 2a 

Dense NN NAN ReLU 0.171 0.017 1 NAN 27 Adam 

Conv Net-Dense 

NN 
25 ELU 0.092 0.052 1 64 303 SGD 

Conv Net-

Attention-Dense 

NN 

25 ELU 0.9 0.1 1 32 91 SGD 

BCI 2b 

Dense NN NAN ReLU 0.845 0.001 0.864 NAN 289 Adam 

Conv Net-Dense 

NN 
50 ReLU 0 0.1 1 16 15 SGD 

Conv Net-

Attention-Dense 

NN 

25 ELU 0 0.1 1 64 263 SGD 

Our 
dataset 

Dense NN NAN ReLU 0.687 0.037 1 NAN 369 SGD 

Conv Net-Dense 

NN 
25 ReLU 0.68 0.034 0.989 32 196 SGD 

Conv Net-

Attention-Dense 

NN 

50 ELU 0.807 0.1 0.978 32 183 SGD 

4.3.3 Data augmentation 

Generally, in machine learning, but especially for NN, the classification accuracy tends to critically 

depend on the amount of training data; limited training data typically leads to low accuracy. DA 

comprises the systematic generation of new samples to augment an existing dataset by 

transforming existing samples in a manner that increases the accuracy and stability of classification 
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[28]. Exposing the classifiers to varied representations of its training samples typically makes the 

model more invariant and robust to such transformations when attempting to generalize the model 

to new datasets. DA for the MI task fell into 5 categories in our analysis: noise addition [95, 188], 

GAN [101, 105, 115, 189], sliding window [123, 126, 129], Fourier transform [82], and 

recombination of segmentation [145]. Table 12. DA techniques that are used on the MI task shows 

more details about each of these methods. We evaluate all DA techniques with a magnification 

factor :	 = (2, 5, 10, 15, 20, 30, 50) for our proposed CNN. 

Table 12. DA techniques that are used on the MI task 

DA methods Details of the method 

Sliding window 
[123, 126, 129] 

Sliding window over the input of each trial, which leads to many more 

training examples for the network compared to using than the entire. 

More formally, given an original trial E" ∈ ℝ#×!, with $ electrodes 

and , timesteps, we create a set of crops with crop size ,%	as time slices 

of the trial: "" = (E&,…,#;	+,…+,!!
" |9 ∈ 1,…, − ,%). All of these , − ,% 

crops then become training examples for our CNN and will get the 

same label, 1", as the original trial. The best results in the BCI dataset 

are for 1s window length. In this study, we tried to evaluate this 

technique with different : and 100 ms step-size. 

Noise Addition 
[95, 188] 

We found two main categories for adding noise to the EEG signals in 

purpose of DA: (1) Add various types of noise such as Gaussian, 

Poisson, Salt and pepper noise, etc. with different parameters (for 

instance: mean (K) and standard deviation (L) to the raw signal (2) 

Convert EEG signals to sequences of images and add noise to the 

images [28]. Our proposed end-to-end CNN is for raw EEG. Therefore, 

we add noise just on the raw EEG signal. We add Gaussian noise with 

different parameters (mean = 0, standard deviation L =
(0.01, 0.1, 0.2, 0.5) to all channels of raw EEG signal.  

GANs 
[101, 105, 115, 189]s 

The GAN framework consists of two opposing networks trying to 

outplay each other [190]. The discriminator (N) is trained to distinguish 
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between real and fake input data. The generator (O) takes a latent noise 

variable P as input and tries to generate fake samples that would not be 

recognized as fake by the discriminator. To learn a generator 

distribution Q- over data ;, the generator builds a mapping function 

from a prior noise distribution Q.(P) to data space as ORP; T-U. And the 

discriminator, N(;;	T/), outputs a single scalar representing the 

probability that ; came from training data rather than QV.		O and N are 

both trained simultaneously: we adjust parameters for O to minimize 

27V(1 − NRO(P)U and adjust parameters for N	to minimize 27VN(;) 
[190]. This results in a minimax game in which the generator is forced 

by the discriminator to produce ever better samples with value function 

+(O, N): 
:X.0:-;1	+(N, O)

= 	Y2~4"#$#(2)[27VN(;)]

+ 	Y.~4%(.)]log	(1 − NRO(P)U)a. 
GAN can be extended to a conditional model if both generator and 

discriminator are conditioned on some extra information such as 1. In 

conditional generative adversarial nets (cGANs) 1 could be any kind of 

auxiliary information, such as class labels or data from other 

modalities. We can perform the conditioning by feeding 1 into the both 

the discriminator and generator as additional input layer. In the 

generator the prior input noise Q.(P), and 1 are combined in joint 

hidden representation, and the adversarial training framework allows 

for considerable flexibly in how this hidden representation is 

composed. In the discriminator ; and 1 are presented as inputs and to a 

discriminative function. The objective function of a two-player minmax 

game would be as: 

:X.0:-;1	+(N, O)
= 	Y2~4"#$#(2)[27VN(;|1)]
+ 	Y.~4%(.)[log	(1 − N(O(P|1)))].  

Recombination of 
segmentation 

[145] 

Perform segmentation on the input trials (i.e., left-/right-hand MI) with 

the same label. Each trial is segmented into three crops. The crops with 

the same labels are then recombined to generate new trials. For the 

same person and the same class, the crops at the same position from 
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multiple trials are randomly swapped and recombined in the 

time/frequency domain to generate recombined trials [145].  

Fourier 
Transform/Wavelet 

[82] 

Apply the empirical mode-decomposition algorithm on the EEG frames 

and mixed their intrinsic mode functions to create new, artificial EEG 

frames [82]. The algorithm decomposes the original EEG signals into a 

finite number of functions called “intrinsic mode functions” (IMFs). 

Once the signal has been decomposed, we can recover it by adding all 

the IMFs and the residue without loss. To generate the new samples, we 

swapped the IMFs of the decompositions. Moreover, the intrinsic 

characteristics of each class (left/right) will be preserved because we 

mixed the IMFs of the same class. We randomly select the trials that 

contribute with their IMFs to generate samples for specific class. 

4.4 Dataset and experimental protocol 

We used three datasets in this study: (1) A dataset that we collected ourselves, (2) the BCI 2a 

dataset [191], and (3) the BCI 2b dataset [192] (The experimental paradigms for our experimental 

dataset, BCI 2a, and BCI 2b.Figure 23. The experimental paradigms for our experimental dataset, 

BCI 2a, and BCI 2b.). 

Our dataset: Seven healthy volunteers (3 male and 4 female) participated in the study, all were 

right-handed and between the ages of 23 to 30 (mean age 28). All participants gave written, 

informed consent to participate in the study. Participants were seated in a chair at a distance of 80 

cm from an LCD screen with both hands resting on a Table. They held a tennis ball in each hand 

and were told to remain relaxed and strive to minimize movement and eye blinks. When required 

to respond, they were to squeeze the tennis ball in their hand but try to avoid tensing their arms or 

shoulders. Each session (ME and MI— Figure 23) was repeated twice. The whole experiment thus 

consisted of four sessions. Every session lasted 30–40 minutes with 10 to 15 minutes breaks 
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between sessions. The duration of the whole experiment, including setup, was kept below 3 hours 

to minimize fatigue. EEG data was recorded and sampled at 250 Hz using 64 active electrodes 

(BrainVision actiCHamp) placed according to the 10/20 montage. Bipolar electromyography 

(EMG) electrodes were placed on the Brachioradialis for both hands as a sanity check for any 

movement in MI session. 

Sessions 1 and 3 were designed to identify EEG signals related to ME. Participants were instructed 

to squeeze the tennis ball with their right or left hand while fixating on the cross displayed on the 

screen. They were encouraged to minimize all other movement and to only use the designated 

hand. One hundred trials were collected for each hand.  

Session 2 and 4 aimed to show that a decoding model based on actual ME, derived from the first 

session, could be used to decode EEG activity in the absence of execution. Participants were 

instructed to carry out MI of the repetitive hand movement instructed in session 1 while fixating 

on the cross displayed on the screen. One hundred trials were collected for both left and right 

imagination per each session. All other aspects of the task were identical to session 1. This session 

also allowed us to screen participants for the presence of motor-related EEG oscillations, and at 

least minimal voluntary control over these oscillations. Hence, overall, we collected 200 trials of 

ME and 200 trials of MI for each subject. The data underlying this study have been uploaded to 

figshare.  

Data are available from the following link: https://doi.org/10.6084/m9.figshare.14721297.v1 

BCI 2a: BCI 2a contains EEG data from 9 healthy participants [191], 2 sessions per participant. 

Each session is made up of 288 trials, resulting in 5184 trials overall. No feedback was provided. 
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Twenty-two Ag/AGCL channels were used to record EEG. The signals were sampled with 250 Hz 

and bandpass filtered between 0.5-100 Hz. To compare our results with previous studies ([145], 

[193], [194] etc.) we focused on the C3, CZ, and C4 electrodes. 

BCI 2b: BCI 2b contains EEG data from another 9 healthy participants [192]. For each participant, 

5 sessions of data are collected. Each of the first 2 sessions has 120 trials and each of the last 3 

sessions has 160 trials. The total number of trials is thus 6480. Two types of trials are included in 

these datasets: left- and right-hand MI. The first 2 sessions contain training data without feedback, 

while the last three sessions gave a smiley face as feedback. The EEG data is again collected over 

the C3, CZ, and C4 electrodes, which were placed following the international 10–20 system. The 

sampling frequency was 250 Hz. Table 13 presents the summary of three datasets. 

Table 13. Summary of the 3 datasets used in this study: Our experimental dataset, BCI 
2a, and BCI 2b 

  Experimental dataset BCI 2a BCI 2b 
The dataset 
provided by 

The Institute for 

Interdisciplinary 

Brain and 

Behavioral Sciences, 

Chapman University 

The Institute for 

Knowledge 

Discovery (Laboratory 

of Brain-Computer 

Interfaces), Graz 

University of 

Technology 

The Institute for 

Knowledge Discovery 

(Laboratory of Brain-

Computer Interfaces), 

Graz University of 

Technology 

Open-source dataset Yes Yes Yes 

Description of 
dataset 

2-class MI and ME 

(left hand and right 

hand). Session 1 and 

3 are ME and 2and 4 

MI, No feedback. 

4-class MI (left hand, 

right hand, both feet, 

and tongue.                                      

No feedback 

2-class MI (right hand, 

left hand). The first two 

sessions contain 

training data without 

feedback, and the last 

three sessions with 

smiley feedback. 



 

 141 

# Channels 64 EEG channels 

(0.5-100Hz -

BrainVision 

actiCHamp 

22 bipolar EEG 

channels (0.5-100Hz; 

notch filtered) 

3 bipolar EEG channels 

(0.5-100Hz; notch 

filtered) 

Sampling frequency 250 Hz 250 Hz 250 Hz 
# Subjects 7 9 9 

# Sessions per 
subject 

4 2 5 

# Trials per session 100 288 120 for first 2 sessions 

and 160 trials for last 3 

session 
Total trials for each 

subject 
400 576 720 

Total trials in the 
dataset 

2800 5184 6480 
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Figure 23. The experimental paradigms for our experimental dataset, BCI 2a, and BCI 

2b. 

4.5 Channel selection 

Analyzing dense-array EEG is computationally expensive and complex; it also typically requires 

more expensive EEG systems than those with sparser electrodes. We therefore tested 4 different 

electrode configurations on our participants—which included 3, 7, 18, or all 64 electrodes (see 
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Methods)—to further test the effect of channel selection on classification accuracy for MI in our 

own dataset.  

Configuration (1) C3, CZ, and C4 electrodes were chosen in accordance with the 10-20 framework 

[195] since these electrodes have been shown to be especially discriminatory in hand and foot 

movements data [196]. It should be noted that right (left) hand's MI operation is usually detected 

above the left (right) motor cortex underneath the C3 (C4) electrode, and the foot's MI action is 

typically captured by the CZ electrode.  

Configuration (2) The brain's frontal, central and parietal lobes are important from a neurological 

perspective for MI commands. We therefore also focused on these 7 electrodes (i.e. F3, F4, C3, 

CZ, C4, P3 and P4), which reside above these lobes of interest according to the 10-20 standard are 

considered in criteria 2 [195].  

Configuration (3) Electrodes that are generally placed around the left and right motor cortices are 

included in this configuration because they are related to MI. According to 10-20 electrode 

montage [195], 18 electrodes lie around motor cortex. These are labelled C5, C3, C1, C2, C4, C6, 

CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4 and P6 [197, 198].   

Configuration (4) We used all 64 EEG channels.  

In Figure 24, we showed these four configurations. 
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Figure 24. Four different electrode configurations on the actiCAP—which included 3, 7, 

18, and all 64 electrodes 

4.6 Results 

4.6.1 Performance of the proposed CNN (Neural architectures vs. Neural 

architectures) 

To evaluate the performance of our proposed CNN, we conducted comparisons between the Dense 

NN, Conv Net-Dense NN, Dai et al. (2020), and Conv Net-Attention-Dense NN (Figure 25). The 

baseline Conv Net is identical to the Conv Net-Attention-Dense NN but lacks the attention module 

(see Methods). The dense network sends all channels through 2 dense layers, then it concatenates 

all the vectors into a single one and sends that through 2 more dense layers. We used SHERPA for 

hyperparameter optimization for all 4 types of networks [187].  We also reproduced the proposed 
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NN in Dai et al. (2020) [145] without the use of DA to compare it with the proposed CNN with 

the attentional mechanism.   

 
Figure 25. Comparison the average validation accuracy (±SE) on the BCI 2a and BCI 2b 

datasets with Dense, CNN, Dai et al. (2020), and CNN-Attention-Dense (See section 2.1 

and 2.2). 

Table 14 represents the classification results of our proposed CNN (with the attentional 

mechanism) without DA and with DA, which resulted in the highest accuracy for both datasets. 

Those are further compared against the results of Dai et al. [145]. All classifications were carried 

out on the BCI 2a and BCI 2b datasets. The average accuracy in Dai et al. (2020) for BCI 2a and 

BCI 2b were 91.57% (±5.73) and 87.6% (±8.48), respectively. In comparison, our proposed 

method with DA (GAN and m=15) achieved an average accuracy of 93.6% (±2.59) for BCI 2a 

and 87.83% (±6.34) for BCI 2b. Hence, our method has a higher average accuracy than Dai et al. 
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(2020) while maintaining less variability in the accuracy across participants for both datasets. For 

the BCI 2a, our proposed method was 90.54% or higher for all participants while Dai et al. (2020) 

got this accuracy just for 5 of 9 participants (56%). Furthermore, we reproduced the NN described 

in [145] without the use of DA to compare with our proposed CNN with the attentional mechanism 

without DA. Our results on the BCI 2a and 2b datasets were 89.11% (±3.77) and 86.28% (±7.41), 

respectively, outperforming those of [145] at 75.61% (±14.63) and 78.88% (±11.42), 

respectively. Again, our results were also less variable than theirs.  

Table 15 further compares our results with various other state-of-the-art methods. As is apparent 

from the Table, our results outperform all others, typically by a wide margin. On average, our 

method is 16.44 % and 7.21% more accurate than the other method for the 2a and 2b datasets, 

respectively. What is more, even without DA, our method has a higher average accuracy than all 

other methods except for Dai et al. (2020). And, with DA, our method beats all other methods, 

including Da. et al.’s.  
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Table 14. Participant-by participant comparison of the proposed CNN with attentional 
mechanism—with and without DA—against Dai et al. [145] results on the BCI 2a and 

BCI 2b datasets. 

 BCI 2a BCI 2b 

Participant 

D
ai et al. (2020)[ 145] 

 R
eproduced the 

result  in [145]  
(w

ithout D
A

) 

Proposed m
ethod 

w
ithout D

A
 

Proposed m
ethod 

w
ith D

A
 (G

A
N

 
m

=15)  

[ 145]  

 R
eproduced the 

result (w
ithout D

A
)  

Proposed m
ethod 

w
ithout D

A
 

Proposed m
ethod 

w
ith D

A
 (sliding 

w
indow

 m
=2) 

1 90.07% 69.77% 91.58% 95.38% 80.50% 70.83% 81.64% 84.13% 
2 80.28% 65.62% 89.67% 91.25% 70.60% 63.24% 73.17% 77.92% 
3 97.08% 97.91% 91.89% 91.25% 85.60% 62.64% 81.50% 83.64% 
4 89.66% 69.45% 90.05% 96.12% 94.60% 97.84% 98.61% 99.18% 
5 97.04% 62.51% 91.28% 95.05% 98.30% 80.95% 93.83% 94.97% 
6 87.04% 62.48% 90.97% 94.62% 86.60% 80.28% 85.22% 85.83% 
7 92.14% 66.66% 81.38% 91.22% 89.60% 84.58% 86.57% 86.57% 
8 98.51% 90.64% 91.20% 90.54% 95.60% 86.05% 89.90% 90.50% 
9 92.31% 95.46% 83.95% 97.50% 87.40% 83.47% 86.05% 87.73% 

AVG 91.57% 75.61% 89.11% 93.60% 87.60% 78.88% 86.28% 87.83% 
S.D. 5.73 14.63 3.77 2.59 8.48 11.42 7.41 6.34 
S.E. 1.91 4.87 1.26 0.87 2.83 3.81 2.47 2.11 
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Table 15. Comparison of our proposed method (with and without data augmentation) 
with other state-of-the-art methods. All methods were run on the same dataset (BCI 2a 

and/or BCI 2b). 

 

[199] 

[200 ] 

[ 201] 

[194]  

[202]  

[177] 

[167]  

[203]  

[204 ] 

[ 205] 

[ 193] 

[ 206] 

[ 145] 

Proposed 
m

ethod 
(w

ithout 
D

A
) 

Proposed 
m

ethod 
(w

ith D
A

) 

Data
set 

2b 2b 2b 
2a/2

b 
2b 2b 2b 2b 2a 

2a/2
b 

2a/2
b 

2a 
2a/2

b 
2a/2

b 
2a/2

b 

S1 77.0 70.0 80.0 
63.6
9/73

.2 
84.6 81.0 76.0 72.5 88.9 

90.2
8/70

.3 

66.7
/62.

8 
91.5 

90.0
7/80

.5 

91.5
8/81
.64 

95.3
8/84
.13 

S2 64.5 60.0 66.0 
61.9
7/67

.5 
66.3 65.0 65.8 56.4 51.4 

57.6
4/50

.6 

63.9
/67.

1 
60.6 

80.2
8/70

.6 

89.6
7/73
.17 

91.2
5/77
.92 

S3 61.0 61.0 53.0 
91.0
9/63 

62.9 66.0 75.3 55.6 96.5 
95.1
4/52

.8 

77.8
/98.

7 
94.2 

97.0
8/85

.6 

91.8
9/81
.50 

91.2
5/83
.64 

S4 96.5 97.5 98.5 
61.7
2/97

.4 
95.8 98.0 95.3 97.2 70.1 

65.9
7/93

.8 

63.2
/88.

4 
76.7 

89.6
6/94

.6 

90.0
5/98
.61 

96.1
2/99
.18 

S5 82.0 92.8 93.5 
63.4
1/95

.5 
89.2 93.0 83.0 88.4 54.9 

61.1
1/63

.8 

72.2
/96.

3 
58.5 

97.0
4/98

.3 

91.2
8/93
.83 

95.0
5/94
.97 

S6 84.5 81.0 89.0 
66.1
1/86

.7 
97.9 88.0 79.5 78.7 71.5 

65.2
8/74

.1 

70.1
/75.

3 
68.5 

87.0
4/86

.6 

90.9
7/85
.22 

94.6
2/85
.83 

S7 75.0 77.5 81.5 
59.5
7/84

.7 
82.1 82.0 74.5 77.5 81.3 

61.1
1/61

.9 

64.6
/72.

2 
78.6 

92.1
4/89

.6 

81.3
8/86
.57 

91.2
2/86
.57 

S8 91.0 92.5 94.0 
62.8
4/95

.9 
86.3 94.0 75.3 91.9 93.8 

91.6
7/83

.1 

76.4
/87.

8 
97.0 

98.5
1/95

.6 

91.2
0/89
.90 

90.5
4/90
.50 

S9 87.0 87.2 90.5 
84.4
6/92

.6 
97.1 91.0 73.3 83.4 93.8 

86.1
1/77

.2 

77.1
/85.

3 
93.9 

92.3
1/87

.4 

83.9
5/86
.05 

97.5
0/87
.73 

AV
G 

80 80 83 
68.3
2/84

.1 
84.7 84 77.6 78 

78.0
1 

74.9
2/69

.7 

70.2
/81.

6 

79.9
3 

91.5
7/87

.6 

89.1
1/86
.28 

93.6
0/87
.83 

S.D. 1.3 1.5 1.6 
1.3/
1.5 

1.4 1.3 0.9 1.6 1.9 
1.7/
1.6 

0.7/
1.4 

1.7 
0.6/
0.9 

0.4/
0.8 

0.3/
0.7 
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4.6.2 Properties of our collected dataset 

There are several available BCI datasets [191, 192, 207]. However, we wanted to investigate 

several open questions in neuroscience and BCI that were outside the scope of the available 

datasets. So, we took the time and effort to collect our own dataset, which we are now sharing with 

the community. First, we wanted to test and directly compare the performance of our proposed 

attentional CNN on ME, MI, and their combination. In particular, we wanted to track the decoding 

accuracy over time via a sliding-window approach. We therefore increased the duration of the 

motor-imagination period from 2-3s to 4-6s to gain more insight and track the changes in decoding 

accuracy over time.  

Second, BCI datasets typically instruct subjects to make trivial movements, such as pressing a 

button. We wanted to test our subjects on a less trivial paradigm, that requires them to exert some 

force. We therefore had our subjects squeeze a tennis ball (ME) or imagine doing that (MI). We 

expected this to make our classifier more robust against variety of MI tasks. This is vindicated by 

recent evidence that decoding attempted handwriting movements results in much higher accuracy 

than attempted typing [208]. 

Third, most of the BCI datasets for MI focused on electrodes above the motor region—such as C3, 

C4, and Cz [192].  We wanted to test to what degree general, high-density EEG recordings across 

the cortex (to the extent that those brain regions are accessible to EEG) contribute to the 

performance of an MI classifier. This also let us investigate the extent to which channel selection 

is useful in MI classification. Forth, an additional goal of our study was to evaluate the role of DA 

in MI classification. So, we needed a large enough dataset to be able to compare classification 
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results when training our classifier on only a portion of the dataset. Altogether we recorded 400 

trials pers subject (200 each for ME and MI, see Methods).  

4.6.3 Motor Imagery vs. Motor Execution  

MI could be described as kinesthetic anticipation of corresponding overt ME without producing 

an actual motor output. Jeannerod  stated that MI is functionally equivalent to its ME counterpart 

[209]. More specifically, MI is related to the preparation of ME and represents meaningful 

neurophysiological dynamics of human motor functions [210]. Consequently, both MI and ME are 

accompanied by activation in common sensorimotor areas, such as the primary motor area (M1), 

supplementary motor area (SMA), and premotor cortex (PMC) [209, 210]. The neurophysiology 

underlying MI may differ in healthy people and patients with motor-impairing conditions [211]. 

MI-based BCI may further augment the motor learning process in healthy participants [212]. What 

is more, in patients with impaired motor functions, MI is often the only viable option to drive 

rehabilitative BCI, because these patients cannot perform overt ME [211]. The individuality and 

severity of motor impairments impact the underlying neurophysiology; for example, post-stroke 

neurophysiology relies on lesion locations [213]. Additional work is needed to further delineate 

the roles of MI and ME in motor learning or relearning for both healthy and impaired participants 

to refine the design of BCI for supplementing the motor learning process.  

Our own dataset enables us to directly compare ME and MI within each participant. In our task, 

the participants were presented with the cue for 1 s, then saw a blank screen for 1 s, and finally 

began ME or MI for 4 s (see Methods). However, Dai et al. (2020), only used 2 s of MI. To better 

compare our results to theirs, we ran a sliding window analysis only for the first 2 s of the 4-s-long 
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ME or MI period. We used window sizes of 100 ms, 300 ms, 500 ms, 1 s, and 2 s, with the step 

size fixed at 100 ms (see Methods) on the data from all 64 channels. With this analysis, we would 

expect to see a rise in the accuracy leading up to the moment when the participants needed to begin 

ME or MI. Further, as participants were supposed to execute or imagine the movement for 4s, we 

expected the accuracy to then generally plateau over this after the above rise (similarly to Salvaris 

& Haggard, 2014 for example).  

The left column in Figure 26. Validation accuracy of sliding-window analysis in ME (top), MI 

(middle), and ME and MI combined (bottom). The left column is the accuracy over time averaged 

across all 7 participants. The right column depicts the accuracy for the participant with the highest 

overall accuracy in the ME condition (Participant 4). represents the average validation accuracy 

over all 7 participants and the right column is specifically for Participant 4. Both show the accuracy 

of the running-window analysis and over the first 4 s after cue onset for 3 analyses: ME only, MI 

only, and the combination of ME and MI trials. The window shown at the 4 s mark is from 3900 

to 4000 ms for the 100 ms window, for 3700 to 4000 ms for the 300 ms window, and so on. 

Our method’s accuracy on ME is greater than on MI (Figure 26. Validation accuracy of sliding-

window analysis in ME (top), MI (middle), and ME and MI combined (bottom). The left column 

is the accuracy over time averaged across all 7 participants. The right column depicts the accuracy 

for the participant with the highest overall accuracy in the ME condition (Participant 4).), which 

is consistent with previous findings about ME versus MI [214]. The average validation accuracy 

for the combination of MI and ME (All) is also greater than MI. Looking at the variability among 

the different window sizes, we see more variability in the ME condition than the MI or combined 

condition, on average. Our averaged results over all participants also align with our expectations, 
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in that the accuracy rises from chance toward the beginning of the ME and MI periods and then 

generally plateaus (again, compare with Salvaris & Haggard, 2014).  

 

 
Figure 26. Validation accuracy of sliding-window analysis in ME (top), MI (middle), and 

ME and MI combined (bottom). The left column is the accuracy over time averaged 

across all 7 participants. The right column depicts the accuracy for the participant with 

the highest overall accuracy in the ME condition (Participant 4).  
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4.6.4 Channel selection 

Analyzing dense-array EEG is computationally expensive and complex; it also typically requires 

more expensive EEG systems than those with sparser electrodes. Therefore, in this study we tested 

4 different electrode configurations on our participants—which included 3, 7, 18, or all 64 

electrodes (see Methods)—to further test the effect of channel selection on classification accuracy 

for MI in our own dataset.  

The validation accuracy of the 7 participants for the 4 different channel-configurations are shown 

in Figure 27. Validation accuracy for different channel configurations on the 7 participants of our 

dataset. In Table 16, the validation accuracy for each participant and the average accuracy across 

all participants are shown. The 18-channel layout had the highest accuracy, at 81.73% (±2.5).  
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Figure 27. Validation accuracy for different channel configurations on the 7 participants 

of our dataset 

Table 16. Validation accuracy for different channel selections on our dataset for single 
participants and the average over all participants. For each participant, we present mean ± 

SE over trials. In the bottom row, we present mean ± SE over participants.  

Participant 3 channels 7 channels 18 channels 64 channels 

1 74.75(±4.3) 75.25(±2.2) 83.25(±4.1) 81.18(±8.9) 
2 72.25(±4.2) 72.50(±4.9) 71.75(±4.1) 75.22(±4.3) 
3 68.01(±3.9) 70.01(±4.1) 74.75(±4.3) 72.05(±3.2) 
4 87.69(±5.4) 89.62(±3.2) 92.31(±3.6) 70.03(±3.1) 
5 83.50(±6.3) 85.01(±3.3) 84.50(±5.7) 68.08(±2.2) 
6 83.00(±4.2) 83.50(±6.7) 83.51(±5.8) 67.33(±1.6) 
7 83.50(±3.4) 82.01(±6.7) 82.01(±5.9) 66.41(±2.4) 

AVG (±".$. ) 78.95(±h. i) 79.70(±h. i) 81.73(±h. j) 71.47(±k. l) 

4.6.5 Data augmentation 

We used 5 types of DA for the MI task: noise addition [95, 188], GAN [101, 105, 115, 189], sliding 

window [123, 126, 129], Fourier transform [82], and recombination of segmentation [145]. Table 
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9 represents the result of different DA techniques on the BCI 2a, BCI 2b and our dataset for 64 

channels and 18 channels. We evaluate all DA techniques with magnification factor :	 =

(2, 5, 10, 15, 20, 30, 50) for the proposed CNN. For Fourier transform, we used the same 

technique as in  [82]. For noise addition, we opted for Gaussian noise with K = 0, L =

(0.1, 0.2, 0.5).  

cGANs allow generation based on a class assignment [187]. In this study, the GAN had 2 different 

conditions that were implemented: In order to provide context about the task, the first GAN model 

generates a sample conditioned on the participant’s decision—i.e., left vs. right. The second GAN 

model applies finer granularity by conditioning not only on left vs right but also the electrode 

channel. When generating data, the conditional inputs provide additional information and allow 

the model to tailor its outputs with greater detail. Figure 28. Our proposed cGAN model. In the 

generator (G), the prior input noise and label are combined into a hidden representation. In the 

discriminator (D), Real Data (i.e., raw EEG data) and the Label are presented as inputs to a 
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discriminative function. The contents of all purple boxes in the architecture are the same and are 

expanded at the bottom left.illustrates the architecture of cGAN in our work:  

 
Figure 28. Our proposed cGAN model. In the generator (G), the prior input noise and 

label are combined into a hidden representation. In the discriminator (D), Real Data (i.e., 

raw EEG data) and the Label are presented as inputs to a discriminative function. The 

contents of all purple boxes in the architecture are the same and are expanded at the 

bottom left. 

We also evaluated sliding-window technique (lengths 2	 = 1000	:m with sampling frequency 250 

Hz and step-size	100	:m). Table 17 demonstrated that GAN (conditional left vs. right and 

channels) with m=15 resulted in the best accuracy (93.6%) for BCI 2a dataset while Sliding 

Window (500 ms windows and 100 ms step size) with m=2 achieved the best accuracy (87.83%) 
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for BCI 2b dataset. For our dataset, Fourier Transform with m=15 for 64 (86.61%) and 18 (83.42%) 

channels, respectively. The BCI 2a dataset had a magnification factor of 15 for the best result 

compared to a magnification factor of only 2 for BCI 2b. This might be because we did not include 

neurofeedback within our experimental paradigm. Decoding neurofeedback dataset has less 

complexity which is why BCI 2b dataset was seen to have a smaller magnification factor of 2. Our 

dataset did not include neurofeedback in the paradigm similarly to the BCI 2a dataset.  

Table 17. Comparison of different DA techniques with different magnification factors 
and hyperparameters for BCI 2a, BCI 2b, and our experimental dataset (for 64 channels 

and 18 channels) 

  

DA 
technique

s 

Fourier-
Transform  

Noise Addition GAN 
Sliding 

Window 

Dataset 
parameter 

for each 
DA 

(EMD) σ =0.1 σ =0.2 σ =0.5 
Conditional 

(left vs. 
right) 

Conditional 
(left vs. 

right and 
channels) 

 Sliding 
window of 
length 1s 
(step-size: 
100 ms) 

BCI 2a 

M
ag

ni
fic

at
io

n 
fa

ct
or

 2 0.8671 0.9056 0.8982 0.8768 0.9133 0.9025 0.8948 

5 0.8652 0.8999 0.8849 0.8908 0.9240 0.9092 0.8904 

10 0.8822 0.8902 0.8920 0.8721 0.9087 0.9217 0.8992 

15 0.8858 0.8988 0.8756 0.8750 0.9358 0.9360 0.8949 

20 0.8932 0.8898 0.8975 0.8904 0.9193 0.9300 0.9092 

BCI 2b 

M
ag

ni
fic

at
io

n 
fa

ct
or

 2 0.8535 0.8647 0.8614 0.8575 0.7939 0.8511 0.8783 

5 0.8391 0.8746 0.8696 0.8558 0.7747 0.8624 0.8747 

10 0.8339 0.8677 0.8668 0.8560 0.7733 0.8582 0.8726 

15 0.8228 0.8660 0.8717 0.8551 0.7601 0.8646 0.8749 

20 0.8217 0.8736 0.8677 0.8535 0.7611 0.8708 0.8691 

Our 
dataset 

(64 
channels)  

M
ag

ni
fic

at
io

n 
fa

ct
or

 2 0.8442 0.8146 0.7548 0.7720 0.7914 0.8159 0.7904 

5 0.8305 0.7743 0.7844 0.7897 0.8377 0.7945 0.7933 

10 0.8377 0.7907 0.7885 0.7793 0.8024 0.8044 0.8033 

15 0.8661 0.7775 0.7541 0.7556 0.8184 0.7824 0.8362 

20 0.8560 0.7521 0.7826 0.7886 0.7994 0.8052 0.7990 

Our 
dataset 

M
ag

ni
fic

at
io

n 
fa

ct
or

 2 0.8124 0.8051 0.8056 0.8079 0.8045 0.8174 0.8190 

5 0.8010 0.8179 0.8121 0.8090 0.7969 0.8156 0.8224 
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(18 
channels) 

 

10 0.7988 0.8123 0.8162 0.8048 0.7965 0.8020 0.8312 

15 0.7954 0.8203 0.8141 0.8047 0.7842 0.8015 0.8342 

20 0.7963 0.8209 0.8051 0.8048 0.7875 0.8102 0.8277 

4.6.6 Different portions of dataset 

A dearth of data is a common problem when training machine-learning models on neuroimaging 

data. We therefore wanted to systematically test to what degree DA can compensate for the reduced 

availability of data. We thus randomly selected 100%, 75%, 50%, or 25% of the samples in our 

dataset. And we tested the accuracy of DA on these different proportions of our dataset for different 

DA techniques and magnification factors (Table 18). Fourier transform resulted in the best 

accuracy for 100%, 75%, and 50% of the data, with 86.61%, 88.26%, and 86.18% accuracy, under 

magnification factors 15, 5, and 10, respectively. When using only 25% of the data, GAN 

(conditional left vs. right and channels) was the best DA technique in terms of accuracy, with 

82.18% and a magnification factor of 15. 

Table 18. Accuracies for different proportion of our dataset with different DA techniques  

  
  

DA 
techniqu

es 

Fourier-
Transform  

Noise Addition GAN 
Sliding 
window 

Proportion of 
dataset  

 

P aram
eter 

for each D
A

 

(EM
D

)  

σ =0.1 

σ =0.2 

σ =0.5 

C
onditional 

(left vs. right)  

C
onditional 

(left vs. right 
and 

channels)  

 Sliding  
w

indow
  

of length  
125 

100
% 

M
ag

ni
fic

at
io

n 
fa

ct
or

 

2 0.8442 0.8146 0.7548 0.772 0.7914 0.8159 0.7904 

5 0.8305 0.7743 0.7844 0.7897 0.8377 0.7945 0.7933 

10 0.8377 0.7907 0.7885 0.7793 0.8024 0.8044 0.8033 

15 0.8661 0.7775 0.7541 0.7556 0.8184 0.7824 0.8362 

20 0.856 0.7521 0.7826 0.7886 0.7994 0.8052 0.799 

75% 

M
ag

ni
fic

at
io

n 
fa

ct
or

 2 0.8644 0.7975 0.7886 0.8129 0.7772 0.7927 0.7695 

5 0.8826 0.7856 0.7877 0.7987 0.7997 0.8045 0.7998 

10 0.8707 0.8096 0.7743 0.7921 0.804 0.795 0.798 
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15 0.8732 0.7735 0.8013 0.7741 0.778 0.8057 0.8104 

20 0.8625 0.8066 0.7838 0.7814 0.8223 0.8159 0.8158 

50% 

M
ag

ni
fic

at
io

n 
fa

ct
or

 
2 0.8346 0.8116 0.7957 0.7909 0.7743 0.756 0.7669 

5 0.8536 0.7672 0.7687 0.782 0.7754 0.8063 0.7656 

10 0.8618 0.8067 0.8222 0.7695 0.8034 0.7943 0.7503 

15 0.8474 0.8037 0.7969 0.7687 0.7671 0.8151 0.7426 

20 0.8128 0.756 0.801 0.7539 0.8247 0.8069 0.8039 

25% 

M
ag

ni
fic

at
io

n 
fa

ct
or

 

2 0.7422 0.798 0.7868 0.8057 0.7595 0.7731 0.7387 

5 0.7683 0.8016 0.7569 0.7755 0.7714 0.7821 0.7202 

10 0.7417 0.7838 0.7767 0.8087 0.7643 0.8204 0.7256 

15 0.7909 0.7643 0.8187 0.7584 0.7737 0.8218 0.7138 

20 0.7826 0.7643 0.7814 0.7513 0.7731 0.7982 0.7501 

4.6.7 Combination of participants’ EEG signals 

The variability in brain anatomy and even more so functionality among different individuals is 

well known [e.g., 215]. Strong structure-function correspondences is therefore typically derived 

only at the aggregate level [216]. For example, Smith et al. delineated structural differences, 

suggesting that the number of folds and thickness of the cortex could be associated with whole-

brain functional network [217]. Furthermore, inter-participant variability in brain topography may 

also occurs due to participant-specific cognitive styles and the strategies that different participants 

use to perform the task [218]. This might augment the underlying learning processes—e.g., motor 

and perceptual learning [219]. Intra- and inter-participant variability might be explained by scale-

dependent brain networks in spatial, temporal and topological domains [220].  

Motor variability due to variability in human kinematic parameters—e.g., force field adaptation, 

speed and trajectory, and motivational factors such as level of user engagement, arousal and 

feelings of competence, necessary for performing a motor task—is an integral part of the motor 
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learning process [221-223]. What is more, EEG signals are of course measured from the scalp 

rather than directly inside the brain, so they suffer from various signal distortions and technical 

limitations [224]. Given the above, the extent to which machine-learning models can be transferred 

between participants is not completely understood. The EEG patterns associated with motor 

variability could partly explain intra-individual variability in SMR-based BCI [225]. The 

neurophysiological processes underpinning the SMR often vary over time and across participants. 

Inherent intra- and inter-participant variability causes covariate shift in data distributions that 

impede the transferability of model parameters among sessions/participants.  

Given the above, we evaluate the performance of the proposed NN on combinations of data across 

participants. The validation accuracy was averaged over every possible combination for each 

dataset—e.g., all participant pairs, all triplets, etc. After finding all the possible combinations, the 

data was split into training and test for each combination to compute the validation accuracy. The 

averages of the validation accuracy over all the states for the three datasets are reported in Figure 

29(Top) and differences between group (bottom). As we add more participants, the accuracy 

decreases—but the decreases become smaller. In Figure 29 (bottom), for the BCI 2a and 2b 

datasets, after combining 6 or more participants, we can see the curves plateau. This suggest that 

our proposed CNN was able to learn the important variations of the different EEG signals among 

the different subjects thus achieving stable accuracy.  
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Figure 29. (Top)Validation accuracies for combinations of participants for BCI 2a, BCI 

2b, and our experimental dataset. (Bottom) line plots of differences between mean 

validation accuracies of consecutive groups for the 3 datasets. The x axis labels are the 

smaller groups; so, differences between 2 participants and one are plotted above the label 

“1 participant”, between 3 and 2 participants above “2 participants”, and so on. 

4.6.8 Leave-one-participant out and transfer learning 

This subsection addresses two separates but closely related tasks. The first, leave-one-out, trains a 

NN on n-1 participants and tests on the remaining nth participant. This task addresses the question 
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of how information is shared between different participants’ EEG signals (see section 3.7, on the 

x-axis, 8 participants for BCI 2a, BCI 2b and 6 participants for our dataset).  

The second task, transfer learning, pretrains a NN on . − 1 participants and fine-tunes to the .th 

participant [226]. The pre-training phase orients the network weights to extract meaningful 

representations from the data. Then the fine-tuning, where the learning rate is decreased, adjusts 

to the task of interest, the nth participant. For transfer learning, 10-fold cross validation over the nth 

participant was used. Each fold fine-tunes on 9 folds and tests on the held-out 10th fold. Table 19  

shows the result of transfer learning on the BCI 2a, BCI 2b, and our dataset (64 channels and 18 

channels). Figure 30 compared the result with and without transfer learning for all 3 datasets. For 

instance, the validation accuracy without transfer learning on participant .  is defined by the 

trained model based on combination of the other . − 1 participants and is tested on the complete 

dataset of participant 9. However, the validation accuracy with transfer learning on participant . 

is tuned to the trained model based on combination of the other . − 1 participants based on 10% 

of the .th participant and is tested on 90% of participant .. 

 
Table 19. Leave-one-out and transfer-learning validation accuracy for BCI 2a, BCI 2b, 

and our dataset (64 and 18 channels) 
Train (participants index) Finetune 

(participant 
index) 

BCI 2a (with transfer learning for 
different participants) 

BCI 2b (with transfer 
learning for different 

participants) 

2-3-4-5-6-7-8-9 1 78.12 78.75 

3-4-5-6-7-8-9-1 2 76.38 71.62 

4-5-6-7-8-9-1-2 3 89.53 79.17 

5-6-7-8-9-1-2-3 4 77.77 97.02 

6-7-8-9-1-2-3-4 5 77.41 83.10 

7-8-9-1-2-3-4-5 6 78.83 81.94 

8-9-1-2-3-4-5-6 7 80.58 81.67 

9-1-2-3-4-5-6-7 8 81.60 87.36 
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1-2-3-4-5-6-7-8 9 90.63 84.44 
Train (participants index) Finetune 

(participant 
index) 

Our dataset, 64 channels Our dataset, 18 channels 

2-3-4-5-7-6 1 83.25 83.75 

3-4-5-6-7-1 2 73.01 87.25 

4-5-6-7-1-2 3 76.50 77.50 

5-6-7-1-2-3 4 91.15 92.70 

6-7-1-2-3-4 5 91.01 85.50 

1-2-3-4-5-7 6 82.10 82.50 

1-2-3-4-5-6 7 84.50 86.50 

 

 
Figure 30. Validation accuracy for BCI 2a, BCI 2b, and our dataset (64 and 18 channels) 

with and without transfer learning  

4.7 Discussion 

In this study we proposed an end-to-end CNN architecture for EEG-based MI classification. This 

proposed mechanism is used to automatically extract features from raw EEG data (Figure 22). The 
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NN optimization used the SHERPA Bayesian hyperparameter search on 3 datasets: the BCI 

Competition IV 2a and BCI Competition IV 2b, which have become benchmarks in the field, and 

a dataset that we collected ourselves (Figure 23; see Methods).  

We began by comparing the architecture we favored, Conv Net-Attention-Dense NN, to two other 

baseline architectures—a Dense NN and Conv Net-Dense NN —as well as to what was, to the best 

of our knowledge, the top result in the field on the benchmark datasets—the architecture described 

in Dai et al. (2020) (see Figure 32). Our CNN-Attention-Dense achieved 93.6% (S.E.: ±0.87) and 

87.8% (S.E.: ±2.11) accuracy over the BCI 2a and 2b datasets, respectively (Table 15). That is 

6.4% to 13.5% and 4.03% to 5% better than the other architectures for BCI 2a and 2b, respectively 

(Figure 25). We further compared our results with all the papers we could find that classified the 

BCI 2a and 2b datasets and reported participant-by-participant results. For the BCI 2a dataset, our 

proposed EEG MI classification method achieved an improvement of 2.03% to 25.28% over all 

other methods (Table 14 and Table 15). For the BCI 2b dataset, our proposed method achieved an 

average improvement of 0.23% to 18.13% over previous methods (Table 15).  

To the best of our knowledge, our CNN-Attention-Dense architecture achieved the highest 

accuracy thus far for the 2 benchmark datasets—BCI 2a and 2b. On top of that, an additional 

strength of our approach is its automated features extraction, directly from raw EEG. This contrasts 

with most methods, which tend to use handcrafted features and require heuristic parameter setting 

(e.g., predefined frequency bands). Automated features have the advantage of often generalizing 

better across tasks and participants [145]. Another potential advantage of our architecture is that 
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the attentional mechanism could potentially lead to more interpretable results. However, we leave 

the explainable-AI facet of our architecture for further, future research. 

The dataset that we collected for this study used 64 electrodes (according to the 10/20 montage; 

Figure 24). It included both ME and MI tasks and enabled us to compare the two tasks. Having all 

3 datasets further enabled us to compare MI with and without neuro-feedback training (datasets 2b 

and 2a, respectively) as well as imagining button presses versus squeezing tennis balls (datasets 

2a and 2b versus our own dataset, respectively).  

A long-standing question in neuroscience and motor control is the extent of shared neural 

mechanisms between MI and ME [214]; though there is a general consensus that MI and ME at 

least share some important neural mechanisms. This similarity has been used in the MI-decoding 

literature, where some attempts to decode MI have relied on ME as training data [153]. Our results 

suggest that it is easier to decode ME than MI, at least when using EEG and relying on our 

decoding methods (Figure 26). Furthermore, we found that, on average, the decoding accuracy 

started at chance and then rose toward the time that participants were required to move or to 

imagine moving. After that it more or less plateaued. Interestingly, though perhaps not 

surprisingly, the accuracy level at the plateau, when using sliding windows, was lower than the 

accuracy for the full 4 s of ME (Figure 26). A likely contributing factor to this is that the sliding-

window analysis decoded the EEG over shorter time windows than the full 4 s. 

Another long-standing question when decoding EEG, and especially dense-array EEG, relates to 

how many and which electrodes (or channels) to use when recording the task. On the one hand, 

when using all channels (64, in our case), the set-up time for the task is longer, analyzing the larger 
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dataset is more complex and computationally expensive, and brain signals unrelated to the task 

and noise are perhaps more often introduced. On the other hand, using only a limited number of 

channels, there may not be full coverage of brain regions that may be involved in the decision-

making and action-preparation processes. We therefore wanted to identify the appropriate channels 

relevant to the MI task. We thus selected different combinations of channels, according to 10-20 

system standard, based on what is known about the neurophysiology of decision making and action 

formation, [153, 155, 227]. Hence we included different EEG configurations in our study (see 

Results), with 3, 7, or 18, channels around the motor cortex (see Methods), or with all 64 channels 

[195]. Our analysis suggests that, without DA, the 18-channels configuration had the best average 

accuracy (81.73±2.5), at least on our dataset (Figure 30), while using all 64 channels resulted in 

the worse accuracy (71.47±1.9). Our results therefore suggest that, for MI decoding, it may be best 

to use only the 18 channels around the left and right motor region rather than all the channels. 

However, that result should be taken with a grain of salt, because when including DA, the tables 

were flipped, and it was the 64-channel configuration that did best, as described above. 

One of the EEG configurations we tested included only 3 channels (C3, Cz, and C4)—this thus let 

us more directly compare our dataset to the two benchmark ones and the results of other studies. 

On those 3 electrodes, we achieved a mean accuracy of 79.95% for our dataset, while our analysis 

resulted in an accuracy of 89.11% and 86.28% for BCI 2a and 2b, respectively—all without DA. 

The higher accuracy for the benchmark datasets over our dataset might be due to the difference in 
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tasks, the inclusion of neurofeedback (in BCI 2b), or that they perhaps ran participants who were 

better able to elicit good EEG data. 

One general challenge of EEG decoding, especially with deep NNs, is obtaining enough data to 

train the numerous parameters in these large statistical models. The problem is compounded for 

MI tasks, because they are highly cognitively demanding. So, participants are easily fatigued and 

thus cannot produce a large amount of data in each experimental session. Bringing participants in 

for multiple sessions runs into issues of participant attrition for example. Another issue with 

collecting EEG over multiple session is the non-stationary nature of EEG signals [75]—i.e., the 

statistics of the EEG signals vary across time. As a result, a classifier trained at a specific time 

would tend to generalize increasingly poorly to data recorded at another time that was increasingly 

temporally removed—even for the same participant. This is a challenge for real-life applications 

of EEG, which must often work train on only limited amounts of data.  

Some studies indeed strived for very lengthy data collection paradigms. One study, investigating 

MI control of 3D movement, had participants come back for up to 50 experimental sessions, which 

amounted to more than 20 hours of training per participant in some cases [228]. In another study, 

focusing on an EEG-based stroke-rehabilitation system [229], it took 12 weeks to collect enough 

data for three MI tasks, with each participant participating in 2 sessions per week [229]. While 

these are extreme examples, they highlight how common it is for participants to become fatigued 

after as little as 1 hour or less of data collection [230-232].  

A promising solution to this dearth of data is to use DA, especially when using DL models on EEG 

data [28]. We therefore tested 5 disfferent DA techniques: sliding window, noise addition, GAN, 
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Recombination of segmentation, and Fourier transform/wavelet. We further tested different 

magnification factors and hyperparameters (e.g., different window sizes for sliding window, 

various standard deviations for noise addition) for each technique we evaluated. Based on the 

guidelines in Lashgari et al. (2020) we evaluated the accuracy of the proposed method before and 

after DA. Our main objective was to find the best DA technique for each of the 3 datasets above. 

As far as we know, this is the first study to compare these various DA techniques as well as the 

different hyperparameters of the various techniques on benchmark datasets BCI 2a and 2b (Table 

17). We found that different techniques work best for different datasets. For BCI 2a, GAN 

(conditional left vs. right and channels, m = 15) achieved the best accuracy, 93.6%. In contrast, 

sliding window (m = 2) gave the best accuracy for BCI 2b, at 87.83%. The DA step thus clearly 

boosted the performance of our proposed CNN as discussed below.  

Interestingly, the BCI 2a dataset did not include neurofeedback training for the participants, while 

BCI 2b did. At the same time, the DA method that worked best for BCI 2a was a highly complex 

GAN with a large magnification factor, while that for BCI 2b it was a simple sliding window with 

a small magnification factor. So, one possible conclusion is that the neurofeedback training in BCI 

2b, which effectively trained the participants to emit neural activity that would be better classified 

by the classifier, may have led to the superior accuracy from a simpler DA technique.  

We also tested different DA techniques on our own dataset, which included 64 channels (see 

Methods). This achieved an accuracy of 86.61% (m = 15) with Fourier transform (Table 17). Using 

only 18 channels and the sliding-window DA technique (m = 15), we achieved an accuracy of 

83.42%. Hence, using DA, we achieved higher accuracy with 64 channels than with 18 channels. 

Interestingly, without DA, the situation was flipped: the 64-channel data had lower accuracy 



 

 169 

71.47(±1.9) than the 18-channel data 81.73(±2.5) (). This suggests that, if one dataset has lower 

accuracy than another without DA, it does not necessarily mean that the first dataset would also 

have lower accuracy than the second after DA. 

As noted above, our accuracies were higher than those of Dai et al. (2020) (Table 15)—which was 

the top result in the field. Besides higher accuracies on average, our accuracies for individual 

participants were 90.54% or higher (Table 15), while Dai et al. (2020) achieved this accuracy or 

higher for just for 5 of the 9 participants. Further, we were interested in the effect of DA on the 

accuracy of their results. But they did not report that for BCI 2a. And we were unable to obtain 

their code. What is more, they did not specify the details of their DA techniques. We therefore 

reimplemented their architecture from their paper, as per the details in their methods, without DA, 

to compare it with our architecture without DA. The accuracy of our proposed CNN without 

DA¾at 89.11% (±3.8; SE here and below) and 86.28% (±7.4)¾ outperformed the NN 

reproduced from Dai et al. (2020)¾at 75.61% (±14.6) and 78.88% (±11.4)¾for BCI 2a and 2b 

datasets, respectively.   

Following the above, an exciting potential use of DA is to replace lengthy, multi-session data-

acquisition efforts [228, 229]. For brain-imaging studies, it would decrease the time and funds that 

researchers need to spend on data collection and reduce the inconvenience of participants. This is 

especially pertinent for situations where gathering additional data is financially, ethically, or 

otherwise difficult. Though DA would of course come at the expense of additional training time 
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for the statistical models. We tested this by training on only some of the training set—25, 50, 75, 

or 100% (see Table 10)—while testing different DA techniques on the remaining data. 

We therefore tested the extent to which data augmentation could replace gathering more data, at 

least for the dataset that we collected (Table 18). More specifically, we collected 400 trials from 

each participant (see Methods) and used different proportions of the MI dataset (100%, 75%, 50% 

and 25%) to train the model. We then augmented those different proportions of the dataset with 

various DA techniques that have different magnification factors. Our aim was to test the effects of 

those DA parameters on classification accuracy (Table 10). With 100%, 75% and 50% of the data, 

m =15, 5, and 10, using Fourier transform achieved the highest accuracies, that were overall 

similar, at 86.61%, 88.26%, and 86.18% accuracy. Yet, classification based on just 25% of the 

data, m=15 and GAN (conditional left vs. right and channels) resulted in a lower accuracy, 82.18%. 

It might be that the smaller dataset required a more sophisticated DA technique that for the other 

proportions was needed to achieve its best accuracy. Though this accuracy was clearly lower than 

for the other proportions of data. This hints at the limits of DA for EEG.  

It is well known that there is general anatomical similarity as well as structure-function 

correspondence among humans. But the anatomy of different brains also differs, at least to some 

extent, as does the structure-function correspondence. So, brain science typically operates at the 

aggregate level [216]. In particular, Smith et al. delineated structural differences, suggesting that 

the number of folds and thickness of the cortex could be associated with whole-brain functional 

networks [217]. Furthermore, inter-participant variability in topography occurs due to participant-
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specific cognitive style and strategy to perform a task over time [233], which could augment the 

underlying learning processes, e.g., motor and perceptual learning [219]. 

This question has clear implications for the analysis of EEG over groups of participants. We 

therefore wanted to investigate to what extent the number of participants over which we trained 

and tested our machine-learning model reduced the classification accuracy of the statistical model 

over that group. We thus trained and tested our model on all individual participants, on all pairs of 

participants, all triplets, quadruplets, and so on. It appears that, for all 3 datasets, the accuracy 

dropped most markedly between training and testing on individual participants to training and 

testing on pairs. Then there were diminishing decreases going from pairs to triplets, triplets to 

quadruplets, and so on, leading to roughly a plateau from groups of 6 participants and on. This 

suggests that the costs associated with inter-individual differences in brain structure and activity 

outweigh the benefits of the additional data when training over a group of participants. Though the 

decoding accuracy appeared to stop decreasing and reached somewhat of a plateau after around 6 

participants. Future work, with a larger number of participants, could test the hypothesis that the 

accuracy would begin to rise again when training and testing over enough additional participants. 

One reason that this could happen is that the introduction of an ever-increasing number of 

additional participants might end up more than compensating for the neural variability between 

different brains. In other words, the advantages of the increasingly larger data available to train the 

model would outweigh the disadvantages of the variability across additional brains. Testing this 

hypothesis is left for future studies.  

Following the discussion of inter-participant brain variability above, another key question in EEG 

analysis and especially for classification using DL is the extent to which a machine-learning model 
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that was training on one group of participants could be generalized to new participants [234]. Put 

differently, we were wondering to what extent transfer learning, which has been increasingly used 

in the machine-learning literature, especially of late [235-237], would be useful for EEG 

classification using DL. We tested this by directly comparing two analyses. In the first, we trained 

a model on all but one participant and then tested it on that remaining participant (i.e., leave-one-

participant-out classification). The second analysis comprised of again training on all but one 

participant, but then using transfer learning and finetuning the model on one part of the left-out 

participant. Finally, we tested the model on independent data from that participant (see Results 

3.7). Our results clearly indicated that transfer learning led to higher accuracy than leave one out 

(Figure 9)—an increase in accuracy of 16.66%, 11.35%, and 18.6% for BCI 2a, BCI 2b, and for 

our dataset, respectively. This demonstrates the clear advantages of transfer learning for EEG 

analysis using DL. With DL models getting increasingly complex, the ability to finetune them for 

new participants rather than retrain them from scratch becomes increasingly important. In addition, 

our results suggest that the BCI community could use transfer learning with EEG to train a model 

on an existing dataset and then improve its performance for a new participant using only finetuning 

of the model [235, 238]. According to our results, this could markedly improve the performance 

of BCI classifiers.  

Due to the good classification performance of our proposed neural-network architecture and the 

relatively simple data processing, without prior manual feature extraction, our method holds 

promise for online, real-time, EEG-based classification of MI. It is left to future work to test how 

well the system will work in real time. Further, based on our results, it seems useful to use transfer 

learning between participants in a real-time paradigm. Furthermore, our neural-network 
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architecture uses an attentional mechanism that helps identify the most salient brain regions that 

drive the network’s classification ability. However, we leave the analysis of these brain regions 

for future work. 
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 5 A systematic review on Restricted Environmental Stimulation 
Therapy (REST) Floatation 

5.1 Introduction 

Early sensory deprivation research attempted to elucidate the effects of reduced environmental 

stimulation on a range of psychophysiological, motoric, perceptual, cognitive, and emotional 

measures by placing subjects in sensory deprivation chambers for extended periods of time [239]. 

During the 1950s, a new line of research, spearheaded by John C. Lilly at The National Institute 

of Mental Health, shifted away from this original focus and instead sought to investigate 

consciousness in the absence of external stimuli [240]. Notably, in 1954, Lilly would go on to 

create the first sensory deprivation tank. 

Today, sensory deprivation tanks are known as Floatation-Restricted Environmental Stimulation 

Technique (REST) tanks. Additionally, the phrase “sensory deprivation tank” is often used 

interchangeably with “float tank”, “floatation tank”, “float pod”, and “isolation tank”.  During a 

typical float session, participants rest in a supine position in a large, lightproof chamber filled with 

body temperature (35-37 degrees Celsius) saltwater contaning approximately five hundred 

kilograms of dissolved magnesium sulphate. This solution creates complete buoyancy for the user. 

As modern-day use of floatation tanks has shifted away from scientific inquiry towards 

commercial use, music is now played at the beginning and end of float sessions. These sessions 

typically last around an hour [241].  

While Lilly was researching the effects of sensory deprivation though water immersion, 

psychologist Donald Hebb concurrently began to investigate the effects of Dry REST, commonly 
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known as Chamber-REST [239]. Chamber-REST occurs in a soundproof and lightproof room, in 

which the participant lies on a bed and is encouraged to keep as still as possible. Sessions last for 

prolonged periods of time; while participants are allowed to leave at any point, most stay for a 

complete 24-hour period [239].  

The initial response to sensory deprivation from both the general and scientific communities was 

largely negative. In fact, these unfavorable views were supported by some of the leading 

researchers themselves; for instance, Hebb hypothesized that people’s susceptibility to external 

influences increased after being in the sensory deprivation chamber. Consequently, it become 

common procedure to have participants sign a psychological damage liability waiver before 

entering the chamber as well as include a “panic button” within the chamber (Suedfeld, 2012). The 

view that sensory deprivation led to adverse effects on cognition and consciousness persisted into 

the 1970s [243].  

In 1968, Peter Suedfeld reignited a second wave of sensory deprivation research and, in 1980, 

coined the term ‘Restricted Environmental Stimulation Therapy’. From Suedfeld’s work, 

extensive academic research began globally, the majority in Sweden by Annette Kjellgren (2001 

– 2017) from Karlstads Universitet [244-251]. In more recent years, American neuropsychologist 

Justin Feinstein (2016) and his team at the Laureate Institute of Brain Research (LIBR) conducted 

the first functional Magnetic Resonance Imaging (fMRI) study on the effects of sensory 

deprivation while in float tanks [252]. 

A number of review studies about floatation-REST have been published, generally focusing on 

subtopics such as the effects on stress [253, 254] and sleep [255]. However, to the best of our 
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knowledge, no review exists which surveys recent trends of floatation-REST applications. Thus, a 

review of floatation-REST is warranted, with a particular focus on studies published after 1960. 

Here, we attempt to meet this need through a systematic review. 

5.2 Methods 

5.2.1 Search method for identification of related studies 

The search was conducted on 3rd June 2020 within the Google Scholar and PubMed databases 

using the following group of keywords: “Restricted Environmental Stimulation Therapy” OR 

“Float pod” OR “Floatation REST” OR “Floatation pod” OR “Floatation Tank” OR “Sensory 

isolation”.  

Only studies that met the inclusion criteria (see Figure 31) are included below. Furthermore, 

duplicates among these databases were removed from the search results. The full texts of the 

remaining studies were then screened.  

Inclusion criteria Exclusion criteria 

• Written in English 
• Journal and conference papers 
• Electronic preprints 
• Related to Floatation-REST 

 

• Review papers  
• Lying on a bed in a dark, soundproof room (studies 

with both chamber-REST and Floatation-REST are 
examined to highlight the information from the 
floatation-REST segment)  
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Figure 31. Selection process for the papers 

The database queries yielded 274 matching results. Of those, 101 were duplicated. Manually 

screening the remaining 156 papers suggested that 91 of them were not relevant for this review 

(e.g., the keywords were included in the references rather than in the paper itself). We thus ended 

up with 82 papers, which we read carefully to make sure they met all our inclusion criteria. We 

found 36 that did not meet the inclusion criteria following closer inspection. Hence, based on our 

inclusion and exclusion criteria, 46 papers were selected for inclusion in this analysis (Figure 31).  

Regarding our inclusion criteria, we should also mention more specifically that the water 

immersion and floatation research began in late 1950s as an attempt to elucidate the effects of 

monotonous or reduced environmental stimulation on a range of psychophysiological, motoric, 

cognitive, emotional and other measures. We found 2 review papers in 1983 and 2005 most of 

these studies [253, 254]. By looking to all papers, we can get more sense about the growing 

importance of Float pod after 2000. 
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5.2.2 Data extraction and presentation 

For each selected paper, around 30 features were extracted covering seven categories: Article 

origin, data sample, application of float pod, experiment design, treatment delivery, questionnaire 

and tools, and results (Table 20). 

Table 20. Data items extracted from each selected article  
Category Data item 

Article origin Type of publication (Journal article, conference article, or in an 

electronic preprint repository) 

Sample Quantity of data, # subjects, age, selection method, conditions 

Application of 

float pod 

Category of treatment using float pod 

Experiment 

design 

Randomization description or pre-post 

Treatment 

delivery 

Number and length of sessions 

Questionnaire and 

tools 

Outcome measures 

Results Effects of float pod on subjects 

5.3 Results 

5.3.1 Origin of the selected studies and different applications of float pod 

Our search returned 46 journal papers, 19 of which were based in Sweden, 15 in the United States, 

7 in Canada, and one in Australia, Japan, Switzerland, United Kingdom, and New Zealand each. 

The reviewed studies were published in 11 different journal groups: psychology (28%), medicine 

(17%), health research (11%), psychiatry (7%), cognition (7%), pain research (7%), perceptual 

and motor skills (7%), behavioral research (7%), addictive behaviors (4%), biofeedback and self-
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regulation, and stress management (2%) (Figure 32). Half of these studies focus on either the 

psychology or clinical applications of float pods. 

 
Figure 32. The percentage of different journals categories across all reviewed studies 

Interestingly, we found that between 1960 to 2010, much of the research on float pods focused on 

their positive effects on pain relief. However, after 2010, there was a shift towards examining the 

effects of float pods on general physiology, sleep, and anxiety (Figure 33). 
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Figure 33. Different applications of float pods. (Left) Number of publications per domain 

for different applications of float pods. (Right) Percentage of different applications of 

float pods across all studies 

5.3.2 Sample characteristics 

The number of participants in the 46 selected studies ranged from one to 94, with an average of 

29.9 subjects per study. The total number of participants across all studies was 1349, with a 

majority of these participants being women. Figure 34 shows the number of participants in each 

category of float pod application. Based on the figure, 609 subjects were in positive effects of FP, 

233 in pain, 200 in anxiety, 169 in physiology, 71 in consciousness, 66 in psychology, and one in 

sleep. 
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Figure 34. Total number of participants in each application of float pod across 46 studies 

5.3.3  Experiment design 

We found three distinct categories across the 46 studies concerning experiment design (see Figure 

35). 31 studies used randomization (either a within-group or randomized controlled trial design), 

3 studies used pre-/post-test measurements, and 3 studies used a single-subject design. 

Additionally, there were a number of that did not fit into any of these categories (listed as “Other” 

in Figure 35). 
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Figure 35. Experiment design for 46 studies 

5.3.4 Treatment delivery 

Floatation-REST sessions varied from 1 to 114 (mean: 13.33). Durations ranged from 35 to 240 

minutes (mean: 63.28). Table 21 represents different treatment deliveries for each float pod 

application. 

Table 21. Treatment delivery for different application of float pod 
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(45 

min) 

(60 

min) 

(45 

min) 

(90 

min) 

(45 

min) 

2 

sessions 

(60 

min) 

1 

session 

(90 
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15 

sessions 

(45 
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4 

sessions 
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NA 
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3 

sessions 

(45 

min) 

10 

sessions 

(45 

min) 

 114 

sessions 

(90 

min) 

12 

sessions 

(45 

min)       

3 

sessions 

(60 

min) 

35 

sessions 

(45 

min) 
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8 

sessions 

(40 

min) 

        

    

10 
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(45 

min) 

        

    

12 

sessions 

(45 

min) 

        

    

12 

sessions 

(90 

min) 

        

    

20 

sessions 

(40 

min) 

        

    

                

5.3.5    Questionnaire 

Self-rated questionnaires were used to assess subjects’ experiences during the floatation sessions. 

Table 22 shows a list of all of the questionnaires used across the 46 studies.  

Table 22. Different questionnaires used in this review paper 
Test name Description 

PSWQ Penn state worry questionnaire 

GAD-Q-IV the generalized anxiety disorder questionnaire 4th edition 

MADRS-S Montgomery-Asberg depression rating scale 

PSQI the Pittsburgh sleep quality index 

DERS the dysfunctional emotional regulation scale 
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MAAS the mindful attention awareness scale 

EDN the experienced deviation from normal state scale 

ASI-3  Anxiety sensitivity Index 

OASIS Overall anxiety severity and impairment scale 

PHQ-9 Patient health questionnaire 

PSS Perceived stress scale 

SDS Sheehan disability scale 

HM Happiness Measure 

STAI-Y state 

form 

State trait anxiety inventory 

PANAS-X Positive and negative effect schedule-expanded form 

KSS Karolinska Sleepiness scale 

VAS Visual Analogue Scales 

HAD Hospital Anxiety and Depression scales 

PAI Pain Area Inventory 

SE Stress and energy 

LOT Life orientation test 

DTs sensory detection thresholds 

PE pain endurance 

Syllogisms I-II A test presented in two versions [36] that measures the 

ability of logical and deductive thinking 

Beer Can/Brick A test of divergent that measures the number of relevant 

responses for how many different ways one may use a beer 

can or a brick, respectively. 

FS change stability 

Composition 

Test 

Participants were instructed to write an essay based on four 

words: ambition, choice, ring, and disappointment 

SQ Sleep quality 

GHQ-12 The General Health Questionnaire 

MDMQ multidimensional mood-state questionnaire (for pleasant-

unpleasant, awake-sleepy, calm-restless) 

Muscle Soreness 0 (not sore - 10 (max soreness) 
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Figure 36 visualizes the aggregated information about the questionnaires of the reviewed studies. 

This figure helps to reveal the trends in the types of questionnaires used for the different types of 

float pod applications.  

 
Figure 36. Aggregated information of different questionnaires across different types of 

float pod applications 

5.4 Float pod application 

The applications of float pod in these studies fell into 7 groups: positive effects of FP 

(28%), pain (20%), anxiety (20%), physiological (16%), consciousness (8%), sleep (4%) and 

psychology (4%). 
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5.4.1 Positive effects of float pod 

Most of the studies in this section are related to the first studies ever conducted on float pods which 

mainly focus on their general effects. 

Fine and Turner (1982) piloted a study in which they investigated the effects of controlled frequent 

brief REST relaxation session on blood pressure in subjects with borderline essential hypertension 

[256]. Three subjects were involved in the study, identified as subjects A, B and C. Subject A 

participated in 20 float sessions (40 minutes each) over a 2-month period for treatment of essential 

hypertension. Subjects B and C participated in 20 float sessions (40 minutes each) over a 10-week 

period. Each subject had their blood pressure taken before every floatation session. The 

Spielberger STAl X-l was also administered pre-test and post-test to subject A. Post-treatment 

follow-ups were conducted in 3-month, 6-month, and 10-month increments. Results of this 

experiment indicated reductions in both systolic and diastolic blood pressure occurring during the 

treatment period and persisting throughout the follow-up sessions for all subjects. 

In 1983, Turner and Fine continued their line of inquiry by investigating the effects of brief 

repeated floatation REST assisted relaxation on plasma cortisol, ACTH, and luteinizing hormone 

(LH) in normal healthy subjects [257]. 12 male volunteers from a medical school class were 

recruited as subjects and randomly assigned to two equally-sized conditions: a REST-assisted 

relaxation procedure and a control relaxation procedure without REST. For the REST-assisted 

relaxation procedure, subjects were placed in a float tank with dim lighting. In contrast, control 

subjects in the non-REST relaxation procedure rested in a reclining chair with the same dim 

lighting. Throughout both procedures, the lights would dim until dark, and a relaxing audio 
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message would play for 90 seconds. Lights would be then be brought back to the original dim 

lighting for 60 seconds before the cycle would repeat for a total of 10 times. Both conditions took 

baseline measures from subjects as they quietly reclined in a chair for 30 minutes. Each subject 

experienced two baseline sessions (1 and 2), four 35-minute REST (or non-REST) relaxation 

sessions (3, 4, 5, 6), and two follow-up sessions (7 and 8). Blood samples were drawn before and 

after sessions 1, 2, 5, and 8. At the end of each follow-up session, subjects filled out a brief 

questionnaire surveying their overall relaxation experience. Turner and Fine found that the 

repeated REST-assisted relaxation sessions were associated with a significant decrease in plasma 

cortisol and ACTH throughout all eight sessions. However, there were no significant changes in 

LH across each session [257]. 

Suedfeld et al. (1983) attempted to establish the general effects of floatation by conducting an 

experiment on healthy normal subjects independent from any goal- or research-oriented program 

[253]. 27 subjects were recruited through a commercial tank facility in Vancouver, Canada to 

participate in a single 1-hour long REST session. A total of 5 measures were administered: The 

Arousal Seeking Tendency test, which was administered pre-float [258]; the Subjective Stress 

Scale, administered both pre-float and post-float [259]; and the Body Consciousness Scale [260], 

the Russell Mood Scale (Person) [261], and the Russell Mood Scale (Place) [262], which were all 

administered post-float. The data indicated that an hour of floatation was generally a relaxing and 

pleasant experience for most users. 

In 1984, Jacobs et al. attempted to compare the effect of floatation-REST on relaxation to that 

elicited in a normal sensory environment [263]. 28 subjects were recruited and randomly assigned 

to either an experimental group or a control group. All subjects participated in a simple relaxation 
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program consisting of guided point-to-point relaxation, breathing techniques, and visual imagery 

techniques. Physiological measures such as EMG, blood pressure, and skin temperature were taken 

pre-test and post-test. Psychological measures like the Subjective Relaxation Questionnaire were 

also administered. The experimental group completed 10 floatation-REST sessions, each lasting 

for 45 minutes, while the control group also completed a total of 10 45-minute sessions, during 

which subjects relaxed in a supine position in a small room. The results of this study supported the  

hypothesis that, given adequate preparation, subjects who practiced relaxations techniques in a 

floatation-REST environment achieved greater levels of relaxation than subjects who practiced the 

same techniques in a normal sensory environment [263]. 

In 1987, researchers tested whether variations in REST type, session duration or message 

presentation schedule could increase the success rate and/or reduce financial and temporal costs 

associated with smoking [264]. Their study included 83 subjects who had smoked at least one pack 

of cigarettes per day for the past 5 years. The study compared 12-hour chamber-REST sessions 

with 24-hour sessions. Another group of subjects also engaged in 5 one-hour floatation-REST 

sessions. Messages used in the study promoted things like protecting one’s body from cigarettes, 

teaching deep-breathing relaxation techniques for cravings, describing imagery to deal with 

emotions, preparing for relapse, and congratulating the subject for becoming a non-smoker [264]. 

There were 4 different presentation schedules for the messages: 1) Distributed: one message an in 

the last 45 minutes, one message an hour after, and others at irregular intervals. Massed: two 

messages within the first hour and at the midpoint and one 45 minutes before the end. Self-demand: 

a message after the first hour and whenever the subject pressed a button. Floatation: a one-hour 

float without a message, then one message around the midpoint of each of the four subsequent 
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floats, and one message in the last 45 minutes in the final float session. Results were measured in 

reduction in smoking and abstinence from smoking over a 3 month and 12 months follow up. Their 

results showed that chamber REST was indeed effective as a smoking intervention method, 

although parametric variation did not identify an optimal combination. In contrast, their floatation 

results did not yield as promising data in favor for reduction or abstinence from smoking, leading 

them to suggest that the application of floatation-REST requires further investigation [264]. 

Suedfeld et al. (1987) sought to examine the effects of floatation-REST on creative performance 

[265] using a within-subjects experimental design. Subjects included 7 full-time faculty members 

from the Department of Psychology at the University of British Columbia. Each subject completed 

8-12 60-minute float sessions followed by 30 minutes of dictating ideas into an audio recorder and 

an additional 8-12 sessions of sitting in an office and completing the same dictation task. 

Dependent variables included the Profile of Mood States (POMS) Questionnaire and a list of self-

reported measures including: (1) The number of times subjects changed from one idea or topic to 

the next; (2) the number of times a novel idea or topic came to mind; (3) the level of “quality” (i.e., 

creativeness) of each idea or topic rated on a scale from 1-10, with these ratings being made 1-3 

months after the completion of each session; and (4) the number of ideas that eventually led to 

new research publications, grant proposals, and other similar accomplishments, with this measure 

being completed 12-15 months after the completion of all sesssions [265]. Suedfeld et al. found 

that new ideas generated during floatation-REST were rated as more creative than those originating 

in office settings, confirming their hypothesis [265]. 

In 1989, Turner et al. examined the effect of light on relaxation during floatation REST by 

measuring plasma cortisol levels, mean arterial pressure, and psychometric parameters  [266]. 21 
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subjects were recruited and then separated into 2 groups: one group completed float-REST in the 

presence of light, while the other group completed float-REST in complete darkness. The study 

took place over the course of 6 weeks, during which participants experienced a total of 8 float 

sessions (40 minutes each) and had their blood drawn before and after each session for a total of 

16 blood drawings. Psychological measures such as the Taylor Manifest Anxiety Scale, the 

Marlowe-Crown Social Desirability Scale, and the Profile of Mood States (POMS) were also 

administered. Results indicated that, across all sessions, repeated REST was associated with 

decreases in both plasma cortisol levels and mean arterial blood pressure, regardless of the 

presence or absence of light [266]. 

In 1990, Suedfeld and Bruno carried out a study designed to measure the effect of REST, coupled 

with a guided mental imagery task, on athletic performance [267]. The study consisted of 30 

subjects, all of which had little to no experience playing basketball, and divided them into 3 

treatment groups: REST, alpha chair, and a control group. Those in the REST group floated in a 

dark, soundproofed tank; those in the alpha chair condition rested in a shell-like chair which 

enclosed the subject and was specifically “designed to induce relaxation and concentration”; and 

those in the control group sat in a regular comfortable armchair situated within an office. Before 

each treatment session across all three conditions, subjects were asked to shoot  20 regular free 

throws. Then, while in their assigned environments, subjects listened to an hour-long tape 

recording that directed them through a multisensory imagery task, in which subjects were asked to 

listen to a guide on how to make basketball free throws. Finally, after finishing the recording, 

subjects completed an additional 20 free throws. Questionnaires were administered to assess 

previous experiences with playing basketball as well as participating in guided imagery tasks; 
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subjects’ confidence in their athletic ability was also measured using self-reported predictions of 

their own free-throw success [267]. The results demonstrated significant improvement in athletic 

skill after REST. Additionally, those in the REST group reported higher post-treatment levels of 

confidence in athletic performance compared to the alpha chair group, although no significant 

difference existed compared to the control group [267]. 

McAleney et al. (1990) investigated the joint effects of floatation-REST and a visual imagery task 

on the competitive performance of intercollegiate tennis players [268]. The study consisted of 20 

university varsity tennis players (10 men and 10 women) and involved 2 conditions: floatation-

REST with the visual imagery task, and a visual imagery-only condition in which participants were 

exposed to imagery and messages in a room without restrictions. The visual-imagery message was 

eight minutes in length and included images of five or six alternative skills where the subjects 

visualized themselves making optimal tennis shots. All subjects participated in six 50-minute 

treatment sessions across a 3-week period. To measure improvement in athletic performance, 

tennis matches from both before and after completion of the treatments sessions for each 

participant were videotaped. Performance was then assessed based on three key aspects: first 

service, key shot, and points won/lost. Their results indicated that floatation-REST, in combination 

with a visual imagery task, enhanced the performance of one previously well-learned key athletic 

skill amongst varsity tennis players [268]. 

Turner and Fine (1991) conducted a study on the effects of repeated sessions of floatation-REST 

on overall plasma cortisol levels as well as plasma cortisol level variability [269]. The study 

recruited 27 subjects who were pair-matched based on initial values of plasma cortisol and were 

then split into two groups: floatation-REST and non-REST. For their treatment sessions, those in 
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the floatation-REST group rested in a supine position within a dark floatation chamber, while those 

in the non-REST group rested in a fully reclined cushioned chair. All subjects participated in eight 

40-minute sessions across 3 weeks. Blood samples were taken before and after sessions 5-8. The 

results showed that both the average plamsa cortisol concentration and variability decreased across 

sessions in the REST group, whereas no significant change was detected in the non-REST group 

[269]. 

In 1991, Jeffery D. Wagaman investigated the joint effects of REST and an imagery training task 

on subjective and objective measures of athletic performance while playing basketball [270]. 22 

male basketball players were randomly assigned to participate in either a REST-imagery or an 

imagery-only treatment. During each 60-minute session, those assigned to the REST-imagery 

treatment rested in a supine position within a float tank, while those assigned to the imagery-only 

treatment sat in a comfortable chair situated within an office where they were free to do as they 

pleased once a tape relaying the imagery training task had finished playing. The imagery task used 

in this study was adapted from that originally created by Lee and Hewitt (1987) which was 

designed to enhance athletic performance [271]. The 20-minute long tape guided subjects to relax 

and visualize the steps of an optimal basketball game performance. An objective measure of 

athletic performance was made using a point-based system assessing subjects’ individual 

performances during real basketball games. Successful shots or passes resulted in subjects gaining 

a point, whereas unsuccessful shots or passes resulted in subjects losing a point. Subjective 

measures of athletic perfromance were also collected using the Performance Evaluation 

Questionnaire (AAHPERD, 1984), which was a short survey that measured partcipants’ subjective 

perceptions on their own performance. Wagaman found that floatation REST, when accompanied 
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with an imagery training task, led to better athletic performance in comparison to completion of 

just the imagery task. 

Forgays et al. (1992) evaluated the potential ability of floatation to enhance creativity, as measured 

by the Guilford Fluency Test and similar indices [243]. 30 subjects (13 male, 17 female), half of 

whom spent one hour in a float pod and the other half in a dark room, completed a number of pre-

test and post-test measures assessing creativity and personality/affect. Subjects who completed the 

float pod treatment showed significant increases on the Guilford Fluency Test pre- to post-float 

along with meaningful increases on other thinking measures as compared to non-floating control 

subjects. Floating was also associated with a decrease in anxiety/tension, depression, hostility, and 

fatigue, and an increase in vigor. Forgays et al. speculated that the increased creativity brought 

about by floatation may result from some of these cognitive and behavioral changes. 

In 1993, Suedfeld et al. examined the effects of REST plus imagery training on perceptual-motor 

accuracy in comparison to both REST and imagery training alone [272]. 40 subjects who had 

played a game of darts at least twice during the previous year were recruited and randomly assigned 

to one of four groups: imagery only, REST only, REST plus imagery, and a control group. Subjects 

in the imagery-only group sat in a small room. After 40 minutes, participants were asked to listen 

to a 13-minute tape recording that started with a brief exercise during which subjects were asked 

to describe the “feel” of throwing a perfect bull’s eye. Subjects in the REST-only group rested in 

a supine position within a floatation tank for 1 hour without any imagery training. Subjects in the 

REST plus imagery group also rested in a supine position within a floatation tank, but. after 40 

minutes had elapsed, also coompleted the imagery training. Lastly, subjects in the control group 

were placed within a small room and were told they could do as they pleased for the entire 1-hour 
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session. Suedfeld used a pretest-posttest design, and participants were given 10 practice throws 

before they completed 20 recorded dart throws at a standard dart board. Subjects were scored based 

on the distance of their dart from the bullseye on the dart board. The study results indicated a 

marked improvement in dart-throwing accuracy after floatation-REST irrespective of wheter 

imagery training had been completed during the float. Imagery training alone did not increase dart-

throwing accuracy, and no synergistic interaction between floatation-REST and imagery training 

was found. From this, Suedfeld et al. concluded that floatation REST improves accuracy and 

precision in athletic performance for sports that do not require speed or strength [272].  

A study in Switzerland investigated the neuroendocrine changes that occur after REST using a 

crossover design comparing floatation-REST to a control treatment [273]. Five healthy male 

subjects were recruited. For the floatation-REST treatment, the subjects rested in a supine position 

within a float tank; for the control treatment, subjects rested in a supine position in a dimly lit 

room. Each treatment session lasted for 60 minutes. Subjects completed three pre-test measures: 

the Minnesota Multiphasic Personality Inventory [274], the Sensation Seeking Scale Form IV 

[275], and von Zerssen’s Mood Questionnaire [277]. Before the experiment, subjects also engaged 

in two habituation floatation-REST sessions over a period of 2-3 weeks. Three subjects started the 

experiment with the floatation-REST treatment, while the other two subjects started with the 

control treatment. Three blood samples were drawn 30 minutes before the start of each treatment. 

Blood samples were then drawn every 15 minutes for 2 hours after the completion of both 

treatments. Subjects completed two post-test measures: the Stanford Sleepiness Scale [276] and 

the von Zerssen’s Mood Questionnaire [277]. Biochemical analyses of the blood samples assessed 

the following: cortisol, TSH, prolactin, LH, GH, melatonin, ß-endorphin, ADH, T4, GABA, HVA, 
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magnesium, urinary VMA, osmolality, and lactate. The results demonstrated no significant 

neuroendocrine changes that could be attributed to floatation-REST across all five subjects, apart 

from a 37% average reduction in urinary VMA. Psychological results, however, indicated an 

increase in sedation, relaxation, and euphoria resulting from floatation-REST [273]. 

In Sweden, a study was conducted to investigate the effects of REST on creative problem-solving 

and originality [278]. The study consisted of 2 experiments. The first experiment recruited 40 

subjects and separated them into a control group and a floatation group. Participants’ pulses were 

measured every 60 seconds one week before the experiment for all subjects. At the beginning of 

the experiment, subjects also completed the FS-Change and Stability Test [279], which measured 

subjects’ attitudes towards change and stability. The control group engaged in a creative problem 

known as the “Cheap Necklace Problem” (Silveira, 1971; Best, 1995) for 5 minutes before sitting 

in a reclined armchair for 45 minutes. After the 45 minutes, subjects could return to working on 

the puzzle to completion or until 25 minutes had elapsed. The floatation group worked with the 

same cheap necklace problem for the first 5 minutes but then floated in a supine position within a 

float tank for the following 45 minutes. After the 45 minutes had elapsed, subjects could continue 

to work on the problem to completion or until 25 minutes had elapsed in the same fashion as the 

control subjects.  

The second experiment was comprised of 54 subjects randomly assigned to one of three 

conditions: floatation-REST, dry-REST, and non-REST. Like the first experiment, participants’ 

pulses were measured every 60 seconds one week before the experiment for all conditions. The 

floatation-REST group rested in a supine position within a floatation tank for 45 minutes before 

taking three psychological pen-and-paper tests: the Syllogisms I Test [280], the FREGO Test 
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[281], and a self-constructed assessment in which subjects were tasked with coming up with as 

many consequences as possible to six dramatic events (e.g. “What would happen if there suddenly 

was a new ice age in Northeurope?”) [278]. The dry-REST group completed the same tests, except 

they rested on a couch for 45 minutes in a dark, sound-proofed chamber prior to completing them. 

Similarly, the non-REST group followed the same procedure but sat in an armchair for the first 45 

minutes, where they were allowed to either read magazines or do nothing.  

The study found three main results: 1) In the first experiment, subjects in the floatation group took 

longer to complete the problem than those in the non-REST group; 2) the quicker subjects in the 

first experiment solved the problem, the greater their average heart rate variability tended to be; 

and 3) in the second experiment, subjects in the float-REST group scored higher in originality in 

comparison with the dry-REST and non-REST groups [278].  

Forgays et al. ran a study attempting to validate float-REST, coupled with motivational auditory 

messages, as an effective treatment for smoking cessation and/or reduction in heavy smokers 

motivated to quit [282]. Participants completed follow-up measures for up to 12 months post-

intervention. Smoking reductions after 12 months compared favorably with other interventional 

techniques, and floats of longer durations appeared to be more effective at reducing smoking than 

shorter floats. The motivational auditory messages were not found to affect the strength of the 

float-REST treatment. Control subjects reduced their smoking more than the experimental 

subjects, suggesting that the procedures used on them were actually more effective interventions. 

In 2003, Norlander et al. examined the effects of float-REST on stress and cognition by completing 

a two-part study [283]. In the first study, 38 participants were recruited and randomly assigned to 
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either a group that completed a single 45-minute float session or a group that completed three 45-

minute float sessions. The study used a pretest-posttest design and administered the LOT, 

Syllogisms (either version I or II), and beer can/brick (either beer can or brick) measures. When 

subjects completed the Syllogisms and beer can/brick tests post-intervention, they were 

administered the versions of the measures that they had not received pre-intervention. 

 In the second study, which used a 2x2 design, 32 participants were recruited and randomly 

assigned to either the floatation-REST or chamber-REST group as well as to the stress or non-

stress group [283]. Following each treatment session, subjects were tasked with writing an essay 

which was later assessed for elaboration, liveliness, originality, and realism. 

The results indicated that: 1) Float-REST resulted in no differences concerning divergent or logical 

thinking, regardless of whether one or three float sessions had transpired; 2) float-REST led to 

higher scores in orginality but lower scores in deductive thinking; 3) chamber-REST led to higher 

scores in realistic and elaborated thinking; 4) subjects in the floatation-REST/stress group were 

more lively compared to their floatation-REST/non-stress group counterparts; 5) subjects in the 

chamber-REST/stress group demonstrated greater realism compraed to their chamber-REST/non-

stress group counterparts; 6) both floatation-REST and chamber-REST were equally effective in 

reducing stress, i.e., showed comparable efficacy as relaxation techniques, although floatation-

REST altered consciousness to a greater extent compared to chamber-REST; and 7) correlational 

analyses indicated that the more adaptable, optimistic, and receptive to change one was, the more 

originality one exhibited in his/her essay; additionally, those who scored higher in liveliness tended 

to score lower in realism. 
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Bood et al. (2006) aimed to replicate earlier findings that demonstrated increased wellness after 

float-REST as well as investigate its long-term effects [284]. 70 subjects were recruited, 54 of 

which were women and 16 men, participated. All subjects had been diagnosed as having stress-

related pain; an additional 26 subjects also had been diagnosed with burnout depression. 

Participants were randomly assigned in equal numbers to either a control group or a floatation–

REST group; each participant completed a total of 12 sessions. Results indicated that, for those in 

the float-REST group, levels of pain, stress, anxiety, and depression decreased, whereas sleep 

quality, optimism, and prolactin increased. These positive effects also generally persisted 4 months 

after completing the intervention. Bood et al. concluded that float-REST is an effective method for 

the treatment of stress-related pain. 

Broderick et al. (2019) examined the effects of float-REST on recovery from exercise [285]. They 

hypothesized that float-REST would reduce muscle soreness, improve sleep quality, and enhance 

subsequent performance recovery in trained athletes. Following pre-exercise testing and warm-up, 

participants performed an exercise circuit known as the Basketball Exercise Simulation Test. Upon 

completion of the test, post-exercise measures (performance test, saliva collection, perceptual 

measures, and algometer) were administered to determine the level of fatigue experienced by the 

participants. Once all post-exercise tests were completed, participants were assigned to one of two 

recovery intervention: float-REST or a control intervention. Participants then went home to sleep 

before returning the next morning to perform the same Basketball Exercise Simulation Test. 

Finally, perceptual measures were recorded once more 24 hours after completing the test. Float-

REST was found to significantly enhance CMJ (p = 0.05), 10 m sprint (p = 0.01) and 15 m sprint 

performance (p = 0.05) with small to moderate effects (d = 0.21–0.68) for all performance 
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measures, except CMJ (unclear), compared to the control group. The results also show 

significantly higher pressure-to-pain thresholds across all muscle sites (p’s < 0.01) and lower MS 

and PF 12 h following float-REST (p < 0.05). All sleep measures resulted in small to large effects 

(d = 0.20–0.87) with a significantly greater perceived sleep quality (p = 0.001) for subjects in the 

float-REST group compared to thosein the control group. There were no significant differences 

and a trivial effect size between trials for changes in cortisol concentration. The use of float-REST 

following exercise in the late afternoon/early evening may be an effective strategy to enhance 

relaxation and subsequent sleep. Furthermore, this is the first study to our knowledge to show the 

benefits of floast-REST on next-day performance recovery, specifically in measures of power and 

speed. Future research should attempt to control for the possible placebo effect of such a treatment 

or include the comparison of other post exercise recovery strategies. Additionally, future research 

may give insight into whether habitual or regular floaters have different cortisol responses than 

those relatively new to the technique. 

5.4.2 Pain 

In 1991, Wallbaum et al. investigated the treatment potential of float-REST for individuals with 

chronic tension headaches [286]. 31 subjects were recruited and assigned to one of four treatments: 

1) Chamber/control: subjects rested in a supine position on a bed situated within a small, dimly lit 

room; 2) chamber/tank: subjects rested in a supine position in both a float tank and, later, in the 

same dimly lit room used in the control treatment, 3) chamber/relaxation: subjects completed a 

series of muscle relaxation exercises while resting in a supine position on a bed in the same room 

used in the control treatment; and 4) tank/relaxation: subjects completed a series of muscle 

relaxation exercises while resting in a supine position in a float tank. All subjects completed a total 
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of 8 90-minute sessions across 4 weeks. A Headache Diary [287] was used by subjects to track the 

frequency, duration, and intensity of their headaches. Subjects maintained entries in these diaries 

from at least two weeks before the first treatment until six months after treatment completion. 

These entries were used to calculate a headache index for each subject along with an index of self-

reported use of headache-related medications. The results indicated that floatation-REST may 

serve as an effective treatment for chronic tension headaches. Additionally, the combination of 

float-REST and muscle relaxation exercises may increase the duration of positive treatment effects 

[286]. 

Kjellgren et al. (2001) investigated whether floatation-REST may serve as an effective and reliable 

method for treating chronic pain as well as psychosomatic symptoms resulting from long term 

muscle tension and/or stress-related headaches [288]. 37 patients were recruited and randomly 

assigned to either complete a nine-session float-REST treatment or no treatment at all. For those 

in the float-REST treatment group, each float session lasted 45 minutes, and subjects were asked 

to complete a total of 9 sessions across three weeks. The study used a pretest-posttest design; the 

administered measures asked participants to estimate self-assessed pain severity, duration, onset, 

and treatment efficacy, as well as report any other health-related experiences or symptoms. Blood 

samples were also taken from each participant. Information regarding sleep, dreams, and tobacco 

and alcohol habits of each subject was also collected. The results indicated that subjects in the 

float-REST treatment group who reported the most severe perceived pain intensity experienced 

significant reductions in pain intensity, whereas subjects who reported lower perceived pain 

intensity were not affected by float-REST. Furthermore, circulating levels of the noradrenaline 

metabolite 3-methoxy-4hydroxyphenylethyleneglycol were reduced significantly in the float-
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REST treatment group but not in the control group, whereas endorphin levels were not affected by 

floatation. Floatation-REST treatment also elevated the participants’ optimism while reducing 

anxiety or depression. Finally, subjects in the float-REST treatment group reported being able to 

fall asleep more easily compared to those in the control group. The present findings tentatively 

suggest that floatation-REST may effectively alleviate low to moderately severe pain induced by 

muscle tension. Further investigations should aim to extend the scope of the measured subjective 

changes and neurochemical markers (e.g. with the serotonin metabolite 5-hydroxyindole acetic 

acid, oxytocin and cortisol). 

In 2005, Bood et al. examined the effect of attention on the therapeutic effects of float-REST using 

a single-blind design [289]. 32 subjects were recruited and randomly assigned to either receive 

special attention throughout the experiment for 12 weeks (high attention group) or receive normal 

attention for only six weeks (normal attention group). The study used a pretest-posttest design; 

subjects completed a number of measures assessing pain (intensity, areas and types, frequency, 

duration, onset and treatment efficacy). Subjects also completed the PANAS, LOT, PAI, SE and 

HAD questionnaires. The results demonstrated that participants exhibited lowered blood pressure; 

reduced pain, anxiety, depression, stress and negative affect; and increased optimism, energy and 

positive affect. However the results were largely unaffected by the degree of attention-placebo or 

diagnosis. Also, analysis showed that the participants reported reducing their alcohol intake per 

month during treatment period. Also analysis showed that the participants reported reducing the 

number of types of pain medication during the treatment period. 

This group in 2007 investigated whether 33 float-REST sessions were more effective in treating 

stress-related ailments compared to 12 sessions [290]. The results after 12 sessions were similar to 
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those found in other float-REST studies (Bood et al., 2005; 2006); surprisingly, however, there 

were little to no differences in treatment effects between the subjects in the 33-session group versus 

those in the 12-session group. Although the number of comprehensive pain areas was significantly 

lower after 33 floatation sessions, for PAI, most severe pain intensity, normal pain intensity, and 

pain frequency, 12 sessions were enough to get considerable improvements across these measures, 

and no further improvements were found after 33 sessions. A similar pattern was observed among 

the stress-related psychological variables. After 12 floatation sessions, 25% of participants 

experienced decreased stress, 26% experienced decreased anxiety, 11% experienced decreased 

negative affect, and 32% experienced lower levels of depression, while dispositional optimism 

increased among 10% of participants and sleep quality among 18%; there were no further 

improvements after 33 floatation sessions. Additionally, no effects in blood pressure were 

observed after 12 floatation sessions, while there was a significant effect for diastolic blood 

pressure after 33 sessions. Finally, as expected, subjects diagnosed with burn-out depression 

measured higher for depression and negative affect than did patients without a diagnosis. 

Consequently, it was these diagnosed subjects who saw significant improvements with regards to 

depression and negative affect. 

In 2008, Edebol et al. investigated whether floatation-REST might be able to help treat chronic 

whiplash associated disorders (WAD) [291]. Six women and one man, all diagnosed by licensed 

physicians as having chronic whiplash associated disorder, were recruited for this study. Two of 

the participants were beginners in floatation-REST (i.e., previously participated in 2 to 3 float 

sessions), while the remaning five were more experienced (i.e., previously participated in 7 to 15 

float sessions). The floatation-REST treatment involves the creation of new elements in the world 
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of experience. The spiral illustrates how the participants with chronic WAD experience the short-

term effects of the floatation-REST treatment. After completing the floatation-REST treatment, 

subjects reported improvements in pain reduction and stress management, changed attitudes 

towards their pain, renewed coping strategies, openness to perceptions, and the sense of a centered 

self. Floatation-REST treatment favors the patient in a physiological sense as well as mentally and 

cognitively. The environment in the floatation-REST tank supports reflection and relaxation to a 

great extent. In comparison to other common treatments of chronic WAD, such as hydrotherapy, 

electromagnetic field therapy, radio wave neurotonomy, cognitive behavior therapy, and 

physiotherapy, floatation-REST treatment may offer the unique ability to explicitly benefit the 

mental and cognitive health of WAD patients. However, this study represents only an initial 

evaluation of the effects of float-REST on WAD, so future research must be conducted before 

floast-REST can be established as a reliable and effective treatment intervention.  

Bood et al. (2009) explored how sex differences may alter the effects of float-REST among patients 

diagnosed with stress-related pain [292]. The results indicated that float-REST had beneficial 

effects on stress, anxiety, depression, sleep quality and pain, and that these effects were generally 

consistent regardless of sex differences. The only notable difference between the sexes was that 

men were exhibited to show greater endurance both before and after the float-REST treatment. 

Although women were found to score higher in depression than men before the float-REST 

treatment, this difference was not found post-treatment. The results also demonstrated, for the first 

time, that both sexes improved their ability to endure experimentally-induced pain following 

successful completion of the floatation-REST treatment. 
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5.4.3 Anxiety 

In 2016, Jonsson et al. evaluated the effects of float-REST on self-diagnosed GAD [244]. The 

study implemented a 12-session floast-REST treatment program designed to target problems 

related to GAD such as pathological worry, emotional regulation difficulties, low levels of 

mindfulness, depression, fatigue, sleep difficulties, and muscle tension. 

Jonsonn et al. (2017) evaluated the effects of a 7-week float-REST program on subjects diagnosed 

with GAD. A total of 9 subjects were recruited; each subject completed 12 45-minute flotation 

sessions over the seven-week period. Interviews were conducted with each subject after each float 

session along with the administration of a host of measures. The data was analyzed and interpreted 

by applying the Empirical Phenomenological Psychological (EPP) method developed by Karlsson. 

The results highlight that flotation-REST treatment of GAD was experienced as a comprehensive 

process that were both challenging and pleasant. The results indicated that the float-REST program 

reduced overall GAD symptomology. The present study also generated some initial understanding 

regarding potential mechanism that might mediate and maintain positive treatment effects when 

flotation-REST is applied as an intervention of GAD. Few things measured in the study were 

obstacles in treatment, a relaxed and safe vantage point, non-ordinary states of consciousness, 

connecting with oneself, new attitudes and coping strategies, and enhanced life quality. 

In 2018, Khalsa et al. investigated the safety and tolerability of float-REST on 21 subjects 

diagnosed with anorexia nervosa [293]. The study found that there was no evidence of systolic or 

diastolic orthostatic hypotension after each float in any participant. Additionally, none of the 

subjects reported any adverse events throughout the duration of the float-REST program. 
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Significant improvements in anxiety and negative affect along with significant reductions in body 

dissatisfaction ratings were observed. 

Feinstein et al. (2018) examined whether floatation-REST might attenuate symptoms of anxiety, 

stress, and depression in a sample of 50 subjects diagnosed with either depression, anxiety, or a 

stress-related disorder (e.g., PTSD, GAD, panic disorder) [294]. This open-label study found that 

a single one-hour session of floatation-REST was capable of inducing a strong reduction in state 

anxiety along with a substantial improvement in mood. Participants also reported significant 

reductions in stress, muscle tension, pain, depression and negative affect, accompanied by an 

increase in feelings of serenity, relaxation, happiness and overall well-being. Further analysis 

revealed that the most severely anxious participants consequently reported the largest effects. 

These findings suggest that floatation-REST may be a promising technique for acutely reducing 

symptoms of anxiety and depression, although the persistence of these effects is presently 

unknown.  

This group in 2018 investigated the affective and physiological changes induced by floatation-

REST and assessed whether individuals with high AS experienced any alterations in interoceptive 

sensation while immersed in an environment lacking exteroceptive sensation [295]. 31 subjects, 

all diagnosed with either anxiety or depression, were randomly assigned to complete either a 90-

minute session of floatation-REST or to complete a 90-minute session of an exteroceptive 

comparator that entailed watching a nature documentary from the BBC Planet Earth series (i.e., 

control group). There were two main findings in this study: 1) Subjects experienced a robust 

relaxation response during and after floatation-REST that was decisively anxiolytic in nature and 

2) the float environment enhanced interoceptive awareness and attention to cardiorespiratory 
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sensations. For both findings, the effects during floatation-REST were significantly greater than 

those during the exteroceptive comparison condition. 

Edebol et al. (2013) examined the individual experience of a long-time user of float-REST 

diagnosed with Whiplash Associated Disorder (WAD), grade IV [296]. The subject of interest was 

a middle-aged, native-born Caucasian male from Sweden who had been diagnosed with chronic 

WAD-IV by a licensed physician. The subject performed regular floatation for one and a half years 

and wrote about his experiences in a diary; additionally, a semi-structured interview was conducted 

at the end of his float-REST treatment. Edebol et al. provide a model describing the rehabilitative 

circuit brought about by float-REST that is in line with the potential role of a stress response system 

for the development and management of chronic whiplash. The study provides qualitative insights 

into the use of float-REST as a pain- and stress-management system for chronic whiplash. Thus, 

the study findings suggest that float-REST can be used to relieve chronic pain and enhance the 

quality of life for a more comprehensive group of patients with whiplash-associated disorders. 

5.4.4 Physiological 

In 1994, Raab and Gruzelier conducted a study in which they examined subjects before and after 

floatation-REST with neuropsychological tests chosen because they disclosed changes before and 

after hypnosis [297]. They predicted that like hypnosis, floatation would produce an improvement 

in right, relative to left, hemispheric processing. 32 subjects with no knowledge on hemispheric 

specialization and no experience in floating were randomly divided into two conditions: The 

experimental/float group and the control/non-float group. 2 different measures were used during 

the study for pre-test and post-test measurements: The Haptic Processing test and the Warrington 
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Recognition Memory test. The Haptic Processing test consisted of sorting letters and numbers 

while blindfolded after a brief familiarization period with the items. In order to obtain hemispheric 

processing times, scoring on this test was calculated by subtracting the mean movement times from 

the mean sorting times for each hand. The Warrington Recognition Memory test involved 

presenting the subject with 50 stimulus items in which subjects decided whether they liked or 

disliked the word or face. Retention was tested by two choice recognition after the presentation of 

the test stimuli and the subject was instructed to distinguish the stimulus item from the distracter 

item [297]. Additionally, a floatation questionnaire was administered post-test which covered 

responses on possible occurrences during floatation like the loss of conception of time, sudden 

insights, and unusual memories. After the administration of the Haptic Sorting Test and the 

Warrington Recognition memory test, participants floated supine in a floatation tank for 90 

minutes. After the float, participants were given both tests again and the Floatation Questionnaire. 

Their results supported the hypothesized right hemispheric processing enhancement after 

floatation REST across both neuropsychological tasks. They also found that floatation did not 

produce significant detrimental effects on the left hemisphere like hypnosis, as there was only a 

slight reduction in right-hand sorting times with repetition in comparison with the control group 

[297]. 

A study conducted in Japan tested the hypothesis that floatation-REST would facilitate deep 

relaxation and a hypnagogic state, which may enhance the generation of random sequences [298]. 

7 participants (4 men and 3 women) were recruited, and all subjects completed two types of 

treatment sessions in a counterbalanced order: 1) subjects rested in a supine position within a 

floatation tank (float-REST), and 2) subjects rested in a supine position on a bed within a dark, 
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quiet room (bed-REST). Subjects participated in a total of two float-REST sessions and one bed-

REST session (each session lasting 40 minutes), with a one-week interval between float-REST 

session and a month-long interval between the two intervention types. Prior to each treatment 

session, electrodes were attached to the subject in order to measure EEG, EOG, heart rate, and 

respiration. Before each session, subjects were instructed to complete a task in which they were 

asked to orally generate a list of numbers while attempting to be as random as possible. Subjects 

completed this same task at the 40-minute mark of their treatment session as well as at the end of 

the session. Results indicated that random number generation was enhanced by floatation-REST 

in comparison to bed-REST. Randomization indices scores were lower during both the 40-minute 

mark and at the end of floatation-REST, indicating an increase in randomness. Additionally, 

another interesting result showed that although no significant difference was observed between the 

spectral power from the band activities of theta to beta in both conditions, the delta band power in 

the bed-REST condition was 1.7 times larger than that in the floatation-REST condition in the 

latter half of the REST period [298].   

In 1995, Suedfeld and Eich conducted a two-part study in which they examined the effect of 

floatation-REST on self-rated mood and arousal along with its effects on mood change and 

autobiographical memory [299]. For both parts of the study, the Profile of Mood States (POMS) 

Questionnaire was administered once before each float-REST session and twice afterward. The 

first study recruited 32 participants and randomly assigned them to one of two treatment groups: 

the float-REST group, in which subjects rested in a supine position within a float tank for 1 hour; 

or the control group, in which subjects simply waited in the university’s psychology building and 



 

 210 

returned to the laboratory after 1 hour. POMS result for this study showed post-float REST subjects 

to be significantly lower than controls on both scales [299]. 

The second study recruited 24 participants who were sorted into equally sized float-REST and 

control groups. Subjects were first asked to complete two measures assessing their current levels 

of mood and arousal. Then, during their assigned treatment, subjects were asked to complete the 

same measures, either over an intercom system for subjects in the float-REST group or on pen-

and-paper for those in the control group. Subsequently, subjects completed a new task in which 

they had 120 seconds to retrieve a specific autobiographical memory in response to a list of neutral 

probe words. Subjects were then asked to date their rerieved event and rate it based on seven scales 

adapted from prior research on moon congruence in autobiographical memory (Eich et al., 1990; 

Eich et al., 1994).  

Suedfeld and Eich found that systematic self-ratings in both studies confirmed common reports of 

serenity and pleasant relaxation during float-REST. Findings from the second study support the 

hypothesis that neither an explicit mood induction nor the recognition that such an induction was 

being attempted is necessary for the occurrence of mood congruence in autobiographical memory 

[299]. Additionally, the results showed that the more relaxed a float-REST subject was during the 

autobiographical memory retrieval task, the more vivid and emotionally intense the memories 

experienced by the subject were. 

In 2007, Asenlof et al. examined how float-REST might be used in tandem with standard therapy 

to treat patients with severe stress problems [300]. Two women on long-term sick-leave, aged 55 

and 58, participated in the study, which was carried out over a period of one year. One subject was 
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diagnosed with burnout depression and the other with fibromyalgia. Asenlof et al. implemented a 

treatment program with several components: floatation-REST, group therapy, conversational 

therapy, and picture production. Throughout the study, the subjects were asked to track their 

progress in journals and participated in long-form interviews on two separate occasions. The 

Empirical Phenomenological Psychological Method (Karlsson, 1995) was used in the study to 

generate four overarching themes: 1) the therapeutic work model, 2) transformation of feelings, 3) 

self-insight, and 4) meaning. The method entails an analysis in several stages including techniques 

for dividing the texts into smaller so-called "meaning units” (MU). This division is not based on 

grammatical rules but entirely on the content the researcher discovers and where there is a suitable 

shift of meaning. These together constituted a “therapeutic circle” which after a while transformed 

in to a “therapeutic spiral” of increased meaning and enhanced wellbeing. 

Kjellgren et al. (2010) examined the efficacy of float-REST, coupled with psychotherapy, for the 

treatment of persons suffering from diverse ailments as chronic fatigue, depression, pain and/or 

anxiety [247]. Four women and two men, all on disability leave, between the ages of 33 and 57 

years old took part in the study. Kjellgren et al. designed a 10-week treatment program consisting 

of twice-weekly 45-minute floatation-REST sessions and weekly psychotherapy with a 

psychologist. Participants were interviewed twice during the ten weeks about their experiences of 

the treatments and its effects in their daily lives. The first interview (about 30 minutes) was 

conducted after four weeks, and the last interview (about 60 minutes) was conducted after ten 

weeks once the subject had completed the entire treatment program. The findings of this study 

suggested that float-REST induced deep relaxation and altered states of consciousness, with 

experiences like feelings of flying, entering a state of “nothingness”, and feelings of distinguishing 
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the mind from bodily limitations commonly being felt. Additionally, some subjects reported that 

the feeling that the mind and body were separate entities gave rise to insights concerning their 

ailments. Subjects also reported a heightened awareness of physical sensations, breathing patterns, 

bodily responses, body image, and body processes in general. By the end of treatment program, 

all the participants were reported as being so full of energy and strength that neither they 

themselves nor their physicians assessed that any disability leave was needed. 

This group in 2011 designed a 10-week treatment program combining float-REST with 

psychotherapy to examine its efficacy as a treatment for persons suffering from high stress-load 

and burnout syndrome [248]. Five subjects were recruited, all being diagnosed as on the brink of 

taking a sick leave and suffering from burnout syndrome, experiencing symptoms of fatigue and 

problems keeping up with daily life. Interestingly, all five subjects experienced a complete 

recovery in their mental health within the relatively short span of 10 weeks. While promising, the 

results should be further evaluated in a randomized control trial. 

In 2016, Driller et al. examined the physical and psychological effects of float-REST in 60 elite, 

international-level athletes (28 males, 32 females) across a range of 9 sports, with the goal of 

determining if float-REST was a viable strategy for athlete recovery regarding both mood state 

and muscle soreness. Following exercise training for their sport, each subject completed a 45 

minute float-REST. Pre- and post-float, subjects filled out the Multidimensional Mood-state 

Questionnaire (MDMQ) as well as a questionanire on perceived muscle soreness. Subjects also 

reported whether they had napped during the float-REST session or whether they had remained 

awake. A single float-REST session was found to significantly enhance 15 of the 16 MDMQ 

mood-state variables and also lowe perceived muscle soreness. Small to moderate effect sizes in 
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favor of napping for 9 of the 16 MDMQ mood-state variables were also found when compared to 

the no-napping group, suggesting that  napping in combination with float-REST may provide 

additional benefits to enhance certain mood-state variables. In summary, subjects saw an 

improvement in both mood state and muscle soreness, indicating that float-REST may be an 

effective tool for both physical and psychological recovery following training in elite athletes. 

5.4.5 Consciousness 

In 1960, Jay T. Shurley designed a study focused on refining the procedural methods used in early 

floatation-REST [302]. Shurley attempted to refine three fundamental aspects of floatation-REST: 

the physical aspect, physiological aspect, and psycho-social aspect. On the physical level, Shurley 

noted that it was important to create an environment that obtained the maximum achievable 

reduction of ambient physical stimuli along with a dynamic maintenance of ambient temperature. 

To achieve these conditions, Shurley created a special two-room laboratory that provided a 

significant reduction in light, sound, vibration, odor, and taste. Next, on the physiological level, 

there was a priority to eliminate all sources of pain and discomfort stemming from body position, 

pressure ischemia, and hollow viscus distention. Thus, a tank was designed that allowed subjects 

to float upright in order to reduce body discomfort. Additionally, a stimulus-restricting oxygen 

mask was used by subjects when fully immersed in the water to maintain neutral buoyancy via the 

use of weights. Lastly, on the psycho-social level, Shurley noted that certain types of persons were 

optimal subjects for float-REST studies. Such subjects were skilled in self-observation, memory, 

and attention to detail as well as able to communicate their experience fully and freely with 

minimal distortion. Based on this criteria, Shurley recruited several subjects, the first of which 

floated for over 4 hours and displayed emotions that shifted randomly from calm, contemplation, 
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anxiety, elation, and depression. The subject also reported experiencing mild to severe audible and 

visual hallucinations throughout the session. Other subjects were observed to display similar non-

consistent mood swings and hallucinations, with additional reportings of hyperawareness of body 

function, such as being able to hear the sounds of their own hearts. Overall,  this study presents a 

feasible and effective method for studying a wide range of psychophysiological phenomena under 

the optimal conditions for float-REST [302]. 

In 1961, Lilly and Shurley designed a study to observe the ego-altering effects of float-REST as 

well as establish methods of self-observation by finding, defining, and setting limits for subject’s 

psychological sets [303]. The floatation environment used in this study was similar to that of 

Shurley (1960) such that participants floated neutrally buoyant (via the use of weights) while 

upright and submerged in a tank inside of a stimulus-isolating room. Participants also wore a 

stimulus-restricting mask that allowed for normal breathing while underwater while still limiting 

the subject’s senses. During this study, participants rotated among three different roles. 

Participants would first act as a regular subject floating within the tank and were instructed that 

they were free to explore whatever internal processes they wished to while floating in isolation for 

as long as they decided, with the goal of attenuating to their egos. Then, after exiting the tank, 

participants acted as  “safety man” in which they would sit outside of the isolation area and observe 

another subject floating, operate the floatation equipment, and be on standby should any issues 

arise. Lastly, the participant became the “self-observer”, in which they were allowed to float 

without a safety man in the room, allowing for maximum isolation and ego freedom. Subjects 

became self-observers only after great consideration and agreement between the subject and the 

safety man. Notable results from this experiment were the idea that freedom from external 
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exchanges and transactions allowed the isolation-constrained ego to develop sources new 

information from within, such that sources can be experienced as if they are outside with greater 

or lesser degrees of awareness. Drives such as needing to leave the tank or needing to interact with 

other persons increased during floatation but decreased after multiple exposures to floatation. 

Subjects were also very susceptible to both negative and positive suggestions during the session, 

such that assessments of performance would induce heightened negative ideations and 

experiences. Positive experiences were found only in times where inner and outer relational stimuli 

was minimized. 

Norlander et al. (2000), ran a study to investigate if experiences induced by floatation-REST might 

be affected by either settings and/or subjects’ earlier experiences of altered states of consciousness 

(ASC) [304]. The comparison of subjects’ dreams with their float-REST experiences indicated 

there was no significant difference between Group or Setting with regard to precision, 

participation, familiarity or reality. Float-REST was shown to significantly reduce pain and 

enhance mood. Overall, subjects reported that floatation-REST was a pleasurable experience. 

Subjects also reported that they experienced different kinds of visual and acoustic effects which 

altered their time perception, along with a sense of weightlessness. Additionally, reports of deep 

transpersonal experiences were quite common and could be distinguished into three types: 

experiences of one’s own childbirth/delivery, feeling of cosmic unity, and experiences of losing 

contact with the body or out-of-body experiences. In summary, float-REST appears to be an 

effective consciousness-altering method with promising potential for clinical and therapeutic use. 

In 2004, Kjellgren et al. investigated whether or not the degree or level of altered state of 

consciousness could be of importance for the subjective experience of experimental pain induced 
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when the participant was already in a mild altered state of consciousness [250]. In order to 

practically achieve this altered state of consciousness; sensory deprivation was used in a floatation- 

REST tank and on a couch in a dark, silent room (chamber-REST), respectively. 23 participants 

were exposed to one 45-minute exposure to floatation-REST and one exposure to chamber-REST 

on two occasions, incorporating random assignment to either floatation-REST followed by 

chamber-REST or vice versa. On each occasion, the Restricted Environmental Stimulation 

Technique (REST) procedure was followed immediately by testing experimentally induced pain 

to one arm using a blood pressure cuff. The questionnaires and tools used to asses these differences 

were: VAS, HAD, Pulse Oximeter, Sphygmomanometer and EDN. It was found that floatation-

REST induced a significantly higher degree of altered states of consciousness (ASC) than did 

chamber-REST. Participants experiencing High Experienced deviation from normal state in the 

floatation-REST condition reported higher levels of both “experienced pain” and “experienced 

stress” than did those experiencing Low EDN. 

In 2008, Kjellgren et al. ran a qualitative analysis of interviews conducted with eight subjects, 

diagnosed with depresion, burntout syndrome, or chronic pain, to assess the subjective effects of 

float-REST during and following the float session. Kjellgren et al. used the Empirical 

Phenomenological Psychological method to analyze the interview transcripts, finding four 

common themes throughout the interviews: 1) experiences during floatation, 2) perceived effects 

afterwards, 3) technical details, and 4) the participant’s background, motivation, and expectations. 

Overall, subjects reported float-REST to be a pleasant experience. Subjects reported experiencing 

altered states of consciousness, varying from milder states involving profound relaxation and 

altered time perception to more powerful states with notable perceptual changes and profound 
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sensations such as out-of-body experiences and perinatal experiences. Further research may 

attempt to combine float-REST with a psychotherapeutic intervention by psychologist or 

psychotherapist in order to investigate if such a combination might generate even more beneficial 

effects. 

5.4.6 Sleep  

In 2017, Dunham et al. determined whether Bispectral Index values obtained during float-REST 

have a similar profile in a single observation compared to literature-derived results found during 

sleep and other relaxation-induction interventions [306]. One single subject experienced 22, 1-

hour floatation-REST sessions and during sessions 14 and 16, BIS monitoring was performed 

where BIS values were recorded on the BIS-X hard drive every minute during floatation. The 

results indicated that Pre-floatation mood scores progressively increased from 5 at sessions 1–7 to 

8 at sessions 16–22. Similarly, post-floatation mood scores increased during later sessions. The 

mean pre-floatation and post-floatation difference for the 22 float sessions was 3.5 ± 0.5. The 

objective BIS electrophysiological signature implies that relaxation-induction, stage I sleep, and 

floatation REST may be comparable conditions of consciousness. 

We should mention that, in 2020, Kjellgren et al. published a review study titled, “Does floatation-

rest (restricted environmental stimulation technique) have an effect on sleep?” [255]. 

5.4.7 Psychology 

In 2013, Kjellgren et al. reported the subjective experiences of an individual who had completed 

two and a half years of float-REST treatment (totaling 75 sessions) in order to treat a number of 
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neuropsychiatric and mental health disorders [307]. The subject was a 24-year-old woman 

diagnosed with attention deficit hyperactivity disorder, atypical autism, post-traumatic stress 

disorder, anxiety, and depression. Interviews regarding her experiences were analyzed. The subject 

reported experiencing an overall improved quality of life, wellbeing, and healthy behavior due to 

the float-REST treatment. The subject also reported no negative effects from treatment. These 

results suggest that float-REST may have beneficial therapeutic effects on mental health. 

Kjellgren et al. (2014) evaluated the psychological effects of floatation-REST in healthy 

participants [251]. Based on previous studies, Kjellgren et al. hypothesized that float-REST would 

have beneficial effects on levels of pain, depression, anxiety, stress, energy, optimism and sleep 

quality. 65 subjects were recruited, all of which were a part of a cooperative-health project initiated 

by their individual companies, and were randomly assigned into the float-REST group or the 

control group. The results showed significant decreases in experienced stress, pain, anxiety, and 

depression, as well as significant increases in sleep quality and optimism for the floatation-REST 

group compared to the control group. In addition, it was found that the dimensions mindfulness 

and altered states of consciousness, at least to some extent, seemed to be overlapping constructs. 

5.5 Discussion 

Here we review the most important findings from our systematic review and discuss the 

significance and impact of various trends highlighted in the review. 

Lilly’s (1962) initial hypothesis regarding sensory deprivation was that the brain would turn off in 

the absence of sensory input. Anecdotally, Lilly was reported as having believed that the sensory 

deprivation tank was a portal one could use to go “inside yourself” (Lilly, 1977). While no valid 
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research project has supported such claims, many of Lilly’s early anecdotal claims catalyzed 

further research into sensory deprivation (Suedfeld, 1980). In fact, the meditative state brought 

about by sensory deprivation that Lilly first researched in the 1960s is still what attracts many to 

float tanks today (Feinsten, 2015). Another of Lilly’s early hypothesis (1962), positing that the 

minimization of external stimuli in sensory deprivation tanks forces individuals to refocus on 

internal stimuli, was supported by the stimulus-hunger hypothesis proposed by Borrie (1990). 

After 2000, research on sensory deprivation began to shift towards examining its potential as a 

form of mental health therapy. There is a growing body of empirical research that has identified 

the benefits of both alternative medicine and therapy for mental health, when used both in isolation 

and in combination with traditional psychotherapy. In 2013, 40% of Americans in the United 

States used alternative treatment (Suedfeld, 2014). Different modalities of alternative therapy and 

medicine are included in medical insurance schemes reflecting the growth in its popularity. 

Further, therapies and practices such as yoga, tai chi and meditation although once considered 

“alternative” are now considered mainstream as evidence by the inclusion as reimbursable 

procedures by medical insurance companies. The demands of daily living increase and products 

based on stress management are at the forefront of mainstream culture (Feinsten, 2016). Products 

and services that aim to increase the human “relaxation response” (Benson, 1975) have been found 

to be protective factors against autoimmune disorders, cardiovascular diseases, neurodegenerative 

as well as behavioral disorders (Kerr, 2000). We found that between 1960-2010, the focus of float 

pod research was primarily on the general positive effects of float-REST and its effects on pain. 

After 2010, however, research attention switched to the physiological effects of float-REST along 

with its effects on sleep and anxiety. We should mention that Anette Kjellgren et al. had a good 

contribution the application of float pod. Most studies used a randomized design and implemented 
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float-REST sessions that varied between 35 to 240 minutes in duration, with a majority of studies 

using 45-minute sessions. 

A myraid of positive effects associated with float-REST have been documented. Many of these 

effects have been found from placebo-controlled studies, suggesting that these effects occur as a 

product of the floating experience. Increased creativity, faster exercise recovery, relaxation, mental 

coping, enhanced energy, muscular and motor improvement, and increased subjective well-being 

have all been reported to be positive effects resulting from float-REST. Furthermore, float-REST 

has also shown promise in the clinical setting, being able to aid with smoking reduction, pain 

management, and diminishing symptoms of depression and anxiety. 

Research on the effects of floating and the commercialization of the float pod industry are growing 

simultaneously. Although the floatation industry typically advocates the use of floating for causes 

that have been verified through research, no systematic study has looked qualitatively at the 

different applications of float pod in recent years. Additionally, although a plethora of anecdotal 

accounts on float pod use exists on the Internet, no formal research study has examined the trend 

of its application for non-specialized populations. In general, there is limited information available 

in the form of quantitative studies of floatation therapies and even less in the form of qualitative 

studies. Considering the popularity and adoption of floatation as an intervention to treat a number 

of health disorders, it seems imperative to fill these gaps in the scientific literature. Understanding 

our perception of experience, treatment delivery, experiment design, samples, questionnaire and 

tools for each application could provide insight supporting established research findings. 

Currently, the subjective perceived experience inside the sensory deprivation tank has not been 

thoroughly researched. Understanding how one perceives the environment from inside the 
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floatation tank may help us understand the mechanisms by which float tanks engender relaxation, 

which could have great clinical implications. Such a research project might aim to understand 

where the mind “goes” when in a maximum state of relaxation. Achieveing this understanding 

might allow us to recreate the float pod experience outside the tank, perhaps in the therapy room 

or in a meditation setting.   

5.6 Limitations and strengths 

Some limitations of the current review should be noted. First, the qualitative ratings of the 46 

studies were remarkably low, so the conclusion that floatation-REST is effective for some 

application such as sleep is tentative and awaiting new studies with stronger methodology.  

Second, although all studies showed float-REST to have a generally positive effect on measures 

such as pain, anxiety, and sleep, further research is needed to determine whether floatation-REST 

is effective in specific types of clinical problems (i.e., certain types of disorders).  

Third, in some studies, all  measurements were self-reported [307]. However, it is not standard 

practice to use objective measurements in float-REST studies.  

Fourth, all studies failed to mention any explicitly negative effects resulting from sensory 

deprivation. Lastly, a number of studies used self-referred samples, which reduces the external 

validity of these studies [306]. 

In addition, although the search methodology we used to identify relevant studies is well-founded, 

it undeniably did not capture all of the existing literature on the topic. Since the number of 

publications available at the time of writing this manuscript was limited, we decided to include all 
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the papers we could find (note that some of the newer trends are more visible in repositories such 

as arXiv and bioRxiv, as those manuscripts may be going through the publication process). They 

have been adopted by the psychological community to quickly disseminate results and encourage 

a fast research-iteration cycle. Our goal was to provide a transparent and objective analysis of the 

trends in float pod application. 

Also, it is important to note that researchers submit predominantly positive results for publication 

due to a highly competitive publishing landscape. If researchers withhold negative results from 

publication — i.e., publication bias — this could result in major changes to our review. 

Despite these limitations, this review has several strengths. First, six of the nine studies were RCTs, 

which increase their internal validity and the reliability of their conclusions. Second, our quality 

assessment employed established criteria. Third, our literature searches covered several large 

databases, combined with complementary searches by researchers who are knowledgeable about 

floatation (AK and KJ), making it unlikely that relevant studies have been overlooked. 

5.7 Future research and potential implications 

Float pods offer non-invasive and safe treatment. Other comparable methods, such as meditation, 

yoga, or qigong typically require regular practice and a dedicated focus before benefits become 

apparent. In contrast, the beneficial effects of float pods are apparent often after just a single float 

session. Additionally, float pods are shallow, so they pose little risk of drowning; many tank 

models have a water depth of just 10 to 12 inches. There are no typical floatation tub users. The 

time of day for which the float session was scheduled was not controlled. Some experienced 
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floaters shared differences in effects based on the time of day, and it is quite possible that floating 

at different times of the day may have some unknown measurable effect.  

People of all ages and walks of life enjoy the experience of floating, including children [308]. 

There is a possibility to use float pods in schools and incorporate floating sessions to as part of an 

academic curriculum. Though most of the research that exists is older, there is some evidence that 

sensory deprivation may improve focus and concentration, leading to clearer and more precise 

thinking. These effects have been linked to improved learning and enhanced performance in school 

and career groups. According to an article published in 2014 in the European Journal of Integrative 

Medicine, floating in a sensory deprivation tank has also been found to increase originality, 

imagination, and intuition, which can all lead to enhanced creativity. Spending time in floating can 

also help children fit in better at school. Floating sessions allow for changes in learning habits and 

social behavior. If a child is struggling to make friends or having a difficult time getting good 

grades, a few hours in a sensory deprivation tank each month can give them a chance to unlock 

their mind and learn how to overcome those obstacles [309]. Finally, further research is being 

conducted on the positive effects of floatation tubs on diabetic and autistic children. Current 

research suggests that the sensory deprivation experienced within floatation tubs stimulates 

positive changes in learning, social behavior, and cognitive function in autistic children. Research 

also shows that floatation tubs improve the body’s ability to use insulin, which reduces the 

incidence and severity of diabetes. 

 While some parents worry that their children may experience fear or claustrophobia within the 

floatation tub, there are no reports of such adverse effects. In fact, children often report that the 

darkness in the tub is calm and peaceful as opposed to the scary darkness of their bedrooms at 
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night. Additionally, floating is physically safe for children and no swimming ability is required as 

anyone will effortlessly float due to the buoyancy effect of the epsom salt solution. Given that 

childhood is the most formative time for our bodies and minds, the benefits of floating may offer 

positive, long-lasting effects on children.  

Other physical benefits brought about by float-REST include boosting the immune system, 

increasing endorphin production, preventing sports injuries, speeding up athletic recovery, 

improving the absorption of nutrients and even improving the formation of joint proteins, brain 

tissue and mucin proteins. Mental benefits of floating include accelerated learning, heightened 

mental clarity and alertness, increased creativity and problem solving, and drastic reductions in 

anxiety. Floating even facilitates freedom from phobias, addictions, and destructive habits. Lastly, 

floatation tubs can improve one’s quality of sleep and thereby help with sleep disorders.  

Float pods may be implemented into gyms in the future. The various beneficial effects of float-

REST on athletic performance are well documented. For example, in a study of 24 college students, 

float-REST was found to speed up recovery after strenuous physical training by decreasing blood 

lactate. A 2016 study of 60 elite athletes also found float-REST to improve both psychological and 

physical recovery following intense training and competition. 

Floatation therapy is a simple method of holistic healing that has proven to help millions of people 

from all different walks of life around the world. It may not be the end-all, cure-all for all ailments, 

but there’s proof in the pudding that it can serve as a potent treatment for a wide variety of 

conditions . The most recent research suggests that floatation therapy can be an effective 

supplement to treatment programs for substance abuse and addiction. For instance, the National 
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Center for Biotechnology Information (NCBS) show that floatation therapy may be a viable 

resource for people struggling with addiction. One study explains that “restricted environmental 

stimulation therapy (REST) [can be] offered as a useful, flexible tool that can facilitate change in 

addictive variables at each level of complexity, from habitual acts through attitudes to self-concept 

and spirituality.” 

Your own home sensory deprivation tank can cost between $10,000 and $30,000. The cost for a 

one-hour float session at a floatation center or float spa ranges from about $50 to $100, depending 

on the location. Having mobile float pods in the future would provide convenient access to a 

greater population of users as well as allow for deployment and relocation to multiple sites. 

In sum, we hope this review will constitute a good entry point for those looking to use float pods 

in their work and will assist the field to produce high-quality, reproducible results. 
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for GAD-

symptomatology 

[F(2,88) = 2.93, 

p < .001, η2p = 

.062] was found. 

Further analyses 

showed that the 

GAD-

symptomatology 

was significantly 

reduced for the 

treatment group 

(t(23) = 4.47, p < 

.001), but not for 

the waiting list 
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control group 

(t(21) = 0.98, p > 

.05), when 

comparing 

baseline to post-

treatment 

scoring. 

Regarding 

clinical 

significant 

change, 37 % in 

the treatment 

group reached 

full remission at 

post-treatment. 

Significant 

beneficial effects 

were also found 

for sleep 

difficulties, 

difficulties in 

emotional 

regulation, and 

depression, 

while the 

treatment had 
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ambiguous or 

non-existent 

effects on 

pathological 

worry and 

mindfulness. All 

improved 

outcome 

variables at post-

treatment, except 

for depression, 

were maintained 

at 6-months 

follow. No 

negative effects 

were found.  

[294] Examining the 

short-term 

anxiolytic effect 

of floatation-

REST. 

0 50 participants were 

recruited across a 

spectrum of anxiety 

and stress related 

disorders. Also 30 

participants without 

any anxiety and stress 

were recruited for 

reference. recruiting 

subjects from the 

60 minutes in 

float pod for 

subjects and 

90 minutes for 

control group. 

Anxious group 

had the choice 

of having 

lights on or off 

whereas 

ASI-3          

OASIS                              

PHQ-9  

PSS            

SDS            

HM            

STAI-Y state                                      

PANAS-X  

KSS  

Wong Baker 

anxiety participants 

reported 

significant 

reductions in 

stress, muscle 

tension, pain, 

depression, and 

negative affect, 

accompanied by 

a significant 
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T1000 database. 

Targeting participants 

with anxiety and 

stress disorders, 

many with comorbid 

unipolar depression. 

Participants with very 

high levels of anxiety 

sensitivity, anxiety 

sensitivity index 

(ASI-3)total score>= 

30. also included cut 

off score of 8 or 

greater for their 

overall anxiety 

severity and 

impairment 

scale(OASIS). Also 

selected participants 

with no float-pod 

experience but some 

swimming experience 

before 

control group 

were 

instructed to 

have it off. 

Pain scale 

VAS  

   

improvement in 

mood 

characterized by 

increases in 

serenity, 

relaxation, 

happiness and 

overall well-

being (p < .0001 

for all variables). 

In reference to a 

group of 30 non-

anxious 

participants, the 

effects were 

found to be more 

robust in the 

anxious sample 

and approaching 

non-anxious 

levels during the 

post-float period. 

Further analysis 

revealed that the 

most severely 

anxious 
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participants 

reported the 

largest effects. 

There were 2 

side effects 

reported, dry 

mouth and 

itchiness 

[250] Altered 

Consciousness In 

Floatation-Rest 

And Chamber-

Rest: Experience 

Of Experimental 

Pain And 

Subjective Stress 

2 23 participants were 

recruited. Their mean 

age was 29.48 years 

(SD = 4.97, range = 

21 to 41), and 13 

individuals were 

students whereas 10 

had professions. They 

were recruited 

through association 

with sports-active 

groups in the 

province of Värmland 

one 45-minute 

exposure to 

floatation-

REST and one 

exposure to 

chamber-

REST on two 

occasions, 

incorporating 

random 

assignment to 

either 

floatation-

REST 

followed by 

chamber-

REST or vice 

versa. The 

VAS  

HAD: 

Blood pressure 

EDN 

conscio

usness 

It was found that 

floatation-REST 

induced a 

significantly 

higher degree of 

altered states of 

consciousness 

(ASC), as 

measured with 

an instrument 

assessing 

experienced 

deviation from 

normal state 

(EDN), than did 

chamber-REST. 

Participants 

experiencing 
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study was 

carried out for 

two weeks, 

with a six-

week interval 

separating 

each week. On 

each occasion, 

the Restricted 

Environmental 

Stimulation 

Technique 

(REST) 

procedure was 

followed 

immediately 

by testing 

experimentall

y induced pain 

to one arm 

using a blood 

pressure cuff 

High EDN in the 

floatation-REST 

condition 

reported higher 

levels of both 

“experienced 

pain” and 

“experienced 

stress” than did 

those 

experiencing 

Low EDN. 

These results 

suggest that the 

particular 

distinguishing 

features of 

floatation-REST 

and chamber-

REST may cause 

selective 

deviations from 

normal levels of 

consciousness, 

under 

experimental 
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conditions, that 

may underlie the 

subjective 

experience of 

pain and stress 

thresholds. 

[290] Effects of 

floatation Rest 

(Restricted 

Environmental 

stimulation 

technique) on 

stress Related 

muscle Pain: Are 

33 floatation 

sessions more 

Effective THAN 

12 sessions? 

2 Participants were 37 

patients, 29 women 

and 8 men, all 

diagnosed as having 

stress-related pain of 

a muscle tension 

type. Subjects 

recruited from the 

waiting list at the 

Human Performance 

Laboratory at 

Karlstad University. 

They had been 

diagnosed by a 

physician as having 

stress-related pain, of 

a muscle tension 

type. They reported 

having had pain for 

All 

participants, 

irrespective of 

condition, 

were treated 

with 

floatation-

REST during 

two periods 

consisting of 

two treatments 

per week for 

three weeks, 

separated by a 

week  without 

treatment. The 

group with 12 

treatments 

visited the 

PAI  

Pain Matcher 

SE   

HAD  

LOT  

PANAS 

pain analyses for 

subjective pain 

typically 

indicated that 12 

sessions were 

enough to get 

considerable 

improvements 

and no further 

improvements 

were noticed 

after 33 sessions. 

A similar pattern 

was observed 

concerning the 

stress-related 

psychological 

variables: 

experienced 
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an average of 11.14 

years (SD = 8.41) and 

23 of the patients 

took analgesics on a 

regular basis. The 

average age of the 

patients was 49.54 

years (SD = 8.67). 

Among the patients, 

14 had also received 

the diagnosis of burn-

out depression 

including symptoms 

such as fatigue, less 

energy, loss of self-

esteem, problems 

with organizing daily 

life, problems with 

memory and 

processing new 

information, 

problems with sleep, 

finding that the 

ailments are not 

relieved by rest, and 

laboratory 

twice a week 

during 6 

weeks (over a 

total of 7 

weeks). The 

other group 

with 33 

treatments 

visited the 

laboratory 

after the initial 

seven weeks 

for seven 

more three-

week periods 

of treatment, 

with only one 

session a week 

(over a total of 

35 weeks). 

stress, anxiety, 

depression, 

negative 

affectivity, 

dispositional 

optimism, and 

sleep quality. For 

blood pressure 

no effects were 

observed after 12 

sessions, but 

there was a 

significant lower 

level for 

diastolic blood 

pressure after 33 

sessions. 



 

 234 

feelings of low-

spiritedness. 

[292] Treating stress-

related pain with 

the floatation 

restricted 

environmental 

stimulation 

technique: Are 

there differences 

between women 

and men? 

0 88 patients (69 

women, 19 men).The 

mean (± SD) age of 

the patients was 

49.28±9.24 years. all 

recruited from the 

waiting list at the 

Human Performance 

Laboratory at 

Karlstad University. 

subjects were 

selected because they 

had been diagnosed 

by a physician as 

having chronic stress-

Participants 

were 

randomly 

assigned to 

one of three 

different 

experimental 

studies that 

included 

floatation-

REST groups 

with 

assessments 

before and 

after treatment 

DTs  

PE  

PAI  

Pain Matcher: 

SE 

HAD 

pain The analyses 

indicated that the 

floatationREST 

treatment had 

beneficial effects 

on stress, 

anxiety, 

depression, sleep 

quality and pain 

and that there 

were few sex 

differences. 

Women were 

more depressed 

than men before 
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related muscle 

tension pain 

during 12 or 

more sessions 

– study 1 (13), 

study 2 (20) 

and study 3 

(31). The 

participants 

were treated 

with 

floatation-

REST during 

two three-

week periods 

consisting of 

two treatments 

(45 min each) 

per week for 

three weeks, 

followed by a 

week without 

treatment. 

treatment, but 

after treatment 

there was no 

difference 

between sexes. 

However, there 

was a sex 

difference in the 

ability to endure 

experimentally 

induced pain, 

suggesting that 

men exhibited 

greater 

endurance both 

before and after 

the floatation-

REST treatment. 

The results also 

showed, for the 

first time, that 

both sexes 

improved their 

ability to endure 

experimentally 

induced pain 
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(higher scores 

for upper pain 

threshold) 

following the 

successful 

floatation-REST 

pain treatment. 

[289] Effects of 

floatation-

restricted 

environmental 

stimulation 

technique on 

stress-related 

muscle pain: 

What makes the 

difference in 

therapy 

attention-placebo 

or the relaxation 

response? 

2 Thirty-two patients 

(25 women and seven 

men). The average 

age of the patients 

was 48.46±9.51 

years. Subjects 

recruited from the 

waiting list at the 

Human Performance 

Laboratory at 

Karlstad University, 

Karlstad, Sweden. 

They had been 

diagnosed by a 

physician as having 

stress-related pain of 

a muscle tension type 

All 

participants, 

regardless of 

condition, 

were treated 

with 

floatation-

REST for a 

seven-week 

period. The 

period 

consisted of 

two treatments 

per week for 

three weeks, 

followed by a 

week without 

treatment, 

then another 

PAI  

SE 

HAD:LOT  

PANAS  

pain The participants 

exhibited 

lowered blood 

pressure, 

reduced pain, 

anxiety, 

depression, 

stress and 

negative 

affectivity, as 

well as increased 

optimism, 

energy and 

positive 

affectivity. The 

results were 

largely 

unaffected by the 

degree of 
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three weeks of 

treatments. 

Thus, the 

participants 

received a 

total of 12 

floatations 

during two 

periods of 

three weeks 

each. 

attention-placebo 

or diagnosis. 

[307] Quality of Life 

with Floatation 

Therapy for a 

Person 

Diagnosed with 

Attention Deficit 

Disorder, 

Atypical Autism, 

PTSD, Anxiety 

and Depression 

1(si

ngle 

subj

ect) 

a 24-year-old female 

subject with 

psychiatric and 

neuropsychiatric 

disorders. This 

subject was chosen 

because she was 

thoroughly assessed 

and diagnosed with 

Attention Deficit 

Hyperactivity 

Disorder 

predominantly 

inattentive subtype 

(DSMIV; 314.00) 

At week one, 

floatation was 

performed for 

3 × 45 

minutes, at 

week two and 

three for 2 × 

45 minutes, at 

week four to 

six for 1 × 45 

minutes, and 

week seven 

and forward 

included one 

or two 

Subjective 

floatation 

experience 

psychol

ogy 

From this 

qualitative 

single-subject 

study we learn 

that floating was 

associated with 

beneficial 

therapeutic 

effects in terms 

of quality of life, 

subjective 

wellbeing, and 

healthy behavior. 

The respondent: 

“feel good well 
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and with atypical 

autism (DSM-IV; 

299:80) by a 

neuropsychiatric 

specialist-team. 

When she initiated 

floating, she suffered 

from PTSD (due to 

the earlier episode of 

assault), high stress 

load, fatigue, social 

phobia, anxiety, 

recurring episodes of 

depression, muscle 

tension pain and 

general stiffness. 

sessions per 

month. At the 

time of the 

first interview 

she had 

performed 

floatation for 

one and half 

year including 

approximately 

50 sessions in 

total. At the 

one-year 

follow-up, she 

had floated 

approximately 

75 sessions. 

The first 

interview was 

conducted at 

the 

respondents 

floatation 

center, it 

prolonged for 

74 minutes 

like a new 

person and so it 

has made a great 

difference… it 

really has, and I 

really want to 

continue with 

this because I 

really need it.” 
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and was 

recorded on a 

mini-disc. The 

interview was 

semi-

structured 

with questions 

like: how 

come you 

started 

floating, how 

do you 

experience 

floating, has 

your life 

somehow been 

affected by 

floating, has 

your 

experience of 

floating 

changed over 

time? A one-

year follow-up 

was performed 

to understand 
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more about 

the 

experiences 

from long-

lasting 

floatation and 

handwritten 

notes were 

taken 

[306] Comparison of 

Bispectral Index 

[TM] values 

during the 

floatation 

restricted 

environmental 

stimulation 

technique and 

results for stage I 

sleep: a 

prospective pilot 

investigation 

1(si

ngle 

subj

ect) 

1 subject (the author) 22 1-hour 

floatation-

REST 

sessions. 

During 

sessions 14 

and 16, BIS 

monitoring 

was performed 

where BIS 

values were 

recorded on 

the BIS-X 

hard drive 

every minute 

during 

floatation. 

BIS 

Mood score 

sleep Pre-floatation 

mood scores 

progressively 

increased from 5 

at sessions 1–7 

to 8 at sessions 

16–22. Similarly, 

post-floatation 

mood scores 

increased during 

later sessions. 

The mean pre-

floatation and 

post-floatation 

difference for the 

22 float sessions 

was 3.5 ± 0.5. 
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[288] Effects of 

floatation-REST 

on muscle 

tension pain 

2 Thirty-seven patients 

(14 men and 23 

women). The mean 

age of the 

participants was 

31.63 years. A 

portion of the 

participants were 

recruited through a 

‘remission’ procedure 

(a procedure that 

allows patients access 

to specialized 

treatment on 

recommendation 

from their physician) 

from each one’s 

general practitioner. 

A portion of the 

participants 

responded to 

announcements by 

the Karlstad 

University, Sweden, 

for individuals 

suffering from 

nine 

treatments 

(three times 

per week for 

three weeks). 

Each 

floatation 

treatment 

lasted 45 min, 

resulting in a 

total of 300 h 

of treatment. 

HAD 

Subjective 

floatation 

experience 

APZ 

OAVAV 

Analysis of 

blood samples 

pain The results 

indicated that the 

most severe 

perceived pain 

intensity was 

significantly 

reduced, whereas 

low perceived 

pain intensity 

was not 

influenced by the 

floating 

technique. 

Further, the 

results indicated 

that circulating 

levels of the 

noradrenaline 

metabolite 3-

methoxy-

4hydroxyphenyl

ethyleneglycol 

were reduced 

significantly in 

the experimental 

group but not in 
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localized muscle 

tension pain in the 

neck and shoulder 

area, with or without 

temporal headache 

the control group 

following 

treatment, 

whereas 

endorphin levels 

were not affected 

by floatation. 

Floatation-REST 

treatment also 

elevated the 

participants’ 

optimism and 

reduced the 

degree of anxiety 

or depression; at 

nighttime, 

patients who 

underwent 

floatation fell 

asleep more 

easily. The 

present findings 

describe possible 

changes, for the 

better, in patients 

presenting with 
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chronic pain 

complaints. 

[247] Psychotherapeuti

c Treatment in 

Combination 

with Relaxation 

in a Floatation 

Tank: Effects on 

“Burn-Out 

Syndrome” 

2 Four women and two 

men between the ages 

of 33 and 57 years 

old took part in the 

study. The average 

age of the clients was 

42.7 years. They 

were all diagnosed as 

suffering from 

burnout syndrome 

with symptoms of 

fatigue, listlessness, 

and problems 

organizing daily life. 

Weekly for 45 

minutes over a 

ten-week 

period 

consisting of 

floatation-

REST 

treatments and 

psychotherapy 

with a 

psychologist 

EPP-method 

MU 

physiol

ogical 

Deep relaxation 

and altered states 

of consciousness 

were induced, 

with experiences 

like feelings of 

flying, entering a 

state of 

“nothingness” 

and feelings of 

distinguishing 

the mind from 

bodily 

limitations. 

Experiencing 

how the mind 
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and body are 

separate entities 

gave rise to 

insights 

concerning their 

close 

connectedness. 

A heightened 

awareness of 

physical 

sensations of 

breathing 

patterns and 

bodily responses 

were noticed, as 

was an 

augmented 

awareness of 

body image and 

body processes 

in general. Also 

a deep physical 

relaxation, as 

well as mental 

relaxation with 

fewer thought 
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processes were 

achieved and 

were greatly 

appreciated. By 

the end of the 

course of 

treatment ten 

weeks later, all 

the participants 

were so full of 

energy and 

strength that 

neither they 

themselves nor 

their physicians’ 

assessed that any 

disability leave 

was needed. 

They all returned 

to work full-

time. 
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[300] Case Studies on 

Fibromyalgia 

and Burn-Out 

Depression 

Using 

Psychotherapy in 

Combination 

with Floatation-

Rest: Personality 

Development 

and Increased 

Well-Being 

1(si

ngle 

subj

ect) 

Two women on long-

term sick-leave, aged 

55 and 58. They had 

indicated their 

interest in 

participating in the 

experiment with 

floatation-REST 

treatment at the 

Human Performance 

Laboratory at 

Karlstad University 

but, after a medical 

examination, had 

been excluded from 

participating in a 

planned experiment 

because their anxiety 

levels were adjudged 

to be too high; they 

were subsequently 

referred to this study 

(the two women). 

(a) floatation-

REST 

treatment at 

least once 

every other 

week for 45 

minutes on a 

total of 35 

occasions, (b) 

group therapy 

on eight 

occasions, (c) 

conversational 

therapy on 

eight 

occasions and 

(d) picture 

Floatation-

REST and 

therapy on 

eight 

occasions. The 

group, 

conversational 

and pictures 

therapy 

MU physiol

ogical 

 

In only a total of 

28 hours of 

group, 

conversational 

and picture 

therapy spread 

over a year 

(which 

represents 

approximately 

15 minutes’ 

therapy per 

client per week) 

the two 

therapists 

achieved a 

dramatic change 

in the lives of the 

two women, 

thanks to the 

combination 

with floatation-

REST. A follow-

up 18 months 

after the 
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sessions were 

coordinated in 

a total of eight 

meetings. 

completion of 

the therapy 

revealed that the 

spiral of 

increased 

meaning and 

enhanced 

wellbeing was 

still in operation. 

[283] EFFECTS OF 

FLOATATION- 

VERSUS 

CHAMBER-

RESTRICTED 

ENVIRONMEN

TAL 

STIMULATION 

TECHNIQUE 

(REST) ON 

CREATIVITY 

AND REALISM 

UNDER 

STRESS AND 

NON-STRESS 

CONDITIONS 

2 first study:38 

subjects, 21 were 

female subjects and 

17 were male 

subjects. The mean 

age of the 

participants was 

34.31 

second study: Thirty-

two subjects were 

recruited,13 men and 

19 woman (Subjects 

were recruited from 

announcements 

placed on 

announcement boards 

1 or 3,45 

minute 

sessions 

depending on 

the assigned 

group 

 

Syllogisms I-II  

HAD 

LOT  

FS 

Composition 

Test 

EDN 

Stress test 

positive 

effects 

of FP 

1. No differences 

concerning 

divergent or 

logical 

production were 

obtained whether 

floatation 

occurred once or 

on three 

occasions. 

2. Floatation-

REST induced 

more originality, 

yet less 

deductive 

thinking. 

3. Chamber-
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throughout the 

university.) 

REST induced 

more realistic 

and elaborated 

thinking. 

4. Subjects that 

were stressed in 

the Floatation-

REST condition 

were more lively 

compared with 

the non-stressed 

subjects in that 

condition. 

5. Stressed 

subjects in the 

Chamber-REST 

condition 

showed more 

realism than 

their non-

stressed 

counterparts. 

6. Both 

Floatation-REST 

and Chamber-

REST were 
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equally effective 

in reducing 

stress, i.e., 

showed 

comparable 

efficacy as 

relaxation 

techniques. 

However, 

Floatation-REST 

altered 

consciousness to 

a greater extent 

than Chamber-

REST. 

7. Correlational 

analysis 

indicated that the 

more adaptable 

and receptive to 

change and the 

more optimistic 

one was, the 

more originality 

on essay writing 

one exhibited. 
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Further, there 

was a 

relationship 

between more 

lively 

accompanied by 

less realistic. 

[293] A Clinical Trial 

Investigating the 

Safety and 

Tolerability of 

Floatation-Rest 

in Anorexia 

Nervosa 

0 21 Anorexia Nervosa 

Patients 

Four float 

sessions for 

each 

participant. 

Blood pressure 

Subjective 

floatation 

experience 

BMI 

anxiety Twenty-one 

patients 

completed the 

study (average 

EDE-Q: 2.3+/-

1.4, average 

BMI 22+/-2.7. 

Primary 

outcome: there 

was no evidence 

of systolic or 

diastolic 

orthostatic 

hypotension after 

each float in any 

participant, and 

no adverse 

events. We 
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significantly 

observed 

improvements in 

anxiety 

(p<0.001, 

Cohen’s d>1), 

negative affect 

(p<0.01, 

Cohen’s d>0.5), 

heightened 

interoceptive 

aware- ness for 

cardiorespiratory 

(p<0.01, 

Cohen’s d 0.2-

0.5) but not 

gastrointestinal 

sensations, and 

reduced body 

dissatisfaction 

ratings (p<0.001, 

Cohen’s d>0.5) 

following 

floating. 
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[284] Eliciting the 

Relaxation 

Response with 

the Help of 

Floatation–

REST 

(Restricted 

Environmental 

Stimulation 

Technique) in 

Patients With 

Stress-Related 

Ailments 

2  54 women and 16 

men. Subjects 

recruited from the 

waiting list at the 

Human Performance 

Laboratory at 

Karlstad University, 

participated in the  

study.  They had been  

diagnosed  by  a  

physician  as  having 

stress-related  pain  of  

a  muscle  tension  

type. 

12 session/45 

min. 

Participants 

were 

randomly 

assigned in 

equal numbers 

(35 

participants) 

to one of two 

experimental 

groups:  a 

control group  

and  a  

floatation–

REST  group  

(see  the  

sections 

“Design”  and  

“Procedure”). 

Questionnaire 

1Before the 

treatment 

(floating in the 

tank), a 

questionnaire 

was provided 

that estimated 

each subject’s 

self-assessed 

pain: intensity, 

frequency, 

duration, 

onset, sleep 

quality, 

treatment as 

well as 

experiences/sy

mptoms of 

other types of 

complaints. 

Each subject’s 

own 

descriptions of 

“sleep quality” 

were estimated 

positive 

effects 

of FP 

awareness of 

body image and 

body processes 

in general. Also, 

a deep physical 

relaxation, as 

well as mental 

relaxation with 

fewer thought 

processes were 

achieved and 

were greatly 

appreciated. 
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on visual 

analog scales 

(0 –100). 

Questionnaire 

2At a final 

meeting 

directly after 

the 7 weeks of 

the 

experimental 

floatation 

procedure, the 

same questions 

were presented 

as in 

questionnaire 

1. 

[282] Floatation REST 

as a Smoking 

Intervention 

2 33 females between 

the ages of 20 and 64. 

All have made efforts 

to stop smoking. The 

subjects on average 

smoke 30 cigarettes 

per day for ~20 years. 

Subjects volunteered 

for the experiment. 

The subjects 

were each 

placed in the 

tank. The 

participants 

were divided 

into groups. 

Half of these 

groupings 

health and 

personality 

questionnaires 

positive 

effects 

of FP 

The percent 

reduction data at 

twelve months 

was subjected to 

analysis of 

variance. The 

between effects 

were messages, 

float/no float 
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The experiment was 

advertised via radio, 

magazines, etc. 

receive brief 

taped 

messages on 

an intercom 

system early 

in floats two 

through five; 

the others 

receive no 

messages. The 

first float was 

up to 150 

minutes. 

Thereafter half 

receive four 

more floats of 

up to 60 

minutes 

duration on 

consecutive 

days; the other 

half receive 

four more 

floats, each a 

week apart, 

and for up to 

(60-minute 

groups, 150-

minute groups, 

and control 

groups), and the 

interaction of 

messages and 

float/no float 

conditions. Only 

the main effect 

for float/no float 

conditions was 

found to be 

significant (p = < 

.05 for 2,27 df). 

Fisher’s multiple 

comparisons 

tests reveal that 

the short float 

groups (Groups 

1 and 2) are 

reliably lower 

than the control 

groups (Groups 

5 and 6) at the p 

= < .05 (1, 27 
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150 minutes 

duration.  Five 

floats, each a 

week apart. 

Then, follow-

up phone calls 

for up to 12 

months after 

the last float. 

df), and that 

Group 1 and 

Group 2 are both 

reliably lower 

than Group 6 

(both at the p = < 

.05, for 1, 27 df). 

Groups 3 and 4 

do not differ 

reliably from 

Groups 1 and 2 

nor from Groups 

5 and 6. Thus, 

the control 

groups reduce 

smoking reliably 

more than the 

short float 

groups and the 

control group 

without 

messages 

reduces smoking 

reliably more 

than each of the 
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short float 

groups. 

[251] Beneficial 

effects of 

treatment with 

sensory isolation 

in floatation-tank 

as a preventive 

health-care 

intervention – a 

randomized 

controlled pilot 

trial 

2 Sixty-five 

participants (14 men, 

51 women) from 

three different 

companies with a 

mean age of 47.95 

years. The 

participants were all 

part of a cooperative-

health project 

initiated by their 

individual companies. 

There was a wide 

range of occupational 

groups varying from 

managers, employers 

and employees all in 

the retail industry. 

7-week period 

with a total of 

12 floatation-

REST sessions 

(45 min each). 

SE 

HADS 

LOT 

SQ 

MAAS 

VAS 

EDN  

positive 

effects 

of FP 

The main 

findings were 

significant 

decreased 

experienced 

stress, worst 

pain, anxiety, 

and depression - 

as well as 

significant 

increased sleep 

quality and 

optimism for the 

floatation-REST 

group compared 

to the control 

group. In 

addition, it was 

found that the 

dimensions 

mindfulness and 

altered states of 
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consciousness, at 

least to some 

extent, seemed to 

be overlapping 

constructs. 

[245] Characterizing 

the experiences 

of flotation-

REST 

(Restricted 

Environmental 

Stimulation 

Technique) 

treatment for 

generalized 

anxiety disorder 

(GAD): A 

phenomenologic

al study 

0 9 individuals (two 

men and seven 

women) with a mean 

age of 45 years (age 

range 24–61). They 

were selected from a 

sample comprising 24 

individuals 

participating in a 

research project 

evaluating flotation-

REST as an 

intervention for GAD 

flotation 

treatment 

consisted of 

12 flotation 

session (á 45 

min) over a 

seven-week 

period with 

two sessions a 

week, and 

with the fourth 

week 

treatment free 

health and 

personality 

questionnaires 

anxiety The result 

highlights that 

flotation-REST 

treatment of 

GAD was 

experienced as a 

comprehensive 

process that were 

both challenging 

and pleasant. 

The results 

indicate that the 

method 

positively 

affected 

symptoms and 

the core issue 

associated with 

GAD on an 

experiential 

level. The 
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present study 

also generated 

some initial 

understanding 

regarding 

potential 

mechanism that 

might mediate 

and maintain 

positive 

treatment effects 

when flotation-

REST is applied 

as an 

intervention of 

GAD 

[248] Preventing Sick-

leave for 

Sufferers of 

High Stress-load 

and Burnout 

Syndrome: A 

Pilot Study 

Combining 

0 Four women and two 

men between the ages 

of 33 and 57 years 

old. They were all 

diagnosed as on the 

brink for sick leave 

and suffering from 

‘burn-out syndrome’ 

with symptoms of 

twice weekly 

for 45 minutes 

during a 10-

week period. 

For each 

person in this 

study, there 

will be a total 

of three hours 

in the 

GHQ-12  

HAD  

PAI  

VAS  

SQ  

physiol

ogical 

The results 

revealed a 

significant 

decrease in 

degree of 

depression and 

anxiety and an 

increase in 

positive outlook 

on life. There 
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fatigue and problems 

organizing daily life 

floatation-

laboratory and 

one hour 

psychotherapy 

each week; 

this multiplied 

with the 

scheduled ten 

weeks 

treatment time 

generates a 

total of 40 

hours per 

included 

person. 

was also a 

significant 

decrease in 

extent of painful 

areas and a 

significant 

decrease in their 

experienced 

worst pain-

intensity. After 

the treatment 

period, they all 

continued to 

work, and there 

was no need for 

sick leave. 

[291] Chronic 

Whiplash-

Associated 

Disorders and 

Their Treatment 

Using 

Floatation-REST 

(Restricted 

Environmental 

0 7 subjects (6 women 

and 1 man). All being 

diagnosed as having 

chronic WAD by 

licensed physicians. 

Six participants either 

had WAD grade II 

(neck complaints and 

musculoskeletal 

signs) or WAD grade 

Number of 

sessions 

varied from 2 

to 15, 45 

minute each 

treatment 

Subjective 

floatation 

experience 

pain The results 

therefore contain 

two models; the 

first model 

covers the 

participants’ 

experiences of 

the crises that 

took place in 

times prior to the 
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Stimulation 

Technique) 

III (neck complaints 

and neurological 

signs), and one 

participant had WAD 

grade IV (neck 

complaints and 

evidence of fracture 

or dislocation). 

treatment, and 

the second 

model describes 

the short-term 

effects of the 

floatation-REST 

treatment in 

terms of 

floatation 

phases. A linear 

story about the 

experienced 

effects of the 

floatation-REST 

treatment in 

participants with 

chronic WAD 

appears as the 

background and 

adds depth, the 

foreground adds 

light, and the 

participants’ 

quotations add 

illustrations to 

the story. short-
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term effects of 

the treatment in 

terms of five 

phases: (a) 

intensification, 

(b) vitalization, 

(c) transcreation, 

(d) 

deflocculation, 

and (e) 

reorientation. 

Results indicated 

that floatation 

REST is a 

meaningful 

alternative for 

treating chronic 

whiplash-

associated 

disorder 

[301] Floatation 

restricted 

environmental 

stimulation 

therapy and 

napping on 

0 60 athletes, 28 male 

and 32 female across 

9 sports (athletics = 

8; basketball = 8; 

boxing = 2; cycling = 

10; football = 11; 

Subjects were 

told to arrive 

within 1-3 

hours after 

finishing their 

training. 

MDMQ 

Muscle 

Soreness                              

physiol

ogical 

A significant 

reduction in 

perceived muscle 

soreness in was 

seen in pre to 

post FLOAT. A 
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mood state and 

muscle soreness 

in elite athletes: 

A novel recovery 

strategy? 

netball = 15; rowing 

= 2; rugby = 2; 

swimming = 2). 

Found volunteers of 

elite Australina 

athletes that have not 

taken part in a 

floatation tank 

session. All athletes 

represent their 

country at an 

international level 

from summer and 

winter sports 

Subjects 

would fill out 

a 

questionnaire 

pre and 10-

minutes post 

FLOAT pod. 

Subjects were 

also told to 

come in a 

hydrated state. 

FLOAT was 

done for ~45 

(48 ± 15 min) 

after training 

for 6 months. 

moderate 

correlation (r = -

0.35) was ween 

between the pre 

to post FLOAT 

muscle soreness. 

This indicated 

that a higher pre-

FLOAT muscle 

soreness was 

associated with 

greater 

reductions in 

muscle soreness 

for post FLOAT. 

15 of the 16 

mood-states was 

significantly 

enhanced 

following 

FLOAT. Alert 

was the mood-

state that seemed 

to not change 

significantly. 

The greatest 
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change was 

"relaxed" as a 

mean change of 

1.5 ± 1.3 was 

seen. 28/60 

athletes reported 

to nap during 

FLOAT. A 

significance 

difference 

between nap and 

no-nap was seen 

in pre to post 

FLOAT for 5 of 

the 16 mood-

state variables 

(“worn-out”, “at-

ease”, “tense”, 

“fresh” and 

“exhausted”). 

Small and 

moderate effects 

were seen in 9 

mood states. No 

significance was 

found between 
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nap and no-nap 

for muscle 

soreness.  

[295] The Elicitation 

of Relaxation 

and Interoceptive 

Awareness 

Using Floatation 

Therapy in 

Individuals with 

High Anxiety 

Sensitivity 

2 31 participants with 

high AS. Subjects all 

had high anxiety 

sensitivity 

one 90-minute 

float session 

ASI-3  

OASIS  

PHQ-9  

SDS  

anxiety Relative to the 

comparison 

condition, 

Floatation-REST 

generated a 

significant 

anxiolytic effect 

characterized by 

reductions in 

state anxiety and 

muscle tension 

and increases in 

feelings of 

relaxation and 

serenity (p= 

0.001 for all 

variables). 

Significant blood 

pressure 

reductions were 
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evident 

throughout the 

float session and 

reached the 

lowest point 

during the 

diastole phase 

(average 

reduction .12 

mm Hg). The 

float 

environment also 

significantly 

enhanced 

awareness and 

attention for 

cardiorespiratory 

sensations. 

        

[304] THE 

EXPERIENCE 

OF 

FLOATATION-

2 28 total (The 

participants’ mean 

age was 32.04 years 

(SD = 8.29))/24 men 

1 session/60m 

minutes. 

Fourteen 

former drug-

health and 

personality 

questionnaires 

Subjective 

conscio

usness 

The findings of 

this study 

indicate that 

floatation-REST 
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REST AS A 

FUNCTION OF 

SETTING AND 

PREVIOUS 

EXPERIENCE 

OF ALTERED 

STATE OF 

CONSCIOUSN

ESS 

and 4 women. 

Participants were 

randomly assigned to 

either a “strict” 

setting (strict-

condition) or to a 

“fantasy” setting 

(fantasy- condition) 

users, they 

were matched 

against 14 

participants 

without drug 

experience of 

comparable 

age, gender, 

and 

occupation. 

floatation 

experience 

offers a 

technique with 

notable potential 

for clinical and 

therapeutic 

application. 

Previous 

investigations 

have shown the 

technique to be 

used in 

association with 

the treatment of 

drug abuse 

problems. In the 

present study 

half of the 

subjects had a 

background of 

illegal substance 

abuse. There 

were no 

indications that 

floatation-REST 

was unsuitable 

for persons with 
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a background of 

abuse. Besides 

the more 

‘classical’ 

applications 

(pain alleviation, 

stress-reduction, 

mental training 

in sports), the 

technique ought 

to provide a 

useful adjunct 

within 

psychotherapy 

and personal 

development. 

[305] Sensory Isolation 

in Floatation 

Tanks: Altered 

States of 

Consciousness 

and Effects on 

Well-being 

0 Eight persons, six 

females and two 

males, aged 35 to 69 

years old (M = 49.5, 

SD = 12.4). Subjects 

were part of a 

floatation project at 

the stress clinic of the 

Human Performance 

Laboratory, where 

N/A. patients 

with earlier 

experience of 

floatation tank 

therapy (at 

least eight 

times) were 

included 

EPP-method 

NCT 

positive 

effects 

of FP 

Following the 

sorting and 

analyses of the 

material, 471 

MU was created 

providing insight 

into the research 

question as to 

how floating 

affects the 
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they had previously 

made an appointment 

because of mental or 

physical difficulties. 

They were selected 

from a group of 

patients who had 

floated at least eight 

times and visited the 

clinic within the 

previous month. The 

reason for this 

procedure was to 

include participants 

who were familiar 

with the technique, 

and whose 

experiences were 

recent. patients with 

earlier experience of 

floatation tank 

therapy (at least eight 

times) were included 

individual and 

the 

circumstances 

surrounding the 

floatation. The 

MU: s then 

generated 21 

categories which 

can be 

summarized into 

4 themes: 

Experiences 

during 

floatation-REST, 

Effects of 

floatation-REST, 

Technical details 

and the target 

group for 

floatation. 

Floating was 

perceived as 

total relaxation, 

hardly 

comparable to 

anything else. 
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The relaxation 

provides a sense 

of total calm and 

rest from 

everyday life. An 

altered state of 

consciousness 

(ASC) was 

induced during 

floating. It could 

vary from a mild 

ASC, e.g., like 

meditative 

daydreaming to a 

more powerful 

ASC with more 

profound, 

cognitive, 

perceptual, or 

transpersonal 

experiences. 

Floating was 

shown to 

produce pain 

relief and 

profound 
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relaxation in the 

present study as 

well as in several 

others, effects 

that were much 

valued. A few 

participants 

noted that they 

might feel some 

discomfort 

leaving the tank 

[285] Floatation-

restricted 

environmental 

stimulation 

therapy improves 

sleep and 

performance 

recovery in 

athletes 

2 Nineteen trained, 

male team-sport 

athletes (age: 21 ± 2 

years). They were 

chosen based on their 

athletic background. 

The team-sports from 

which the participants 

partook in were 

basketball (n = 4), 

football (n = 11), and 

rugby (n = 4). 

two 45-minute 

float session. 

they either sat 

in a dim light 

room after the 

exercise or in 

a float pod for 

45 minutes 

VAS  

cortisol levels 

in saliva 

isometric mid-

thigh pull 

dynamometer  

wrist 

actigraphy  

positive 

effects 

of FP 

FLOAT was 

found to 

significantly 

enhance CMJ (p 

= 0.05), 10 m 

sprint (p = 0.01) 

and 15 m sprint 

performance (p = 

0.05) with small 

to moderate 

effects (d = 

0.21–0.68) for 

all performance 

measures, except 

CMJ (unclear), 
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compared to 

CON. The 

results also show 

significantly 

higher pressure-

to-pain 

thresholds across 

all muscle sites 

(p’s < 0.01) and 

lower MS and 

PF 12 h 

following 

FLOAT (p < 

0.05). All sleep 

measures 

resulted in small 

to large effects 

(d = 0.20–0.87) 

with a 

significantly 

greater perceived 

sleep quality (p 

= 0.001) for the 

FLOAT trial 

compared to 

CON. There 
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were no 

significant 

differences and a 

trivial effect size 

between trials 

for changes in 

cortisol 

concentration. 

[251] Beneficial 

effects of 

treatment with 

sensory isolation 

in floatation-tank 

as a preventive 

health-care 

intervention – a 

randomized 

controlled pilot 

trial 

2 Sixty-five 

participants (14 men 

and 51 women) were 

all part of a 

cooperative-health 

project initiated by 

their individual 

companies, they were 

all health care 

workers. 

12 awaiting 

floatation 

sessions 

(around two 

per week 

for a period of 

seven weeks) 

where each 

session was of 

45 minutes 

duration and 

30 minutes to 

shower and 

relax 

SE  

HADS  

LOT  

SQ  

MAAS  

VAS  

EDN 

positive 

effects 

of FP 

Stress, 

depression, 

anxiety, and 

worst pain were 

significantly 

decreased 

whereas 

optimism and 

sleep quality 

significantly 

increased for the 

floatation-REST 

group. No 

significant 

results for the 

control group 

were seen. There 

was also a 
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significant 

correlation 

between 

mindfulness in 

daily life and 

degree of altered 

states of 

consciousness 

during the 

relaxation in the 

floatation tank 
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 6 Short-term Floatation-REST (Restricted Environmental 
Stimulation Technique) reduces stress: Analyses based on 
neural and cardiac components  

6.1 Introduction 

(Float pod) Sensory deprivation research, one of the first systematic laboratory 

explorations of environmental psychology, began in the late 1950s [310]. Its goal was to reduce 

environmental effects on a range of psycho-physiological, perceptual, cognitive, emotional, and 

other measures. Floatation-REST (Reduced Environmental Stimulation Therapy), an intervention 

that attenuates exteroceptive sensory input to the nervous system, has been self-reported to produce 

deep relaxation [244]. During Floatation-REST, a person is lying horizontally, face up, inside a 

quiet and dark tank, filled with heated salt-saturated water. Earlier research has documented deep 

relaxation and beneficial effects on fatigue [284], muscle tension [249], stress [254], sleep 

difficulties [311, 312], anxiety [251, 295] and depression [284, 290]. Floatation-REST is cost 

effective and secure, with minimal or a complete absence of adverse effects [313, 314].  

EEG is the most important tool to study brain behavior because it enables researchers to select 

localized information from the composite inner mechanisms of the brain [315]. The recorded 

waveforms reflect the activity of the brain structures underneath the cortex. The frontal cortex 

plays an important role in both emotional and motivational processes [316]. More specifically, the 

left frontal region is involved in the management of arousal and regulation of the stress response 

[317, 318]. Stress assessment based on EEG spectral analysis is discussed in [319-321]. A busy 

brain decreases alpha power (8-13 Hz) and increases beta power (13-30 Hz). Focused mental 
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processes are closely associated with a high-frequency EEG rhythm – the gamma rhythm (30 Hz 

and above) [322]. According to this model, asymmetry in frontal alpha activity reflects emotions 

and measures feelings. In fact, statistical differences of the frontal EEG alpha asymmetry have 

been observed under depression [323], examination stress [324] and sleep deprivation [325].  

Electrocardiography (ECG) is another tool of stress assessment that shows heart rate variability 

(HRV), the fluctuation in time intervals between adjacent heartbeats [326]. HRV is an emergent 

property of interdependent regulatory systems which operate on different time scales to help us 

adapt to environmental and psychological challenges. HRV indexes neurocardiac function and is 

generated by heart-brain interactions and dynamic non-linear autonomic nervous system (ANS) 

processes. It reflects the regulation of autonomic balance, blood pressure (BP), gas exchange, gut, 

heart, and vascular tone, referring to the diameter of blood vessels that regulate BP, and possibly 

facial muscles [327, 328]. Two overlapping processes generate short-term HRV [329]: The first is 

the dynamic and complex relationship between the sympathetic and parasympathetic branches; the 

second includes the regulatory mechanisms that control HR via respiratory sinus arrhythmia 

(RSA), the baroreceptor reflex (negative-feedback control of BP), and rhythmic changes in 

vascular tone [330].  

In HRV, frequency-domain measurements estimate the distribution of absolute or relative power 

into four frequency bands. The Task Force of the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology (1996) divided heart rate (HR) oscillations into 

ultra-low-frequency (ULF, (≤0.003 Hz)), very-low-frequency (VLF, 0.0033–0.04 Hz), low-

frequency (LF, (0.04–0.15 Hz)), and high-frequency (HF, (0.15–0.40 Hz)) bands. The ratio of LF 



 

 276 

to HF power (LF/HF ratio) may estimate the ratio between sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS) activity under controlled conditions [328]. 

Our laboratory has recently started to measure neural time series or electroencephalography (EEG) 

and electrocardiography (ECG) data during REST therapy [331]. The 6-channel EEG was recorded 

from the frontal  lobe (FP1, FP2, AF3, AF4, AF7, AF8). As a result, after adjusting pre-float 

procedure and applying artifact removal algorithm, stable EEG with high signal-to-noise ratio 

(SNR) could be recorded for 45 minutes without the presence of ECG artifacts. In previous studies, 

authors mentioned that more active comparator, rather than self-reports, and blood pressure 

measures are better  for assessing the efficacy of floatation-REST on anxiety [295]. Also, because 

the non-floatation state consisted of  participants sitting  upright in a chair, this posture  likely 

magnified the differences between measures of interoceptive awareness and muscle tension. 

In this study, we analyzed simultaneous central activity via EEG and autonomic heartbeat-to-

heartbeat (RR intervals) from ECG during floating and non-floatation conditions. We focused on 

the existence of and variation in different EEG and ECG frequencies in 17 subjects during floating 

and lying-in bed. Furthermore, we tracked the temporal dynamics of power spectral density in two 

different conditions for different frequency bands of 6-channel EEG signals (alpha, beta, and 

gamma). We design the non-floatation situation, lying in the bed, to decrease dissimilarities 

between conditions.  

Discovering a relation between autonomic nervous and brain dynamics will give us more insight 

into the effects of float pod on stress reduction. We hypothesized that floatation-REST -despite 

the pressure, body posture, temperature, humidity, and other conditions- can lower stress levels in 

a single session better than lying in the bed. 
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6.2 Methods and Materials 

6.2.1 Participants Recruitment and Randomization 

We used a within-subject crossover design, in which 17 participants who met specific inclusion 

and exclusion criteria were assigned to complete both a 21-minute session of Floatation-REST and 

a 21-minute session of an exteroceptive comparator (referred to as the bed condition), in random 

order. After completing one condition, participants crossed over to the other condition (average 

time between conditions was 30 minutes), with both conditions scheduled at the same time of day 

for each participant. We pre-determined the randomization sequence using a 1:1 allocation ratio, 

and the study used an open-label design with no blinding or concealed allocation.  

6.2.2 Data acquisition and pre-processing 

We recorded EEG and ECG during both conditions, i.e., floatation and lying-in bed, in 17 healthy 

subjects. Each recording lasts about 21 minutes, including 2 breaks, creating in effect 3 intervals 

of approximately 5.8 minutes each. A customized headband made from neoprene material secured 

the EEG electrodes using an elastic and adjustable cord. Tegaderm, medical-use tape, and a swim 

cap placed over the headband created a good seal, which helped to eliminate ECG artifacts. The 

EEG signals were recorded from frontal (AF3, AF4, AF7, and AF8) and frontopolar (FP1 and 

FP2) electrodes, with a customized 6-channel LiveAmp mobile EEG amplifier from Brain 

Products GmbH (Figure 37). The scalp EEG electrodes were referenced to AFz, and the ground 

was set at Fpz. Bipolar ECG signals were acquired using two passive electrodes placed below the 

collarbone and recorded from one of the auxiliary inputs on the LiveAmp sensor and trigger 

extension box. All data were digitized at 1000 Hz. After adjusting for pre-float procedures and 
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removing artifacts, a stable EEG signal with high signal-to-noise ratio was recorded without the 

presence of ECG artifacts [331]. 

  

Figure 37. (Left) A customized 6-channel LiveAmp mobile EEG amplifier from Brain 

Products GmbH was used to collect EEG signal from the frontal lobe and bipolar ECG 

signal. (Right) Sensory deprivation tank. 

6.2.3 Heart-beat detection and the RR time-series 

We filtered the ECG signal with a 6th order Butterworth band-pass filter 0.5–100Hz, identified the 

R peaks in the ECG using the Pan-Tompkins method [332-334], and confirmed the results visually. 

We intentionally analyzed all artifact-free RR intervals without rejecting any RR intervals that 

were too short or too long [335]. To extract the continuous RR tachograms, the RR intervals were 

resampled (at 4Hz for power spectrum estimation) and interpolated by piecewise cubic spline. 
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Zero-phase Butterworth filters were applied to the interpolated RR time-series to extract the low 

frequency (LF; 0.04-0.15Hz) component of !!!" and high frequency (HF; 0.15-0.4) component 

!!#"[335]. The !!!" reflects sympathetic nervous activity (although this is not universally 

accepted [336]) while the !!#" components reflect parasympathetic (vagal) activity [337]. Figure 

38 shows an example of the raw ECG, RR tachograms, !!!" and !!#"components for 40 seconds 

of a sample recording. 

 

Figure 38. (Top) Raw ECG signal, (Middle) RR tachograms, (Bottom) !!!" and !!#" 

components for 40 seconds RR time series. 

6.2.4 Extraction of the root mean of successive heart beats differences 

The root mean square of successive differences between normal heartbeats (RMSSD) represents 

the beat-to-beat variance in the HR and is the primary time-domain measure used to estimate the 

vagally mediated changes reflected in HRV [338]. We obtained the RMSSD by first calculating 

each successive time differences between the heartbeats in ms. Then, we squared each of the values 
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and averaged the result before obtaining the square root of the total. The RMSSD is positively 

correlated with the HF power and reportedly more influenced by the PNS activity [339]. Hence, 

higher RMSSD indicates greater parasympathetic influence. In this study, we found the RMSSD 

for three 5-minutes intervals during both conditions.  

6.2.5 Power Spectrum of RR time-series 

We calculated the RR power spectra for LF/HF ratio. Figure 39 represents the RR power spectrum 

for one subject (subject 4) during interval 3 for bed and pod conditions. For the purposes of 

statistical analyses, we calculated the LF/HF ratio as an index of the sympatho-vagal balance. 

 

Figure 39. Power spectrum of RR time series for subject 4, interval 3 in pod (left) and 

bed (right) for 3 frequency bands (VLF: 0.0033–0.04 Hz, LF: 0.04–0.15 Hz, and HF: 

0.15–0.40 Hz) 

6.2.6 EEG signal processing 

Preprocessing is an essential procedure for raw EEG data analysis. We used FieldTrip toolbox in 

this study. FieldTrip is open-source software available under the GNU General Public License 
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(GPL). The EEG signals were recorded from AF3, AF4, AF7, and AF8, FP1 and FP2 electrodes 

with a sampling frequency of 1000 Hz. The scalp EEG electrodes were referenced to AFz. The 

experiment has break times. We extracted the intervals before and after these break times. 

We also removed linear trends from the data. Then, we applied base correlations to these intervals. 

6.2.7 Statistical Analysis 

We analyzed the cardiac data to explore whether there is a difference in autonomous nervous 

system activity between the bed and the pod conditions and/or between the three-time intervals. 

To do so, we analyzed the RR intervals, RMSSD, and the LF/HF ratio in three separate, repeated-

measure ANOVAs with two factors (condition and interval) and their interaction 

(condition*interval). For this analysis, we used JASP 11.1.0. 

Also, we were interested in several factors potentially influencing the EEG power spectral density: 

condition, interval, channel (which electrode produced the given datapoint), and frequency band 

(alpha, beta, gamma). To analyze the effects of these factors and all their interactions (including 

their three-wise and four-wise interactions), we used a linear mixed-effect model. In general, the 

mixed-effect models quantify the relationships between the independent and dependent variables 

by breaking down the regression into both fixed effects and random effects. Fixed effects represent 

the global relationship between independent and dependent variables, while random effects 

represent the deviations from the global relationships within each group of datapoints belonging 

to the same group [340]. Specifically, we collected several datapoints from each subject, hence 

these datapoints are associated with each other by being collected from the same subject; hence, 

these datapoints were associated with each other. We therefore added the random effect of subject 
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into our analysis of the four above-mentioned fixed effects (condition, interval, channel, band). 

For this analysis, we used TIBCO Statistica 13. 

6.2.8 Sliding-window Analysis 

To provide more insight into the temporal dynamics of the EEG power spectral density, we 

averaged the PSD for each interval, channel, and band using a 60 s sliding window with a step size 

of 10 s. To compute the average band power, we first needed to compute an estimate of the power 

spectral density for each band. The most widely used method to do so is the Welch's periodogram, 

a method of averaging consecutive Fourier transforms of small windows in the temporal signal 

domain. We used the Welch’s method to construct a sliding average of the EEG power spectral 

density for each combination of condition, interval, and channel.   

6.3 Results 

We examined the cardiac RR (inter-beat) intervals from the ECG, and the electrical brain activity 

from the frontal and frontopolar EEG during a period of floating in the pod and resting on the bed 

in 17 healthy subjects. In all analyses, we segmented each session into three, approximately five-

minutes-long intervals to analyze potential changes of the effects over time. First, we analyzed the 

cardiac activity by examining whether condition and interval have effect over (1) the RR intervals, 

(2) the RMSSD, and (3) LF/HF ratio. Second, we analyzed the brain activity by examining whether 

condition, interval, channel, and frequency band had an effect over the EEG power spectral 

density. Finally, we plotted the EEG power spectral density in a graph, showing how it changes 

over time during the three intervals for each channel and between the two conditions. 
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6.3.1 Temporal and spectral analysis of RR intervals 

We used JASP 11.1.0 for all statistical analyses of the RR intervals and the heart rate variability. 

Temporal analysis: We performed a repeated-measures ANOVA to examine the effect of 

condition and interval, as well as their interaction, on the RR intervals. We found that the 

ANOVA’s assumption of sphericity was violated for interval (Mauchly’s W= 0.416, approx. Χ2(2) 

= 13.152, p = 0.001) and the interaction interval*condition (Mauchly’s W= 0.382, approx. Χ2(2) 

= 14.439, p < 0.001). Because both the Greenhouse-Geisser ε and Huynh-Feldt ε were lower than 

0.75, we applied the Greenhouse-Geisser correction to the p-values in both interval and 

interval*condition. We did not find any significant main effect of interval (F(1.263, 16) = 0.372, 

p = 0.598, η² = 0.002). However, we found a weak but significant main effect of condition 

(F(1, 16) = 4.650, p = 0.047, η² = 0.178); specifically, the RR intervals were shorter in the pod 

than in the bed, indicating faster heart rate in the pod. We also found a weak but significant effect 

of the interaction interval*condition (F(1.263, 16) = 4.518, p = 0.039, η² = 0.022); nevertheless, 

the Holm’s post-hoc test did not identify any significant pairwise comparisons, possibly due to the 

weakness of this effect. For the points estimates of the mean RR intervals along different intervals 

in both conditions, see Figure 40. 
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Figure 40. Point estimates of the RR intervals in the three intervals in both the bed and 

the pod; the vertical lines denote 95% confidence intervals. 

Furthermore, we performed similarly designed repeated-measures ANOVA to examine the effect 

of condition, interval, and interval*condition on the cardiac RMSSD. We detected a violation of 

the sphericity assumption for interval (Mauchly’s W= 0.620, approx. Χ2(2) = 7.178, p = 0.028). 

Because the Greenhouse-Geisser ε was lower than 0.75, we applied the Greenhouse-Geisser p-

value correction for the main effect of interval, which was not significant (F(1.449, 16) = 1.212, p 

= 0.311, η² = 0.019). Similarly, we did not find any significant effect for condition 

(F(1, 16) = 0.389, p = 0.541, η² = 0.013) nor for interval*condition (F(2, 16) = 2.040, p = 0.147, 

η² = 0.021).  For the points estimates of the mean RMSSD, see Figure 41. 
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Figure 41. Point estimates of the RMSSD in the three intervals in both the bed and the 

pod; the vertical lines denote 95% confidence intervals. 

Power spectrum analysis: We ran a repeated measures ANOVA to analyze the effect of interval, 

condition, and the interaction interval*condition on the LF/HF ratio. The analysis revealed a weak 

effect of interval (F(2, 16) = 3.439, p = 0.044, η² = 0.042). Nevertheless, due to the weakness of 

this effect, the Holm’s post-hoc test did not identify any significant pairwise comparisons between 

the three intervals. As for the factor condition and the interaction condition*interval, the analysis 

revealed no significant effects (F(1, 16) = 0.076, p = 0.786, η² = 0.003, and F(2, 16) = 0.355, 

p = 0.704, η² = 0.005, respectively). For the point estimates of the mean LF/HF ratio, see Figure 

42. 
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Figure 42. Point estimates of the LF/HF ratio in the three intervals in both the bed and the 

pod; the vertical lines denote 95% confidence intervals. 

6.3.2 Spectral Analysis of the EEG signal 

We analyzed the EEG results with TIBCO Statistica 13 using a mixed-effect model, i.e., a linear 

model including both fixed and random effects. In this analysis, we predicted the EEG power 

spectral density according to the random effects of subject and fixed effects of condition, interval, 

channel, and band. In addition, we also included all two-, three-, and four-way interactions 

between the fixed factors in the model. Although the input dependent variable is extremely 

positively skewed (see Figure 43-a), the model residuals are distributed symmetrically (see Figure 

43-b). Despite that, our results from this analysis should be accepted cautiously because the 

residuals also exhibit non-negligible heteroscedasticity, probably due to the heavily skewed 

distribution of the input dependent variable (see Figure 43-c). 
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Figure 43. (a) Distribution of the dependent variable.  (b) Distribution of the model’s 

residuals. (c) Residual distribution vs. predicted values suggesting residuals’ 

heteroscedasticity. 

With appropriate caution, we proceeded to analyze the factors’ effects. The main effects of factors 

condition (F(1, 1602) = 41.918, p < 0.001, η² = 0.192), channel (F(5, 1602) = 148.423, p < 0.001, 

η² = 0.317), and band (F(2, 1602) = 35.632, p < 0.001, η² = 0.043) were significant, while the main 

effect of interval remained insignificant (F(2, 1602) = 1.746, p = 0.175, η² = 0.002). The significant 

main effect of the condition is due to higher total PSD while lying in bed compared to floating (see 

Figure 44-a). Regarding to the significant effect of channel, the Scheffé post-hoc test revealed that 

it is caused by each pair of homologous channels (i.e., FP1 & FP2, AF3 & AF4, AF7 & AF8) 

exhibiting similar total PSD while at the same time differing significantly from the other pairs (all 

p’s < 0.01; see Figure 44-b). The Scheffé post-hoc test on band revealed that the beta frequency 

band overall reaches significantly higher spectral power than the alpha and gamma bands 

(p’s < 0.001), while the latter two do not differ in their total PSD (p = 0.168; see Figure 44-c). 



 

 288 

 

Figure 44. (a) Differences in total PSD between the bed and pod. (b) Differences in total 

PSD across the six channels. (c) Differences in total PSD between the three frequency 

bands. The vertical lines denote 95% confidence intervals. 

The two-way interaction between condition and channel was significant (F(5, 1602) = 2.402, p = 

0.035, η² = 0.007; see Figure 7). The Scheffé post-hoc test revealed one significant difference, 

suggesting that electrode AF8 exhibit lower spectral power from the bed to the float pod 

(p = 0.007). As can be seen from the Figure 45-a, a similar trend can also be observed for AF4 and 

AF7, although the Scheffé test did not identify these as significant (p = 0.524 and p = 0.667, 

respectively). All other pairwise comparisons were either irrelevant to our analysis, insignificant, 

or reflected the familiar, main effect of channel. 

Crucially to our hypothesis, we found significant interaction between condition and band 

(F(2, 1602) = 3.397, p = 0.034, η² = 0.004). The Scheffé test did not reveal a significant difference 

between the two conditions in the alpha PSD (p = 0.893), but it did show a significant decrease of 

PSD in both the beta and gamma bands from the bed to the pod (p < 0.001 and p = 0.0012, 

respectively; see Figure 45-b). The remaining two-way and all the three- and four-way interactions 

remained insignificant. 
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Figure 45. (a) Differences in total PSD between the six channels and the condition. (b) 

Differences in the PSD between alpha, beta, and gamma bands in the bed and pod 

conditions. The vertical lines denote 95% confidence intervals. 

6.3.3 Sliding-window analysis 

To investigate the PSD of EEG signals in more detail, we used a 60 s sliding window with a step 

size of 10 s on the PSD values of each frequency band for each of the 6 EEG channels. Figure 10 

represents the analysis for the sliding average of the PSD over 17 subjects during the three intervals 

when the subjects are in float-pod or bed for 2 channels (AF7 and AF8). The shaded area shows 

the 95% confidence interval. From Figure 46-a we cannot see any significant differences between 

the conditions. However, during the second interval in beta and gamma frequency, there are some 

intervals for significant differences and at the end of experiments (Figure 46-c). Roughly 17 

minutes after the start of the experiment, there is a significant difference between the conditions 

for 2 frequency bands, beta, and gamma on AF7 and AF8. The higher beta power in the bed 
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condition suggests an increase in the subjects’ alertness, and the higher gamma power in the bed 

condition suggests a prevalence of higher cognitive processes, such as attention and perception.  



 

 291 

  

Figure 46. Sliding window with length 60 s and step size of 10 s on the EEG signals of 17 

subjects. The plot represents three time intervals and two EEG channels (AF7 and AF8). 

Each column represents specific frequency band (left to right: alpha, beta and gamma). 

The shaded area depicts the 95% confidence band. 
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6.4 Discussion 

Few studies on stress have combined EEG and ECG signals in their analyses [341]. But attending 

to both the brain and heart signals promises to increase the accuracy and reliability of an 

experiment because of the signals’ synergy. Furthermore, such studies acknowledge the 

interrelation between neural and cardio functions during mental stress. Previous experiments on 

REST often reported positive effects of floating, such as improved relaxation [295], reduced 

anxiety [244, 245], stress reduction [295], pain and muscle tension reduction etc. [250, 290]. In 

2008, Feinstein et al. examined whether Floatation-REST would attenuate symptoms of anxiety, 

stress, and depression in a clinical sample [294]. Their study found that a single, one-hour session 

of Floatation-REST was capable of inducing a strong reduction in state anxiety and a substantial 

improvement in mood in a group of 50 anxious and depressed participants with a range of different 

anxiety and stress-related disorders. The findings from their open-label study suggested that 

Floatation-REST was a promising technique for acutely reducing symptoms of anxiety and 

depression, although the persistence of these effects is presently unknown. They also suggested 

that a more active comparator than self-reported and blood pressure measuring would be needed 

to access the efficacy of floatation-REST on anxiety and stress [295]. Participants in that 

experiment reported significant reductions in stress, muscle tension, pain, depression and negative 

affect, accompanied by a significant improvement in mood characterized by increases in serenity, 

relaxation, happiness and overall well-being (p < .0001 for all variables). When compared to the 

results of a group of 30 non-anxious participants, the effects were found to be more robust in the 

anxious sample, approaching non-anxious levels during the post-float period. However, their non-

floatation state was sitting upright in a chair, a feature that likely magnified the differences between 

conditions on measures of interoceptive awareness and muscle tension. 
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In this study, for the first time we recorded ECG and EEG in the float pod to analyze the effect of 

float pod based on neural and cardiac components [331]. There are some studies which recorded 

EEG, ECG, EOG and breathing pre-floatation REST and after, but none of them recorded these 

signal during floatation[298]. Also, our proposed non-floatation state was lying in bed to minimize 

the differences between conditions on measures of interoceptive awareness and muscle tension. 

However, we should consider that, even despite minimizing the posture differences in different 

condition, there may be two additional physiological mechanisms that likely contribute to the 

influence of posture on electrical scalp activity [342-344]: 1) alterations in cerebrospinal fluid 

(CSF) thickness and 2) changes in noradrenergic output. First, because CSF is highly conductive, 

minute shifts in CSF concentration can cause substantial alterations in EEG signals. Many studies 

revealed a main effect of posture in the beta and gamma bands. Beta and gamma activities 

increased from lying supine to inkling at 45 degree and increased further when subjects sat upright. 

These changes manifested regardless of whether participants engaged in a cognitive task and 

irrespective of whether their eyes were open or closed. However, in this study, by considering EEG 

and ECG signals, we examined the role of float pod as a relaxation or meditation technique and its 

effect on reducing stress for the first time. The analyses divided to: (1) temporal and spectral 

analyzing of RR intervals (2) EEG power spectral density. 

We analyzed the temporal and spectral of RR intervals. We did not find any significant main effect 

of interval (F(1.263, 16) = 0.372, p = 0.598, η² = 0.002). However, we found a weak but significant 

main effect of condition (F(1, 16) = 4.650, p = 0.047, η² = 0.178); specifically, the RR intervals 

were shorter in the pod than in the bed, indicating a faster heart rate in the pod. We believe the 

faster heart rate in pod is the result of humidity. Furthermore, we found a weak but significant 
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effect of the interaction interval*condition on the heart rate (F(1.263, 16) = 4.518, p = 0.039, 

η² = 0.022), which suggests the differences in heart rate between bed and pod appeared after 20 

minutes. To capture fast changes in instantaneous heart rate, we measured RMSSD as well. 

However, we did not find any significant effect for condition (F(1, 16) = 0.389, p = 0.541, 

η² = 0.013) nor for interval*condition (F(2, 16) = 2.040, p = 0.147, η² = 0.021).   

For spectral RR intervals, we calculated LF/HF ratio. Our assumptions underlying the LF/HF ratio 

was that LF power may be generated by the SNS while HF power is produced by the PNS. In this 

model, a low LF/HF ratio reflects parasympathetic dominance.  The analysis revealed a significant 

difference of interval (F(2, 16) = 3.439, p = 0.044, η² = 0.042). Lower LF/HF ratio in pod rather 

than bed shows a more relaxing experience for participants in the pod [345].  

We analyzed the EEG power spectral density with a mixed-effect model.  We saw the significant 

differences in condition (F(1, 1602) = 41.918, p < 0.001, η² = 0.192), channel (F(5, 1602) = 

148.423, p < 0.001, η² = 0.317), and band (F(2, 1602) = 35.632, p < 0.001, η² = 0.043). These 

findings on their own do not have any interpretation. Therefore, we investigated more to find 

differences in total PSD between conditions (channel and frequency band). 

The two-way interaction between condition and channel was significant (F(5, 1602) = 2.402, p = 

0.035, η² = 0.007; see Figure 45). The Scheffé post-hoc test revealed one relevant significant 

difference, suggesting that electrode AF8 exhibited lower spectral power in the bed than in the 

float pod (p = 0.007). This result was unexpected for us and needs more investigation.  

We found significant interactions between condition and band (F(2, 1602) = 3.397, p = 0.034, 

η² = 0.004). Specifically, a lower PSD in beta and gamma in the pod compared to in bed. Stress 
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due to tension, excitement, and anxiety has high power of beta band [346, 347]. We saw 

significantly less beta power in pod, implying less tension, excitement and anxiety in pod vs. in 

bed. Dedovic et al. found these difference in beta waves are highest in frontal part [346]. 

Furthermore, to the best of our knowledge, gamma power has been previously used to assess 

meditation [348, 349]. The cited meditation-related works found contrasting results regarding the 

positive or negative correlation between the gamma power and the meditation level. However, 

Minguillon et al. showed a positive correlation between gamma power and stress level, in 

particular, with the expected stress level on healthy subjects [350]. Our results support these 

findings by showing a significant decrease in gamma power in the float pod rather than in bed, 

revealing that floatation decreases stress more than lying in the bed.  

To investigate more details of PSD over time, we used the sliding-window analysis with 60s length 

and step size 10s (Figure 46). In Figure 46, PSD for AF7 and AF8 were shown with 95% 

confidence interval. We can see during interval 3 or after 20 minutes in float-pod that there was a 

significant difference between conditions. This analysis is consistent with what we found in Figure 

45.  

Future research should explore these preliminary findings to determine whether Floatation-REST 

facilitates the practice of mindfulness and whether the combination of floating with specific 

mindfulness instructions can lead to even greater anxiolytic effects. Also, there should be more 

analysis on the relationship and connection between neural and cardiac signals such as phase-

amplitude coupling (PAC) analysis [335]. It would also be interesting to compare neural and 

cardiac signals during floatation with those present during sleep.  



 

 296 

Reference 

 

1. Reaz, M.B.I., M. Hussain, and F. Mohd-Yasin, Techniques of EMG signal analysis: 
detection, processing, classification and applications. Biological procedures online, 

2006. 8(1): p. 11. 

2. Chowdhury, R., et al., Surface electromyography signal processing and classification 
techniques. Sensors, 2013. 13(9): p. 12431-12466. 

3. Oskoei, M.A. and H. Hu, Myoelectric control systems—A survey. Biomedical signal 

processing and control, 2007. 2(4): p. 275-294. 

4. Lashgari, E. and E. Demircan, Electromyography Pattern Classification with Laplacian 
Eigenmaps in Human Running. World Academy of Science, Engineering and 

Technology, International Journal of Electrical, Computer, Energetic, Electronic and 

Communication Engineering, 2017. 11(4): p. 399-404. 

5. Tsoli, A. and O.C. Jenkins. Neighborhood denoising for learning high-dimensional 
grasping manifolds. in 2008 IEEE/RSJ International Conference on Intelligent Robots 
and Systems. 2008. IEEE. 

6. Tsoli, A. and O.C. Jenkins. 2d subspaces for user-driven robot grasping. in Robotics, 
Science and Systems Conference: Workshop on Robot Manipulation. 2007. 

7. Totah, D., et al., Low-back electromyography (EMG) data-driven load classification for 
dynamic lifting tasks. PloS one, 2018. 13(2). 

8. Batzianoulis, I., et al., EMG-based decoding of grasp gestures in reaching-to-grasping 
motions. Robotics and Autonomous Systems, 2017. 91: p. 59-70. 

9. Na, Y., et al., Ranking hand movements for myoelectric pattern recognition considering 
forearm muscle structure. Medical & biological engineering & computing, 2017. 55(8): 

p. 1507-1518. 

10. Gailey, A., P. Artemiadis, and M. Santello, Proof of concept of an online EMG-based 
decoding of hand postures and individual digit forces for prosthetic hand control. 
Frontiers in neurology, 2017. 8: p. 7. 

11. Wu, Y., et al., Exploration of Feature Extraction Methods and Dimension for sEMG 
Signal Classification. Applied Sciences, 2019. 9(24): p. 5343. 

12. Boostani, R. and M.H. Moradi, Evaluation of the forearm EMG signal features for the 
control of a prosthetic hand. Physiological measurement, 2003. 24(2): p. 309. 

13. Lashgari, E., A. Pouya, and U. Maoz, Decoding object weight from electromyography 
during human grasping. BioRxiv, 2021. 

14. Kauppi, J.-P., et al., Three-way analysis of spectrospatial electromyography data: 
Classification and interpretation. PloS one, 2015. 10(6). 

15. Phinyomark, A., P. Phukpattaranont, and C. Limsakul, Feature reduction and selection 
for EMG signal classification. Expert systems with applications, 2012. 39(8): p. 7420-

7431. 



 

 297 

16. Mordohai, P. and G. Medioni, Dimensionality estimation, manifold learning and function 
approximation using tensor voting. Journal of Machine Learning Research, 2010. 

11(Jan): p. 411-450. 

17. Lashghari, E., S. Rosenberg, and F. Qu, Atrial flutter detection utilizing nonlinear 
dimension reduction. 2020, Google Patents. 

18. Lashgari, E., S. Rosenberg, and F. Qu, Atrial flutter detection utilizing nonlinear 
dimension reduction. 2021, Google Patents. 

19. Jolliffe, I., Principal component analysis. Technometrics, 2003. 45(3): p. 276. 

20. Cox, M.A. and T.F. Cox, Multidimensional scaling, in Handbook of data visualization. 

2008, Springer. p. 315-347. 

21. Rabin, N., et al., Classification of human hand movements based on EMG signals using 
nonlinear dimensionality reduction and data fusion techniques. Expert Systems with 

Applications, 2020. 149: p. 113281. 

22. Roweis, S.T. and L.K. Saul, Nonlinear dimensionality reduction by locally linear 
embedding. science, 2000. 290(5500): p. 2323-2326. 

23. Saul, L.K. and S.T. Roweis, Think globally, fit locally: unsupervised learning of low 
dimensional manifolds. Journal of machine learning research, 2003. 4(Jun): p. 119-155. 

24. Tenenbaum, J.B., V. De Silva, and J.C. Langford, A global geometric framework for 
nonlinear dimensionality reduction. science, 2000. 290(5500): p. 2319-2323. 

25. Belkin, M. and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data 
representation. Neural computation, 2003. 15(6): p. 1373-1396. 

26. Lashgari, E. and E. Demircan, Electromyography Pattern Classification with Laplacian 
Eigenmaps in Human Running. International Journal of Electronics and Communication 

Engineering, 2017. 11(4): p. 412-417. 

27. Pham, H., M. Kawanishi, and T. Narikiyo. Recognition of walking movement from EMG 
using a framework combining LLE and HMM. in 2014 IEEE/SICE International 
Symposium on System Integration. 2014. IEEE. 

28. Lashgari, E., D. Liang, and U. Maoz, Data Augmentation for Deep-Learning-Based 
Electroencephalography. Journal of Neuroscience Methods, 2020: p. 108885. 

29. Xia, P., J. Hu, and Y. Peng, EMG‐based estimation of limb movement using deep 
learning with recurrent convolutional neural networks. Artificial organs, 2018. 42(5): p. 

E67-E77. 

30. Phinyomark, A., R. N Khushaba, and E. Scheme, Feature extraction and selection for 
myoelectric control based on wearable EMG sensors. Sensors, 2018. 18(5): p. 1615. 

31. Zhai, X., et al., Self-recalibrating surface EMG pattern recognition for neuroprosthesis 
control based on convolutional neural network. Frontiers in neuroscience, 2017. 11: p. 

379. 

32. Luciw, M.D., E. Jarocka, and B.B. Edin, Multi-channel EEG recordings during 3,936 
grasp and lift trials with varying weight and friction. Scientific data, 2014. 1: p. 140047. 

33. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and 

intelligent laboratory systems, 1987. 2(1-3): p. 37-52. 

34. Yu, H. and J. Yang, A direct LDA algorithm for high-dimensional data—with application 
to face recognition. Pattern recognition, 2001. 34(10): p. 2067-2070. 



 

 298 

35. Pai, G., et al. Dimal: Deep isometric manifold learning using sparse geodesic sampling. 

in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 2019. 

IEEE. 

36. Maaten, L.v.d. and G. Hinton, Visualizing data using t-SNE. Journal of machine learning 

research, 2008. 9(Nov): p. 2579-2605. 

37. Pedregosa, F., et al., Scikit-learn: Machine learning in Python. the Journal of machine 

Learning research, 2011. 12: p. 2825-2830. 

38. Van Der Maaten, L., E. Postma, and J. Van den Herik, Dimensionality reduction: a 
comparative. J Mach Learn Res, 2009. 10(66-71): p. 13. 

39. Van der Maaten, L., E.O. Postma, and H.J. van den Herik, Matlab toolbox for 
dimensionality reduction. MICC, Maastricht University, 2007. 

40. Von Luxburg, U., A tutorial on spectral clustering. Statistics and computing, 2007. 17(4): 

p. 395-416. 

41. Kim, K.S., et al., Comparison of k-nearest neighbor, quadratic discriminant and linear 
discriminant analysis in classification of electromyogram signals based on the wrist-
motion directions. Current applied physics, 2011. 11(3): p. 740-745. 

42. Verikas, A., et al., Electromyographic patterns during golf swing: Activation sequence 
profiling and prediction of shot effectiveness. Sensors, 2016. 16(4): p. 592. 

43. Atzori, M., M. Cognolato, and H. Müller, Deep learning with convolutional neural 
networks applied to electromyography data: A resource for the classification of 
movements for prosthetic hands. Frontiers in neurorobotics, 2016. 10: p. 9. 

44. He, H. and E.A. Garcia, Learning from imbalanced data. IEEE Transactions on 

knowledge and data engineering, 2009. 21(9): p. 1263-1284. 

45. He, H. and Y. Ma, Imbalanced learning: foundations, algorithms, and applications. 

2013: John Wiley & Sons. 

46. Luciw, M.D., E. Jarocka, and B.B. Edin, Multi-channel EEG recordings during 3,936 
grasp and lift trials with varying weight and friction. Scientific data, 2014. 1(1): p. 1-11. 

47. An, J. and S. Cho. Hand motion identification of grasp-and-lift task from 
electroencephalography recordings using recurrent neural networks. in 2016 
International Conference on Big Data and Smart Computing (BigComp). 2016. IEEE. 

48. Várszegi, K. Comparison of algorithms for detecting hand movement from EEG signals. 

in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2016. 

IEEE. 

49. Eilbeigi, E. and S.K. Setarehdan, Detecting intention to execute the next movement while 
performing current movement from EEG using global optimal constrained ICA. 
Computers in Biology and Medicine, 2018. 99: p. 63-75. 

50. Shen, F., J. Liu, and K. Wu, Multivariate Time Series Forecasting based on Elastic Net 
and High-Order Fuzzy Cognitive Maps: A Case Study on Human Action Prediction 
through EEG Signals. IEEE Transactions on Fuzzy Systems, 2020. 

51. Cisotto, G., et al. Classification of grasping tasks based on EEG-EMG coherence. in 

2018 IEEE 20th International Conference on e-Health Networking, Applications and 
Services (Healthcom). 2018. IEEE. 

52. Côté-Allard, U., et al., Interpreting deep learning features for myoelectric control: A 
comparison with handcrafted features. Frontiers in Bioengineering and Biotechnology, 

2020. 8: p. 158. 



 

 299 

53. Maoz, U., et al. Predicting action content on-line and in real time before action onset–an 
intracranial human study. in Advances in Neural Information Processing Systems. 2012. 

54. Pless, R. and R. Souvenir, A survey of manifold learning for images. IPSJ Transactions 

on Computer Vision and Applications, 2009. 1: p. 83-94. 

55. Souvenir, R. and R. Pless, Image distance functions for manifold learning. Image and 

Vision Computing, 2007. 25(3): p. 365-373. 

56. Yannick, R., et al., Deep learning-based electroencephalography analysis: a systematic 
review. arXiv preprint arXiv:1901.05498, 2019. 

57. Cohen, M.X., Analyzing neural time series data: theory and practice. 2014: MIT press. 

58. Bigdely-Shamlo, N., et al., The PREP pipeline: standardized preprocessing for large-
scale EEG analysis. Frontiers in neuroinformatics, 2015. 9: p. 16. 

59. Jas, M., et al., Autoreject: automated artifact rejection for MEG and EEG data. 
NeuroImage, 2017. 159: p. 417-429. 

60. Cole, S.R. and B. Voytek, Cycle-by-cycle analysis of neural oscillations. bioRxiv, 2018: 

p. 302000. 

61. Gramfort, A., et al., Time-frequency mixed-norm estimates: Sparse M/EEG imaging with 
non-stationary source activations. NeuroImage, 2013. 70: p. 410-422. 

62. Hively, L., V. Protopopescu, and P. Gailey, Timely detection of dynamical change in 
scalp EEG signals. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2000. 

10(4): p. 864-875. 

63. Subasi, A. and M.I. Gursoy, EEG signal classification using PCA, ICA, LDA and support 
vector machines. Expert systems with applications, 2010. 37(12): p. 8659-8666. 

64. Sanz-García, A., et al., Potential EEG biomarkers of sedation doses in intensive care 
patients unveiled by using a machine learning approach. Journal of neural engineering, 

2019. 16(2): p. 026031. 

65. Lotte, F., et al., A review of classification algorithms for EEG-based brain–computer 
interfaces: a 10 year update. Journal of neural engineering, 2018. 15(3): p. 031005. 

66. Chollet, F., Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler 
der Keras-Bibliothek. 2018: MITP-Verlags GmbH & Co. KG. 

67. Goodfellow, I., Y. Bengio, and A. Courville, Deep learning. 2016: MIT press. 

68. Farabet, C., et al., Learning hierarchical features for scene labeling. IEEE transactions 

on pattern analysis and machine intelligence, 2013. 35(8): p. 1915-1929. 

69. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep 
convolutional neural networks. in Advances in neural information processing systems. 

2012. 

70. Tompson, J.J., et al. Joint training of a convolutional network and a graphical model for 
human pose estimation. in Advances in neural information processing systems. 2014. 

71. Hinton, G., et al., Deep neural networks for acoustic modeling in speech recognition. 
IEEE Signal processing magazine, 2012. 29. 

72. Mikolov, T., et al. Strategies for training large scale neural network language models. in 

2011 IEEE Workshop on Automatic Speech Recognition & Understanding. 2011. IEEE. 

73. Sainath, T.N., et al. Deep convolutional neural networks for LVCSR. in 2013 IEEE 
international conference on acoustics, speech and signal processing. 2013. IEEE. 

74. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436. 



 

 300 

75. Craik, A., Y. He, and J.L. Contreras-Vidal, Deep learning for electroencephalogram 
(EEG) classification tasks: a review. Journal of neural engineering, 2019. 16(3): p. 

031001. 

76. Page, A., C. Shea, and T. Mohsenin. Wearable seizure detection using convolutional 
neural networks with transfer learning. in 2016 IEEE International Symposium on 
Circuits and Systems (ISCAS). 2016. IEEE. 

77. Perez, L. and J. Wang, The effectiveness of data augmentation in image classification 
using deep learning. arXiv preprint arXiv:1712.04621, 2017. 

78. Wang, F., et al. Data augmentation for eeg-based emotion recognition with deep 
convolutional neural networks. in International Conference on Multimedia Modeling. 

2018. Springer. 

79. Zhang, C., et al., Understanding deep learning requires rethinking generalization. arXiv 

preprint arXiv:1611.03530, 2016. 

80. Truong, N.D., et al., Convolutional neural networks for seizure prediction using 
intracranial and scalp electroencephalogram. Neural Networks, 2018. 105: p. 104-111. 

81. Dümpelmann, M., Early seizure detection for closed loop direct neurostimulation devices 
in epilepsy. Journal of neural engineering, 2019. 16(4): p. 041001. 

82. Zhang, Z., et al., A novel deep learning approach with data augmentation to classify 
motor imagery signals. IEEE Access, 2019. 7: p. 15945-15954. 

83. Malhotra, R.K. and A.Y. Avidan, Sleep stages and scoring technique. Atlas of sleep 

medicine, 2013: p. 77-99. 

84. Moser, D., et al., Sleep classification according to AASM and Rechtschaffen & Kales: 
effects on sleep scoring parameters. Sleep, 2009. 32(2): p. 139-149. 

85. Sors, A., et al., A convolutional neural network for sleep stage scoring from raw single-
channel EEG. Biomedical Signal Processing and Control, 2018. 42: p. 107-114. 

86. Chambon, S., et al., A deep learning architecture for temporal sleep stage classification 
using multivariate and multimodal time series. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 2018. 26(4): p. 758-769. 

87. Kuanar, S., et al. Cognitive Analysis of Working Memory Load from EEG, by a Deep 
Recurrent Neural Network. in 2018 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP). 2018. IEEE. 

88. Sakai, A., Y. Minoda, and K. Morikawa. Data augmentation methods for machine-
learning-based classification of bio-signals. in 2017 10th Biomedical Engineering 
International Conference (BMEiCON). IEEE. 

89. Kwak, N.-S., K.-R. Müller, and S.-W. Lee, A convolutional neural network for steady 
state visual evoked potential classification under ambulatory environment. PloS one, 

2017. 12(2): p. e0172578. 

90. Bashivan, P., et al., Learning representations from EEG with deep recurrent-
convolutional neural networks. arXiv preprint arXiv:1511.06448, 2015. 

91. Yin, Z. and J. Zhang, Cross-subject recognition of operator functional states via EEG 
and switching deep belief networks with adaptive weights. Neurocomputing, 2017. 260: 

p. 349-366. 

92. Yin, Z. and J. Zhang, Cross-session classification of mental workload levels using EEG 
and an adaptive deep learning model. Biomedical Signal Processing and Control, 2017. 

33: p. 30-47. 



 

 301 

93. Hussein, R., et al., Epileptic seizure detection: A deep learning approach. arXiv preprint 

arXiv:1803.09848, 2018. 

94. Salama, E.S., et al., EEG-based emotion recognition using 3D convolutional neural 
networks. Int. J. Adv. Comput. Sci. Appl, 2018. 9(8): p. 329-337. 

95. Parvan, M., et al. Transfer Learning based Motor Imagery Classification using 
Convolutional Neural Networks. in 2019 27th Iranian Conference on Electrical 
Engineering (ICEE). 2019. IEEE. 

96. Li, Y., et al., A Channel-Projection Mixed-Scale Convolutional Neural Network for 
Motor Imagery EEG Decoding. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, 2019. 

97. Goodfellow, I., et al. Generative adversarial nets. in Advances in neural information 
processing systems. 2014. 

98. Zhang, H., et al. Stackgan: Text to photo-realistic image synthesis with stacked 
generative adversarial networks. in Proceedings of the IEEE International Conference 
on Computer Vision. 2017. 

99. Bousmalis, K., et al. Unsupervised pixel-level domain adaptation with generative 
adversarial networks. in Proceedings of the IEEE conference on computer vision and 
pattern recognition. 2017. 

100. Antoniou, A., A. Storkey, and H. Edwards, Data augmentation generative adversarial 
networks. arXiv preprint arXiv:1711.04340, 2017. 

101. Zhang, Q. and Y. Liu, Improving brain computer interface performance by data 
augmentation with conditional Deep Convolutional Generative Adversarial Networks. 
arXiv preprint arXiv:1806.07108, 2018. 

102. Piplani, T., N. Merill, and J. Chuang, Faking it, Making it: Fooling and Improving Brain-
Based Authentication with Generative Adversarial Networks. 

103. Zhang, X., et al., DADA: Deep adversarial data augmentation for extremely low data 
regime classification. arXiv preprint arXiv:1809.00981, 2018. 

104. Schlögl, A., Outcome of the BCI-competition 2003 on the Graz data set. Berlin, 

Germany: Graz University of Technology, 2003. 

105. Hartmann, K.G., R.T. Schirrmeister, and T. Ball, EEG-GAN: Generative adversarial 
networks for electroencephalograhic (EEG) brain signals. arXiv preprint 

arXiv:1806.01875, 2018. 

106. Salimans, T., et al. Improved techniques for training gans. in Advances in neural 
information processing systems. 2016. 

107. Heusel, M., et al. Gans trained by a two time-scale update rule converge to a local nash 
equilibrium. in Advances in Neural Information Processing Systems. 2017. 

108. Rabin, J., et al. Wasserstein barycenter and its application to texture mixing. in 

International Conference on Scale Space and Variational Methods in Computer Vision. 

2011. Springer. 

109. Luo, Y. and B.-L. Lu. EEG data augmentation for emotion recognition using a 
conditional Wasserstein GAN. in 2018 40th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC). 2018. IEEE. 

110. Zheng, W.-L. and B.-L. Lu, Investigating critical frequency bands and channels for 
EEG-based emotion recognition with deep neural networks. IEEE Transactions on 

Autonomous Mental Development, 2015. 7(3): p. 162-175. 



 

 302 

111. Koelstra, S., et al., Deap: A database for emotion analysis; using physiological signals. 
IEEE transactions on affective computing, 2012. 3(1): p. 18-31. 

112. Luo, Y., L.-Z. Zhu, and B.-L. Lu. A GAN-Based Data Augmentation Method for 
Multimodal Emotion Recognition. in International Symposium on Neural Networks. 

2019. Springer. 

113. Wei, Z., et al., Automatic epileptic EEG detection using convolutional neural network 
with improvements in time-domain. Biomedical Signal Processing and Control, 2019. 53: 

p. 101551. 

114. Chang, S. and H. Jun, Hybrid deep-learning model to recognise emotional responses of 
users towards architectural design alternatives. Journal of Asian Architecture and 

Building Engineering, 2019. 18(5): p. 381-391. 

115. Yang, B., et al. A Framework on Optimization Strategy for EEG Motor Imagery 
Recognition. in 2019 41st Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC). 2019. IEEE. 

116. Panwar, S., et al. Generating EEG signals of an RSVP Experiment by a Class 
Conditioned Wasserstein Generative Adversarial Network. in 2019 IEEE International 
Conference on Systems, Man and Cybernetics (SMC). 2019. IEEE. 

117. Gulrajani, I., et al. Improved training of wasserstein gans. in Advances in neural 
information processing systems. 2017. 

118. Touryan, J., et al., Estimating endogenous changes in task performance from EEG. 
Frontiers in neuroscience, 2014. 8: p. 155. 

119. Radford, A., L. Metz, and S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 

120. Kingma, D.P. and M. Welling, Auto-encoding variational bayes. arXiv preprint 

arXiv:1312.6114, 2013. 

121. Aznan, N.K.N., et al. Using variable natural environment brain-computer interface 
stimuli for real-time humanoid robot navigation. in 2019 International Conference on 
Robotics and Automation (ICRA). 2019. IEEE. 

122. O'Shea, A., et al. Neonatal seizure detection using convolutional neural networks. in 

2017 IEEE 27th International Workshop on Machine Learning for Signal Processing 
(MLSP). 2017. IEEE. 

123. Schirrmeister, R.T., et al., Deep learning with convolutional neural networks for EEG 
decoding and visualization. Human brain mapping, 2017. 38(11): p. 5391-5420. 

124. Ullah, I., M. Hussain, and H. Aboalsamh, An automated system for epilepsy detection 
using EEG brain signals based on deep learning approach. Expert Systems with 

Applications, 2018. 107: p. 61-71. 

125. Truong, N.D., et al., Semi-supervised Seizure Prediction with Generative Adversarial 
Networks. arXiv preprint arXiv:1806.08235, 2018. 

126. Majidov, I. and T. Whangbo, Efficient Classification of Motor Imagery 
Electroencephalography Signals Using Deep Learning Methods. Sensors, 2019. 19(7): p. 

1736. 

127. Mousavi, Z., et al., Deep convolutional neural network for classification of sleep stages 
from single-channel EEG signals. Journal of neuroscience methods, 2019: p. 108312. 



 

 303 

128. Avcu, M.T., Z. Zhang, and D.W.S. Chan. Seizure Detection Using Least Eeg Channels 
by Deep Convolutional Neural Network. in ICASSP 2019-2019 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. IEEE. 

129. Tayeb, Z., et al., Validating deep neural networks for online decoding of motor imagery 
movements from EEG signals. Sensors, 2019. 19(1): p. 210. 

130. Tsiouris, Κ.Μ., et al., A Long Short-Term Memory deep learning network for the 
prediction of epileptic seizures using EEG signals. Computers in biology and medicine, 

2018. 99: p. 24-37. 

131. Tang, Y., S. Wada, and K. Yoshihara. Failure Prediction with Adaptive Multi-scale 
Sampling and Activation Pattern Regularization. in 2017 IEEE International Conference 
on Data Mining Workshops (ICDMW). 2017. IEEE. 

132. Manor, R. and A.B. Geva, Convolutional neural network for multi-category rapid serial 
visual presentation BCI. Frontiers in computational neuroscience, 2015. 9: p. 146. 

133. Drouin-Picaro, A. and T.H. Falk. Using deep neural networks for natural saccade 
classification from electroencephalograms. in 2016 IEEE EMBS International Student 
Conference (ISC). 2016. IEEE. 

134. Supratak, A., et al., DeepSleepNet: A model for automatic sleep stage scoring based on 
raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, 2017. 25(11): p. 1998-2008. 

135. Dong, H., et al., Mixed neural network approach for temporal sleep stage classification. 
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017. 26(2): p. 

324-333. 

136. Ruffini, G., et al., Deep learning using EEG spectrograms for prognosis in idiopathic 
rapid eye movement behavior disorder (RBD). bioRxiv, 2018: p. 240267. 

137. Sun, C., et al., A Two-Stage Neural Network for Sleep Stage Classification Based on 
Feature Learning, Sequence Learning, and Data Augmentation. IEEE Access, 2019. 7: p. 

109386-109397. 

138. Thodoroff, P., J. Pineau, and A. Lim. Learning robust features using deep learning for 
automatic seizure detection. in Machine learning for healthcare conference. 2016. 

139. Sengur, A., et al., Neutrosophic similarity score-based entropy measure for focal and 
nonfocal electroencephalogram signal classification, in Neutrosophic Set in Medical 
Image Analysis. 2019, Elsevier. p. 247-268. 

140. Schwabedal, J.T., et al., Addressing Class Imbalance in Classification Problems of Noisy 
Signals by using Fourier Transform Surrogates. arXiv preprint arXiv:1806.08675, 2018. 

141. Ruffini, G., et al., Deep learning with EEG spectrograms in rapid eye movement 
behavior disorder. bioRxiv, 2018: p. 240267. 

142. Shamwell, J., et al. Single-trial EEG RSVP classification using convolutional neural 
networks. in Micro-and Nanotechnology Sensors, Systems, and Applications VIII. 2016. 

International Society for Optics and Photonics. 

143. Said, A.B., et al. Multimodal deep learning approach for joint EEG-EMG data 
compression and classification. in 2017 IEEE Wireless Communications and Networking 
Conference (WCNC). 2017. IEEE. 

144. Zhang, Y., et al., Epilepsy seizure prediction on eeg using common spatial pattern and 
convolutional neural network. IEEE Journal of Biomedical and Health Informatics, 2019. 



 

 304 

145. Dai, G., et al., HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery 
classification. Journal of neural engineering, 2020. 17(1): p. 016025. 

146. Frydenlund, A. and F. Rudzicz. Emotional affect estimation using video and EEG data in 
deep neural networks. in Canadian Conference on Artificial Intelligence. 2015. Springer. 

147. Deiss, O., et al., HAMLET: Interpretable Human And Machine co-LEarning Technique. 
arXiv preprint arXiv:1803.09702, 2018. 

148. Shovon, S.T.H., et al. Classification of Motor Imagery EEG Signals with multi-input 
Convolutional Neural Network by augmenting STFT. in 5th International Conference on 
Advances in Electrical Engineering (ICAEE). IEEE. 2019. 

149. Freer, D. and G.-Z. Yang, Data augmentation for self-paced motor imagery classification 
with C-LSTM. Journal of neural engineering, 2019. 

150. Mokatren, L.S., et al., Improved EEG Classification by factoring in sensor topography. 
arXiv preprint arXiv:1905.09472, 2019. 

151. Abiri, R., et al., A comprehensive review of EEG-based brain–computer interface 
paradigms. Journal of neural engineering, 2019. 16(1): p. 011001. 

152. Nicolas-Alonso, L.F. and J. Gomez-Gil, Brain computer interfaces, a review. sensors, 

2012. 12(2): p. 1211-1279. 

153. Salvaris, M. and P. Haggard, Decoding intention at sensorimotor timescales. PloS one, 

2014. 9(2): p. e85100. 

154. Schneider, L., et al., What we think before a voluntary movement. Journal of cognitive 

neuroscience, 2013. 25(6): p. 822-829. 

155. Schultze-Kraft, M., et al., The point of no return in vetoing self-initiated movements. 
Proceedings of the National Academy of Sciences, 2016. 113(4): p. 1080-1085. 

156. Lashgari, E. and U. Maoz, Electromyography Classification during Reach-to-Grasp 
Motion using Manifold Learning. bioRxiv, 2020. 

157. Wolpaw, J.R., et al., Brain–computer interfaces for communication and control. Clinical 

neurophysiology, 2002. 113(6): p. 767-791. 

158. Daly, J.J. and J.R. Wolpaw, Brain–computer interfaces in neurological rehabilitation. 
The Lancet Neurology, 2008. 7(11): p. 1032-1043. 

159. Machado, S., L.F. Almada, and R.N. Annavarapu, Progress and prospects in EEG-based 
brain-computer interface: clinical applications in neurorehabilitation. Journal of 

Rehabilitation Robotics, 2013. 1(1): p. 28-41. 

160. Mulder, T., Motor imagery and action observation: cognitive tools for rehabilitation. 
Journal of neural transmission, 2007. 114(10): p. 1265-1278. 

161. Contreras-Vidal, J.L., et al., Restoration of whole body movement: toward a noninvasive 
brain-machine interface system. IEEE pulse, 2012. 3(1): p. 34-37. 

162. Pfurtscheller, G. and C. Neuper, Motor imagery activates primary sensorimotor area in 
humans. Neuroscience letters, 1997. 239(2-3): p. 65-68. 

163. He, B., et al., Noninvasive brain-computer interfaces based on sensorimotor rhythms. 
Proceedings of the IEEE, 2015. 103(6): p. 907-925. 

164. Yuan, H. and B. He, Brain–computer interfaces using sensorimotor rhythms: current 
state and future perspectives. IEEE Transactions on Biomedical Engineering, 2014. 

61(5): p. 1425-1435. 



 

 305 

165. Morash, V., et al., Classifying EEG signals preceding right hand, left hand, tongue, and 
right foot movements and motor imageries. Clinical neurophysiology, 2008. 119(11): p. 

2570-2578. 

166. Pfurtscheller, G. and F.L. Da Silva, Event-related EEG/MEG synchronization and 
desynchronization: basic principles. Clinical neurophysiology, 1999. 110(11): p. 1842-

1857. 

167. Tabar, Y.R. and U. Halici, A novel deep learning approach for classification of EEG 
motor imagery signals. Journal of neural engineering, 2016. 14(1): p. 016003. 

168. Zabidi, A., et al. Short-time Fourier Transform analysis of EEG signal generated during 
imagined writing. in 2012 International Conference on System Engineering and 
Technology (ICSET). 2012. IEEE. 

169. Amin, H.U., et al., Feature extraction and classification for EEG signals using wavelet 
transform and machine learning techniques. Australasian physical & engineering 

sciences in medicine, 2015. 38(1): p. 139-149. 

170. Edelman, B.J., B. Baxter, and B. He, EEG source imaging enhances the decoding of 
complex right-hand motor imagery tasks. IEEE Transactions on Biomedical Engineering, 

2015. 63(1): p. 4-14. 

171. Ang, K.K., et al. Filter bank common spatial pattern (FBCSP) in brain-computer 
interface. in 2008 IEEE International Joint Conference on Neural Networks (IEEE World 
Congress on Computational Intelligence). 2008. IEEE. 

172. Meng, J., et al., Noninvasive electroencephalogram based control of a robotic arm for 
reach and grasp tasks. Scientific Reports, 2016. 6: p. 38565. 

173. Gandhi, T., B.K. Panigrahi, and S. Anand, A comparative study of wavelet families for 
EEG signal classification. Neurocomputing, 2011. 74(17): p. 3051-3057. 

174. Yang, Y., et al. Time-frequency selection in two bipolar channels for improving the 
classification of motor imagery EEG. in 2012 Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. 2012. IEEE. 

175. Baldi, P., Deep Learning in Science: Theory, Algorithms, and Applications. 2021, 

Cambridge University Press, Cambridge, UK. 

176. Lawhern, V.J., et al., EEGNet: a compact convolutional neural network for EEG-based 
brain–computer interfaces. Journal of neural engineering, 2018. 15(5): p. 056013. 

177. Lu, N., et al., A deep learning scheme for motor imagery classification based on 
restricted boltzmann machines. IEEE transactions on neural systems and rehabilitation 

engineering, 2016. 25(6): p. 566-576. 

178. Tortora, S., et al., Deep learning-based BCI for gait decoding from EEG with LSTM 
recurrent neural network. Journal of Neural Engineering, 2020. 17(4): p. 046011. 

179. Zhang, H., et al., Motor imagery recognition with automatic EEG channel selection and 
deep learning. Journal of Neural Engineering, 2021. 18(1): p. 016004. 

180. Zhang, R., et al., A novel hybrid deep learning scheme for four-class motor imagery 
classification. Journal of neural engineering, 2019. 16(6): p. 066004. 

181. Zhang, G., et al., Classification of hand movements from EEG using a deep attention-
based LSTM network. IEEE Sensors Journal, 2019. 20(6): p. 3113-3122. 

182. Wang, S., et al. Training deep neural networks on imbalanced data sets. in 2016 
international joint conference on neural networks (IJCNN). 2016. IEEE. 

183. Vaswani, A., et al., Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. 



 

 306 

184. Shaw, P., J. Uszkoreit, and A. Vaswani, Self-attention with relative position 
representations. arXiv preprint arXiv:1803.02155, 2018. 

185. Cisotto, G., et al., Comparison of Attention-based Deep Learning Models for EEG 
Classification. arXiv preprint arXiv:2012.01074, 2020. 

186. Mrini, K., et al., Rethinking self-attention: An interpretable self-attentive encoder-
decoder parser. 2019. 

187. Hertel, L., et al., Sherpa: Robust Hyperparameter Optimization for Machine Learning. 
arXiv preprint arXiv:2005.04048, 2020. 

188. Li, Y., et al., A Channel-Projection Mixed-Scale Convolutional Neural Network for 
Motor Imagery EEG Decoding. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, 2019. 27(6): p. 1170-1180. 

189. Zhang, X., et al. Dada: Deep adversarial data augmentation for extremely low data 
regime classification. in ICASSP 2019-2019 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). 2019. IEEE. 

190. Mirza, M. and S. Osindero, Conditional generative adversarial nets. arXiv preprint 

arXiv:1411.1784, 2014. 

191. Brunner, C., et al., BCI Competition 2008–Graz data set A. Institute for Knowledge 

Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 

2008. 16: p. 1-6. 

192. Leeb, R., et al., BCI Competition 2008–Graz data set B. Graz University of Technology, 

Austria, 2008: p. 1-6. 

193. Gaur, P., et al. An empirical mode decomposition based filtering method for classification 
of motor-imagery EEG signals for enhancing brain-computer interface. in 2015 
International Joint Conference on Neural Networks (IJCNN). 2015. IEEE. 

194. Luo, J., et al., Dynamic frequency feature selection based approach for classification of 
motor imageries. Computers in biology and medicine, 2016. 75: p. 45-53. 

195. Jurcak, V., D. Tsuzuki, and I. Dan, 10/20, 10/10, and 10/5 systems revisited: their 
validity as relative head-surface-based positioning systems. Neuroimage, 2007. 34(4): p. 

1600-1611. 

196. Kevric, J. and A. Subasi, Comparison of signal decomposition methods in classification 
of EEG signals for motor-imagery BCI system. Biomedical Signal Processing and 

Control, 2017. 31: p. 398-406. 

197. Sadiq, M.T., et al., Motor imagery EEG signals classification based on mode amplitude 
and frequency components using empirical wavelet transform. IEEE Access, 2019. 7: p. 

127678-127692. 

198. Sadiq, M.T., et al., Motor Imagery EEG Signals Decoding by Multivariate Empirical 
Wavelet Transform-Based Framework for Robust Brain–Computer Interfaces. IEEE 

Access, 2019. 7: p. 171431-171451. 

199. Shahid, S. and G. Prasad, Bispectrum-based feature extraction technique for devising a 
practical brain–computer interface. Journal of neural engineering, 2011. 8(2): p. 025014. 

200. Ang, K.K., et al., Filter bank common spatial pattern algorithm on BCI competition IV 
datasets 2a and 2b. Frontiers in neuroscience, 2012. 6: p. 39. 

201. Saa, J.F.D. and M. Çetin, A latent discriminative model-based approach for classification 
of imaginary motor tasks from EEG data. Journal of neural engineering, 2012. 9(2): p. 

026020. 



 

 307 

202. Li, M.-a., et al., Adaptive feature extraction of motor imagery EEG with optimal wavelet 
packets and SE-isomap. Applied Sciences, 2017. 7(4): p. 390. 

203. Zheng, Q., F. Zhu, and P.-A. Heng, Robust support matrix machine for single trial EEG 
classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 

2018. 26(3): p. 551-562. 

204. Lotte, F. and C. Guan, Regularizing common spatial patterns to improve BCI designs: 
unified theory and new algorithms. IEEE Transactions on biomedical Engineering, 2010. 

58(2): p. 355-362. 

205. Raza, H., et al., Adaptive learning with covariate shift-detection for motor imagery-based 
brain–computer interface. Soft Computing, 2016. 20(8): p. 3085-3096. 

206. Gaur, P., et al., A multi-class EEG-based BCI classification using multivariate empirical 
mode decomposition based filtering and Riemannian geometry. Expert Systems with 

Applications, 2018. 95: p. 201-211. 

207. Blankertz, B., et al., The non-invasive Berlin brain–computer interface: fast acquisition 
of effective performance in untrained subjects. NeuroImage, 2007. 37(2): p. 539-550. 

208. Willett, F.R., et al., High-performance brain-to-text communication via handwriting. 
Nature, 2021. 593(7858): p. 249-254. 

209. Jeannerod, M., Mental imagery in the motor context. Neuropsychologia, 1995. 33(11): p. 

1419-1432. 

210. Zich, C., et al., Real-time EEG feedback during simultaneous EEG–fMRI identifies the 
cortical signature of motor imagery. Neuroimage, 2015. 114: p. 438-447. 

211. Lotze, M., et al., Phantom movements and pain An fMRI study in upper limb amputees. 
Brain, 2001. 124(11): p. 2268-2277. 

212. Ruffino, C., C. Papaxanthis, and F. Lebon, Neural plasticity during motor learning with 
motor imagery practice: Review and perspectives. Neuroscience, 2017. 341: p. 61-78. 

213. Niazi, I.K., et al., Detection of movement-related cortical potentials based on subject-
independent training. Medical & biological engineering & computing, 2013. 51(5): p. 

507-512. 

214. de Lange, F.P., Neural mechanisms of motor imagery. 2008. 

215. Mueller, S., et al., Individual variability in functional connectivity architecture of the 
human brain. Neuron, 2013. 77(3): p. 586-595. 

216. Honey, C.J., J.-P. Thivierge, and O. Sporns, Can structure predict function in the human 
brain? Neuroimage, 2010. 52(3): p. 766-776. 

217. Smith, S., et al., Structural variability in the human brain reflects fine-grained functional 
architecture at the population level. Journal of Neuroscience, 2019. 39(31): p. 6136-

6149. 

218. Quinn, A.J., et al., Task-evoked dynamic network analysis through hidden markov 
modeling. Frontiers in neuroscience, 2018. 12: p. 603. 

219. Herzfeld, D.J. and R. Shadmehr, Motor variability is not noise, but grist for the learning 
mill. nature neuroscience, 2014. 17(2): p. 149-150. 

220. Betzel, R.F., et al., The community structure of functional brain networks exhibits scale-
specific patterns of inter-and intra-subject variability. Neuroimage, 2019. 202: p. 

115990. 

221. Edelman, B.J., et al., Noninvasive neuroimaging enhances continuous neural tracking for 
robotic device control. Science robotics, 2019. 4(31). 



 

 308 

222. Faller, J., et al., Regulation of arousal via online neurofeedback improves human 
performance in a demanding sensory-motor task. Proceedings of the National Academy 

of Sciences, 2019. 116(13): p. 6482-6490. 

223. Saha, S. and M. Baumert, Intra-and inter-subject variability in EEG-based sensorimotor 
brain computer interface: a review. Frontiers in Computational Neuroscience, 2019. 13: 

p. 87. 

224. Luck, S.J., An introduction to the event-related potential technique. 2014: MIT press. 

225. Ostry, D.J. and P.L. Gribble, Sensory plasticity in human motor learning. Trends in 

neurosciences, 2016. 39(2): p. 114-123. 

226. Radford, A., et al., Improving language understanding by generative pre-training. 2018. 

227. Bai, O., et al., Prediction of human voluntary movement before it occurs. Clinical 

Neurophysiology, 2011. 122(2): p. 364-372. 

228. McFarland, D.J., W.A. Sarnacki, and J.R. Wolpaw, Electroencephalographic (EEG) 
control of three-dimensional movement. Journal of neural engineering, 2010. 7(3): p. 

036007. 

229. Suwannarat, A., S. Pan-ngum, and P. Israsena, Comparison of EEG measurement of 
upper limb movement in motor imagery training system. Biomedical engineering online, 

2018. 17(1): p. 103. 

230. Ang, K.K., et al., A randomized controlled trial of EEG-based motor imagery brain-
computer interface robotic rehabilitation for stroke. Clinical EEG and neuroscience, 

2015. 46(4): p. 310-320. 

231. Koo, B., et al., A hybrid NIRS-EEG system for self-paced brain computer interface with 
online motor imagery. Journal of neuroscience methods, 2015. 244: p. 26-32. 

232. Tam, W.-K., et al., A minimal set of electrodes for motor imagery BCI to control an 
assistive device in chronic stroke subjects: a multi-session study. IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, 2011. 19(6): p. 617-627. 

233. Seghier, M.L. and C.J. Price, Interpreting and utilising intersubject variability in brain 
function. Trends in Cognitive Sciences, 2018. 22(6): p. 517-530. 

234. Saha, S. and M. Baumert, Intra-and inter-subject variability in EEG-based sensorimotor 
brain computer interface: a review. Frontiers in computational neuroscience, 2020. 13: p. 

87. 

235. Lee, D.-Y., et al. Decoding movement imagination and execution from eeg signals using 
bci-transfer learning method based on relation network. in ICASSP 2020-2020 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. 

IEEE. 

236. Wu, D., Y. Xu, and B.-L. Lu, Transfer learning for EEG-based brain-computer 
interfaces: A review of progress made since 2016. IEEE Transactions on Cognitive and 

Developmental Systems, 2020. 

237. Zhang, K., et al., Adaptive transfer learning for EEG motor imagery classification with 
deep Convolutional Neural Network. Neural Networks, 2021. 136: p. 1-10. 

238. Fahimi, F., et al., Inter-subject transfer learning with an end-to-end deep convolutional 
neural network for EEG-based BCI. Journal of neural engineering, 2019. 16(2): p. 

026007. 



 

 309 

239. Suedfeld, P. and R.A. Bow, Health and thxrapeutic applications of chamber and 
floatation restricted environmental stimulation thxrapy (REST). Psychology & Health, 

1999. 14(3): p. 545-566. 

240. Lilly, J.C., The deep self: Profound relaxation and the tank isolation technique. 1977: 

Simon & Schuster. 

241. Borrie, R.A., The use of restricted environmental stimulation therapy in treating 
addictive behaviors. International journal of the addictions, 1991. 25(sup7): p. 995-1015. 

242. Jackson, C.W., Sensory deprivation: Fifteen years of research. 1969: Ardent Media. 

243. Forgays, D.G. and D.K. Forgays, Creativity enhancement through floatation isolation. 
Journal of Environmental Psychology, 1992. 12(4): p. 329-335. 

244. Jonsson, K. and A. Kjellgren, Promising effects of treatment with floatation-REST 
(restricted environmental stimulation technique) as an intervention for generalized 
anxiety disorder (GAD): a randomized controlled pilot trial. BMC complementary and 

alternative medicine, 2016. 16(1): p. 108. 

245. Jonsson, K. and A. Kjellgren, Characterizing the experiences of floatation-REST 
(Restricted Environmental Stimulation Technique) treatment for generalized anxiety 
disorder (GAD): A phenomenological study. European Journal of Integrative Medicine, 

2017. 12: p. 53-59. 

246. Kjellgren, A., et al., Wellness through a comprehensive Yogic breathing program–A 
controlled pilot trial. BMC Complementary and Alternative Medicine, 2007. 7(1): p. 43. 

247. Kjellgren, A., H. Buhrkall, and T. Norlander, Psychotherapeutic Treatment in 
Combination with Relaxation in a Floatation Tank: Effects on" Burn-Out Syndrome". 
Qualitative Report, 2010. 15(5): p. 1243-1269. 

248. Kjellgren, A., H. Buhrkall, and T. Norlander, Preventing sick-leave for sufferers of high 
stress-load and burnout syndrome: A pilot study combining psychotherapy and the 
floatation tank. International Journal of Psychology and Psychological Therapy, 2011. 

11(2): p. 297-306. 

249. Kjellgren, A., et al., Effects of floatation-REST on muscle tension pain. Pain Research 

and Management, 2001. 6(4): p. 181-189. 

250. Kjellgren, A., et al., Altered consciousness in floatation-REST and chamber-REST: 
Experience of experimental pain and subjective stress. Social Behavior and Personality: 

an international journal, 2004. 32(2): p. 103-115. 

251. Kjellgren, A. and J. Westman, Beneficial effects of treatment with sensory isolation in 
floatation-tank as a preventive health-care intervention–a randomized controlled pilot 
trial. BMC complementary and alternative medicine, 2014. 14(1): p. 417. 

252. Carder, K.J.S., What is the Lived Experience of Floatation-REST Inside a Tank? 2018, 

Alliant International University. 

253. Suedfeld, P., E.J. Ballard, and M. Murphy, Water immersion and floatation: From stress 
experiment to stress treatment. Journal of Environmental Psychology, 1983. 3(2): p. 147-

155. 

254. Van Dierendonck, D. and J. Te Nijenhuis, Floatation restricted environmental 
stimulation therapy (REST) as a stress-management tool: A meta-analysis. Psychology & 

Health, 2005. 20(3): p. 405-412. 

255. Kjellgren, A., et al., Does floatation-rest (restricted environmental stimulation technique) 
have an effect on sleep? European Journal of Integrative Medicine, 2020. 33: p. 101047. 



 

 310 

256. Fine, T.H. and J.W. Turner Jr, The effect of brief restricted environmental stimulation 
therapy in the treatment of essential hypertension. Behaviour research and therapy, 1982. 

20(6): p. 567-570. 

257. Turner, J.W. and T.H. Fine, Effects of relaxation associated with brief restricted 
environmental stimulation therapy (REST) on plasma cortisol, ACTH, and LH. 
Biofeedback and Self-regulation, 1983. 8(1): p. 115-126. 

258. Mehrabian, A. and J.A. Russell, A measure of arousal seeking tendency. Environment 

and Behavior, 1973. 5(3): p. 315. 

259. Berkun, M.M., et al., Experimental studies of psychological stress in man. Psychological 

Monographs: General and Applied, 1962. 76(15): p. 1. 

260. Miller, L.C., R. Murphy, and A.H. Buss, Consciousness of body: Private and public. 
Journal of personality and social psychology, 1981. 41(2): p. 397. 

261. Mehrabian, A. and J.A. Russell, The basic emotional impact of environments. Perceptual 

and motor skills, 1974. 38(1): p. 283-301. 

262. Russell, J.A. and G. Pratt, A description of the affective quality attributed to 
environments. Journal of personality and social psychology, 1980. 38(2): p. 311. 

263. Jacobs, G.D., R.L. Heilbronner, and J.M. Stanley, The effects of short term floatation 
REST on relaxation: a controlled study. Health Psychology, 1984. 3(2): p. 99. 

264. Suedfeld, P. and G. Baker-Brown, Restricted environmental stimulation therapy of 
smoking: A parametric study. Addictive behaviors, 1987. 12(3): p. 263-267. 

265. Suedfeld, P., J. Metcalfe, and S. Bluck, Enhancement of scientific creativity by floatation 
REST (restricted environmental stimulation technique). Journal of Environmental 

Psychology, 1987. 7(3): p. 219-231. 

266. Turner, J.W., et al., The presence or absence of light during floatation restricted 
environmental stimulation: Effects on plasma cortisol, blood pressure, and mood. 
Biofeedback and Self-regulation, 1989. 14(4): p. 291-300. 

267. Suedfeld, P. and T. Bruno, Floatation REST and imagery in the improvement of athletic 
performance. Journal of Sport and Exercise Psychology, 1990. 12(1): p. 82-85. 

268. McAleney, P.J., A. Barabasz, and M. Barabasz, Effects of floatation restricted 
environmental stimulation on intercollegiate tennis performance. Perceptual and Motor 

Skills, 1990. 71(3): p. 1023-1028. 

269. Turner Jr, J.W. and T.H. Fine, Restricting environmental stimulation influences levels 
and variability of plasma cortisol. Journal of Applied Physiology, 1991. 70(5): p. 2010-

2013. 

270. Wagaman, J.D., A.F. Barabasz, and M. Barabasz, Floatation REST and imagery in the 
improvement of collegiate basketball performance. Perceptual and Motor Skills, 1991. 

72(1): p. 119-122. 

271. Lee, A. and J. Hewitt, USING VISUAL-IMAGERY IN A FLOATATION TANK TO 
IMPROVE GYMNASTIC PERFORMANCE AND REDUCE PHYSICAL SYMPTOMS. 
International Journal of Sport Psychology, 1987. 18(3): p. 223-230. 

272. Suedfeld, P., D.E. Collier, and B.D. Hartnett, Enhancing perceptual-motor accuracy 
through floatation REST. The Sport Psychologist, 1993. 7(2): p. 151-159. 

273. Schulz, P. and C.-H. Kaspar, Neuroendocrine and psychological effects of restricted 
environmental stimulation technique in a floatation tank. Biological psychology, 1994. 

37(2): p. 161-175. 



 

 311 

274. Hathaway, S.R. and J.C. McKinley, Minnesota Multiphasic Personality Inventory; 
Manual, revised. 1951. 

275. Zuckerman, M. and M. Neeb, Sensation seeking and psychopathology. Psychiatry 

research, 1979. 1(3): p. 255-264. 

276. Schulz, P., et al., Traduction française de la Stanford Sleepiness Scale (SSS) et utilisation 
de cette échelle de sédation après dose unique de midazolam ou d'amitriptylline. 
Agressologie (Paris), 1983. 24(8): p. 357-359. 

277. von Zerssen, D., Clinical self-rating scales (CSRS) of the Munich psychiatric information 
system (PSYCHIS München), in Assessment of depression. 1986, Springer. p. 270-303. 

278. Norlander, T., H. Bergman, and T. Archer, Effects of floatation REST on creative 
problem solving and originality. Journal of Environmental Psychology, 1998. 18(4): p. 

399-408. 

279. Holmquist, R., Manual till FS: Förändring och stabilitet [Manual for the FS Test: 
Change and stability]. Stockholm: Psykologiförlaget AB, 1986. 

280. Holmquist, R., Testbeskrivningar för Syllogismer I och II.[Manual to the syllogisms I and 
II test]. 1974, Stockholm: Psykologiförlaget. 

281. Holmquist, R., Testbeskrivning för FREGO [Manual for the FREGO test]. Stockholm: 

Psykologiförlaget AB, 1973. 

282. Forgays, D.G., Floatation REST as a smoking intervention. Addictive behaviors, 1987. 

12(1): p. 85-90. 

283. Norlander, T., A. Kjellgren, and T. Archer, Effects of floatation-versus chamber-
restricted environmental stimulation technique (REST) on creativity and realism under 
stress and non-stress conditions. Imagination, Cognition and Personality, 2003. 22(4): p. 

343-359. 

284. Bood, S.Å., et al., Eliciting the relaxation response with the help of floatation-rest 
(restricted environmental stimulation technique) in patients with stress-related ailments. 
International Journal of Stress Management, 2006. 13(2): p. 154. 

285. Broderick, V., L. Uiga, and M. Driller, Floatation-restricted environmental stimulation 
therapy improves sleep and performance recovery in athletes. Performance Enhancement 

& Health, 2019. 7(1-2): p. 100149. 

286. Wallbaum, A.B., et al., Progressive muscle relaxation and restricted environmental 
stimulation therapy for chronic tension headache: a pilot study. International Journal of 

Psychosomatics, 1991. 

287. Blanchard, E.B., et al., The efficacy and cost‐effectiveness of minimal‐therapist‐contact, 
non‐drug treatments of chronic migraine and tension headache. Headache: The Journal 

of Head and Face Pain, 1985. 25(4): p. 214-220. 

288. Kjellgren, A., et al., Effects of floatation-REST on muscle tension pain. Pain Research 

and Management, 2001. 6. 

289. Bood, S.A., et al., Effects of floatation-restricted environmental stimulation technique on 
stress-related muscle pain: What makes the difference in therapy-attention-placebo or the 
relaxation response? Pain Research and Management, 2005. 10. 

290. Bood, S.Å., et al., Effects of floatation rest (restricted environmental stimulation 
technique) on stress related muscle pain: are 33 floatation sessions more effective than 
12 sessions? Social Behavior and Personality: an international journal, 2007. 35(2): p. 

143-156. 



 

 312 

291. Edebol, H., S. Åke Bood, and T. Norlander, Chronic whiplash-associated disorders and 
their treatment using floatation-REST (Restricted Environmental Stimulation Technique). 
Qualitative Health Research, 2008. 18(4): p. 480-488. 

292. Bood, S.Å., A. Kjellgren, and T. Norlander, Treating stress-related pain with the 
floatation restricted environmental stimulation technique: Are there differences between 
women and men? Pain Research and Management, 2009. 14. 

293. Khalsa, S., et al., S66. A Clinical Trial Investigating the Safety and Tolerability of 
Floatation-Rest in Anorexia Nervosa. Biological Psychiatry, 2018. 83(9): p. S372. 

294. Feinstein, J., et al., F34. Examining the Short-Term Anxiolytic Effect of Floatation-REST. 
Biological Psychiatry, 2018. 83(9): p. S250-S251. 

295. Feinstein, J.S., et al., The elicitation of relaxation and interoceptive awareness using 
floatation therapy in individuals with high anxiety sensitivity. Biological Psychiatry: 

Cognitive Neuroscience and Neuroimaging, 2018. 3(6): p. 555-562. 

296. Edebol, H., T. Nordén, and T. Norlander, Behavior change and pain relief in chronic 
whiplash associated disorder Grade IV using floatation restricted environmental 
stimulation technique: A case report. Psychology and Behavioral Sciences, 2013. 2: p. 

206-2016. 

297. Raab, J. and J. Gruzelier, A controlled investigation of right hemispheric processing 
enhancement after restricted environmental stimulation (REST) with floatation. 
Psychological Medicine, 1994. 24(2): p. 457-462. 

298. Sakata, S., et al., Enhancement of randomness by floatation rest (restricted environmental 
stimulation technique). Perceptual and motor skills, 1995. 80(3): p. 999-1010. 

299. Suedfeld, P. and E. Eich, Autobiographical memory and affect under conditions of 
reduced environmental stimulation. Journal of Environmental Psychology, 1995. 15(4): 

p. 321-326. 

300. Åsenlöf, K., et al., Case studies on fibromyalgia and burn-out depression using 
psychotherapy in combination with floatation-REST: Personality development and 
increased well-being. Imagination, Cognition and Personality, 2007. 26(3): p. 259-271. 

301. Driller, M.W. and C.K. Argus, Floatation restricted environmental stimulation therapy 
and napping on mood state and muscle soreness in elite athletes: a novel recovery 
strategy? Performance Enhancement & Health, 2016. 5(2): p. 60-65. 

302. Shurley, J.T., Profound experimental sensory isolation. American Journal of Psychiatry, 

1960. 117(6): p. 539-545. 

303. Lilly, J.C. and J.T. Shurley, Experiments in solitude, in maximum achievable physical 
isolation with water suspension, of intact healthy persons. Psychophysiological aspects of 

space flight, 1961: p. 238-247. 

304. Norlander, T., A. Kjellgren, and T. Archer, The experience of floatation-REST as a 
function of setting and previous experience of altered state of consciousness. 
Imagination, Cognition and Personality, 2000. 20(2): p. 161-178. 

305. Kjellgren, A., F. Lyden, and T. Norlander, Sensory isolation in floatation tanks: Altered 
states of consciousness and effects on well-being. The Qualitative Report, 2008. 13(4): p. 

636-656. 

306. Dunham, C.M., J.V. McClain, and A. Burger, Comparison of Bispectral Index™ values 
during the floatation restricted environmental stimulation technique and results for stage 
I sleep: a prospective pilot investigation. BMC research notes, 2017. 10(1): p. 1-6. 



 

 313 

307. Kjellgren, A., et al., Quality of life with floatation therapy for a person diagnosed with 
attention deficit disorder, atypical autism, PTSD, anxiety and depression. Open Journal 

of Medical Psychology, 2013. 2(3): p. 134-138. 

308. Soulexdc.com. Can children benefit from floating.  [cited 2021 7/11/2021]; Available 

from: https://soulexdc.com/blog/2017/3/15/can-children-benefit-from-floating. 

309. Zenfloatco.com. Chidren and floating. 2013  [cited 2021 7/11/2021]; Available from: 

https://zenfloatco.com/blog-pages/2014/5/30/floating-and-children. 

310. Lilly, J.C., Mental effects of reduction of ordinary levels of physical stimuli on intact, 
healthy persons. Psychiatric Research Reports, 1956. 

311. Ballard, E., REST in the treatment of persistent psychophysiological insomnia, in Clinical 
and experimental restricted environmental stimulation. 1993, Springer. p. 187-203. 

312. Bood, S.Å., A. Kjellgren, and T. Norlander, Treating stress-related pain with the 
floatation restricted environmental stimulation technique: Are there differences between 
women and men? Pain Research and Management, 2009. 14(4): p. 293-298. 

313. Suedfeld, P., The Restricted Environmental Stimulation Technique in the modification of 
addictive behaviors: Through the centuries to frontiers for the Eighties. Bulletin of the 

Society of Psychologists in addictive Behaviors, 1983. 

314. Barabasz, A. and M. Barabasz, Clinical and experimental restricted environmental 
stimulation. 1993: Springer. 

315. Jalaudin, N. and M.K.M. Amin, Electroencephalography (EEG) analysis on human 
reflection towards relaxation of mind. 2019. 

316. Davidson, R.J., Cerebral asymmetry and emotion: Conceptual and methodological 
conundrums. Cognition & Emotion, 1993. 7(1): p. 115-138. 

317. Craig, A., Forebrain emotional asymmetry: a neuroanatomical basis? Trends in 

cognitive sciences, 2005. 9(12): p. 566-571. 

318. Goodman, R.N., et al., Stress, emotion regulation and cognitive performance: The 
predictive contributions of trait and state relative frontal EEG alpha asymmetry. 
International Journal of Psychophysiology, 2013. 87(2): p. 115-123. 

319. Alonso, J., et al., Stress assessment based on EEG univariate features and functional 
connectivity measures. Physiological measurement, 2015. 36(7): p. 1351. 

320. Kamei, T., et al., Decrease in serum cortisol during yoga exercise is correlated with 
alpha wave activation. Perceptual and motor skills, 2000. 90(3): p. 1027-1032. 

321. Yang, Q., et al. Cortical synchrony change under mental stress due to time pressure. in 

2010 3rd International Conference on Biomedical Engineering and Informatics. 2010. 

IEEE. 

322. Strelets, V., Z.V. Garakh, and V.Y. Novototskii-Vlasov, Comparative study of the 
gamma rhythm in normal conditions, during examination stress, and in patients with first 
depressive episode. Neuroscience and behavioral physiology, 2007. 37(4): p. 387-394. 

323. Hinrikus, H., et al., Electroencephalographic spectral asymmetry index for detection of 
depression. Medical & biological engineering & computing, 2009. 47(12): p. 1291. 

324. Lewis, R.S., N.Y. Weekes, and T.H. Wang, The effect of a naturalistic stressor on frontal 
EEG asymmetry, stress, and health. Biological psychology, 2007. 75(3): p. 239-247. 

325. Ferreira, C., et al., The relation between EEG prefrontal asymmetry and subjective 
feelings of mood following 24 hours of sleep deprivation. Arquivos de Neuro-psiquiatria, 

2006. 64(2B): p. 382-387. 



 

 314 

326. McCraty, R. and F. Shaffer, Heart rate variability: new perspectives on physiological 
mechanisms, assessment of self-regulatory capacity, and health risk. Global advances in 

health and medicine, 2015. 4(1): p. 46-61. 

327. Gevirtz, R., P. Lehrer, and M. Schwartz, Cardiorespiratory biofeedback. Biofeedback: A 

practitioner’s guide, 2016: p. 196-213. 

328. Shaffer, F. and J. Ginsberg, An overview of heart rate variability metrics and norms. 
Frontiers in public health, 2017. 5: p. 258. 

329. Nunan, D., G.R. Sandercock, and D.A. Brodie, A quantitative systematic review of 
normal values for short‐term heart rate variability in healthy adults. Pacing and clinical 

electrophysiology, 2010. 33(11): p. 1407-1417. 

330. Karemaker, J.M., Counterpoint: respiratory sinus arrhythmia is due to the baroreflex 
mechanism. Journal of applied physiology, 2009. 106(5): p. 1742-1743. 

331. Gregory, J., et al., Measuring neural time series data in a sensory deprivation tank. 2019. 

332. Pan, J. and W.J. Tompkins, A real-time QRS detection algorithm. IEEE transactions on 

biomedical engineering, 1985(3): p. 230-236. 

333. Sedghamiz, H., Matlab implementation of Pan Tompkins ECG QRS detector. DataCite: 

Cambridge, UK, 2014. 

334. Sedghamiz, H., BioSigKit: A Matlab Toolbox and Interface for Analysis of BioSignals. 
Journal of Open Source Software, 2018. 3(30): p. 671. 

335. Naji, M., et al., Coupling of autonomic and central events during sleep benefits 
declarative memory consolidation. Neurobiology of learning and memory, 2019. 157: p. 

139-150. 

336. Billman, G.E., The LF/HF ratio does not accurately measure cardiac sympatho-vagal 
balance. Frontiers in physiology, 2013. 4: p. 26. 

337. Camm, A.J., et al., Heart rate variability. Standards of measurement, physiological 
interpretation, and clinical use. 1996. 

338. Shaffer, F., R. McCraty, and C.L. Zerr, A healthy heart is not a metronome: an 
integrative review of the heart's anatomy and heart rate variability. Frontiers in 

psychology, 2014. 5: p. 1040. 

339. Kleiger, R.E., P.K. Stein, and J.T. Bigger Jr, Heart rate variability: measurement and 
clinical utility. Annals of Noninvasive Electrocardiology, 2005. 10(1): p. 88-101. 

340. Pinheiro, J. and D. Bates, Mixed-effects models in S and S-PLUS. 2006: Springer Science 

& Business Media. 

341. Brown, R.P. and P.L. Gerbarg, Sudarshan Kriya yogic breathing in the treatment of 
stress, anxiety, and depression: part I—neurophysiologic model. Journal of Alternative & 

Complementary Medicine, 2005. 11(1): p. 189-201. 

342. Lifshitz, M., et al., Source localization of brain states associated with canonical 
neuroimaging postures. Journal of Cognitive Neuroscience, 2017. 29(7): p. 1292-1301. 

343. Raz, A., et al., Ecological nuances in functional magnetic resonance imaging (fMRI): 
psychological stressors, posture, and hydrostatics. Neuroimage, 2005. 25(1): p. 1-7. 

344. Thibault, R.T., et al., Posture alters human resting-state. cortex, 2014. 58: p. 199-205. 

345. Yamashita, K., et al., The state anxiety inventory is useful for predicting the autonomic 
nervous system state of patients before the extraction of an impacted mandibular third 
molar. Journal of Oral and Maxillofacial Surgery, 2020. 78(4): p. 538-544. 



 

 315 

346. Dedovic, K., et al., The Montreal Imaging Stress Task: using functional imaging to 
investigate the effects of perceiving and processing psychosocial stress in the human 
brain. Journal of Psychiatry and Neuroscience, 2005. 30(5): p. 319. 

347. Sulaiman, N., et al. Initial investigation of human physical stress level using brainwaves. 

in 2009 IEEE Student Conference on Research and Development (SCOReD). 2009. 

IEEE. 

348. Steinhubl, S.R., et al., Cardiovascular and nervous system changes during meditation. 
Frontiers in Human Neuroscience, 2015. 9: p. 145. 

349. Davidson, R.J., et al., Alterations in brain and immune function produced by mindfulness 
meditation. Psychosomatic medicine, 2003. 65(4): p. 564-570. 

350. Minguillon, J., M.A. Lopez-Gordo, and F. Pelayo, Stress assessment by prefrontal 
relative gamma. Frontiers in computational neuroscience, 2016. 10: p. 101. 

351. Yair, O., et al., Spectral Discovery of Jointly Smooth Features for Multimodal Data. 
arXiv preprint arXiv:2004.04386, 2020. 

352. Li, B., Y.-R. Li, and X.-L. Zhang, A survey on Laplacian eigenmaps based manifold 
learning methods. Neurocomputing, 2019. 335: p. 336-351. 

353. Bengio, Y., et al. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral 
clustering. in Advances in neural information processing systems. 2004. 

354. Quispe, A.M., C. Petitjean, and L. Heutte, Extreme learning machine for out-of-sample 
extension in Laplacian eigenmaps. Pattern Recognition Letters, 2016. 74: p. 68-73. 

 



 

 316 

Appendices 

Appendix A. Dimensionality Reduction for Classification of Object 
Weight from Electromyography 
Supplementary Material 

In this supplementary material we give further details about the dimensionality-reduction methods 

we used. Much of this material follows Belkin et al. [25].  

A.1 Optimal embeddings 

Given a data set, we construct a weighted graph G = (V, E) with edges connecting nearby points 

to each other (assuming the graph is connected). Consider the problem of mapping the weighted 

graph G to a line so that connected points stay as close together as possible.  Let y = (#$, #%, … , #&)' 

be such a map. A reasonable criterion for having good mapping is to minimize the following 

objective function: 

'(#( − #))%)()
()

 (1) 

under appropriate constraints. The objective function with our choice of weights )() incurs a heavy 

penalty if neighboring points *( and *) are mapped far apart. Therefore, minimizing it is an attempt 

to ensure that if *( and *) are “close,” then #( and #) are close as well. It turns out that for any y, 

we have: 
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1
2'-#( − #).

%)()
()

=	#'1#	 (2) 

Where as 1	 = 	2	– 	) and )() is symmetric and	2(( 	= ∑ ))() .	Thus,	

∑ -#( − #).
%)()() =	∑ (#(% + #)% − 2#(#)))() =() ∑ #(%2((( +∑ #)%2))	) -

2∑ #(#))() = 2#'1#()  

(3) 

Note that this calculation also shows that L is positive semidefinite. Therefore, the minimization 

problem reduces to finding: argmin	#'1#		s. t. 		#'2# = 1	 

The constraint 	#'2# = 1 removes an arbitrary scaling factor in the embedding. Matrix D provides 

a natural measure on the vertices of the graph. The bigger the value 2(( (corresponding to the BCℎ 

vertex) is, the more important is that vertex. Because L is positive semidefinite, the vector y that 

minimizes the objective function is given by the minimum eigenvalue solution to the generalized 

eigenvalue problem: 1#	 = 	E2# 

Let 1 be the constant function taking 1 at each vertex. It is easy to see that 1 is an eigenvector with 

eigenvalue 0. If the graph is connected, 1 is the only eigenvector for λ = 0. To eliminate this trivial 

solution, which collapses all vertices of G onto the real number 1, we put an additional constraint 

of orthogonality and look for argmin	#'1#		F. C. 		#'2# = 1	and 		#'2G = 0. Thus, finally, the 

solution is now given by the eigenvector with the smallest nonzero eigenvalue. The condition 

#'2G = 0	can be interpreted as removing a translation invariance in y.  
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Now consider the more general problem of embedding the graph into an m-dimensional Euclidean 

space. The embedding is given by the I × K matrix Υ = [#$, #%, … , #+	], where the B,- row 

provides the embedding coordinates of the BCℎ vertex. Similarly, we need to minimize: 

∑ O#(() −	#())O%)()() =	 CP(Q'1Q)  (4) 

where #(() = [#$(B), … , #+(B)]'is the m-dimensional representation of the ith vertex. This reduces 

to finding: 

argmin	CP(Q'1Q) s.t.  Q'1Q = 1	 (5) 

For the one-dimensional embedding problem, the constraint prevents collapse onto a point. For 

the m-dimensional embedding problem, the constraint presented above prevents collapse onto a 

subspace of dimension less than K	– 	1. 

The above therefore suggest that the Laplacian-Eigenmap algorithm keeps samples from the 

original, higher-dimensional space close to each other also in the lower-dimensional embedding. 

The Laplacian graph is analogous to the Laplace-Beltrami operator on manifolds. The 

eigenfunctions of the Laplace Beltrami operator have properties desirable for embedding [25, 351]. 

Let ℳ0 ⊆ ℝ1 be a smooth, compact manifold embedded in a d-dimensional Euclidean space. A 

function U:	ℳ0 → ℝ1 is said to be smooth if U ∈ Y2(ℳ0 , ℝ), that is, the function U and all of its 

derivatives are continuous. Let us define a different notion of smoothness related to the Laplace-

Beltrami operator. The Laplace-Beltrami operator 10 is a linear operator generalizing the 

Laplacian on Euclidean spaces to Riemannian manifolds. The eigenfunctions Z( of the Laplace-

Beltrami operator span a dense subset of the function space [3 = 1%(ℳ0 , ℝ). The eigenvalues of 
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the Laplace-Beltrami are real (and non-negative), so we can sort the associated eigenfunctions Z( 

such that E( ≤ E) 	for B	 < 	^. We say that Z( is smoother than Z)  if E( ≤ E). It was shown that the 

best representation basis, in terms of truncated representation of functions U:	ℳ0 → ℝ1 such that 

∥ `U ∥	≤ 	1, are in fact the eigenfunctions of the Laplace-Beltrami operator 10. Thus, in that sense, 

we say that U(	:	ℳ0 → ℝ	with ∥ U( ∥	= 	1 is smoother than U) ∶ 	ℳ0 → ℝ with ∥ U) ∥	= 	1 if ∥ 10U( ∥ 

≤ ∥10U) ∥.  

Heat kernels and the choice of weight matrix: The Laplace Beltrami operator on differentiable 

functions on a manifold ℳ is intimately related to heat flow. Let U ∶ 	b	 → 	ℝ be the initial heat 

distribution and c(*, C) be the heat distribution at time C	-c(*, 0) = 	U	(*). (see [25, 351] for more 

details). The results show that we compute the graph Laplacian with the following weights: 

)() = de
40!50"4

#

6, 	(7	40!50"489

0														otherwise
	 

(6) 

A.2 Properties of techniques for dimensionality reduction  

In S1 Table 1, the dimensionality reduction techniques are listed by four general properties: (1) 

whether the mapping between the high-dimensional and the low-dimensional space is parametric, 

(2) the main free parameters to be optimized, (3) the computational complexity of the main 

computational part of the technique, and (4) the memory complexity of the technique [38, 39]. S1 

Table 1 shows that most techniques for dimensionality reduction are non-parametric. This means 

that the technique does not specify a direct mapping from the high-dimensional to the low-

dimensional space (or vice versa). The non-parametric nature of most techniques is a disadvantage 

for two main reasons: (1) it is not possible to generalize the mapping to a held-out or to a new test 
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set (without carrying out the dimensionality-reduction technique again); (2) it is difficult to obtain 

insights into how much information of the high-dimensional data was preserved in the low-

dimensional space by reconstructing the original data from its low-dimensional representation and 

measuring the error between the reconstructed and original data.  

S1 Table 1. Properties of techniques for dimensionality reduction  

Dimensionality 

reduction technique 

Parametric Free 

parameters 

Computational 

complexity 

Memory 

complexity 

PCA Yes none i(2:) i(2%) 
ISOMAP No k i(j:) i(j%) 

LLE No k i(kj%) i(kj%) 
Laplacian Eigenmaps No k, l i(kj%) i(kj%) 

t-SNE No perplexity i(j%) i(j%) 

 

As for the free parameters, S1 Table 1 shows that the objective functions of most non-linear 

techniques for dimensionality reduction have free parameters that need to be optimized. In other 

words, there are parameters that directly influence the optimized cost function. Non-convex 

techniques for dimensionality reduction have additional free parameters, such as the learning rate 

and the permitted maximum number of iterations. Moreover, LLE uses a regularization parameter 

in the computation of the reconstruction weights.  

The presence of free parameters has both advantages and disadvantages. The main advantage of 

free parameters is that they make the technique more flexible. However, they then need to be tuned 

to optimize performance. S1 Table 1 also provides more details on the computational and memory 

complexities of the techniques. The computational complexity of a dimensionality-reduction 

technique is important for its practical applicability. Algorithms grow increasingly infeasible as 
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computational or memory demands rise. The computational complexity of a dimensionality 

reduction technique is determined by: (1) properties of the dataset, such as the number of 

datapoints n and their dimensionality D, and (2) by parameters of the techniques, such as the target 

dimensionality d, the number of nearest neighbors k, l (for techniques based on neighborhood 

graphs). In S1 Table 1, p denotes the ratio of nonzero elements in a sparse matrix to the total 

number of elements.  

In the next section, we show how we deal with out-of-sample extension where there is no explicit 

projection function between the original data and their low dimensional representations in the 

original LE algorithm. 

A.3 Out-of-sample extension 

An important requirement for dimensionality reduction techniques is the ability to embed new 

high-dimensional datapoints into an existing low-dimensional data representation. However, there 

is no explicit projection function between the original data and their low dimensional 

representations in the original LE algorithm, which makes out-of-sample extension difficult. To 

find projection of any additional samples, LE needs to be run on all the data together with the 

additional samples, resulting in considerable computational cost, especially when applying it 

to large scale data pattern recognition. Fortunately, various methods have been developed to 

mitigate the out-of-sample problem [352]: Linear approximation to LE, Kernel extensions to LE, 

Tensor representation of LE, incremental learning for LE, neural network approaches, and Extreme 

Learning Machine. The out-of-sample extension for spectral techniques has been presented in 

[353]. Nyström approximation supports out-of-sample extensions for spectral techniques such as 
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ISOMAP, LLE, and Laplacian Eigenmaps. In the next section, we explain Nyström approximation 

in greater detail. 

A.3.1 Nyström extension  
Let D denote the dimension of the initial set, N the number of samples (or points), *( a sample in 

m ∈ ℝ; and the 2	 × 	n training matrix containing the samples. Let #( denote the coordinates in 

the embedded space, included in ℝ1 where o is the reduced dimension that corresponds to *(. 

Finally, let *<=$ denote a sample not belonging to the initial set of samples—i.e. an out-of-sample 

point. The goal is to estimate its reduced coordinates #<=$. The Nyström method speeds up kernel-

method computations by performing the eigen-decomposition on a subset of examples [354]. It 

was previously used to propose an out-of-sample extension to kernel-based spectral methods [353]. 

Let us recall the general framework in which spectral dimension-reduction techniques can be cast. 

Let ) be a symmetric matrix of size n	 × 	n, expressing the affinity between the N points of the 

training set. Let p(·,·) denote a data-dependant kernel function giving rise to matrix ) with )() =

p(*( , *)). 

Let (r>, E>) denote the eigenvector and eigenvalue pairs such that )r> 	= 	 E> 	r>. For 

dimensionality reduction, retain the o largest (or smallest, depending on the method) eigenvalues 

and their associated eigenvectors. The embedding (or reduced coordinates) of each training sample 

*( is the ith row of a matrix s that contains the d eigenvectors in columns. The Nyström extension 

for an out-of-sample point is a weighted sum of the previously calculated eigenvectors and 

eigenvalues. More precisely, the kth reduced coordinate of the out-of- sample point is 

approximated as: #<=$ = $
?$
∑ r>(<
(@$ p(*<=$, *() for all I = 1,… , o or, in matrix form: #t<=$ =
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$
√?
s'p<=$, where 

$
√?
= oBuv	( $

B?%
, … , $

B?&
). s is the matrix whose columns are the eigenvectors, 

and p<=$ = [p(*<=$, *$)… 	p(*<=$, m<)]. In [4], Bengio et al. have designed a formulation of 

p	(·,·) for Laplacian eigenmaps: 

p(u, w) = $
&
	 C(D,F)

GH'[C(D,0)]H'([C(F,0()]
        (7) 

The Nyström extension is applicable to any technique that make use of a kernel function. This 

method requires some parameter choice for the kernel p	(·,·), usually made heuristically.  

A1 Table 2. Statistical analysis Performance of different classifiers 

Paired Samples T-Test  

Classifiers       t  df  p  Mean Difference  SE Difference  Cohen's d  

k-NN   -      RBF SVM   4.000   6   0.007   6.771   1.693   1.512   

k-NN   -      Linear SVM   5.616   6   0.001   17.257   3.073   2.123   

k-NN   -      Random Forest   2.928   6   0.026   5.671   1.937   1.107   

 

Note.  Student's t-test.  

 

A1 Table 3. Statistical analysis Performance of different dimension reduction techniques 

Paired Samples T-Test  

         t  df  p  Cohen's d  

LE (simple minded)   -   PCA   -5.613   11   < .001   -1.620   

LE (simple minded)   -   ISOMAP   -3.721   11   0.003   -1.074   

LE (simple minded)   -   LLE   2.214   11   0.049   0.639   

LE (simple minded)   -   LE (rbf)   1.064   11   0.310   0.307   
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Paired Samples T-Test  

         t  df  p  Cohen's d  

LE (simple minded)   -   t-SNE   -7.844   11   < .001   -2.264   

LE (rbf)   -   PCA   -5.158   11   < .001   -1.489   

LE (rbf)   -   ISOMAP   -3.882   11   0.003   -1.121   

LE (rbf)   -   LLE   1.161   11   0.270   0.335   

LE (rbf)   -   t-SNE   -6.148   11   < .001   -1.775   

 

Note.  Student's t-test.  

 

A1 Table 4. Repeated Measures ANOVA 

 

Within Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  

Classifiers   1087.127   3   362.376   15.490   < .001   

Residual   421.096   18   23.394         

 

Note.  Type III Sum of Squares  

 

Between Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  

Residual   125.647   6   20.941         

 

Note.  Type III Sum of Squares  

 

A1 Table 5. Post Hoc Comparisons - Classifiers 

      
Mean 

Difference  
SE  t  

Cohen's 

d  
p holm  

Linear SVM   RBF SVM   -10.486   3.170   -3.307   -1.250   0.049   

    Random Forest   -11.586   2.703   -4.286   -1.620   0.026   

    k-NN   -17.257   3.073   -5.616   -2.123   0.008   
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A1 Table 5. Post Hoc Comparisons - Classifiers 

      
Mean 

Difference  
SE  t  

Cohen's 

d  
p holm  

RBF SVM   Random Forest   -1.100   2.586   -0.425   -0.161   0.685   

    k-NN   -6.771   1.693   -4.000   -1.512   0.028   

Random Forest   k-NN   -5.671   1.937   -2.928   -1.107   0.053   

 

Note.  Cohen's d does not correct for multiple comparisons.  

Note.  Bonferroni adjusted confidence intervals.  
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