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ABSTRACT

Quantum State Estimation and Tracking

for Superconducting Processors Using Machine Learning

by Shiva Lotfallahzadeh Barzili

Quantum technology has been rapidly growing; in particular, the experiments that have

been performed with superconducting qubits and circuit QED have allowed us to explore

the light-matter interaction at its most fundamental level. The study of coherent dynamics

between two-level systems and resonator modes can provide insight into fundamental aspects

of quantum physics, such as how the state of a system evolves while being continuously

observed. To study such an evolving quantum system, experimenters need to verify the

accuracy of state preparation and control since quantum systems are very fragile and sensitive

to environmental disturbance. In this thesis, I look at these continuous monitoring and state

estimation problems from a modern point of view. With the help of machine learning

techniques, it has become possible to explore regimes that are not accessible with traditional

methods: for example, tracking the state of a superconducting transmon qubit continuously

with dynamics fast compared with the detector bandwidth. These results open up a new

area of quantum state tracking, enabling us to potentially diagnose errors that occur during

quantum gates. In addition, I investigate the use of supervised machine learning, in the

form of a modified denoising autoencoder, to simultaneously remove experimental noise while

encoding one and two-qubit quantum state estimates into a minimum number of nodes within

the latent layer of a neural network. I automate the decoding of these latent representations

into positive density matrices and compare them to similar estimates obtained via linear

inversion and maximum likelihood estimation. Using a superconducting multiqubit chip,

I experimentally verify that the neural network estimates the quantum state with greater

fidelity than either traditional method. Furthermore, the network can be trained using only

product states and still achieve high fidelity for entangled states. This simplification of the
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training overhead permits the network to aid experimental calibration, such as the diagnosis

of multi-qubit crosstalk. As quantum processors increase in size and complexity, I expect

automated methods such as those presented in this thesis to become increasingly attractive.
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1 Introduction

The idea of quantum computing first originated with Paul Benioff in 1980, who proposed a

quantum mechanical model for the Turing machine [1], a minimal yet universal computer

designed originally with classical physics. Then after that in 1982, Richard Feynman realized

that with a classical computer simulating quantum systems would require exponentially large

computational resources, but quantum computers could in theory overcome this challenge

since they also would have similarly complex structure [2]. Nobody knew what such a quan-

tum computer might look like until 1985, when David Deutsch proposed the mathematical

framework of a quantum Turing machine to model quantum computation [3]. A theoretical

foundation for quantum computing was laid for the first time by this work.

These developments raised the question of whether quantum computers could actually out-

perform classical computers, which was quickly answered by a sequence of ground-breaking

papers. In 1992, David Deutsch and Richard Jozsa give the first example of quantifiable

advantage by proposing a quantum algorithm to efficiently distinguish balanced functions

from constant functions [4]. In 1996, Grover designed a quantum algorithm for faster search

in unsorted databases [5]. In 1997, Ethan Bernstein and Umesh Vazirani demonstrated that

for the problem of learning a secret bit-string encoded in an unknown function, quantum

computers could be significantly faster than known classical algorithms, even if classical

computers were allowed a small probability of error [6].

These developments were provocative, but did not settle the question whether a quantum

computer could demonstrate any advantage when solving a practical problem of interest. In

1999, Peter Shor settled this debate by showing that quantum computers can factor large

integers efficiently, a task for which there is no known efficient classical algorithm [7]. An-

other development of algorithmic importance came in 1996 from Seth Lloyd, who developed

a quantum algorithm for simulating quantum mechanical systems [8], which was a first step

1



toward realizing the quantum simulation ideas of Feynman. Since that time, simulation of

quantum mechanics has become one of the most promising uses of a quantum computer,

with many potential applications, such as drug design [9, 10], materials science [11], and

high-energy physics [12].

These potential applications started a surge of interest in quantum computing and in de-

veloping hardware that could implement the proposed quantum algorithms. Developing the

hardware rapidly converged to identifying suitable physical implementations of quantum bits

(qubits) that are the basic units of quantum information, which could be realized in principle

by any two-level quantum system that could be both protected and controlled. A qubit is

the quantum version of the classic binary bit; however, whereas the state of a bit can only

be either 0 or 1, the general state of a qubit can be a superposition of both [13] and thus

encode a much richer set of possibilities.

Although quantum computing was a promising technology with potentially powerful com-

putational capabilities, actually building a large-scale quantum system would involve several

imposing challenges in terms of fabrication, verification, and architecture [14–16]. These

difficulties arise due to the fragility of quantum systems (e.g. qubits) and the rapid degra-

dation of quantum effects when the hardware inevitably interacts with a noisy environment.

Individual quantum systems like a qubit can be built in two ways: naturally and artificially.

Photons, single atoms, and single ions are examples of natural quantum systems with dis-

tinguishable and controllable quantum states that can serve as qubits. Although they can

make a system which is very strongly quantum mechanical however in the end, they are small

and have limited design flexibility. In contrast, artificial atoms could be made much larger

and be engineered to have customized properties, but were harder to fabricate as precisely

[17–20].

Despite these challenges, quantum hardware development has been remarkably fast over

the last two decades. In 1999, Yasunobu Nakamura and Jaw-Shen Tsai demonstrated that

2



a superconducting circuit could be used as a quantum bit [21]. In 2003, Stephan Gulde,

Mark Riebe, Gavin P T Lancaster et al implemented the Deutsch-Jozsa algorithm using

the hyperfine ground states of ions that were trapped and controlled with lasers [22]. An

important milestone was passed in 2004 when Schoelkopf’s group at Yale reproduced with

superconducting circuits [23, 24] the experiment performed in cavity quantum electrodynam-

ics [25, 26], a field of atomic physics in which the individual atoms interact with photons

stored in a resonant cavity.

The behavior of these new superconducting circuits had many similarities to the atom-laser

interactions investigated in the 1960’s, which greatly accelerated further hardware develop-

ment. In particular, the optical cavity quantum electrodynamics formalism developed for

atom-laser interactions was readily adapted into electrical circuit quantum electrodynamics

(cQED) suitable for these new superconducting processors. The atom in cavity QED is re-

placed by a an artificial atom created from electrical circuit components, such as a Cooper

pair box or charge qubit [21]. Similarly, the optical cavity is replaced by a resonant tank

circuit, such as a lumped element LC oscillator or a quarter-wavelength resonant waveguide.

In 2007 the persistent issue of environmental charge noise was addressed by the introduction

of a modified charge qubit design, named the transmon qubit, which was developed by Koch

et al. The transmon design was very simple but significantly improved the coherence, so it

and its variations have now become the most widely used superconducting qubits in practice

1 [27, 28].

Progress in superconducting hardware design rapidly accelerated after the introduction of

the transmon, scaling up to multi-qubit processors with individual control wires and readout

with resonant microwave signals. Cutting edge designs by companies like Google, IBM, and

Rigetti Computing are based on these superconducting transmon architectures, and have

1. Commonly used as a quality metric, the coherence time is the time constant for a qubit to exponentially
decay from a quantum superposition state to a classical probabilistic bit state.
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dozens of fully controllable qubits fabricated onto layered 2D planar chips.

A close interaction between engineering and science in superconducting circuit technology

has prompted active research from a variety of different perspectives, ranging from new

developments in fundamental physics to novel practical applications for actively controllable

quantum effects. In particular, significant progress has been made in understanding the

physics of open quantum systems and the subtleties of the measurement process [29–32]. All

physical systems are not perfectly isolated, so are open to interactions with a complex and

usually uncontrolled environment.

Information stored in the system can be transferred to the environment and lost, which

manifests on average as decoherence and dissipation affecting the quantum system. However,

from the point of view of quantum measurement, if we are able to monitor the information

that was transferred to the environment, then we can reconstruct a more accurate picture

of how the quantum system coherently evolves [33, 34].

In fact, measurement on a quantum system can be used as a resource for feedback con-

trol, enabling conditional customization of the dynamics of the system [35–37]. Specifically,

monitoring slow information loss from the system produces a weaker measurement effect, so

can allow near continuous monitoring of the dynamics of a quantum system while largely

preserving its quantum coherence [38–40]. The resulting estimates for the quantum state

dynamics of these continuously monitored systems are called quantum trajectories. Due to

their applications in feedback control and quantum system characterization, there is con-

siderable interest in improving both the accuracy and efficiency of such quantum trajectory

estimations.

Machine learning is starting to attract attention in the quantum science community as a

useful tool for managing the complexity of high-dimensional quantum systems [41–46]. Ma-

chine learning aims to identify complex patterns in data, match those patterns to a suitable
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model describing the data, and predict future behaviors. In many ways, this data analysis

and modeling process is the same as that used in physics, but often with fewer assumptions

of principles or other structure. It is natural to ask whether machine learning methods can

offer potential advantages for characterizing and controlling quantum systems, compared to

the standard methods used in the laboratory. The high degree of complexity of realistic

quantum processors makes it difficult to predict how to optimally compress the relevant

information to a tractable form, but this sort of task is precisely what machine learning is

well suited for.

This thesis explores several applications of machine learning to superconducting quantum

computation. Specifically, I apply machine learning models based on neural network archi-

tectures [47, 48] to estimate and track the states of a two-dimensional transmon qubit. The

work presented here was carried out in collaboration with the experimental group of Dr.

Irfan Siddiqi at the University of California, Berkeley.

This work is structured as follows,

Chapter 2 introduces quantum mechanics and its key concepts related to this work, includ-

ing a brief introduction to the linear algebra of quantum computing, the qubit and Bloch

representation of it, the qubit density matrices, qubit as a harmonic oscillator, and qubit

dynamics in the presence of drive fields.

Chapter 3 is about superconductivity and circuit quantum electrodynamics. The focus in

this section is to connect electrical engineering intuition of classical circuits with a quantiza-

tion based quantum optics approach. After introducing superconducting qubits, specifically

the transmon architecture, the role of open quantum systems in the qubit-resonator coupling

required to measure information about the system is discussed.

Chapter 4 provides a basic theoretical discussion about quantum measurement of open sys-

tems, then extends this to simple models for continuously monitoring the qubit states.

Chapter 5 can be used as an independent introduction to machine learning, tailored to the

5



topics relevant to this work.

Chapter 6 revisits monitoring the superconducting qubit dynamics and quantum state to-

mography in an automated way using neural networks. Notably these new tools allow going

beyond the traditional adiabatic coupling regime to track rapidly driven superconducting

qubit trajectories more precisely in the presence of rapid dynamics.

Chapter 7 discusses the standard methods to estimate the state of a quantum system, then

introduces machine learning tools to automate the estimation of a quantum state.

Chapter 8 concludes and discusses possible future directions.
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2 Background Topics in Quantum
Mechanics

2.1 A Brief Introduction to Linear Algebra for Quantum
Computation

2.1.1 State vectors

In quantum mechanics the state of a physical system is a vector in a complex vector space V .

In a vector space, also called a linear space, vectors can be added together and multiplied by

numbers, called scalars. A vector space can be infinite in dimension, but in most application

in quantum computation, finite dimensional vector spaces are used and are denoted by Cn,

which is the space of vectors of positive integer dimension n having n complex entries. A

basis for Cn consists of exactly n linearly independent vectors. If V = {v1, ...,vn} is a basis

for Cn, then a generic vector can be written as,

v =
n∑
i=1

aivi, (2.1)

where the coefficients ai ∈ C are complex numbers.

The inner product is a operation, denoted with 〈. , .〉. There are different ways to define an

inner product on a vector space. If,

v =


a1

...

an

 , u =


b1
...

bn

 , (2.2)

then, 〈v,u〉 =
∑n
i=1 a

∗
i bi.

In a vector space one can define orthogonality in the following way: two vectors are orthog-
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onal if their inner product is zero. The length of a vector or norm of a vector can be defined

also using the inner product as ‖v‖ =
√
〈v,v〉. A normalized vector is a vector with norm

1. A basis is called orthonormal if all vectors are normalized and mutually orthogonal.

2.1.2 Dirac Notation

Dirac invented a useful alternative notation which is introduced in the context of quantum

mechanics to help simplify some manipulations of linear algebra. For a vector, Dirac notation

uses v = |v〉 and the terminology ‘ket’ with its components arranged as a column vector.

Its associated linear functional, or dual vector is denoted by 〈v| and is called a ‘bra’ with

components conjugated and transposed to a row vector. The ket and bra vectors have the

explicit matrix forms

|v〉 =


a1

...

an

 , 〈v| =
[
a∗1 . . . a

∗
n

]
. (2.3)

The application of the functional 〈v| to the vector |v〉 is denoted by 〈v|v〉 =
∑n
i=1 a

∗
i ai and is

equivalent to the matrix product between the row and column matrix representations. The

contraction ‘bra-ket’ is used for such an inner product. If {|v1〉, . . . , |vn〉} is an orthonormal

basis, then,

〈vi|vj〉 = δij (2.4)

where δij is the Kronecker delta. The Kronecker delta function is 1 if the variables are equal,

and 0 otherwise,

δij =


1, if i = j

0, otherwise

(2.5)

It is also very common to use matrix product of a column vector with a row vector |v〉〈v|,
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which is known as the outer product and its result is an n× n matrix.

2.1.3 Operators and Observables in Quantum Mechanics

In quantum mechanics an observable is any property of a system that can be measured,

such as position x, momentum p, energy E, and so on. An operator on the other hand

is a rule for changing vectors into other vectors. Associated with each observable there is

a quantum mechanical Hermitian operator. Operators are distinguished by hats on top of

symbols. Some common operators that we will encounter throughout this thesis are,

• Unitary operator, an operator Û is unitary if Û† Û = Û Û† = Î.

• Hermitian operator, an operator Â is Hermitian if Â† = Â.

• Orthogonal projector, an operator P̂ is an projector if P̂ 2 = P̂ and P̂ † = P̂ .

• Positive operator, an operator Â is positive if 〈v|Â|v〉 ≥ 0 for any |v〉 ∈ H.

Any Hermitian operator Ô on a vector space V can be written as a diagonal operator in a

particular orthonormal eigenbasis {|vi〉} called its spectral basis,

Ô =
n∑
i=1

λi |vi〉〈vi|, (2.6)

where the complex numbers λi are the eigenvalues of Ô and |vi〉 are its corresponding eigen-

vectors. For a continuous basis Eq. (2.6) becomes,

Ô =

∫
λ(v) |v〉〈v| dv. (2.7)

According to the Born rule, if an observable corresponding to an operator O is measured
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in a system with normalized vector |ψ〉 in the Hilbert space1, the probability of finding the

system in the state |vi〉 is given by,

P (vi|ψ) = |〈vi|ψ〉|2. (2.8)

Note that the probability in Eq. (2.8) does not change if we replace |ψ〉 with eiφ|ψ〉, which

implies that the vectors that differ only by such a global phase are physically indistinguish-

able.

The change of the state from |ψ〉 =
∑
i ψi |vi〉 to |vi〉 is what is often referred to as the

collapse of the state caused by measuring Ô. The average over repeated measurements of

the observable Ô over many systems independently prepared in the state |ψ〉 gives us the

expectation value of observable Ô,

〈O〉 = 〈ψ|Ô|ψ〉 =
∑
i,j

λj ψ
∗
i ψj 〈vi|vj〉 =

∑
j

λj ψ
∗
j ψj =

∑
j

λjP (vi|ψ). (2.9)

For a continuous basis, Eq. (2.9) changes to,

〈O〉 = 〈ψ|Ô|ψ〉 =

∫
O(x)ψ∗(x)ψ(x)dx =

∫
O(x)P (x|ψ)dx (2.10)

If we have more than one operator acting on a state, the order of operations matters. The

commutator of two operators Â and B̂ is,

[Â, B̂] ≡ Â B̂ − B̂ Â. (2.11)

1. A Hilbert space is a Banach space with an inner product. A Banach space is a normed vector space
that is complete, meaning that it contains the limit points of all convergent sequences of vectors.
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The position x̂ and momentum p̂ operators satisfy the canonical commutation relation [49],

[x̂, p̂] ≡ x̂p̂− p̂x̂ = i ~ Î (2.12)

where Î is the identity operator and ~ is the Planck constant.

2.1.4 Uncertainty Principle

The uncertainty principle, also known as Heisenberg’s uncertainty principle, states that no

preparation of a quantum system can determine precise predictions for both a measurement of

its position and for a measurement of its momentum simultaneously [50]. We saw previously

that the position operator x̂ and the momentum operator p̂ do not commute [x̂, p̂] = i~Î.

We also saw that given a quantum state, we can compute expectation values for both x̂ and

p̂. The standard deviation of an observable is

∆x =
√
〈x2〉 − 〈x〉2, and ∆p =

√
〈p2〉 − 〈p〉2. (2.13)

The Heisenberg uncertainty principle states that,

∆x∆p ≥ ~
2
. (2.14)

Inequality (2.14) generalizes to any pair of Hermitian (i.e. Â† = Â) operators Â and B̂. The

two operators’ commutator provides the lower bound on the product of standard deviations

∆A∆B ≥ |〈[Â, B̂]〉|
2

. (2.15)
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2.1.5 Time Evolution of a Quantum System

In quantum mechanics the evolution of a closed system is unitary and governed by the

time-dependent Schrödinger equation

i ~
∂|ψ(t)〉
∂t

= Ĥ |ψ(t)〉, (2.16)

where Ĥ is the Hamiltonian operator of the system, and ~ is the reduced Planck’s constant.

The statement that the evolution of a closed system is unitary means that the state of the

system at a later time t is given by

|ψ(t+ t0)〉 = Û(t) |ψ(t0)〉, (2.17)

where Û(t) is a unitary operator. Substituting Eq. (2.17) into Eq. (2.16) leads to,

Û(t) = e−i Ĥ t/~. (2.18)

The Hamiltonian is,

Ĥ =
1

2m
p̂2 + V̂ (r̂), (2.19)

where p̂ is the canonical momentum operator and V̂ is the potential energy operator. The

time-dependent Schrödinger equation for a state |ψ(t)〉 in the position basis is,

i~
∂ψ(r, t)

∂t
=

[
− ~2

2m
∇2 + V̂ (r)

]
ψ(r, t). (2.20)

Here p̂ = −i ~∇ (∇ is the gradient vector that stores all the partial derivative information

for every variable.).

Note that in a closed system |ψ〉 is referred to as a pure state. However, |ψ〉 is not the

12



most general way defining a quantum state as we may not have always complete knowledge

of what state the system is in but only know the probabilities of it being in various states

(mixed state). Therefore our description of the state and predictions for the results of any

measurements on it must take account of this lack of knowledge. The way to do this is

through the density operator or density matrix. The density operator is defined by,

ρ̂ ≡
∑
i

Pi |ψi〉〈ψi|, (2.21)

where pure state |ψi〉 is prepared with probability Pi, and the probabilities must sum to one,∑
i Pi = 1. ρ̂ is a Hermitian matrix, with trace 1, and non-negative eigenvalues. Any matrix

that satisfies these three conditions is a valid density matrix.

In the case of a mixed state, the expectation value of an observable is given by weighting

the expectation value for each state by the probability of that state,

〈O〉 =
∑
i

Pi 〈ψi|Ô|ψi〉. (2.22)

In terms of the density operator of Eq. (2.21), Eq. (2.22) can be written as

〈O〉 =
∑
i

∑
mn

Pi 〈ψi|n〉 〈n|Ô|m〉 〈m|ψi〉

=
∑
mn

ρmnOmn = Tr(ρ̂ Ô).

(2.23)

The time evolution of the density matrix follows naturally from the definition of ρ̂ and the
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time-dependent Schrödinger equation, Eq. (2.16),

∂ρ̂

∂t
=
∑
j

Pj
∂

∂t
[|ψj〉〈ψj |]

=
∑
j

Pj

([
∂

∂t
|ψj〉

]
〈ψj |+ |ψj〉

∂

∂t
〈ψj |

)

=
∑
j

Pj

(
− i

~
Ĥ |ψj〉〈ψj |+

i

~
|ψj〉〈ψj | Ĥ

)

= − i
~

[Ĥ, ρ̂].

(2.24)

and is known as the Liouville - Von Neumann equation.

2.1.6 Heisenberg Picture

So far we have discussed the time evolution in the Schrödinger picture, where state |ψ(t)〉

evolves according to the Schrödinger equation while operators are time-independent. There is

another way of thinking about the dynamics in quantum mechanics besides the Schrödinger

picture, and that is the Heisenberg picture. In the Heisenberg picture, the state is inde-

pendent of time, but the operators are time dependent.We define the Heisenberg operator

by,

ˆ̃O(t) = Û†(t) Ô Û(t), (2.25)

where tilde is used to contrast the time-independent operators (Schrödinger representation),

Ô, with the time-dependent operators (Heisenberg representation), ˆ̃O . Note that the two

representations are completely equivalent, and it is a matter of convenience which one is

used in a given problem.

The time-dependent operators are governed by a differential equation known as Heisenberg

equation of motion [51],

d ˆ̃O(t)

dt
=
i

~
[Ĥ, ˆ̃O(t)] +

∂ ˆ̃O(t)

∂t
. (2.26)
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2.1.7 Rotating Frames and the Interaction Picture

A useful application of a rotating frame is to eliminate the time-dependence of certain Hamil-

tonians. This is what we do when we switch to an accelerating reference frame, like a rotating

planet in classical mechanics.

If we consider a system with density matrix ρ̂ which is evolving according to von Neumann’s

Equation (2.24) but with a time-dependent Hamiltonian Ĥ(t), for simplicity we can always

move to a rotating frame by defining a new density matrix,

ˆ̃ρ(t) = Û(t) ρ̂ Û†(t), (2.27)

where Û(t) is an arbitrary unitary. ˆ̃ρ(t) will also obey a von Neumann equation

∂ ˆ̃ρ(t)

∂t
= − i

~
[ ˆ̃H(t), ˆ̃ρ(t)], (2.28)

but with an effective Hamiltonian

ˆ̃H(t) = i ~
dÛ(t)

dt
Û†(t) + Û(t)ĤÛ†(t). (2.29)

2.1.8 Tensor Product and Partial Trace

Composite quantum systems are described by the tensor product of their individual descrip-

tions as Hilbert spaces. If a state |ψ〉A belongs to Hilbert space HA and a state |ψ〉B belongs

to HB , then their joint state is,

|ψ〉AB = |ψ〉A ⊗ |ψ〉B , (2.30)
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where |ψ〉AB ∈ HA ⊗ HB . A state written is this form is called a product or a separable

state. If a state is not a product state, it is called an entangled or non-separable state. In

this case, the state associated with each subsystem can be written with the definition of a

partial trace. The partial trace over the subsystem B, denoted by TrB , is defined as,

ρ̂A ≡ TrB [ρ̂AB ] ≡
∑
i

(ÎA ⊗ 〈i|B) ρ̂AB (ÎA ⊗ |i〉B), (2.31)

where {|i〉B} is an orthonormal basis for the Hilbert space HB of subsystem B.

2.2 Qubit and Bloch Sphere

Quantum bits are the smallest and most fundamental units of quantum information. A qubit

is any system that may be described by a two-dimensional complex vector space (Hilbert

space) C2. We call the preferred vector basis of logical states the computational basis, and

write the spanning vectors in Dirac notation as |0〉 and |1〉 (or |g〉 and |e〉, that denote the

qubit ground and excited states, respectively).

If the qubit state is perfectly known, it is in a pure state represented by a normalized complex

vector

|ψq〉 = α |g〉+ β |e〉 (2.32)

where α and β are complex coefficients which satisfy the condition |α|2 + |β|2 = 1 and |g〉

and |e〉 are

|g〉 ≡

1

0

 , |e〉 ≡

0

1

 . (2.33)

To describe any qubit state one needs four real numbers, two for α and two for β, since

they are complex numbers. The constraint |α|2 + |β|2 = 1 reduces it to three real numbers.

Moreover two qubits that differ only in global phase are indistinguishable. By eliminating
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Figure 2.1: Qubit state representation on the Bloch sphere, which provides a useful
visualization of a single qubit and its operations. The poles of the Bloch sphere corresponds
to the computational basis states, |g〉 and |e〉.

this factor, a qubit can be described by two real angles θ and φ as follows [52],

|ψq〉 = cos
θ

2
|g〉+ sin

θ

2
eiφ |e〉. (2.34)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π.This parameterization makes it clear that each pure qubit

state |ψq〉 can be visualized as a point on the surface of a sphere with unit radius, called the

Bloch sphere, see Fig. (2.1).

While any pure state |ψq〉 can be represented by a point on the surface of the Bloch sphere,

the interior of the Bloch sphere is used to describe the mixed states of a qubit, which are

needed in the presence of dissipation or decoherence. As discussed in section 2.1.5, in order

to describe the qubit state even in the presence of imperfect knowledge, we use the density

matrix formalism.
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2.2.1 Pauli Matrices

The Pauli matrices are defined as

σ̂1 = σ̂x =

0 1

1 0

 , σ̂2 = σ̂y =

0 −i

i 0

 , σ̂3 = σ̂z =

1 0

0 −1

 , (2.35)

Pauli matrices are unitary and Hermitian, and their eigenvalues are equal to ±1. Any 2× 2

Hermitian matrix can be written in a unique way as a linear combination of Pauli matrices

(considering σ̂0 as the identity operator) with real coefficients.

2.2.2 Density Matrix

For a pure state |ψq〉, the density matrix is ρ̂q = |ψq〉〈ψq|. Using Eq. (2.32), we can write

the density matrix as

ρ̂q =

|α|2 αβ∗

α∗β |β|2

 . (2.36)

The diagonal elements describe the population of each energy eigenstate, and the off-diagonal

elements describe the coherence between different energy eigenstates. When considering a

statistical mixture of states |ψqi〉, the density matrix becomes ρ̂q =
∑
i Pi|ψqi〉〈ψqi|. Since

ρ̂q is Hermitian, positive and of trace 1, it can be decomposed into the Pauli matrix basis

ρ̂q =
1

2
(Î + x σ̂x + y σ̂y + z σ̂z) =

1

2
(Î + r · σ̂), (2.37)

where r = (x, y, z) ∈ R3 is the Bloch vector, Î is the identity operator, and σ̂ = (σ̂x, σ̂y, σ̂z).

Any qubit state can be represented uniquely by specifying the Bloch coordinates x, y, and
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z. Using the relation Tr[σ̂i σ̂j ] = 2 δi,j , we can show2 that x = 〈σ̂x〉 ≡ Tr[σ̂x ρ̂], and similar

for y and z. Also, since Eq. (2.37) is constrained to have positive eigenvalues, the Bloch

vector r only represents a physical state if ‖r‖ =
√
x2 + y2 + z2 ≤ 1. ρ̂q is pure if and only

if ‖r‖ = 1.

2.2.3 Harmonic Oscillators and Coherent States

So far we have considered only systems with a finite number of energy levels (e.g. a qubit).

In this section we will discuss a system with an infinite number of energy levels; the quantum

harmonic oscillator. In quantum mechanics, the harmonic oscillator is an important paradig-

matic example because it provides a model for a variety of systems, such as the modes of

the electromagnetic field (photons) as we will see frequently in the next chapters, or the

vibrations of molecules and solids (phonons).

An object follows harmonic motion in a restoring potential of the form V (x) = 1
2 k x

2, where

k = mω2 is the spring constant defining the parabolic potential, ω is the angular frequency

of oscillation and m is the mass of the object. The Hamiltonian that describes the system

is,

Ĥ =
p̂2

2m
+

1

2
mω2 x̂2, (2.38)

here, x̂ and p̂ are the position and momentum operators, where, in the position representa-

tion, p̂ = −i~d/dx. The time-independent Schrödinger equation of the Hamiltonian (2.38)

will be,

Ĥψ =

[
− ~2

2m

d2

dx2
+
mω2

2
x̂2
]
ψ = Eψ. (2.39)

We can solve Eq. (2.39) analytically in terms of modified Hermite polynomials [53], however,

the ladder operator method, developed by Dirac, gives us a much simpler algebraic method

2. The expectation value of the measurement can be calculated by extending from the case of pure states,

〈Â〉 =
∑
i Pi〈ψi|Â|ψi〉 =

∑
i PiTr(|ψi〉〈ψi|Â) = Tr

(∑
i Pi|ψi〉〈ψi|Â

)
= Tr(ρ̂ A).
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to find the energy spectrum without directly solving the differential equation. Defining the

ladder operators as

â =

√
mω

2~

(
x̂+

ip̂

mω

)
annihilation (lowering) operator,

â† =

√
mω

2~

(
x̂− ip̂

mω

)
creation (raising) operator.

(2.40)

These operators 2.40 each annihilate/create a quantum of energy E = ~ω, a property that

gives them their respective names. Since we know [p̂, x̂] = −i~, we also have

[â, â†] = 1. (2.41)

The inverse relations of Eq. (2.40) are,

x̂ =

√
~

2mω
(â† + â),

p̂ = i

√
~mω

2
(â† − â).

(2.42)

Considering again the Hamiltonian from Eq. (2.38), we can rewrite it in terms of â†â,

Ĥ =
1

2m

(
p̂2 + (mω x̂)2

)
=

~ω
2

(
â†â+ â â†

)
. (2.43)

Using the commutator 2.41 we can further simplify the Hamiltonian 2.43,

Ĥ = ~ω
(
â†â+

1

2

)
. (2.44)

The energy eigenstates that are denoted by |n〉, when operated on by the annihila-
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tion/creation operators, give

â|n〉 =
√
n|n− 1〉,

â†|n〉 =
√
n+ 1|n+ 1〉.

(2.45)

Here, we can see that â†, creates a single quantum of energy in the oscillator, while â

removes a quantum. From the relations in Eq. (2.45), we can also define a number operator

as, n̂ = â†â, which has the following property, n̂|n〉 = n|n〉, meaning |n〉 is the eigenstate of

the number operator with non-negative 3 integer eigenvalue n. The reason we call â†â the

number operator is that it counts the number of quanta in a given state; specifically, given a

state |n〉, we first apply â to annihilate a quantum and then â† to create it back again. the

proportionality factor is the eigenvalue n.

The ground state with n = 0 is called the vacuum state, |0〉 and is defined by â|0〉 = 0. We

can build all number states by starting from the vacuum and applying â† in an iterative way

[51],

|n〉 =
(â†)n√
n!
|0〉. (2.46)

Using the Eq. (2.46) and the algebra of â and â†, it then follows that the states |n〉 form

an orthonormal basis, 〈n|m〉 = δn,m, which means, experimentally, one should be able to

distinguish |n〉 from |m〉 without any ambiguity. The states |n〉 are also called Fock states.

Now that we have introduced the number operator, rewriting the Hamiltonian (2.43) in the

form, Ĥ = ~ω(n̂+ 1/2) provides the energy eigenvalues,

En = ~ω
(
n+

1

2

)
. (2.47)

The corresponding energy eigenstates, ψn(x) can be determined by finding the solutions to

3. n̂ is a positive semi-definite operator, so n can not be negative, n = 〈n|â†â|n〉 ≥ 0.
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Figure 2.2: Wavefunctions and energies of the first few harmonic oscillator eigenstates, the
wavefunctions form a ladder of alternating even and odd energy states, which are each
separated by a quantum of energy ~ω, i.e. equally spaced. The ground state is a Gaussian
distribution with width x0 =

√
~/mω.

the Schrödinger equation in position space, Ĥ|ψn(x)〉 = En|ψn(x)〉, the solutions are [51]

ψn(x) =
1√
n!

(â†)nψ0(x) =
1√
n!

(mω

π ~

)1
4
(â†)n exp

(
− mω

2~
x2
)
, (2.48)

where ψ0(x) is the ground state (n = 0) which is a Gaussian with variance
√
~/mω.

The wavefunctions ψn(x) for the first few energy eigenstates are shown in Fig. (2.2). From

the figure, we can see that as n increases, the wavefunction becomes more dispersed in

position x and has n nodes in the amplitude.

The coherent states of the harmonic oscillator are special nondispersive wave packets that

describe states in which the ground state wave packet is displaced from the origin of the

system. These states interest us because they follow the classical motion of a harmonic

oscillator with the minimum amount of uncertainty allowed by the Heisenberg uncertainty
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principle. They also play a key role in the quantum theory of light, because the output of

a laser or a signal generator is coherent light. The coherent states are expressed in the |n〉

basis as follows [54, 55],

|α〉 =
∞∑
n=0

cn|n〉, cn = e−
|α|2
2

αn√
n!
, (2.49)

here cn indicates the contribution of each photon number state in the coherent state. α ∈ C

(complex displacement) is a constant with magnitude related to the average number of

photons, 〈n̂〉 = |α|2, of the coherent state |α〉. We can show that a coherent state is an

eigenstate of annihilation operator, â|α〉 = α|α〉. However, since â is a non-Hermitian

operator, the eigenstates |α〉 do not form a orthogonal basis and are overcomplete.

We can write the Eq. (2.49) in the form

|α〉 = e−
|α|2
2

∞∑
n=0

(α â†)n

n!
|0〉 = e−

|α|2
2 eα â

†
|0〉 = eαâ

†−α∗â|0〉, (2.50)

where the last step is completed by applying the Baker–Campbell–Hausdorff Lemma [51].

The operator applied to the ground state is called the displacement operator D̂(α) =

eα â
†−α∗ â because it displaces the ground state from the origin by an amount α in phase

space, see Fig. (2.3).

To look at the dynamics of a coherent state, we first need to find the expectation values 〈x̂〉

and 〈p̂〉 (defined in Eq. (2.42)), calculated in the interaction picture (moving to a frame that

is rotating with frequency ω = Ĥ/~ in phase space 4) where â† → â†eiωt and â → âe−iω t,

4. It is sometimes convenient to express the behavior of a mechanical system in phase-space, where the
position is plotted on the x-axis and the momentum is plotted on the y-axis. One of the key feature of the
phase-space formulation of quantum mechanics is that the quantum state is described by a quasiprobability
distribution [56] instead of wave function, state vector, or density matrix. The formalism for quantum
mechanics in phase-space is explained in more details in this paper [57].
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Figure 2.3: Representation of the state space occupied by the coherent state |α〉, where
X̂ and P̂ are the field quadratures, ϕ is the phase angle of the coherent state, |α| is the
amplitude of the coherent state, and the value of 1/2 is the uncertainty.

we have

〈α|x̂|α〉 =

√
~

2mω
〈α|(âe−iω t + â†eiω t)|α〉 =

√
2~
mω
|α| cos(ωt+ ϕ), (2.51)

〈α|p̂|α〉 = −i
√

~mω

2
〈α|(âeiω t − â†e−iω t)|α〉 =

√
~mω

2
|α| sin(ωt+ ϕ), (2.52)

where ϕ = arg[α]. In scaled units the relation between α and the expectation values of

position and momentum in Eqs. (2.51) and (2.52) are

X̂ ∝ 〈α|ˆ̃x|α〉 = Re[α] =
〈â+ â†〉

2
, (2.53)

P̂ ∝ 〈α| ˆ̃p|α〉 = Im[α] =
〈â− â†〉

2i
. (2.54)
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X̂ and P̂ are dimensionless field quadratures (see Fig. (2.3)). In Chapter 3, we will see these

quadrature operators represent continuous variable observables that are able to be measured

via homodyne detection [58] (in Chapter 3, X is denoted by I, and P is denoted by Q).

Having a minimum uncertainty, the dynamics of a coherent state can be described by a

Gaussian Wigner function [59] travelling in phase space. As a representation, the Wigner

function is usually replaced by a circle with a diameter corresponding to the width of the

Gaussian (minimum uncertainty here), see Fig. (2.3).

2.3 Rabi Oscillations and Jaynes-Cummings Model

Quantum information has always been related to quantum optics, so light-matter interaction

is an essential topic in the field. The two foundational models in this sense are the Rabi

and Jayne-Cummings models, which both describe the interaction of a light field (radiation

mode) with a single atom, approximated as a two-level systems (i.e., a qubit). Although

these effects could take place in free space, we are usually interested in controlled experi-

ments performed when the qubit is coupled to a circuit quantum electrodynamics (cQED)

resonator5 (resonators).

2.3.1 Rabi Oscillations

For an isolated qubit, the only term in the Hamiltonian is Ĥ0 = ~ωq σ̂z/2 that comes from

energy splitting between the ground and excited states ∆Eq = E|e〉 −E|g〉 = ~ωq, where ωq

is the frequency which the Bloch vector rotates around the σ̂z axis.

5. The resonator field is usually represented by a harmonic oscillator
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Solving the free-evolution Schrödinger equation yields

|ψq(t)〉 = αeiωqt/2|g〉+ βe−iωqt/2|e〉. (2.55)

If we write Eq. (2.55) in a density matrix form, ρ̂q = |ψq(t)〉〈ψq(t)|, we will see that in the

off-diagonal elements, the relative phase between |g〉 and |e〉 varies, but the populations in

each state (diagonal elements) is constant.

To change the populations in |g〉 and |e〉, i.e. to control the state of a qubit, we need to

rotate it about an axis other than σ̂z, i.e. by applying an oscillatory driving field. The

resulting Hamiltonian for this system is called the Rabi model, and describes the state of

the qubit interacting with a driving field. The dynamics are called Rabi oscillations and are

associated with oscillations of the qubit’s energy level populations. The frequency of the

periodic exchange of energy and of the oscillation of the population probabilities is the Rabi

frequency.

The Hamiltonian of the driven qubit, which is explained above is

Ĥ

~
= −1

2
ωq σ̂z − ΩR cos(ωd t)σ̂x, (2.56)

where ΩR is the Rabi frequency and ωd is the drive frequency. For now we assume that

ωd = ωq = ω (also called resonant Rabi drive). It is convenient to express the operator σ̂x

in terms of the ladder operator σ̂ = |1〉〈0| that acts on qubit energy eigenstates as follows,

σ̂|0〉 = |1〉, and σ̂†|1〉 = |0〉. Using the ladder operator and expanding the cosine, the

Hamiltonian (2.56) takes the form

Ĥ

~
= −1

2
ω σ̂z −

1

2
ΩR (eiω t + e−iωd t)(σ̂ + σ̂†). (2.57)

By going to the rotating frame of the drive, the Hamiltonian will change to the effective
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Hamiltonian shown in Eq. (2.29). Choosing the unitary operator as Û(t) = e−iω σ̂z t/2,

simply removes the first part in Eq. (2.57) and only keeps the Rabi drive dynamics. The

Hamiltonian in the rotating frame takes the form

ˆ̃H

~
= −1

2
ΩR(eiω t + e−iω t)(σ̂eiω t + σ̂†e−iω t)

= −1

2
ΩR σ̂x −

1

2
ΩR(σ̂e2iω t + σ̂†e−2iω t).

(2.58)

The second part of Eq. (2.58) can be neglected using the rotating wave approximation

(RWA). The idea is motivated by the fact that the last terms in Eq. (2.58) oscillate rapidly

(with the frequency of ±2ω) around a zero average and therefore will have a small effect on

the average dynamics, leaving the RWA Rabi drive Hamiltonian 6

ˆ̃H

~
= −1

2
ΩR σ̂x. (2.59)

Most of the time in experiment a resonant drive is used to control the qubit state. Fig. (2.4)

shows driven qubit state evolution in Bloch coordinates for both the lab and rotating frame.

2.3.2 The Jaynes-Cummings Model

The Jaynes-Cummings model describes the dynamics of a two-level system (qubit) interact-

ing with a single mode of an electromagnetic cavity (resonator). Initially proposed by Edwin

Jaynes and Fred Cummings in 1963 [60, 61], it has been widely used in circuit quantum elec-

trodynamics. The total Hamiltonian to describe a system consisting of a resonator and a

6. In the case that the oscillating field is detuned from the qubit frequency, ωd 6= ωq, for making the ˆ̃H

time-independent, we should choose Û(t) = e−iωdσ̂z t/2. In this case we will see that the Rabi frequency will
be ΩR =

√
Ω2
R + ∆2, where ∆ = ωq − ωd [51].
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Figure 2.4: Rabi oscillations in the (a) lab frame vs. (b) the rotating frame.

qubit has three parts,

Ĥ/~ =
ωq
2
σ̂z + ωr

(
â†â+

1

2

)
+ g(â+ â†)(σ̂ + σ̂†) (2.60)

where ωr is the frequency of the resonator (as a harmonic oscillator), ωq is the frequency of

the qubit, g is the strength of the capacitive coupling between the qubit and the resonator,

â(â†) is the annihilation (creation) operator for the resonator mode, and σ̂(σ̂†) is the lowering

(raising) operator of the qubit.

In the case that there is no interaction between the resonator and qubit (g = 0), the eigen-

states of the qubit-resonator system become the tensor product of the resonator and qubit

eigenstates, which are called bare states. However, for g 6= 0, to calculate the eigenstates

we will need to diagonalize the total Hamiltonian, which is not easy [62]. We can perform

this calculation most easily if we first simplify the interaction Hamiltonian using the ro-

tating wave approximation [63]. The interaction Hamiltonian is composed of four terms,

Ĥint ⇒ â†σ̂ + âσ̂† + â†σ̂† + âσ̂. The last two terms (which are exciting or deexciting the

oscillator and the qubit simultaneously) will oscillate with frequency ±ωr + ωq in the inter-
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action picture. Knowing that the rotating wave approximation is valid when the coupling

strength is much less than the frequency of both the qubit and resonator, g � ωq, ωr, we

can see that ±(ωr + ωq) would be much larger than g, meaning that the dynamics of the

last two processes are so fast, they roughly average to zero. Thus, we can neglect them in

our calculations.7. With this rotating wave approximation we obtain the Jaynes-Cummings

Hamiltonian,

ˆ̃H/~ = ωr(â
†â+

1

2
)− 1

2
ωqσ̂z − g(â†σ̂ + âσ̂†) (2.61)

We can obtain the approximate eigenvalues and eigenstates of the system by diagonalizing

this Hamiltonian [63]. The resulting eigenstates are no longer bare states, but are instead

dressed states [64],

E±,n
~

= (n+ 1)ωr ±
1

2

√
∆2 + 4ng2,

|n,+〉 = cos(θn/2)|e, n− 1〉+ sin(θn/2)|e, n〉,

|n,−〉 = cos(θn/2)|g, n〉 − sin(θn/2)|g, n− 1〉,

tan(θn) ≡ −2
√
ng

∆
.

(2.62)

where ∆ = ωq −ωr, and θn = tan−1(2g
√
n/∆), which quantifies the level of qubit-resonator

hybridization. In Fig. (2.5) one can compare the dressed state energy levels to the corre-

sponding uncoupled system energy levels, the bare states.

One of the interesting regimes to consider in the solution to Jaynes-Cummings is when the

detuning, ∆, is much larger than the coupling strength, g, which is called the dispersive

regime. In this case, we can apply the unitary transformation, Ûdisp = exp[
(
g/∆

)
(âσ̂† −

7. Those non-RWA terms become relevant at higher energy, i.e., when we pump the resonator to larger
photon numbers, but for weaker drives they are safely neglected
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Figure 2.5: Dressed states vs bare states. The right panel illustrates the dressed states of
the qubit-cavity system in comparison with the bare states, left panel.

â†σ̂)], and using second-order perturbation theory [65], we can rewrite the Hamiltonian,

Ĥdisp = (ωr − χσ̂z)â†â−
1

2
ωq σ̂z

χ ≡ g2

∆

(2.63)

where χ is the dispersive shift 8. We see that the Hamiltonian in the dispersive regime leads

to a qubit state dependent shift of the resonator. This means that even though the qubit

and the resonator do not directly exchange the energy; however, they still interact in such

a way that we can use the resonator to probe the qubit state.

8. We will see in Chapter 3 that for a specific type of qubit called transmon qubit, when the transmon
energy levels outside of the qubit subspace (the first two energy levels) are taken into account, the state-
dependent dispersive shift χ will be different.
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3 Superconducting Qubits and Circuit QED

Modern quantum technologies have opened the door to a new era of experimentation with

actively controllable quantum physics. Prior to this “second quantum revolution”1, most

technology used quantum mechanics only in a passive way, like in transistors and material

engineering. Modern quantum technology now allows us to directly manipulate and use more

exotic quantum effects and test the foundations of quantum theory, which is important for

both fundamental and applied research.

Even though everything in our world behaves according to quantum mechanics, it is usually

difficult to see these quantum effects and control them because frequent environmental in-

teractions like temperature fluctuations and ambient radiation effectively scramble quantum

features so they appear classical. To build a controllable quantum system that preserves and

manipulates these fragile quantum effects, that system must be completely isolated from the

environment, except for a few specific knobs that we can control. Since any control is also

a potential dissipation channel, these control knobs have to be designed carefully to pre-

vent environmental decoherence while still permitting enough interaction with the system

for the control to be useful and fast. The simpler the system, the better it can be controlled.

Suitably simple systems can come from nature directly, or from clever engineering.

Simple examples of natural quantum systems are photons, single atoms, and single ions.

Isolating individual atoms, or ions, for example with laser traps, yields a controllable system

that has distinguishable quantum mechanical features. In modern ion traps, for example, the

hyperfine ground state energy levels of the ion are nearly decoupled from the environment

so can have long-lived coherence, but can still be manipulated by suitably tuned lasers.

Choosing such a system, however, has the disadvantage that nature provides only a restricted

set of possible parameters; for example, a particular choice of ion will always have the

1. This name is used by Jonathan Dowling for the first time [J. Dressel, private communication].
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same energy level structure. Additionally, individual ions are very small, so controlling and

measuring them can require incredibly precise tools that are challenging to engineer and

operate with sufficient accuracy. A more subtle problem arises when controlling multiple

trapped ions, since the the speed of such control is limited by their mechanical motion,

which is subject to inertia.

In contrast, engineered quantum systems like superconducting electronic circuits are man-

made systems that give larger amount of flexibility in how well one can tune the operating

parameters to desired values. They are also concrete examples where quantum mechanical

effects persist in macroscopic systems, making them fruitful new experimental territory for

testing fundamental physics. However, engineered systems have their own disadvantages.

As larger and more complex systems, they interact more strongly with their environments,

causing more noise and decoherence compared to microscopic ions. Getting them into a

regime where the quantum effects dominate the environmental noise can be very challenging,

and usually requires cooling to very low temperatures near absolute zero, which makes scaling

to larger composite systems problematic.

Yasunobu Nakamura and Jaw-Shen Tsai studied quantum mechanical effects at the macro-

scopic level for the first time in 1991 in superconducting circuits. For an integrated circuit

to behave quantum mechanically, the first requirement is to eliminate energy dissipation. To

achieve this, all parts of the circuit need to be made of a material that has zero resistance at

the operating temperature. Superconductivity has played a key role since superconducting

material naturally has no resistance when cooled below a certain citical temperature e.g.,

about 1K for superconducting aluminum [66–68]. Below the critical temperature, the va-

lence electrons weakly bind into bosonic Cooper pairs [69] that can all condense into the same

macroscopic quantum state and thus travel through the metal in unison with no resistance

[70].

Since 1991 these superconducting circuits have been increasingly used as qubits in quan-
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tum processors. Like normal circuits, they can be controlled with external voltage drives

without disrupting the superconductivity. Unlike normal circuits, the lack of resistance al-

lows quantum effects to manifest, such as superpositions of different currents along wires,

or superpositions of different accumulations of charge on capacitive plates. The design of

controllable superconducting circuits became much easier after identifying a convenient anal-

ogy between resonant tank circuits (like LC oscillators) and optical laser cavities. Just like

lasers in optical cavities could be used to manipulate nearby atoms, tank circuits in super-

conducting chips can be used to manipulate neighboring capacitively-coupled qubits. The

formal descriptions of both these interactions involve photon absorption and emission by a

two-level quantum system from resonant electromagnetic modes, so much of the extensive

work done in atom-laser interactions since the 1960’s could be adapted to describe supercon-

ducting circuits directly. The field of circuit quantum electrodynamics (cQED) is the result

after adapting these interactions between light and matter to the setting of superconducting

circuits [71, 72].

Creating an artificial atom using superconducting circuits is relatively simple, but requires a

new nonlinear circuit component: a Josephson junction. As with any quantum mechanical

system, a binding potential will quantize the allowed energy levels. Thus, any resonant circuit

will have discrete levels that could be used in principle as logical states, with the lowest two

energies being a natural choice for encoding a qubit. However, a linear resonant tank circuit

has a quadratic binding potential and evenly spaced energy levels, which makes it impossible

to address specific pairs of levels via absorption and emission of specific photon energies for

the purposes of control. Introducing a nonlinear element like a Josephson junction into

the tank circuit creates uneven energy spacing that can be uniquely addressed, and thus

controlled. A Josephson Junction, which is a tunnel junction made from a thin insulating

layer sandwiched between two superconducting metals, behaves as a non-linear and non-

dissipating inductor so enables remarkably simple circuit designs for artificial atoms with
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Figure 3.1: An LC oscillator is the simplest example of a resonant quantum circuit. It
consists of a capacitor C connected to an inductor L.

addressable energy levels [73, 74, 74–76].

In this chapter I will more formally introduce the simplest resonant quantum circuit: the

quantum tank circuit or LC oscillator, as well as the architecture of the Josephson junction,

its use in the design of superconducting qubits like the widely used transmon [77], and how

a coupled tank circuit can be used to measure the qubit energy using an external drive.

3.1 Quantum LC Oscillator

An LC oscillator is the simplest example of a resonant quantum circuit. It consists of a

capacitor C connected to an inductor L, see Fig. (3.1) and is made up of superconducting

materials to eliminate dissipative resistance. When the capacitor and the inductor connect

electric charge, Q, can oscillate between the capacitive plates by traveling through the induc-

tor at the circuit resonance frequency ω =
√

1/LC. Though no energy is dissipated in this

oscillation by resistance, the charge flow still has a net impedance Z =
√
L/C. The energy

oscillates between charging energy in the capacitor EC = Q2/2C, and magnetic field energy

in the inductor, EL = Φ2/2L, where Φ is the magnetic flux and the current I = dQ/dt

flowing through the inductor, in accordance with Faraday’s induction law [78].
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After identifying Φ as the Lagrangian coordinate, where L = EC −EL, we can identify that

the charge is its conjugate momentum since dL/dΦ̇ = CΦ̇ = Q. To quantize this resonant

circuit, we can thus follow the same procedure as for quantizing the usual quantum harmonic

oscillator, where the charge on the capacitor Q and the flux in the inductor Φ are analogous

to the momentum p and the position x respectively. The charge and flux variables are

promoted to canonically conjugate quantum operators2 satisfying the commutation relation

[Φ̂, Q̂] = i~, where ~ = h/2π is Planck’s reduced constant. The Hamiltonian of this circuit

is

Ĥ =
Φ̂2

2L
+
Q̂2

2C
. (3.1)

Following the treatment of the quantum harmonic oscillator in Chapter 2, we can immedi-

ately define the annihilation â and creation â† operators in terms of Q̂ and Φ̂. Representing

these coordinates in terms of ladder operators, we have

Φ̂ =

√
~Z
2

(â† + â),

Q̂ = −i
√

~
2Z

(â† − â).

(3.2)

With these definitions, the Hamiltonian (3.1) takes its usual form as the Hamiltonian of a

quantum harmonic oscillator Ĥ = ~ω(â†â+ 1/2). As with the standard quantum harmonic

oscillator, the ladder operator â† (â) creates (annihilates) one quantum of oscillation energy

~ω stored in the circuit , where ω = 1/
√
LC is the resonance frequency of the circuit.

2. Using the Lagrangian framework to describe the system, L(Φ̇,Φ) = CΦ̇2

2 − Φ2

2L , one can calculate
∂L
∂Φ̇

= C Φ̇ = Q (we used Φ̇ = v and CV = Q), where Q (i.e. momentum) is canonically conjugate to Φ (i.e.

position).
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Figure 3.2: The Josephson junction consists of two superconductors separated by a thin layer
of the insulator. The Cooper pairs on each side can tunnel through the insulator. The am-
plitude of wavefunction that represents the macroscopic boson condensate wavefunction of
all the condensed Cooper pairs in the left electrodes decays in the insulating gap treated as a
potential barrier. The wave functions on either side of the junction have different supercon-
ducting wavefunctions, and thus two different superconducting phases as order parameters.
The difference between the two phases is the reduced ϕ flux appearing in the cosine potential
for the junction.

3.2 Josephson Junctions

An LC circuit lacks an important ingredient for its discrete energy levels to be independently

addressable as needed for a qubit: non-linearity. To address this problem, the linear induc-

tor can be replaced with a non-linear inductor in the form of a Josephson junction. The

Josephson junction consists of two superconducting electrodes (e.g., aluminum) separated

by a thin insulating layer (e.g., aluminum oxide), see Fig. (3.2). If the insulating barrier is

thin enough, there is a probability for the superconducting Cooper pairs to tunnel through

the insulator. Due to this tunneling effect, a current can flow through the junction even

when no voltage is applied if the wavefunctions describing the Cooper pair Bose-Einstein

condensates on either side of the junction have mismatched kinetic phases. The resulting
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tunneling current is given by the first Josephson relation [79, 80]

I = Ic sinϕ, (3.3)

where Ic is a parameter of the junction and called the critical current that depends on the

superconducting material and geometry and ϕ is the kinetic phase difference between the

macroscopic Bose-Einstein condensate wavefunctions for the two superconducting electrodes

on both sides of the junction. If a current is forced through the junction that exceeds the

critical tunneling current Ic, then the superconductivity will be broken down (by breaking

the Cooper pairs’ bonds) and resistance will develop in the circuit [79], invalidating the

Josephson relation (3.3).

The time variation of ϕ(t) is related to the externally applied voltage across the junction V

according to the second Josephson relation [79, 80]

dϕ

dt
=

2π V

Φ0
, (3.4)

here Φ0 = h/2e is the superconducting flux quantum, h is Planck’s constant, and (2e) is

the charge of one Cooper pair of electrons. The dynamical behavior of Eqs. (3.3) and (3.4)

can be understood by first differentiating Eq. (3.3) and substituting dϕ/dt into it from Eq.

(3.4), which yields

dI

dt
=

2π Ic V cosϕ

Φ0
. (3.5)

From the relation V = LdI/dt, we can infer the effective inductance of the Josephson

junction

LJ = V
(dI
dt

)−1
=

Φ0

2π Ic cosϕ
, (3.6)

where the 1/ cosϕ factor makes the inductor LJ nonlinear with respect to changes in the

tunneling current, with the superconducting flux Φ0 setting the scale of the nonlinearity [72].
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Figure 3.3: By replacing the inductor L of the simple LC oscillator with a Josephson junction
with non-linear inductance LJ , the oscillator becomes weakly anharmonic with a discrete
energy spectrum that is no longer evenly spaced.

Since the power across the junction is P = IV , the energy stored in the junction is

E =

∫ t

−∞
IV dτ =

Φ0

2π

∫ t

−∞
Ic sinϕ

dϕ

dτ
dτ

=
IcΦ0

2π

∫ t

−∞
sinϕdϕ = EJ [1− cosϕ],

(3.7)

where EJ = Φ0Ic/2π is the Josephson energy and is related to the linear Josephson induc-

tance EJ = LJI
2
c , when ϕ = 0.

By replacing the inductor L of the simple LC oscillator discussed in Section 3.1 with a

Josephson junction with non-linear inductance LJ , see Fig. (3.3), the oscillator becomes

weakly anharmonic with a discrete energy spectrum that is no longer evenly spaced. The

uneven spacing is precisely what is needed to allow individual level pairs to be independently

addressed as qubits.
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3.3 Superconducting Qubits

3.3.1 Transmon Qubit

In the last two decades, there have been many circuit QED experiments demonstrating

many different species of artificial qubits. There are three key types of superconducting

qubit: charge qubits, also known as Cooper pair box [21, 81, 82], phase qubits [83] and flux

qubits [84, 85]. In this section we will focus on an specific type of superconducting qubit: a

transmon [77].

A transmon is a Josephson junction which is shunted with a large capacitor. Its dynamics

can be modeled by adding a capacitive term to the potential energy stored in the junction

in Eq. (3.7). The quantized Hamiltonian of the transmon is

Ĥ = EC [2(n̂− ng)]2 + EJ [1− cos ϕ̂], (3.8)

where EC = e2/2C is the charging energy of a single electron on the capacitor. Note that C in

Eq. (3.8) is the total capacitance which includes the junction’s capacitance and the additive

shunt capacitance (dominated by the large shunt capacitor). The number operator that is

introduced in the Eq. (3.8), n̂ = Q̂/2e =
∑∞
n=−∞ n|n〉〈n| counts the difference of Cooper

pairs (of charge 2e) residing on either side of the junction, while offset charge parameter

(also called the gate charge) ng can be biased by an externally applied gate voltage.

Due to the large shunt capacitor, a transmon operates in the regime EJ/EC ∼ 100� 1. The

suppression of the charging energy compared to the Josephson energy makes the transmon

relatively insensitive to environmental charge noise that makes the offset ng fluctuate [86].

Expanding the cosine potential in Eq. (3.8) around ϕ = 0, the limit of EJ/EC � 1 implies
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that ϕ � 1. Therefore, expanding to the 4th order and neglecting 3 ng, the Hamiltonian

conveniently approximates an anharmonic Duffing oscillator,

Ĥ = 4EC n̂
2 +

EJ
2
ϕ̂2 − EJ

4!
ϕ̂4. (3.9)

From Eq. (3.9), the Hamiltonian can be separated conceptually into two parts: the Hamil-

tonian of the harmonic oscillator (sum of the first two terms) plus a small anharmonic

correction (the last term). Following the harmonic oscillator, it will be useful to define the

creation and annihilation operators that diagonalize the first two terms in Eq. (3.9), using

the canonical commutation relation [ϕ̂, n̂] = i [77],

ϕ̂ =
(8EC
EJ

)1/4 b̂+ b̂†√
2
, (3.10)

n̂ =
( EJ

8EC

)1/4 b̂− b̂†

i
√

2
. (3.11)

Rewriting the Hamiltonian (3.9) in terms of the lowering b̂ and raising b̂† operators gives 4

Ĥ =
√

8EC EJ b̂b̂
† − EC

12

(
b̂+ b̂†

)4
≈
√

8EC EJ b̂b̂
† − EC

2

(
b̂†b̂†b̂b̂+ 2b̂†b̂

)
= (
√

8ECEJ − EC)︸ ︷︷ ︸
~ωq

b̂†b̂− EC
2
b̂†b̂†b̂b̂.

(3.12)

For a harmonic oscillator the energy gap between the ground and first excited states would

be E10 = E1 − E0 = ~ωp, where ωp =
√

1/LJC =
√

8ECEJ/~ is the plasma frequency.

In contrast, the energy gap between the lowest two levels of the transmon is slightly shifted

3. The small charging energy makes the lower energy levels relatively sensitive to the offset charge ng [77]

4. According to RWA which is discussed in Chapter 2, any combination of b̂ and b̂† that cause fast
oscillations average to zero.
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Figure 3.4: Cosine potential well of the transmon qubit (red line) compared to the quadratic
potential of the LC oscillator (dashed green lines). The frequency between the ground and
first excited state of the transmon is larger by δq = EC/~ than the transition between the
first excited and second excited state.

by the small charging energy, yielding the effective qubit frequency ωq = ωp − EC/~, see

Fig. (3.4a). The frequency between the ground and first excited state of the transmon is

larger by δq = EC/~ than the transition between the first excited and second excited state.

This anharmonic frequency shift prevents the higher transmon level pairs from absorbing or

emitting energy quanta tuned to the qubit frequency ~ωq of the lowest two levels, so we can

treat the lowest two levels of a transmon as an effective two-level system, i.e., a qubit.
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3.4 Resonator Coupling

In circuit QED, we measure the state of the transmon by dispersively coupling it to a strongly

detuned readout resonator. This dispersive coupling shifts the frequency of the resonator

by different amounts that depend on the occupied transmon energy without allowing energy

to be disruptively transferred between the transmon and the resonator. Since the resonator

has distinct frequencies, reflected signals accumulate distinct phases that depend on the

transmon energy. It is thus possible to read out what the energy state of the transmon

must have been by looking at the phase shift in a signal reflected off the resonator with a

homodyne measurement.

To monitor the energy state of the transmon first we apply a weak probe tone to the resonator

tuned to the mid-point between the distinct transmon-dependent resonance frequencies, This

near-resonant probe tone transfers energy to the resonator, populating it with a discrete

number of photons as quanta of the resonator mode â. This injected resonator field amplitude

interacts with the qubit, shifting its frequency accordingly, then leaks from the resonator at

the rate κ/2. This leaked field is then amplified5 and measured in a homodyne setup that

identifies the reflected phase-shift by comparing it with a copy of the original (unshifted)

reference signal, see Fig. (3.5).

When a transmon qubit with bare frequency ωq is dispersively coupled, with coupling energy

~g, to a microwave resonator with a bare (midpoint) frequency ωr that is strongly detuned by

∆qr ≡ ωq −ωr from the qubit, the coupling shifts the resonator frequency by ±χ depending

on the qubit state, yielding a total frequency splitting of 2χ between the two qubit-state-

dependent resonances. In terms of the qubit-resonator coupling g, the dispersive shift of the

5. Amplification of the output field is because of the fact that superconducting qubits operate at GHz
frequencies, therefore the energy of a single qubit excitation is much smaller than the thermal fluctuations
associated with the room temperature electronics required to record a measurement result. In order to have
a high measurement efficiency, the qubit state distinguishability must be boosted in the final collected signal
so that it is much larger than this thermal noise floor.
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Figure 3.5: Schematic setup of a driven superconducting qubit, a transmon, capacitively
coupled to a superconducting coplanar waveguide resonator. Given an input drive, the
resonator becomes phase-entangled with the qubit energy eigenstates, then the field escapes
from the resonator at the energy decay rate κ/2. The leaked resonator field mixes with the
reflected part of the drive field to produce a propagating output signal in the transmission
line. The signal field is amplified with a phase-preserving amplifier then evenly split to
measure two orthogonal quadrature signals I(t) and Q(t) with balanced homodyne detectors.

resonator frequency is [87],

χ ≈ ωr
ωq

g2 δq
∆qr (∆qr − δq)

, (3.13)

where δq = ωq − (E2 − E1)/~ = EC/~ is the qubit anharmonicity. The qubit-resonator

Hamiltonian describing this coupling is [23],

Ĥqr

~
=
ωq
2
σ̂z + (ωr + χ σ̂z) â

†â. (3.14)

The resonator is also coupled to a transmission line that supports traveling input-output

fields: The input ĉin is a pump field entering the resonator while, the outgoing field ĉout

combines the escaping resonator field and the reflected pump field, and will be amplified
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and detected later. The interaction Hamiltonian that describes the dynamics of the coupled

resonator-transmission line is [88]

Ĥrt

~
= i

(√
κ

2

)
(â+ â†)(ĉin − ĉ

†
in − ĉout + ĉ

†
out), (3.15)

which is subjected to the boundary input-output condition [89]

√
κ â = ĉin + ĉout. (3.16)

The input-output fields have commutation [ĉin, ĉ
†
in] = [ĉout, ĉ

†
out] = ∆ω/2π = ∆f equal

to the detection bandwidth, which we assume is ∆f ∼ 1GHz. This bandwidth leads to a

temporal uncertainty of ∆t ∼ 1/∆f ∼ 1ns over which collected fields are averaged.

Following Heisenberg’s equation of motion, introduced in Chapter 2, and the Hamiltonian

in Eqs. (3.14) and (3.15) the resonator field evolves as

dâ

dt
= ˙̂a =

i

~
[Ĥqr + Ĥrt, â]

= −i(ωr + χσ̂z)â+ (

√
κ

2
)(ĉin − ĉ

†
in − ĉout + ĉ

†
in).

(3.17)

Using [â, â†] = 1, [â†â, â] = −â, and the boundary condition in Eq. (3.16) this becomes

˙̂a = −i(ωr + χσ̂z)â+
√
κ (ĉin − ĉ

†
in)− κ

2
(â− â†). (3.18)

Using the boundary condition of Eq. (3.16) and assuming that the resonator field remains

in a coherent state such that 〈ĉin〉 = −iε(t)e−iωdt/κ with ωd ∼ ωr and is conditioned on a

particular qubit state, we can simplify Eq. (3.15) to an effective form [90–92]

Ĥrt

~
= â† ε(t) e−iωd t + â ε∗(t) eiωd t, (3.19)
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assuming the drive envelope ε(t) is varying slowly compared to the drive frequency ωd, and

applying the RWA to neglect fast-oscillating terms, Eq. (3.18) simplifies to the following

pair of RWA coherent field evolution equations, as expressed in the rotating frame of the

drive,

α̇±(t) = −i(ωr − ωd ± χ)α±(t)− iε(t)− κ

2
α±(t). (3.20)

Here α± are the resonator coherent states conditioned on the qubit in the excited (+) and

ground (−) states. Recall that |α±|2 = n̄± is the average number of photons in the resonator.

In the special case when the drive ε is constant, we can find the two steady states (α̇± = 0)

in the resonator,

α
(ss)
± ≡ 2ε

κ

−i
1 + i[2(∆rd ± χ)/κ]

. (3.21)

where ∆rd ≡ ωr − ωd is the drive detuning from the midpoint resonator frequency.

Eq. (3.20) and the boundary condition in Eq. (3.16) imply that the outgoing field ĉout can

be described as

αout
± (t) ≡ 〈ĉout〉 =

√
κα±(t) + i

ε(t)√
κ
, (3.22)

where ε(t)/
√
κ is the drive envelope that is assumed that varies slowly compared to the drive

frequency ωd. The collected part of the output during ∆t (the field amplitude are collected

and sequentially integrated over bins of duration ∆t) is

αcol
± (t) ≡ i

√
η∆t αout

± (t), (3.23)

where η is the measurement efficiency. And the lost part of the output during ∆t is

αloss
± (t) ≡ i

√
(1− η) ∆t αout

± (t). (3.24)

The leaked resonator field is amplified and then downconverted by mixing it with the orig-
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inal microwave drive. The mixer produces two collected output homodyne signals, which

have ensemble-averaged means that are proportional to the real and imaginary parts of the

amplified and collected signal. In Section 2.2.3 we called the real part the in-phase homo-

dyne signal I(t) ∝ Re[〈â〉] = 〈â + â†〉/2 and the imaginary part the quadrature homodyne

signal Q(t) ∝ Im[〈â〉] = 〈â− â†〉/2i. For each signal realization in an ensemble, these mean

values will be modified by additive Gaussian noise ξ(t), with zero ensemble-averaged mean

〈ξ(t)〉 = 0.

A phase-preserving amplifier, as will be used later in this thesis, will amplify both quadratures

I(t) and Q(t)6. Collecting both homodyne quadratures [95, 96], yields a net collection

efficiency η that characterizes the fraction of signal photons contributing to the observed

readout, with η/2 arriving at each homodyne quadrature.

Conditioned state trajectories have been reconstructed by filtering these noisy homodyne

signals with different methods such as Bayesian updates, and stochastic master equations,

as will be discussed in the next chapter. Prior to the work in this thesis, the efficient recon-

struction of the state trajectories with these methods has been limited to known dynamics

in Markovian regimes, where the qubit evolves slowly compared to the decay rate of the

resonator. Chapter 6 describes extensions to these methods that are able to reconstruct the

trajectories of a rapidly driven superconducting qubit even if the particular control drive is

not known beforehand.

6. The result of this thesis is discussed with phase-preserving amplifiers. More details about the amplifiers
are explained in these papers [93, 94].
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4 Monitoring Qubit Evolution

Measurement of the quantum properties of a physical system is fundamental to connect-

ing the theory of quantum mechanics and quantum information science to experiment and

technology.[97–100]. However, sudden projective measurements are usually the only form

of measurement discussed in the quantum mechanics postulates appearing in most under-

graduate textbooks [101]. For such a projective measurement, precise information about

a measured observable is immediately acquired and the system state is projected onto the

eigenspace corresponding to the observed outcome.

In reality, however, this description is not sufficient to explain two important situations:

first, measurements are not instantaneous, but occur over a nonzero duration of time that

depends on the detailed response of the detector. In other words, a general treatment

of quantum measurement must consider a gradual and continuous process of wavefunction

collapse. Second, when some aspects of a system are continuously monitored. For example we

saw in the previous chapter that the transmon has been monitored continuously using a weak

probe tone. It is the subject of continuous measurement that describes such a measurement.

This continuous measurement allows the observer to reconstruct the dynamics of a quantum

system, and to track the evolution of its wavefunction before its collapse to an eigenstate.

In this chapter, we first discuss the basic notion of projective measurement in more detail then

introduce generalized types of measurement, including weak and continuous measurements.

Due to the growing interest in using real-time information for feedback control in quantum

systems, these more general types of measurement have become increasingly important in

the last decade [37, 102–108]. We place particular emphasis on monitoring a transmon qubit

by continuously measuring the qubit-resonator system introduced in previous chapter by

amplifying and collecting the microwave field that escapes the resonator.
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4.1 Projective Measurement

The Stern-Gerlach experiment is a historically important example of quantum measurement

that provided experimental evidence for the quantization of electron spin into only two

discrete angular momentum values [51]. In this experiment, a beam of silver atoms was

generated in an atomic beam furnace, then sent towards an inhomogeneous magnetic field

with a large spatial gradient. According to classical physics one would expect the magnetic

moments of the silver atoms to be randomly oriented and thus deflected by the inhomoge-

neous magnetic field by random amounts to produce a broad distribution of impact positions

on a final scintillation plate. However, the researchers observed that the beam was split into

only two well-separated positions having similar uncertainty to the initial beam, suggesting

only two values, which were later named spin up and spin down.

To make this example more precise, consider atomic spins that have been polarized to all

point along the x-axis. When these spins pass through such an inhomogeneous magnetic

field with a large enough magnetic field gradient, dB/dz, in the z-direction, they will impact

the screen to create two separated distributions along the z-axis as illustrated in Fig. (4.1).

These two distinguishable lobes are defined to be the eigenstate representations of σ̂z, and

associated with normalized eigenvalues of ±1. We can easily distinguish whether the spins

are up (+1) or down (−1) after the measurement, so this is an example of a projective

measurement.

However, the magnetic field gradient in this same experiment could also be chosen to be very

weak, thus causing much smaller deflections of each atom. The distributions of the impacts

on the screen will then overlap substantially, so we will not be able to distinguish whether the

spins are up or down with certainty. However, we can still infer some information about which

spin value would be more likely given an observed impact position. This complementary

situation is an example of a weak measurement where only partial information about the
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Figure 4.1: Stern-Gerlach experiment. The spin initially is aligned along x, depending on
the strength of the magnetic field gradient (a) the spins will make two separated distribution
(strong gradient) or (b) the distributions will overlap (weak gradient)

spin state is extracted [109]. In this case, the spin state is not fully projected into the

eigenspace of a definite spin value.

To model the outcomes of this experiment mathematically, we need to review how projective

measurements work in quantum mechanics. The essential rule that connects the vector space

description of quantum mechanics to the probabilistic events observed in the laboratory

is Born’s rule. Born’s rule defines the probability of getting each particular outcome of

a measurement for a given observable. For simplicity, model the two spin states as the

computational basis states of a qubit such that the spin of each atom is prepared in a

particular superposition state |ψ〉 = α |g〉 + β |e〉. If one passes this atom through a strong

Stern-Gerlach apparatus, it will randomly impact in one of the lobes. According to Born’s

rule, the probability of finding the spin in the lobe corresponding to ground state |g〉 would
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be

P (+z|ψ) = |〈g|ψ〉|2 = |α|2, (4.1)

the probability of finding the qubit in the excited state |e〉 is |β|2. Note that mathematically,

this projective measurement is treated as instantaneous and non-unitary (irreversible), and

causes the spin state |ψ〉 to collapse onto one of the two measurement eigenstates |g〉 or |e〉

afterwards.

As postulated, Born’s rule applies only to precise projective measurements, which dramati-

cally affect the dynamics of the system. Since the time-dependence of the detector dynamics

are omitted, projective measurements can only reveal information available at temporal

boundaries of an evolution interval, in this case about the spin state just before the atom

enters the Stern-Gerlach device. This boundary information is generally insensitive to tran-

sient evolution during the device interaction. A generalization of Born’s rule is required to

model realistic experiments, and will be introduced in the next section. This generalization

will account for imperfect measurements, arising from limited detection accuracy, and permit

the inclusion of time-dependence in the measurement process.

4.2 Generalized Measurement

Recall that a quantum observable is modeled as a Hermitian operator, such as Ô, and can be

expanded into its eigenvalues λi and eigenvectors |vi〉 as Ô =
∑
i λi|vi〉〈vi|. The eigenvalues

are interpreted to be the distinct measurement outcome values for Ô, while their associated

eiggenvectors are the resulting states of certainty about the observable value. For each

eigenstate |vi〉, P̂i = |vi〉〈vi| is a measurement operator that transforms the quantum state

ρ̂ into that particular eigenstate. That is, after the measurement takes place, the density
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matrix ρ̂ updates according to the rule

ρ̂
i7−→ ρ̂′ =

P̂i ρ̂ P̂i

Tr
(
P̂i ρ̂ P̂i

) . (4.2)

The numerator projects ρ̂ onto the P̂i subspace while the denominator renormalizes the state

by the probability to obtain the specific result i, P (i|ρ̂) = Tr
(
P̂i ρ̂ P̂i

)
= Tr

(
P̂i ρ̂

)
, using the

cyclic property of the trace and P̂ 2
i = P̂i.

The update rule in Eq. (4.2) can be generalized to describe any kind of quantum measure-

ment possible by replacing the projectors P̂i with more general measurement operators M̂k

that only partially project the state towards more probable observable values. The density

matrix ρ̂ after the measurement updates according to the rule

ρ̂
k7−→ ρ̂′ =

M̂k ρ̂ M̂
†
k

Tr
(
M̂k ρ̂ M̂

†
k

) . (4.3)

Such a replacement would imply that the probabilities for the outcomes have the form

P (k|ρ̂) = Tr
(
M̂k ρ̂ M̂

†
k

)
= Tr

(
M̂
†
k M̂k ρ̂

)
= Tr

(
Êk ρ̂

)
. The Kraus operators M̂k obey

Êk = M̂
†
k M̂k, where Êk are positive semidefinite and encode the conditional probabili-

ties for the detector response. Since
∑
k P (k|ρ̂) = 1, the positive operators Êk must also

partition the unity operator
∑
k Êk = Î. Such a complete partition {Êk} is called a posi-

tive operator-valued measure (POVM) over the index k that labels distinguishable detector

outcomes. Notably, the index k may not perfectly correspond to the eigenvalue labels i, and

may have a different number of possible outcomes than there are observable eigenvalues.

Projective measurements are the special case when M̂k is the projector onto the eigenspace

corresponding to λk.

The most straightforward way of implementing a POVM in practice is to couple a quantum

system to an ancillary detector sub-system, then perform a projective measurement on only
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the detector. The result will be a generalized quantum measurement of the original system,

with the amount of projection dependent upon the correlation between detector outcomes

and observable eigenvalues. In other words, generalized measurements can be realized by

enlarging the Hilbert space and performing a standard projective measurement on only the

detector sub-system of the enlarged space. We will employ this technique to implement

specific generalized measurement in later chapters.

4.3 Repeated Measurement and Monitoring

The measurement process in real experiments takes place over a finite time scale, determined

by the strength of interaction between the quantum system and the probe system. If the

quantum system is weakly coupled to the probe then the uncertainty in a single measurement

is very large compared with the separation between the eigenvalues. For example if the

probability distributions for the ground and excited state of a qubit overlap, it would be

more challenging to determine whether the qubit is in the ground or excited state after the

measurement [40]. Because we only get partial information about the system, its state only

partially collapses toward the most probable eigenstate [38].

A continuous measurement is one in which information is continually extracted from a sys-

tem. In other words, during the continuous measurement, the amount of information that

we obtain form measuring it goes to zero as the duration of the measurement time goes

to zero. In order to construct such a measurement, we can divide time into a sequence of

intervals of length ∆t, and consider a weak measurement in each time interval.
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4.3.1 Discrete Monitoring: Bayesian Trajectories

By using the Born rule, the modulus squared of quantum state amplitudes are probabilities.

These probabilities satisfy the principles of probability theory, including Bayes’ rule for

updating probability distributions given new information. Quantum state collapse could be

viewed as an informational update related to this correspondence. In other words, the Bayes’

rule for classical probabilities forces the existence of a corresponding quantum state collapse

in order for the Born rule to be consistent.

Given a pure qubit state |ψ〉q = α|0〉 + β|1〉, and a measurement result r, the probabilities

update as P (k|r) = P (r|k)P (k) (k ∈ {0, 1}) with multiplicative likelihoods P (r|k), one

can renormalize it after updating the distribution. The total probability for the result r is

P (r) =
∑
k P (r|k)P (k), and generally depends upon the prior qubit occupation information.

These results can be compactly encoded into a Kraus operator M̂r =
∑
k

√
P (r|k) |k〉〈k| that

multiplies the prior qubit state with the correct likelihood (up to an arbitrary unitary factor

that would introduce additional phase backaction). The result probability by construction

is then

P (r) = 〈ψq|M̂†r M̂r|ψq〉. (4.4)

The state update corresponding to Bayes rule is M̂r|ψq〉, followed by renormalization.

Because of the central limit theorem, many laboratory detectors have probability distribu-

tions that approximate Gaussian statistics. A Gaussian Kraus operator has the form,

M̂r =
∑
k

(2π σ2
k)−

1
4 e−(r−µk)2/(4σ2k) |k〉〈k|, (4.5)

where µk is the state-dependent mean and σk is the state-dependent variance. Note that the

readout r can always be shifted and rescaled so the two possible qubit state values correspond

to readout values of ±1. With this simplification the Kraus operator in Eq. (4.5) will have
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the form

M̂r = (2π σ2)−
1
4 e

(
− (r2+1)

4σ2

)[
e

(
− r

2σ2

)
|0〉〈0|+ e

(
+ r

2σ2

)
|1〉〈1|

]
, (4.6)

where all components in the exponent have been factored out as state-independent except

the cross-term components. These constant terms cancel during state renormalization, so

they can be removed when we are only concerned about state dynamics of informational

collapse. By using a Pauli operator σ̂z = |0〉〈0| − |1〉〈1| we can encode the standardized

readout values. The simplified Kraus operator will have the form M̂r = exp(rσ̂z/2σ
2).

A noisy sequence of independent Gaussian measurements can be averaged to coarse-grain

the readout and reduce the variance. To have this property the variance must have the

form σ2 = τ/∆t for characteristic timescale τ to achieve unit variance and averaging time

bin ∆t. Following the law of sums of variance, averaging two successive time bins will have

the variance τ/2 ∆t. Any continuous monitoring setup of a qubit with Markovian time bins

will have this property, and therefore conform to the form of the standard Gaussian time-

sequence Kraus operator M̂r = exp(r∆t σ̂z/2 τ).

The state update is then described by the composite map (including the unitary evolution)

ρ̂(ti+1) =
M̂r ρ̂(ti) M̂

†
r

Tr
(
M̂r ρ̂(ti) M̂

†
r
) (4.7)

4.3.2 Continuous Monitoring: Stochastic Master Equations

For analytic convenience, the time continuum limit ∆t→ 0 can be used to derive stochastic

master equations (SME) from the update equation Eq. (4.7) while taking this limit of small

dt the Markovianity is formally preserved. In order to get a description for the evolution of

a quantum system under continuous measurement we first start with unitary evolution of a

closed (isolated) system. In terms of ρ̂ this is described by the Schrödinger von - Neumann
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equation, Eq. (2.24)

d

dt
ρ̂(t) = − i

~
[Ĥ(t), ρ̂(t)]. (4.8)

When the system interacts with the environment, as is required in order to control the

quantum system, these unitary dynamics must be generalized to non-unitary dynamics ap-

propriate for an open system. The unique generalization of Eq. (4.8) without environmental

memory (i.e. Markovian dynamics) is the Lindblad master equation [97, 110],

d

dt
ρ̂(t) = Lρ̂ = − i

~
[Ĥ, ρ̂(t)] +

∑
n=1

D[ĉn] ρ̂(t), (4.9)

which describes the system dynamics on average while treating the environment as a dissipa-

tion bath where system information is transferred and lost. Each ĉn is a Lindblad operator

that describes the dissipative coupling to the environment, while D[ĉn] is the dissipation

‘superoperator’ defined by its linear action on ρ̂

D[ĉn] ρ̂ =
1

2
(2ĉn ρ̂ ĉ

†
n − ĉ†n ĉn ρ̂− ρ̂ ĉ†n ĉn). (4.10)

For the relaxation and dephasing mechanisms discussed in chapter 2, the Lindblad operators

are simple. For qubit relaxation ĉrelax =
√

Γ1 σ̂, where Γ1 = 1/T1 is the relaxation rate, T1

is the exponential time constant for relaxation decay, and σ is the lowering operator. For

qubit dephasing, the Lindblad operator ĉdephasing =
√

Γd σ̂z where Γd = 1/2T2, where Γd

is the decay envelope rate for coherent oscillations, T2 is the exponential timescale of the

dephasing decay, and σ̂z is the Pauli operator diagonal in the qubit basis.

The Lindblad master equation is an averaged evolution equation, so does not take into

account any particular observational records for the system. Measurement modifies the

state of the system due to the backaction of the informational update, so we would like to

have a similar time-evolution description for the state when conditioned upon the observed
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measurement results of a particular experimental run.

The different evolution of the density matrix ρ̂(t) conditioned on a measurement record with

additive Gaussian white noise can be described by adding a stochastic term to the Lindblad

master equation that corrects the dynamics by keeping track of the deviation of the observed

record from the expected mean

d

dt
ρ̂(t) = − i

~
[Ĥ, ρ̂(t)] +

∑
n=1

D[ĉn] ρ̂(t) +
√
ηH[ĉn] ρ̂dW, (4.11)

where the Weiner increment dW is a zero-mean, Gaussian-distributed random variable with

variance dt that satisfies the Itô rule dW 2 = dt [110]. The innovation superoperator H[c]

updates the density matrix ρ as follows,

H[ĉ]ρ̂ = ĉρ̂+ ρ̂ĉ† − 〈ĉ+ ĉ†〉ρ̂, (4.12)

using the same Lindblad collapse operators ĉn appearing in the dissipative state update. The

scaling factor η ∈ [0, 1] indicates the measurement efficiency which quantifies the fraction

of the measured information retained in the collected signal. Note that when η = 0, the

stochastic Eq. (4.11) reduces to the ensemble-averaged Lindblad Eq. (4.9). By feeding

the continuously measured signal dr(t) into this stochastic master equation, we construct

stochastic evolution of the density matrix, known as quantum trajectories [111, 111–118].

Since dW has zero mean, the ensemble average of computed trajectories reduces to the

deterministic trajectory of the Lindblad equation by construction.

A simple way to compute solutions for the stochastic master equation is with Monte-Carlo

simulation, in which one generates dW using a random number generators and then computes

ρ̂(t + ∆t) = ρ̂(t) + dρ̂ iteratively. There are also different modifications of this procedure

with better numerical stability such as Rouchon method [119]. The experimental use of
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the master equation is the computation of a predicted state ρ̂(t, r(t)) from a sequence of

measurement outcomes dr. In this case, we can compute dW from dr rather than from a

random number generator.
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5 Machine Learning for Data Processing

Machine learning based on neural networks (NN) [120–122] has revealed a remarkable poten-

tial for solving a wide variety of complex problems. As the field continues to grow rapidly,

its applications have appeared in many areas of science. More recently, a number of first

applications to quantum physics have emerged. These include quantum state tomography

[44, 123–125], reconstructing a quantum system’s dynamics [43, 126], quantum error correc-

tion [127–129], identification of quantum phases of matter [130–133], quantum entanglement

[134, 135], and tackling quantum many-body dynamics [45, 136, 137].

An artificial neural network model is based on the idea of reproducing how neurons connect

in the human brain. Such an artificial neuron, or “perceptron” is a simplified mathematical

model of a biological neuron. In actual neurons, the dendrites receive electrical signals from

other neurons via the axons, while in perceptrons, these electrical signals are expressed

as numerical values. Different amounts of electrical stimuli flow at synapses between the

dendrites and axons. This variability is modeled in the perceptron by multiplying each

input value by a value called a weight. The intensity of the electrical signal determines

the ease with which a neuron fires (firing means that the threshold for an action potential

has been passed). To model this phenomenon, a perceptron calculates the weighted sum

of the inputs and applies a step function to the sum to model the conditional firing of the

neuron. Similar to biological neural networks, this threshholded output is then fed to other

perceptrons as a chained cascade.

Despite the fact that we have not yet been able to replicate the brain, the field of artificial

intelligence offers remarkably effective solutions to a wide range of problems.

Neural networks learn or are trained by processing examples. These examples contain a

known ‘input’ and ‘target’1, which form probability-weighted associations between them,

1. This is known as supervised learning [138]. There are other types of learning such as unsupervised
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that are stored within the data structure of the network. The training is usually performed

by determining the difference (error) between the predicted output of the network and the

target. Then based on the value of the error (difference), the network adjusts its weighted

associations. By making successive adjustments, the neural network’s output will become

more similar to the target output. Backpropagation [144–146] is the algorithm that deter-

mines how a single training example would adjust the weights and biases. More details about

the neural networks will be elaborated in the sections to come.

This chapter introduces foundational and state-of-the-art techniques in machine learning

and data processing for physicists but will mainly focus on the two different types of neural

network used in this thesis, Long Short Term Memory Recurrent Neural Networks (LSTM

RNN) [147, 148] which can be directly used for the purpose of reconstructing strongly driven

superconducting qubit trajectories, and denoising autoencoders [149, 150] which can be used

for state stimation of the superconducting qubit.

5.1 A Brief History of Neural Networks

Even though the study of the human brain is thousands of years old, the first steps towards

constructing artificial neural networks took place with the mathematical modeling of a bio-

logical brain by Walter Pitts and Warren McCulloch in 1943. The neuron explained in their

paper, “A Logical Calculus of the Ideas Immanent in Nervous Activity” [151] is very simple

and has very limited capability of learning but yet is the foundation for artificial neural net-

works. In 1957, Frank Rosenblatt, a neuro-biologist from Cornell university, started working

on the “perceptron”, which was a neural network unit that computes a weighted sum of the

inputs, subtracts a threshold, and passes one of two possible values out as the result. This

learning [139–141] and reinforcement learning [142, 143] but in this thesis we will only see the supervised
models.
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perceptron had true learning capabilities and was able to do binary classification [152]. It

was the first neural network built in hardware and has remained in use even to this day.

The first version of back-propagation started in 1960 when Henry J. Kelley, a professor of

aerospace at the Virginia Polytechnic Institute, was working on control theory and flight

optimization. In the context of control theory, he was able to derive the basics of backprop-

agation using dynamic programming[153]. in 1962, a computer programmer Stuart Dreyfus

showed a simplified backpropagation model that used simple applicatios of the derivative

chain rule, instead of dynamic programming [154]. It was a small step that strengthened the

future of deep learning.

We say future because interestingly back in those days people still did not know how to

connect the back-propagation technique to a neural network. 1965 was the year that multi-

layer neural networks were created by the mathematicians Alexey Grigoryevich Ivakhnenko

along with Valentin Grigorevich Lapa. Ivakhnenko is often considered as the father of deep

learning. Then, later from 1982 to 1998, many neural network architectures were created

including convolutional neural networks, recurrent neural networks, Boltzmann machines,

and more importantly, they successfully implemented backpropagation[155].

5.2 The Building Blocks of Neural Networks

Fig. (5.1) shows a simple Artificial Neural Network (ANN) architecture with only one hidden

layer in the middle, but some networks have multiple hidden layers. The leftmost layer in

this network is called the input layer, and the neurons within the layer are called input

neurons, and the rightmost or output layer contains the output neurons.

The goal of neural networks is to approximate a function f which maps an input x to an

output y. An ANN defines this mapping y = F (x; θ), by learning the best values of the
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Figure 5.1: A simple feed forward neural network architecture with only one hidden layer
in the middle. The leftmost layer in this network is called the input layer, and the neurons
within the layer are called input neurons, and the rightmost or output layer contains the
output neurons. Every neuron depends on the outputs of all the neurons in the previous
layers (assuming that all neurons are connected together).

tunable parameters2 θ that will lead to the best approximation of f .

ANN are often applied to problems with high-dimensional inputs and outputs, using many

tunable parameters. One of the simplest ANN models is called a feedforward neural net-

work because information flows through the function being evaluated from x, through the

intermediate computations used to define F, and finally to the output y. The output yj of a

neuron nj in this feedforward flow of information is computed by (this is just flow from one

layer to the next layer. You should make it clear that this pattern will be composed with

2. For simplicity in the rest of this chapter we collectively call weights W and biases b, together θ, so θ
would be a vector that contains all weights and biases.
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each additional layer.)

yj = g
( N∑
i=1

Wijxij + bj

)
, (5.1)

where Wij and xij are the weights and inputs from the ith neuron to jth neuron, with a

activation function g which I will talk about shortly. bj refers to the associated bias with

each neuron and N is the total number of incoming inputs. The goal of approximating the

function f can be achieved by tuning the weights and biases during the training process.

Neural networks are trained using the process called gradient descent which is an optimization

algorithm to find a local minimum of a differentiable function (usually called a lost function)

and consists of a backward propagation step (which is basically the chain rule) to change

the weights in order to reduce the cost function. What follows in this chapter is a discussion

of how we can accomplish this task.

In Eq. (5.1) the activation function g, transforms the input weighted sum to a thresholded

output between a lower limit and upper limit. The purpose of having an activation function

in the network is to introduce non-linearity into the output of a neuron in order to help the

network learn complex patterns in the data. Some of the common activation functions are

(see Fig. (5.2))

• Sigmoid function, also known as a logistic curve (or inverted Fermi-Dirac distribu-

tion), g = σ(x) = 1/(1 + e−x). It limits the neuron’s output to be between 0 and 1

which is ideal for binary classification problems. However, there are some disadvan-

tages of using this function, e.g., the neurons’ activation saturates at either tail of 0 or

1, because the gradient at these regions is almost zero. Therefore the small changes in

the input in these regions will not be reflected in the output and gives rise to a problem

called ‘vanishing gradient ’.

• Tanh, it ranges between -1 and 1, g(x) = tanh(x) = 2/(1 + e−2x)− 1. Similar to the
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Figure 5.2: Commonly used activation functions.

Sigmoid, tanh also suffers from vanishing gradient problem.

• ReLU (Rectified Linear Unit), ranges from 0 to ∞, g(x) =


0, x < 0

x, x ≥ 0

In recent times, this is the most used activation function. There are a lot of reasons

for this. One of the most important ones is that it is very easy to compute, so it is

computationally efficient to work with for calculating the gradient. For positive inputs

the linear ramp never has a vanishing gradient; however, the vanishing gradient still

occurs for negative inputs.

• Leaky ReLU, is an improved version of the ReLU activation function. It addresses the

remaining problem of a vanishing gradient for negative inputs in the ReLU activation

function by defining a small slope in the negative part.

It is worth noting that adding more layers (or equivalently adding more neurons) to the

network will increase its overall non-linearity. Because more layers will result in applying
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more activation functions, thus adding more non-linearity into the system. However, more

layers do not necessarily translate into better results, as we will see in the next section,

because of the risk of overfitting.

5.3 Training Neural Networks

In the previous section we learned what each part of a neural network looks like; this section

explains how the network learns. The network learns by adjusting its weights and biases and

it does this by minimizing a function called a cost function, also called loss function. There

are different types of cost functions such as mean squared error (MSE), mean absolute error

(MAE), binary cross-entropy, and etc. A commonly used and well-behaved loss function

adds up the squares of the differences between the targets (labels), y and the network’s

outputs 3, ŷ and is called mean squared error

L(θ) =
1

2M

M∑
i=1

(yi − ŷi)2, (5.2)

where θ denotes the collection of all weights and biases in the network. M is the total

number of training inputs and makes the gradient become the average of M terms instead of

a sum, therefore its scale does not change when we add more data points. The 1/2 coefficient

is merely for convenience; taking gradient of the cost function the 2 from the square term

cancels out. There are some advantages of using the MSE as a loss function, e.g., in the form

of quadratic equation, Eq. (5.2), the convexity guarantees a minimum [156]. In addition,

By squaring errors, it penalizes the model for making larger errors. Note that the network

output ŷ depends on W , and b, but to keep the notation simple I have not indicated this

dependence.

3. Here the“hat” symbol denotes estimates.
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One important problem with MSE is that it treats y = 0.01 and y = 0.00001 as nearly

equivalent, to fix this problem the logarithmic loss has been used. A common type of

logarithmic loss function (that we also use in Chapter 6) is cross-entropy. In cross-entropy

loss function, each predicted class probability is compared to the actual class output 0 or 1,

and it penalizes the probabilities based on how far they are from the reference values. This

penalty is logarithmic as I mentioned earlier, yielding a large score for large differences and

small score for small differences. Cross-entropy is defined as (for n classes)

LCE = −
n∑
i

ti log(pi), (5.3)

where ti is the actual label and pi is the probability for the ith class. For binry classification

the Eq. (5.3) becomes,

LCE = −t log(p)− (1− t) log(1− p). (5.4)

Binary cross-operator is usually calculated as the average cross-entropy over all the training

examples.

The aim of the training algorithm should be to minimize the cost function L(θ), by finding a

set of weights and biases to make the cost as small as possible using an algorithm known as

gradient descent [157]. In order to minimize a convex function, we need to find a stationary

point. There are different methods to to do this. One possible approach is to start at an

arbitrary point, and move along the gradient at the point towards the next point and repeat

until converging to a stationary point, see Fig. (5.3). In the search for a stationary point we

need to consider two things: the direction and the step size to move toward the stationary

point. Therefore, the iterative search of gradient descent can be described as following the
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Figure 5.3: An example of a gradient descent search for a minimum.

recursive rule

θ 7→ θ − η∂L
∂θ
, (5.5)

where the positive scalar η is called the learning rate that specifies the step size to take

towards the minimum of the cost function. It should not be too small because many iterations

will be required, which will make the training process costly. It should also not be too large

because it may overshoot the actual minimum.

There is another optimization algorithm called stochastic gradient descent that is used for

training a model. Similar to gradient descent, in stochastic gradient descent we update a set

of parameters θ in an iterative way in order to minimize the cost function. However, while

in gradient descent the network has to run through the entire training dataset to do a single

update for a parameter in each iteration, in stochastic gradient descent method, we use only

one example from the training set to update a parameter4. For a large training set, the

4. Sometimes a subset of the training set is used in order to update a parameter. This subset is called
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optimization process may take longer because in every iteration we have to run through the

complete training set in order to update θ. Stochastic gradient descent on the other hand,

improves itself for each training sample in a shorter time moreover guarantees reaching a

global minimum [158].

5.4 Backpropagation

The back-propagation algorithm allows the information from the cost function to flow back-

wards through the network (using a chain rule for derivatives of nested functions), in order to

compute the gradient [122]. For simplicity, I compute the cost function for a neural network

with only one hidden layer which is shown in Fig. (5.1). This network has a set of weights

W (1) and biases b(1) that connect the input layer to the hidden layer, and another set of

weights W (2) and biases b(2), that connect the middle layer to the input layer. We can write

the inputs and outputs of each layer as follows

z(1) = W (1) x+ b(1) → input to hidden layer

a(1) = g
(
z(1)

)
→ output of hidden layer

z(2) = W (2) a(1) + b(2) → input to output layer

ŷ = g
(
z(2)

)
→ output

(5.6)

where ŷ is the computed output from the input x, and g is the activation function.

To perform backpropagation, we start from the MSE loss function defined in Eq. (5.2). The

error between the estimated and real outputs for M samples is as follows (for simplicity we

a mini-batch and the optimization method is called mini-batch stochastic gradient descent. The mini-batch
size defines the number of samples that will be propagated through the network. For example if we have
1000 training sample and we decide to have a mini-batch size of 100, the optimization algorithm takes the
first 100 samples from the training dataset and trains the network, then it takes the second 100 samples and
trains the network again. The network keeps doing this until taking the last mini-batch set of the dataset.
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remove the sum),

∂L
∂y(x)

=
1

M
(yi − ŷi). (5.7)

Using the chain rule iteratively and Eq. (5.7), we compute

∂L
∂z(2)

=
∂L
∂y(x)

∂y(x)

∂z(2)
=

∂L
∂y(x)

g′(z(2))

∂L
∂z(1)

=
∂L
∂y(x)

∂y(x)

∂z(2)

∂z(2)

∂a(1)

∂a(1)

∂z(1)
=

∂L
∂y(x)

g′(z(2))W (2) g′(z(1))

∂L
∂W (2)

=
∂L
∂z(2)

∂z(2)

∂W (2)
=

∂L
∂z(2)

a(1)

∂L
∂W (1)

=
∂L
∂z(1)

∂z(1)

∂W (1)
=

∂L
∂z(1)

x.

(5.8)

Similarly, for the biases we will have

∂L
∂b(2)

=
∂L
∂z(2)

∂z(2)

∂b(2)
,

∂L
∂b(1)

=
∂L
∂z(1)

∂z(1)

∂b(1)
.

(5.9)

This can be generalized for the networks having more than one hidden layer. Substituting

the weight and the bias gradients of Eq. (5.8) and Eq. (5.9) into Eq. (5.5), the network

parameters in each layer we updated.

5.5 Cross Validation

In order to train and test the model through a neural network while avoiding biases in the

learning process, we must divide our dataset to three sets: the training set, which is used to

fit the model; the validation set, which is used to evaluate the model built using a training

set; and, the test set, which is used to provide an unbiased evaluation of a final model fit.

Unlike the training and validation set that are used during the training process, the testing
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set is used only to assess the performance of a trained model. There are different ways to

split the dataset into these three different categories but one of the most common is k-fold

cross-validation, which is used throughout this thesis.

Cross-validation is used in training neural networks to estimate the skill of a model on unseen

data. A k-fold cross-validation is a type of cross-validation in which we iterate training then

validation k times over a dataset, using different data subsets on each iteration, then average

the final results. In each round, we split the dataset into k parts, one part is used for

validation, and the remaining k − 1 parts are merged into a training subset for the training

of the model.

5.6 Overfitting

Overfitting has occurred when a model performs well only on training data and fails to

generalize to other unseen data. This is a very common problem in applied machine learning

due to the large number of tunable parameters, so many methods have been introduced to

avoid this problem, such as

• Simplifying the model. The complexity can be reduced by removing layers or

reducing the number of neurons. Sometimes, especially for a small training set, when

a network has many hidden layers, it is possible that the network learns unnecessary

details (e.g., noise) about the training set, making it incapable of generalizing these

learned information to predict the output of unseen data.

• Regularization. This technique adds a penalty term to the loss function to encourage

fewer non-zero parameter values and avoid irrelevant added structure. The most com-

mon techniques are known as L1 and L2 regularization. L1 penalty aims at minimizing
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the weights’ absolute value as,

L′(θ) = L(θ) + λ
M∑
i=1

‖θi‖1. (5.10)

where λ is a hyperparameter. The L2 penalty aims to minimize the squared magnitude

of the weights,

L′(θ) = L(θ) + λ
M∑
i=1

‖θi‖22, (5.11)

The goal of regularization is to minimize variance while compromising on bias a little

bit so that the overall model depends on fewer non-trivial parameters [159].

• Dropouts. During training, neurons are randomly dropped from the network’s layers.

Dropping neurons is equivalent to training different neural networks. Therefore the

different networks will overfit in different ways, so the net effect of dropout will be to

reduce overfitting.

5.7 Long Short Term Memory Recurrent Neural Networks

The previous sections focused on feed-forward types of neural networks with simple inputs

and outputs, such as real values or discrete categories. In this section a new model will be

introduced that is more suitable for sequential data. Sequential data includes text streams,

audio clips, video clips, time-series data, etc. When we want to build a model for sequential

data, the model explicitly accounts for the sequential nature of input data and its long-term

dependencies. With feed-forward networks, the information only flows in one direction and

never touches a node (neuron) twice, so nodes have no memory of any prior input. These

models have no notion of temporal order since they consider all input simultaneously, so are

not suitable for modeling sequential data.
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Figure 5.4: The left side of the diagram shows a RNN and on the right side it has been
unfolded. x(t) is the network’s input at time step t. h(t) represents a hidden state at time
t and its output is calculated based on the current input and previous time step’s hidden
state, and finally ŷ(t) illustrates the output of the network at time t.

Recurrent Neural Networks (RNN) are a popular architecture that preserves the ordered

structure of sequenced data. In an RNN, the information cycles through a recurring loop.

Fig. (5.4) illustrates the information flow in a recurrent neural network. x(t) is taken as the

input to the network at time step t. When one step of the RNN forward pass occurs, the

network generates what is known as ‘hidden state’. We denote the hidden state at step t

as h(t), and it is calculated based on the current input and the previous time step’s hidden

state,

h(t) = g(Uxh x
(t) +Whhh

(t−1) + bh). (5.12)

Recall that g is the activation function, and bh is the bias value assigned to hidden state at

time step t.

There are three sets of weights as denoted in Fig. (5.4): The input to hidden connections

parametrized by weight Uxh, hidden to hidden recurrent connections parametrized by a

weight Whh. The output of the network in time step t is

ŷ(t) = Vhy h
(t) + by, (5.13)
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where hidden to output connections are parametrized by a weight matrix Vhy. All these

weights are shared across time.

The hidden states here serve as the memory of the RNN, but they do not actually remem-

ber very much. In models with many hidden states, an RNN will suffer from the vanish-

ing/exploding gradient problem [160]. By the time we reach a later hidden state, the RNN

has forgotten most of the history from the first hidden states. To fix this problem, a variation

of an RNN is developed to include additional explicit memory, known as a Long Short Term

Memory (LSTM) network. An RNN already has a short-term memory, but by adding an

extra input for persistent information, an LSTM also enables a long-term memory.

LSTM are a type of RNN architecture that addresses the vanishing/exploding gradient

problem and allows learning of long-term dependencies. LSTMs are a variant of recurrent

neural networks with persistent memory that were originally developed in the context of

natural language processing to learn longer temporal correlations appearing in time series

data. The main idea is to add a memory cell (or cell state) to maintain information over

longer times with gating units inside that regulate the information flow into and out of the

memory. Fig. (5.5) illustrates the inside of an LSTM memory cell in more detail.

Each memory cell has different gates that act as follows [161]:

• Forget gates, controls that what information to throw away from memory (cell state),

c(t−1). By looking at the values of h(t−1) and x(t) the gate outputs a number between

0 and 1 for each cell state c(t−1). The Sigmoid specifically has been chosen here since

it outputs a value between 0 and 1, and it can either let no flow or complete flow of

information through the gates,

f (t) = Sigmoid(Wxf x
(t) +Whf h

(t−1) + bf ), (5.14)
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Figure 5.5: Long Short Term Memory (LSTM) cell. Fundamental components of an LSTM
cell are a forget gate, input gate,output gate and a cell state. Forget gates, controls that
what information to throw away from memory (cell state), c(t−1). Input gate controls what
new information is added to cell state from current input. Cell state aggregates the two
components, old memory via the forget gate and new memory via the input gate. Output
gate conditionally decides what to update from the memory.

where Wxf is the weight assigned to the connection of input x(t) to the forget layer,

Whf is the assigned to the connection of the hidden node in the previous time step

h(t−1) to the forget layer, and bf is the bias value assigned to the forget layer.

• Input gate controls what new information is added to cell state from current input.

This step has two parts: First the input gate decides what values should be updated

and then a tanh layer creates a new value (c̃(t)) for updating the memory. As we saw

in the standard LSTM network, Sigmoid is used as the gating function and the tanh

is used as the output activation function.

By keeping the values between −1 and 1, a tanh function regulates the output of the

network. Also, because its derivative can sustain for a longer range before going to

zero, it can help us to overcome the vanishing gradient problem. Even though the

activation functions used in standard LSTM cell here has this specific design, there
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is no restriction on using different types of activation functions. Most of the time, to

produce an accurate model that matches our data, it is best to design different LSTM

cells and train the network several times. The calculation to update the input value

and the memory cell is as follows

i(t) = Sigmoid(Wxix
(t) +Whi h

(t−1) + bi) (5.15)

c̃(t) = tanh(Wxc x
(t) +Whc h

(t−1) + bc). (5.16)

• Memory update, the cell state aggregates the two components, old memory via the

forget gate and new memory via the input gate. In this step the old state is multiplied

by the output of forget gate f (t), to forget the part of information before carrying it

into the memory cell. Then by adding i(t) c̃(t) to it we decide how much we want to

update the memory cell. This step’s calculation is as follows

c(t) = f (t) c(t−1) + i(t) c̃(t). (5.17)

• Output gate conditionally decides what to update from the memory. This part has

two steps as follows

o(t) = Sigmoid(Wxo x
(t) +Who h

(t−1) + bo) (5.18)

h(t) = o(t) tanh(c(t)). (5.19)

5.8 Autoencoders

The LSTM RNN architecture in the previous section is an example of supervised learning, in

which both inputs and their correct outputs are provided as labeled training data. However,
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suppose you just have a large amount of data and you want to know if there are specific

patterns in this unlabeled training data. There is a simple architecture to compress im-

portant characteristics of the input data into a simplified internal representation, called an

autoencoder.

An autoencoder [162] is an unsupervised learning type of feed-forward neural network which

encodes its input xi into a compressed hidden representation h, then decodes the input again

from this hidden representation. The model is trained to minimize a cost function that en-

sures that the output x̂i is close to the original input xi. To ensure compression the hidden

representation should be a bottleneck layer with dimension much smaller than the original

input.

Autoencoders have been used widely for feature selection 5, mapping high-dimensional data

to two dimensions for visualization, and for other tasks involving information compression,

such as reducing the sizes of files. Autoencoders are also becoming increasingly important

for quantum machine learning [163, 164] because of the limited size of near-term quantum

processors; extra input-dependent compression will be important to down-size the inputs to

tractable dimensions.

There are different types of autoencoders such as a denoising autoencoder which is a super-

vised learning model, a sparse autoencoder, a convolutional autoencoder, and a variational

autoencoder. Denoising autoencoders are the most relevant for Chapter 7 where we will show

how to apply them to the task of quantum state tomography. A denoising autoencoder is an

autoencoder that not only downsizes the input data into the hidden layer (the bottleneck)

but also removes unstructured noise from the original input data to recover a clean version

as output. Fig. (5.6) illustrates the architecture of a denoising autoencoder.

5. The process of selecting relevant features for use in model construction is called feature selection.
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Figure 5.6: Architecture of a denoising autoencoder. Denoising autoencoders are an impor-
tant tool for identifying key structures in the data by compressing it to a minimal represen-
tation using a bottleneck structure in the middle layer.
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6 Monitoring Fast Superconducting Qubit
Dynamics Using a Neural Network

6.1 Motivation

In Section 3.4 we saw that dispersively measuring a superconducting qubit (transmon) pro-

duces noisy homodyne signals that are weakly correlated with the qubit state. Since these

signals contain qubit information, they can be used to monitor or conditionally control the

qubit dynamics. These tasks require us to reconstruct a best estimate of the quantum state

as it undergoes coherent and stochastic dynamics due to the knowledge obtained by the de-

tector. This measurement backaction is proportional to the amount of information learned

during the continuous measurement. This stochastic evolution is known as a quantum tra-

jectory.

Traditional methods to recover a quantum trajectory from a noisy measurement record,

such as the stochastic master equations [110, 112] and Bayesian filters [39, 118] discussed in

Chapter 4, require precise calibration of system parameters, as well as a measurement record

that approximates stationary Gaussian white noise [165] and a weak system-environment

coupling. The last assumption of record Markovianity breaks down when the quantum state

changes quickly compared with the detector bandwidth. This fast dynamics can prevent the

conditioned coherent steady states in the resonator from adiabatically following their associ-

ated qubit states, producing nontrivially entangled qubit-resonator states and a measurement

record with longer temporal correlations [118]. Therefore, these traditional methods will not

be sufficient to accurately recover rapidly evolving quantum trajectories in modern quan-

tum processors with limited bandwidth. Finding a method that enables us to continuously

monitor these fast dynamics may enable novel experimental techniques with concurrent gate

monitoring for error diagnostics or or measurement-based feedback for continuous quantum
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error correction [166, 167].

We already know that RNNs can successfully reconstruct quantum trajectories when the

trajectory changes slowly compared with the detector bandwidth [43]. However, it is not

immediately clear whether a similar RNN would be able to produce accurate physical tra-

jectories in the more challenging regime with rapid qubit dynamics.

In this chapter we show that an LSTM recurrent neural network is in fact able to accurately

reconstruct physical trajectories of a strongly driven superconducting qubit coupled to a nar-

row linewidth resonator. The LSTM trains entirely on experimental observations, so auto-

calibrates parameters without the need for additional prior information, and compensates

for the narrow-bandwidth detector thus outperforming conventional reconstruction methods

in the strongly driven regime. We observe strong corrections to the measurement backaction

caused by the narrow bandwidth detector averaging the rapid qubit dynamics during the

detector response time, which agree well with independently derived physical models that

include detailed information about resonator as well as numerically simulated trajectories

of significantly higher dimension that include both the qubit and the resonator dynamics

explicitly. Finally, we demonstrate the RNN’s ability to uncover hidden time-dependencies

during a continuous measurement.

This chapter is adapted from the work presented in [168].

6.2 Circuit QED Model

The qubit-resonator system that is explained in this chapter and is shown in Fig. (6.1a)

consists of a superconducting transmon qubit capacitively coupled to a narrow linewidth

superconducting resonator, yielding a dispersive coupling interaction. The qubit is driven

to induce Rabi oscillations with frequency ΩR around the x-axis of Bloch sphere. The

Hamiltonian that describes this system is the same as the Hamiltonian (3.14) in Chapter 3,
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Figure 6.1: Schematic setup of a driven superconducting qubit subject to continuous mea-
surement. (a) A weak measurement tone populates the cavity with linewidth κ/2π = 1.56
MHz and a phase preserving traveling-wave parametric amplifier (TWPA) amplifies the re-
flected cavity field before both field quadratures I(t) and Q(t) output by the heterodyne
mixer are recorded at a digitizer. (b) Recurrent neural network composed of long-short term
memory (LSTM) cells learn a representation of the stochastic, dissipative qubit dynamics,
mapping elements of a noisy voltage record to qubit trajectories (x, y, z). The persistent
cell state ck helps the hidden state hk to track possible long-term correlations in the voltage
record, which may become important when the qubit dynamics is fast compared with the rate
at which photons escape the cavity (κ−1 ≈ 0.1 µs). (c) Sample record with corresponding
qubit trajectory output by the trained LSTM.

but with the Rabi oscillation included as well,

Ĥqr
~

=
ωq
2
σ̂z + (ωr + χ σ̂z) â

†â+
ΩR
2
σ̂x. (6.1)
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Each run of the experiment begins by heralding1 the ground state of the qubit. Then

the qubit is prepared along one of the six cardinal points of the Bloch sphere by applying

a preparation pulse. Since the resonator frequency shifts by 2χ when the qubit switches

from the ground state to the excited state, a microwave measurement tone probing the

resonator near the resonator frequency in reflection will accumulate a qubit state-dependent

phase shift. If the amplitude of the measurement tone is small with respect to the quantum

fluctuations of the electromagnetic mode, the phase shift will be obscured, resulting in a weak

measurement of the qubit state that provides less information than a projective measurement

but also imparts smaller measurement backaction on the qubit state.

To continuously track the qubit state we inject a weak measurement tone (Fig. 6.1a), which

populates the resonator to a steady state. The injected field, after interacting with the

qubit, leaves the resonator at a rate κ/2 ≈ 0.8 MHz and then is amplified using a phase-

preserving amplifier (which uniformly amplifies both in-phase I(t) and quadrature Q(t) parts

of the signal), and collected with a total quantum efficiency of η ∼ 0.19. The collected

signal is then digitized with sampling time ∆t = 1ns. The reason that we choose a phase-

preserving amplifier over phase-sensitive design is that its broad amplification bandwidth

can simultaneously amplify signals from several qubits on the used 8-qubit chip, though only

one qubit was needed for this particular experiment.

At the end of each long weak measurement we turn off the measurement tone and the

dynamical control, then project the qubit state onto one of the three Pauli bases, chosen

randomly, by applying a second strong measurement tone that implements a projective

measurement. Therefore by the end of each measurement we record the initial state of the

qubit along with the continuous voltage records for both quadratures as well as the randomly

chosen basis and its projective measurement result. The final projective measurement is done

1. This technique of heralded state preparation uses a measurement to prepare the qubit in its ground
state with high accuracy. This technique effectively eliminates state preparation errors due to thermal
heating of the excited state population observed in superconducting qubits [169].
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to provide reference information that is used both for training labeled data and for verification

of the reconstructed trajectories after training. After the LSTM is trained, the coarse-grained

digital records {(I(t), Q(t))} are passed then into both the LSTM filter and a more traditional

Bayesian filter, and the reduced resulting qubit Bloch vector trajectories are compared with

each other as well as the ensemble statistics of the final projective measurements.

6.3 Analytic Quantum Trajectory Reconstruction

Before analyzing the performance of the LSTM, we first introduce the analytical Bayesian

filter that we used to reconstruct comparison trajectories. As discussed in Section 3.4,

for each signal realization at the end of homodyne detection in an ensemble, the observed

quadrature signals will be proportional to the mean value of the measured qubit observable

but modified by additive Gaussian noise ξ(t), with zero ensemble-averaged mean. Because

of the uncertainty from the noise, the two qubit states will not be perfectly distinguished by

the signal collected over a time T; however, one state will generally be more likely given a

particular observed signal, which allows partial information to be inferred about the qubit

state. Partial information collection produces a generalized measurement of the qubit state.

A collected temporal sequence of generalized measurements produces a conditioned state

trajectory for the qubit.

The measurement record then is translated to quantum state evolution by first applying

the unitary evolution and then updating the state with the measurement record at each

time step [170]. In other words, knowing the initial state of the qubit, and the Hamiltonian

driving unitary evolution, the density matrix ρ̂ij(tk), where tk = k∆t, can be repeatedly

updated as we saw in Chapter 4. Following the procedure outlined in [118], the density

matrix is updated by taking into account the measurement record (I(ti), Q(ti)) and the
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partially updated density matrix ρ̂(ti),

ρ11(ti+1) =
ρ11(ti)/ρ00(ti) e

Ai

1 + ρ11(ti)/ρ00(ti) eAi
, (6.2)

ρ00(ti+1) = 1− ρ11(ti+1), (6.3)

ρ10(ti+1) = ρ10(ti)

√
ρ11(ti+1)ρ00(ti+1)

ρ11(ti)ρ00(ti)
e−iBi e−2(1−η)Γm∆t, (6.4)

ρ01(ti+1) = ρ∗10(ti+1), (6.5)

where Ai = Ĩi∆I/σ
2, Bi = Q̃i∆I/2σ

2, σ2 is the variance of the noise in the measurement

record and

Ĩi = I(ti)−
(I0 + I1)

2
, (6.6)

Q̃i = Q(ti)−Q0, (6.7)

∆I = I1 − I0. (6.8)

I0 and I1 are the steady state coherent state amplitudes conditioned on the qubit in definite

ground state and excited state, respectively.

Γm in Eq. (6.4) is [118]

Γm ≡
κ

2
|α+(t)− α−(t)|2, (6.9)

which is the ensemble measurement-dephasing rate and is related to distinguishablity of the

two qubit-state-conditioned output fields, α±, that propagate into the transmission line,

which in turn distinguishes what the qubit state must have been to produce the observed

field2.

Note that these state update equations are exact for uncorrelated Gaussian noise in the

absence of a Rabi drive, and if the qubit decay rates are small compared with κ [118]. To

2. Γm in the stochastic master equation [90] is also the maximum rate of the measurement backaction.
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reconstruct the qubit trajectories for fast Rabi drive, the resonator memory effects should

be considered in the derivations.

The performance of the Bayesian filter can improve when adding analytical corrections to

the measurement backaction, and including calibrated parameters such as χ and κ. For

adding analytical corrections we need to go back to the qubit-resonator system that was

explained in Chapter 3. Given an input drive d̂(t)e−iωdt tuned to the midpoint between

qubit resonances, photons in the resonator mode â encode this qubit information in their

relative phase, which follows from the Heisenberg evolution of the resonator mode in the

rotating frame of the drive,

˙̂a = −(κ/2)[1 + i(2χ/κ) ẑ(t)] â(t) +
√
κ d̂(t). (6.10)

When the qubit ẑ is stationary and the drive 〈d̂〉 = −iε/
√
κ fluctuates around a con-

stant mean, the resulting steady state âs.s. = −i
√
n̄ exp(−iφ̂) has a Lorentzian mean pho-

ton number n̄ = |2ε/κ|2/(1 + (2χ/κ)2) and qubit-dependent phase φ̂ = arctan[(2χ/κ) ẑ),

with a maximum phase contrast of ∆φmax = 2 arctan(2χ/κ). A homodyne measure-

ment aligned with the quadrature of maximum separation thus has a maximum ampli-

tude contrast ∆āmax = 2
√
n̄ sin(∆φmax/2) =

√
n̄ (4χ/κ)/

√
1 + (2χ/κ)2 that sets the rate

γm = (ηκ/2)|∆āmax|2 = η(8χ2n̄/κ)/(1 + (2χ/κ)2) at which maximally separated steady-

states can be distinguished by the photon amplitudes escaping the resonator at rate κ/2 and

being successfully collected with efficiency η. The uncollected photons and residual qubit-

resonator entanglement further contribute to a total qubit ensemble-dephasing rate due to

measurement rate Γm ≈ γm/η.

In the presence of a qubit drive, the resonator response additionally filters the evolution of

ẑ(t) to produce an effectively adiabatic response to a time-ordered geometric series of its
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delay-averages. That is, with a similarly constant drive 〈d̂〉 = −iε/
√
κ and t � 2/κ to let

transients decay, the resonator evolution has the recurrence relation

â(t) = −i2ε
κ
− i2χ

κ

∫ t

0
ẑ(t− τ) â(t− τ)

κ e−κτ/2 dτ
2

, (6.11)

which has the formal solution with time-ordering operator T ,

â(t) = −i2ε
κ
T
∞∑
n=0

[
−i2χ

κ

∫ t

0
ẑ(t− τ) dP (τ)

]n
. (6.12)

The convolution kernel in the Green’s function is an exponential probability distribution

dP (τ) = κ e−κτ/2 dτ/2 over delay-times τ , normalized as
∫∞

0 dP (τ) = 1 with mean and

variance both equal to the time constant τ̄ = 2/κ.

When ẑ varies slowly on the timescale τ̄ it can be approximately pulled outside the integral

of Eq. (6.12) to yield the standard steady-state solution but with a time-dependent phase

φ̂(t) = arctan[(2χ/κ) ẑ(t)] that adiabatically tracks the qubit evolution. The next-order

approximation treats the evolution as approximately linear within the exponential envelope

ẑ(t − τ) ≈ ẑ(t) − ẑ′(t) τ , which additionally delays the response to the qubit by the mean

delay time τ̄ = 2/κ to produce the effective phase φ̂(t) = arctan[(2χ/κ) ẑ(t− τ̄)]. For more

rapid evolution, part of the evolution is averaged, thus reducing the measurement contrast

while rotating the measurement basis.

In the case of a constant Rabi drive, the delay-average in Eq. (6.12) can be computed directly.

Assuming dominant harmonic evolution ˙̂z = ΩR ŷ, ˙̂y = −ΩR ẑ, repeated integration-by-parts

of the delay-averaged ẑ(t) when t� τ̄ yields a pair of geometric series defining an effective
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ẑeff(t) characterized by an adiabaticity parameter (2ΩR/κ),

ẑeff(t) =

∫ t

0
ẑ(t− τ) dP (τ) (6.13)

=
1

1 + (2ΩR/κ)2
ẑ(t)− (2ΩR/κ)

1 + (2ΩR/κ)2
ŷ(t) (6.14)

=
√
ηavg [cos θtilt ẑ(t)− sin θtilt ŷ(t)] . (6.15)

The averaging both attenuates the eigenvalue contrast of ẑ by an efficiency factor ηavg and

rotates the observable coupled to the resonator by an angle θtilt in the y-z oscillation plane.

The tilt angle and efficiency are thus

θtilt = arctan(ΩRτ̄) = arctan(2ΩR/κ),
√
ηavg = cos θtilt =

1√
1 + (2ΩR/κ)2

. (6.16)

At longer times t � τ̄ the geometric series in Eq. (6.12) then yields the standard steady

state, but with a phase angle that depends upon the effective delay-averaged observable

ẑeff(t) that is rotated by θtilt and with eigenvalues reduced by ẑ2
eff = ηavg. This tilt can

be understood equivalently as two simultaneous measurements along z and y with differing

measurement rates γz = ηavg cos2 θtiltγm and γy = ηavg sin2 θtiltγm, that compete to rotate

the effective measurement poles. The reduction in the measurement rate in the yz palne

which is captured by ηavg is

Γm(ΩR) = ηavgΓm(0) =
Γm(0)

1 + (ΩR~τ
2)
. (6.17)

6.4 Training of LSTM RNN

An LSTM RNN is trained to reconstruct trajectories by feeding it coarse-grained voltage

records for the two measured signal quadratures (In, Qn) of variable length 0 < Tm <
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Figure 6.2: Cost function (black) of cross-validation dataset during training. Temporary
increases in the cost function are expected as the learning rate (red) increases periodically.

8µs, and computing the cross-entropy loss with respect to the associated final projective

measurement result labels at t = Tm.

We train the LSTM using different Rabi frequencies ΩR ranging from slow dynamics

2ΩR/κ � 1 to fast dynamics that are outside of the adiabatic regime 2ΩR/κ � 1. For

a single Rabi frequency we have N ≈ 5×103 repetitions of 40 different measurement records

for each of three tomography axes, yielding a total of 0.6× 106 voltage records. Out of this

total dataset, we used 10% for cross validation (90% for training).

The cost function that receives mini-batches of size Nb = 512 in each step has three compo-

nents,

1. A cross-entropy loss, Eq. (5.4), due to tomography at the end of a voltage record,

LCE = − 1

Nb

Nb∑
i=1

ti log(pi) + (1− ti) log(1− pi), (6.18)

where Nb is the mini-batch size, ti is the binary tomography result (0 or 1) and 0 ≤
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pi ≤ 1 is the probability predicted by the final state output by the neural network for

voltage record i (in training, bits average to state probabilities).

2. A mean-squared-error for deviating from the known initial state at time t = 0, Linit.

3. A physical constraint on the purity of the quantum state LBloch, which tries to enforce

that the Bloch vector does not lie outside the Bloch sphere for all t, Lpurity.

The total cost function is a weighted sum of each component, but the main contribution

comes from LCE . The optimization method we use here is the ADAM optimizer [157] and

to prevent getting stuck in local minima we use stochastic gradient descent with a cyclical

learning rate ηLSTM , see Fig. (6.2). One of the reason to use the cyclical learning rate is

that it eliminates the need to perform numerous expensive experiments (training) to find

the best values and schedule with no additional computation [171].

6.5 Qubit Trajectory Reconstruction with a Neural Network vs.
a Bayesian Update

First the LSTM RNN is used to reconstruct qubit dynamics with a weak Rabi drive (2ΩR/κ =

0.2), where conventional methods can still accurately reconstruct trajectories. A histogram

of reconstructed trajectories (Fig. (6.3)) shows oscillations due to the Rabi drive as well

as diffusion due to measurement back-action, which purifies the trajectories towards | ± z〉.

The competition between the Rabi drive, trajectory purification at rate ηΓm, and trajectory

dephasing at rate 2(1−η)Γm confines trajectories to a Bloch sphere with reduced radius set by

the measurement efficiency η, which is shown by the white dashed line in Fig. (6.3a). When

comparing individual trajectories, the RNN produces trajectories similar to the conventional

Bayesian filter approach.
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Figure 6.3: Breakdown of adiabatic trajectory reconstruction (a) The histogram of weakly
driven trajectories of length Tm = 8.0 µs (reconstructed by the LSTM with dt = 40 ns)
shows rapid trajectory diffusion due to measurement backaction. The colorbar represents
the trajectory probability density at each timestep. The LSTM produces trajectories (ex-
ample in red) comparable to those from a steady-state Bayesian filter (yellow). (b) LSTM
validation based on tomographic measurements immediately following the LSTM prediction,
for the trajectories shown in (a) where 2ΩR/κ = 0.2. The dashed line with slope 1 indicates
perfect validation. The inset shows the Bayesian filter validation for the same data set with
slightly smaller RMS error (εx, εy, εz) = (2.3, 3.2, 2.5)× 10−2 due to larger number of avail-
able trajectories. (c) For fast qubit dynamics (2ΩR/κ = 2.0) outside the adiabatic regime the
predictions of the steady-state Bayesian filter and LSTM diverge (trajectory dt = 20 ns). (d)
Validation errors averaged over the three qubit coordinates vs. Rabi frequency 2ΩR/κ, show-
ing a breakdown of the steady-state Bayesian filter for 2ΩR/κ > 1 (dots), while the LSTM
validation error (squares) remains small. As discussed in Section 6.3, the performance of
the Bayesian filter improves with additional prior information of the expected evolution of
the z-conditioned resonator fields, and improves even further when adding analytical correc-
tions to the measurement backaction. Importantly, the LSTM performance stays consistent
without additional prior information. Arrows mark the data shown in (a), (b) and (c).
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Figure 6.4: Phase Difference in the Voltage Records. Comparison between averaged voltage
records and averaged z trajectories reconstructed by the LSTM for increasing Rabi frequen-
cies (from left to right). The signal phase is delayed from the qubit oscillation phase by 2/κ.
For slow Rabi drives that phase delay is small compared to the oscillation period, but for
fast Rabi drives it becomes significant. Nevertheless, the RNN correctly accounts for this
delay to reconstruct the qubit state evolution correctly.

The error is quantified for both methods by averaging projective measurement results of

trajectories with similar predictions [172, 173]. The averaged tomography results closely

follow the RNN predictions for all three Bloch coordinates, Fig. (6.3b). This error largely

reflects our imperfect knowledge of the the true quantum state from a finite number of

projective measurements. Because the trajectories of both methods are similar, and the

RNN prediction correlates strongly with the averaged projective measurements, the neurons

of the RNN accurately encode the reduced qubit dynamics.

For large Rabi frequencies the RNN trajectories remain faithful, even when the qubit dy-

namics exceeds the detector bandwidth, Fig. (6.3 c) and (6.3 d). In contrast, the Bayesian

filter’s validation error increases sharply past 2ΩR/κ ≈ 1.

Experimentally the breakdown of the Bayesian filter coincides with a large phase difference

between oscillations in the measured signal records and the qubit coordinate z(t), see Fig.

(6.4). For fast qubit dynamics, we observe a large phase difference between the oscillations in

the measurement record and those in z(t), because the resonator memory delays photons es-

caping to the transmission line while the qubit rotates quickly. Stochastic master equation or
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Figure 6.5: (a) QuTiP master equation simulation of a driven qubit dispersively coupled to
the readout cavity, showing coherent state amplitudes vs. time, conditioned on the qubit
state. We show two pairs of αg and αe for 2ΩR/κ = 0.4 and 2ΩR/κ = 2.0 obtained from
the expectation value α− ≈ Tr

(
ρ̂qra|0〉〈0|/P0

)
, where a is the cavity photon annihilation

operator and ρqr is the joint qubit-resonator density matrix, and P0 is the probability of
finding the qubit in the state |0〉. (b) We use the relative distinguishability, defined as
α−(ΩR)−α+(ΩR)/α−(0)−α1(0), to scale ∆I and partially correct for cavity effects in the
Bayesian filter method.

Bayesian filters that do not include the resonator memory assume photons measure the qubit

state z(t) instantaneously and therefore, this phase difference signals the breakdown of those

methods. While it is possible to construct more complicated non-Markovian SMEs [174] or

use a Bayesian filter that includes the resonator memory [118, 175], the LSTM RNN offers

an accurate, more flexible reconstruction method requiring no prior knowledge of coupling

rates to the environment and memory kernels which are hard to calibrate experimentally.

As a first order correction of the resonator memory effects before applying an analytical

treatment, we can improve the performance of the Bayesian filter reconstruction numerically

by adjusting ∆I based on a simulation which includes qubit and coupling to the resonator.

From these simulations Fig. (6.5 a), we see that the steady-state amplitudes conditioned on

the qubit states α± decrease as the Rabi frequency increases. Therefore, to correct for the

resonator effect, the relative distinguishablity is defined as (α+(ΩR) − α−(ΩR))/(α+(0) −

α−(0)) (Fig. (6.5 b)), to scale ∆I, after applying this correction the average error decreases

(see Fig. (6.3 c, BF + numerics)) compared to average error of the conventional Bayesian

filter in Fig. (6.3 c, Bayesian filter (BF)) but still the average error remains large for

2ΩR/κ > 1.
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Figure 6.6: Unraveling Lindbladian trajectory dynamics from LSTM trajectories (a) The
average drift (dy, dz) of trajectories binned in the yz-plane (2ΩR/κ = 0.6, red arrows) reveals
dynamics consistent with the applied Hamiltonian Ĥ = 1/2ΩRσ̂x and decay towards y = 0
at a rate Γd (gray arrows). (b) The decay rate Γd/2π, extracted from fits to Lindbladian
maps such as (a), (red squares) falls from the expected measurement dephasing rate 2Γm
towards the bare qubit relaxation rate [176], as the qubit and resonator decouple. A master-
equation simulation of the qubit-resonator system (solid line) agrees well with the LSTM
trajectories.

Only the analytic treatment discussed in Section 6.3, which adds extra prior information

about calibrated parameters, such as χ and κ, to the Bayesian filter achieves error similar to

the LSTM RNN for all Rabi frequencies, see Fig. (6.3 d, BF + analytics). Note that while

the Bayesian filter needs enough prior information about the system the LSTM RNN offers

an accurate reconstruction method requiring no prior knowledge.

6.6 Resonator Memory Corrections To Qubit Trajectories

Extracting physical information encoded in neural networks is generally non-trivial. To gain

further insight into the LSTM trajectories in the regime inaccessible to the standard Bayesian

filter, we decompose the LSTM trajectories into deterministic and stochastic parts, to expose
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Lindbladian dynamics and measurement backaction, respectively. This decomposition is

motivated by the stochastic master equation [177],

dr = L(ΩR,Γd) rdt︸ ︷︷ ︸
Lindbladian dynamics

+
√

2ηΓm dW1


−xz

−yz

1− z2


︸ ︷︷ ︸

Informational backaction

+
√

2ηΓm dW2


−y

x

0


︸ ︷︷ ︸

Phase backaction

(6.19)

where r̂ = (x, y, z) is the Bloch vector, η is the total efficiency of the measurement chain,

L(ΩR,Γd) is a 3× 3 matrix describing Lindbladian dynamics,

L(ΩR,Γd) =


−Γd 0 0

0 −Γd −ΩR

0 ΩR 0

 (6.20)

and dW1,2 are zero-mean uncorrelated Wiener noise terms. While this decomposition still

assumes Markovianity, small deviations from Eq. (6.19) can help us understand cavity effects

on the trajectories.

From the Lindbladian decomposition we observe dynamics consistent with the Hamiltonian

H = ΩR σ̂x and dephasing pulling trajectories towards the center of the Bloch sphere at

a rate Γd/2π, see Fig. (6.6 a). For large Rabi frequencies the decay rate Γd decreases3

substantially, it is shown in Fig. (6.6 b), because the strong Rabi drive decouples the qubit

and cavity which decreases the cavity photon-induced dephasing, a phenomenon described

as quantum rifling [179].

As the LSTM produces a sequence of qubit states, we choose a subensemble of states such

3. The Rabi decay rate is caused by combination of both measurement dephasing [112] and relaxation
[178]. When the Rabi frequency is small, measurement dephasing dominates Γd, while for fast Rabi drive
Γd approches the qubit relaxation rate 3Γ1/4, see Fig. (6.6 b).
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that the state is at a particular point in the Bloch sphere. Then for each trajectory in

that ensemble we look one time-step ahead and compute the difference vector. Then we

average and take the covariance of that ensemble of differences. We extract the experimental

measurement backaction from the eigenvectors of the covariance matrix computed on the

LSTM trajectories.

At low Rabi frequencies, we find both informational backaction, vanishing at the poles |± z〉

of the Bloch sphere (see fig. (6.6 a)), and phase backaction, consistent with our heterodyne

measurement.

For larger Rabi drives, we observe corrections to the backaction, a tilt of the measurement

poles twards | ± y〉 in Fig. (6.7 a,c) and a reduced diffusion rate 2ηΓm Fig. (6.7c). Intu-

itively, this tilt occurs because the Rabi drive drags the qubit state counter clockwise while

photons in the cavity measure the qubit z coordinate for a characteristic time κ−1. This

tilt was reproduced analytically in Section (6.3). The second correction, a reduction of the

measurement rate is a manifestation of the same quantum rifling effect and shows that a fast

Rabi frequency protects the qubit from the measurement, effectively decoupling the qubit

and cavity.

Based on results of Fig. (6.6) and (6.7), we find good agreement between experimentally

reconstructed trajectories and theory over a wide range of ΩR/κ.

6.7 Time-Dependent Rabi Drive

Our experience with the LSTM has proven that LSTM requires less explicit prior information

about calibrated parameters in a specific model. In other words the LSTM autocalibrates

the model and all parameters internally so that parameter information is not needed in ad-

dition. This feature becomes important as sometimes these parameters can fluctuate over

time and make calibration challenging. To highlight this advantage, we perform a new set
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Figure 6.7: Resonator memory corrections to the measurement backaction from LSTM tra-
jectories (a) Trajectory diffusion map obtained from the eigenvectors v(y, z) of the covariance
matrix for 2ΩR/κ = 0.6. The tilt towards | ± y〉 in plane of the Rabi drive is in contrast
to the prediction from Eq. (6.19). (b) The theory prediction which includes resonator mem-
ory effects (Eq. (6.15)) reproduces the tilt. (c) For small ΩR/κ the measurement axis tilts
linearly with the Rabi frequency θ = 2ΩR/κ (dashed line). The experimental tilt of the
measurement eigenstates in the yz plane (red squares) is accompanied by a decrease in mea-
surement rate (blue squares), extracted from the magnitude of v(y, z). Solid lines are fits to
θ = arctan(ΩRτ̄) (red) and Eq. (6.17) (blue), respectively. The error bars for θ are estimated
from imprecision in determining the tilt angle.
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Figure 6.8: Uncovering hidden time-dependencies from trajectoriessubject to sinusoidal Rabi
drive modulation. (a) A histogram of the reconstructed z coordinate shows periods of in-
creased and decreased diffusion, also visible in two sample trajectories (red and blue). (b)
Time-windowed trajectories analysis for the data in (a), showing the instantaneous Rabi
frequency and instantaneous measurement rate

of weak measurements where we vary Rabi frequency sinusoidally in time. In this case the

underlying control parameters are no longer constant in time. Reconstructing trajectories

with time-dependent control parameters is important for example when monitoring to diag-

nose unexpected behavior that occurs during gates, where the drive strength typically has

a Gaussian envelope in time or weak measurement of a highly non-markovian environment
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[180].

The histogram of LSTM trajectories in Fig. (6.8a) shows alternating periods of trajectory

bunching, where the trajectories are protected from measurement back-action, and diffusion,

where the weak measurement clearly imparts stochastic kicks to the qubit. We quantify this

non-trivial dynamics by fitting to the deterministic and stochastic parts of trajectories in

0.2 µs wide time windows, Fig. (6.8b). Without any prior knowledge about the time de-

pendency of the parameters, we correctly recover the sinusoidal applied Rabi frequency,

Fig. (6.8b, dark blue) from fits to the Lindbladian, and find that it anti-correlates strongly

with the extracted measurement rate in Fig (6.8b, red), which is consistent with our previ-

ous results. A sinusoidal fit to the instantaneous measurement rate shows a delay ∆t (see

Fig. (6.8) b), which is consistent with the relaxation time of the cavity 2/κ. These results

demonstrates that LSTM correctly reconstruct trajectories with hidden time-dependencies.

Our results open up a new area of weak measurement where the qubit dynamics is fast

compared with the cavity linewidth. Therefore, it can be used to reconstruct individual

trajectories during gates, which is useful to diagnose coherent gate errors with high temporal

resolution. In addition, since our reconstruction method requires no prior knowledge of

a system and its parameters, it can be used to discover new physics in regimes where a

theoretical description of the measurement backaction is unavailable. Finally, the LSTM

approach shows promise for detection and classifiaction of stochastic errors in continuous

error correction experiments.

96



7 State Tomography with a Denoising
Autoencoder

7.1 Motivation

An experimenter must always verify that components of a quantum experiment are character-

ized correctly for comparisons of experimental results with theoretical predictions. Loosely,

the experimental components can be organized into three logical stages of the experiment:

state preparation, transformation, and measurement. To make sure that the theory correctly

describes the experiment, it is important to check that the state actually prepared after the

first stage matches expectations. Unfortunately, experimentalists are not able to directly

check a quantum state. Instead, they must repeat the same preparation many times and

measure it in different ways. From all these characterization measurements, they can recon-

struct the state (or channel, or measurement in the other two experimental stages). This

important characterization procedure is called quantum state tomography (QST) [181–186].

QST can be characterized as an optimization problem, where the goal is to identify the

quantum state ρ̂ which is most likely to result in the observed data. Different methods have

been proposed to solve this optimization problem, which we will review shortly. This chapter

explores how modern machine learning methods can offer another approach that may have

advantages as quantum systems get increasingly complex.

Specifically, this chapter will investigate the use of supervised machine learning, in the form

of a modified denoising autoencoder, to simultaneously remove experimental noise while

encoding one and two-qubit quantum state estimates into a minimum number of nodes within

the latent layer of a neural network. I automate the decoding of these latent representations

into positive density matrices and compare them to similar estimates obtained via linear

inversion and maximum likelihood estimation. Using a superconducting multiqubit chip
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I experimentally verify that the neural network estimates the quantum state with greater

fidelity than either traditional method. Furthermore, the network can be trained using only

product states and still achieve high fidelity for entangled states. This simplification of the

training overhead permits the network to aid experimental calibration, such as the diagnosis

of multi-qubit crosstalk [187]. As quantum processors increase in size and complexity, I

expect automated methods such as those presented in this chapter to become increasingly

attractive.

7.2 Traditional State Tomography Strategies

QST consists of two steps: performing measurements on an ensemble of identically prepared

quantum states in different bases, and then reconstructing the quantum state’s density ma-

trix from the collected measurement results. The goal is to be able to predict the statistics

of future measurements made after the same preparation procedure described by the recon-

structed quantum state. This reconstruction can be accomplished using a variety of methods

such as linear inversion [188], Bayesian inference [189, 190], maximum likelihood estimation

[182, 191–194], and maximum entropy estimation [181, 195, 196]. In order to compare the

performance of the denoising autoencoder with traditional methods, I first provide a brief

explanation of linear inversion and maximum likelihood estimation, which are the two most

common methods used for QST in practice.
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7.2.1 Preliminary Definitions

As discussed at Chapter 2, the quantum state of any two-level system can be represented as

a 2× 2 density matrix,

ρ̂ =
1

2
(Î + x σ̂x + y σ̂y + z σ̂z) =

1

2
(Î + r̂ · σ̂), (7.1)

where, r̂ = (x, y, z) ∈ R3 and σ̂ = (σ̂x, σ̂y, σ̂z). Since Eq. (7.1) is constrained to have

positive eigenvalues, therefore the Bloch vector r̂ only represents a physical state if ‖r‖2 =

x2+y2+z2 ≤ 1. Recall from Chapter 2 we saw that a projective measurement along an axis n

is represented by the observable σ̂n = n·σ̂ and its expectation value is 〈σ̂n〉 = Tr(σ̂nρ̂) = n·r̂.

If one identically prepares Nn qubits and measures the observable σ̂n on each of them, Nn↑

of these qubits will be found in the |n ↑〉 state and Nn↓ qubits in the |n ↓〉 state. Therefore

the observable’s expectation value is statistically approximated by

〈σ̂n〉 =
Nn↑ −Nn↓

Nn
(7.2)

The statistical error of this expectation value1 is [197],

∆〈σ̂n〉 =
2
√
Nn↑Nn↓

N
3/2
n

. (7.3)

For the rest of this chapter ~̄Vexp =
(

(Nn1↑ − Nn1↓)/Nn1 , (Nn2↑ − Nn2↓)/Nn2 , (Nn3↑ −

Nn3↓)/Nn3 , . . .
)

, where {n1, n2, n3, ...} are the measurement bases, will represent an exper-

imentally collected dataset estimating the three independent observables, with the binary

projective readout affected by additive bit-flip noise in the form


p0→1 = p (1− ε)

p1→0 = p (1 + ε)

where p is a simulated readout error probability, and ε is an additive asymmetry to mimic

1. By the width of a binomial distribution
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the bias toward relaxation to the ground state seen in the experimental data, Analogously,

~Videal =
(

Tr(σ̂n1 ρ̂),Tr(σ̂n2 ρ̂),Tr(σ̂n3 ρ̂), . . .
)

will represent a corresponding true (theoretical,

or ideal) set of expectation values that the experimental data is statistically approximating.

7.2.2 Linear inversion (LI)

Starting with Born’s rule, the probability to obtain the specific result i is P (i|ρ̂) = Tr(P̂i ρ̂) =

pi, where P̂i is a particular measurement outcome projector. Next, a matrix M is defined as

M =



~P
†
1

~P
†
2

~P
†
3
...


(7.4)

Where, ~Pi is a list of individual measurements with binary outcomes. Applying matrix M to

~ρ (the representation of the density matrix ρ̂as a column vector), will give us the probability,

M~ρ =



~P
†
1~ρ

~P
†
2~ρ

~P
†
3~ρ

...


=



Tr(P̂1 ρ̂)

Tr(P̂2 ρ̂)

Tr(P̂3 ρ̂)

...


≈



p1

p2

p3

...


= ~p, (7.5)

where ~p is a vector of ideal probabilities. To reconstruct the density matrix from the observed

frequencies pi, one would need to multiply MT on the left, MTMρ̂ = MT ~p, which leads to

pseudoinverse [198] of tomographically complete set of probabilities (or expectation values),

~ρLI = (MTM)−1MT ~p, then we get the actual density matrix ρ̂ from this vector ~ρ.

In spite of LI being a simple method, certain constraints in these method create challenges

for practical applications. For example the obtained ~ρLI is typically not a valid (positive
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semi-definite, Hermitian, trace-one) density matrix [199].

The reason that linear inversion method can fail is that the reconstruction uncertainty gives

a small uncertainty volume around the reconstructed state. If the state lies near the pure

state boundary of the state space then that uncertainty volume can be partially outside the

region of physical states. In this case is it possible for the LI construction to accidentally

find a state within that uncertainty volume but outside the physical state region. The more

mixed a state is, the further from the state space boundary it is, and the less likely it will

be for the uncertainty volume to leak outside the physical state space, so all reconstructed

states will be valid.

7.2.3 Maximum Likelihood Estimation (MLE)

The problem of reconstructing unphysical density (for the states near to the surface of the

Bloch sphere) matrices can be solved by maximizing the probabilities to yield observed data,

which is known as maximum likelihood estimation. The likelihood L that the prepared state

was ρ̂, given a particular set of counts {N1, N2, ..., NK} observed from the measurements is,

L(ρ̂|{Ni}) = P ({Ni}|ρ̂) =
K∏
i=1

P (Ni|ρ̂), (7.6)

where P (Ni|ρ̂) is the probability that Ni counts of outcome i occurred in an ensemble of

size
∑
iNi. Maximizing the likelihood function in Eq. (7.6) over all possible preparation

states ρ̂ yields a maximum likelihood estimate (MLE) for the state ρ̂MLE. This optimiza-

tion is equivalent to minimizing the negative log likelihood function which turns out to be

computationally more stable,

ρ̂MLE = arg min[− logL(ρ|{Ni})]. (7.7)
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Making a Gaussian assumption for the statistics of the P (Ni|ρ̂) probabilities such that the

log pulls down a quadratic difference from the mean from the exponent, this minimization

can be seen as a least-squared error optimization which is subjected to ρ̂ ≥ 0, Tr[ρ̂] = 1.

The optimization process is done by parameterizing a physical state. physical means that

the density matrix is normalized, Hermitian and positive in the following way by defining a

triangular matrix T̂ :

• To account for non-negativity, ρ̂ = T̂ †T̂ must holds, as 〈ψ| T̂ †T̂ |ψ〉 = 〈ψ′|ψ′〉 ≥ 0.

• We can show that this construction is Hermitian, ρ̂† =
(
T̂ †T̂

)†
= T̂ †

(
T̂ †
)†

= T̂ †T̂ =

ρ̂†.

• The normalization is guaranteed by dividing it by its trace, ρ̂ = T̂ †T̂ /Tr
[
T̂ †T̂

]
.

Though MLE guarantees a physical state estimate by parameterization of the elements of

triangular matrix T̂ , it can be computationally expensive because the minimization process

has to search over all possible states, and this minimization must be recomputed for each

state that needs to be estimated. Moreover, if the initial guess is too far from the true

optimal state, then the search process may find an incorrect local optimum instead. There is

thus strong motivation to improve this process for higher-dimensional states that compound

both these weaknesses of MLE.

7.3 Denoising Autoencoder Model and Methods

A generic motivation for considering neural network models for state tomography is their

ability to automatically learn dominant systematic error sources with no prior information

about the measured system and its environment. In addition, once these systematic errors

are learned, the NN automatically corrects them. An interesting aspect of this technique is
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that after training the NN, one can unpack these automatic sources and extract the model’s

parameters to improve the analytical model of the system. The main idea is to use known

quantum states that one can prepare with high fidelity in order to train an algorithm that

is able to interpret raw measurement data and output the state estimate of unknown states.

In the case of state tomography, it is instructive to frame the task as a traditional Alice and

Bob set up in the following manner. This task can be broken down into two parts, training:

where Alice prepares a fixed set of known quantum states (i.e. qubits) and sends them to Bob.

Bob’s task is to perform a complete set of measurements on those quantum states and pass

the measurement results (i.e. as a set of expectation values) into an untrained tomography

algorithm in order to estimate the states. In the end, Bob trains the tomographic model

based on the feedback he receives from Alice, see Fig. (7.1a). Once the training is done, the

testing phase begins, see Fig. (7.1b), where Alice sends random quantum states to Bob.

Bob estimates the states and sends them to Alice, and finally, Alice computes the fidelity of

the states to verify the accuracy of Bob’s tomographic model.

A denoising autoencoder (DAE) is a type of neural network that is particularly well-suited

for this task. During the training process the raw tomographic data is compressed into a

minimal state representation using a bottleneck structure (through an encoder). Decom-

pression is then performed in such a way that it outputs a cleaned version of input data

(through a decoder), see Fig. (7.2). Such a DAE removes the extraneous measurement noise

by comparing the outputs of the network with the ideal data ~Videal provided by theory,

employing the following mean square error as a loss function,

L(~Videal, ~Vclean) = ‖~Videal − ~Vclean‖2

= ‖~Videal − ReLU(W ′(ReLU(W~Vexp +~b)) +~b′)‖2
(7.8)

where W (W ′) and b(b′) are the weight matrix and bias vector of the encoder (decoder),
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Figure 7.1: State tomography as a learned task framed as a traditional Alice and Bob setup.
(a) Alice sends fixed set of known states, Bob performs complete sets of measurements and
estimates states, the he uses known state information to train a tomographic model. (b)
Alice sends random testing states, Bob estimates these states and sends it to Alice. Alice
computes state fidelity to verify the accuracy of Bob’s tomographic model.

respectively, and ReLU is the applied activation function. The pros of this approach are

that it uses minimal assumptions about the system2, learns and removes systematic noise

in situ, unlike the MLE method, the training process is not as sensitive to being trapped in

local minima, and the operation of estimating many different test states becomes very fast

after the network is trained once. Thus, though the training process has a high overhead

due to the large amount of training data needed initially, that overhead is constant unlike

the overhead of MLE that grows linearly with the number of estimated states.

2. The only things we use here from the quantum mechanics are the ideal expectation values of observables
in the loss function.
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Figure 7.2: The idea is using a bottlenecked neural network to force compression of raw
tomographic data into a minimal state representation. We use raw tomographic measurement
data as a noisy input of DAE, ~Vexp, and in order to train it we use ideal measurement data,
~Videal as a reference.

7.4 Data Preparation for Denoising Autoencoder

In order to prepare the data for the DAE, the first question is which choices of tomographic

bases are optimal for accurately reconstructing an unknown qubit state? In other words,

while any tomographically complete set in principal should work, does the training process

behave differently for different choices of the bases? To answer this question we examined

three different measurement bases:

1. The Bloch measurement, which is the most natural choice, see Fig. (7.3 a), whose

observables correspond to normalized projectors along the directions: n1 = (1, 0, 0),

n2 = (0, 1, 0), and n3 = (0, 0, 1). Each observable has two projectors and the coordi-

nates are for the positive eigenvalue projector only, with the antipodal points implied

for the negative projectors.
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2. The Bloch measurement with four additional bases added at the diagonals, see Fig. (7.3

b), whose observables correspond to normalized projectors along the directions n1 =

(1, 0, 0), n2 = (0, 1, 0), n3 = (0, 0, 1), n4 = (1/2, 1/2, 1/
√

2), n5 = (−1/2, 1/2, 1/
√

2),

n6 = (−1/2,−1/2, 1/
√

2), and n7 = (1/2,−1/2, 1/
√

2).

3. A tetrahedron with a symmetric over-complete set of bases, see Fig(7.3 c), whose ob-

servables correspond to normalized projectors along the directions: n1 = (0, 0, 1), n2 =

(2
√

2/3, 0,−1/3), n3 = (−
√

2/3,
√

2/3,−1/3), and n4 = (−
√

2/3,−
√

2/3,−1/3).

This is similar to symmetric informationally complete positive operator valued mea-

sures (SIC-POVM). SIC-POVM is a special case of a generalized measurement on

a Hilbert space, that is informationally complete. In other words, it possesses the

characteristic that, when acting on a particular state, their statistics completely deter-

mine the quantum state. However, because of the difficulty of implementing an actual

4-outcome POVM with high fidelity, what we use here is actually an 8-outcome mea-

surement implemented as a random sample of each of the 4 projective bases containing

a point of the SIC-POVM tetrahedron, averaged together. The resulting 8 eigenstate

points produce two complementary tetrahedrons on the Bloch sphere, and can be im-

plemented with high fidelity (because all measurements are projective). It retains the

main attractive features of the SIC-POVM without its downsides, at the cost of having

8 possible outcomes rather than 4.

In the next step, high fidelity training preparations are necessary in order for the collected

training data to properly correspond to the ideal references predicted theoretically by the

intended preparation state. We prepare the training set using the measurement eigenstates,

which are by definition the highest fidelity states one can prepare in the lab. Because when

we perform a projective measurement, as long as the measurement is reasonably good we will

get a high preparation fidelity for that particular state. The DAE is tested then with 2000

test states that are distributed on the Bloch sphere with varying the polar θ and azimuthal
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Figure 7.3: The three different measurement bases are: (a)The Bloch measurement (b)The
Bloch measurement with four additional bases added at the diagonals (c)A tetrahedron with
a symmetric over-complete set of bases.

ϕ angles of the Bloch sphere.

The training ensemble size to compute the simulated experimental expectation values ~Vexp

vary from N
(train)
n = 102 to N

(train)
n = 104, and different DAE networks are trained inde-

pendently for each training ensemble size. The ensemble sizes used in the lab are usually

Nn ≈ 105 − 106 which is large compared to the ensemble size that we use in DAE. In the

next step we train and test the network with the experimental data obtained from measuring

a planar multi-transmon qubit.

In order to determine how close the reconstructed states (ρ̂est) are to the ideal theoretical

states (ρ̂ideal), we measure the fidelity using [200],

F (ρ̂ideal, ρ̂est) = Tr

(√√
ρ̂idealρ̂est

√
ρ̂ideal

)2

(7.9)

For the pure states, Eq. (7.9) takes this form, F (ρ̂ideal, ρ̂est) = Tr(ρ̂est ρ̂ideal) [101].
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Figure 7.4: Comparing five different strategies: linear inversion of the raw data, maximum
likelihood estimation of the raw data, linear inversion of cleaned data, maximum likelihood
estimation of the cleaned data, and direct positive state estimate of neural network.

7.5 Measurement Strategies

Although the DAE could in principle speed up the state tomography process for a large

number of estimated states, there are other important questions to answer regarding its

performance before it could be adopted as a general purpose tomographic tool. We must

determine whether it can resolve the issues associated with traditional methods, like ensuring

a physical state at the end of estimation process. Similarly, we must determine whether the

learned state representation is encoded within the bottleneck in a form that can be readily

extracted and interpreted as a quantum state. The basic design of a DAE has an output

that is just a cleaned version of the input data, so obtaining the associated quantum state

representing the cleaned data is not automatic without additional processing. In order to

address these questions we compared five different strategies for extracting a quantum state

estimate from a DAE, or a suitably modified design based on a DAE, see Fig. (7.4). The

five chosen estimation strategies were:

1. Linear inversion of raw data

2. Maximum likelihood estimation of raw data
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3. Linear inversion of cleaned data

4. Maximum likelihood estimation of cleaned data

5. Direct positive state estimate of neural network

Numbers 1 and 2 are the reference cases of applying the standard tomographic procedures

to the raw data. Numbers 3 and 4 use the DAE to clean the noise from the raw data before

applying the standard tomographic methods, assuming that the noise reduction will improve

the estimate fidelity. And number 5 is a modified design for the DAE that uses a second

trained decoder to directly extract the compressed internal representation and output the

associated quantum state in a useful form.

To explain what is done in the 5th method in more detail, after performing measurements

on the eigenstates, the noisy measurement results are passed into the DAE in the form of

a set of noisy expectation values. Once the DAE is trained we take the latent layer and

redirect it to a second decoder. The second decoder, which is basically a feed-forward neu-

ral network, outputs the parameters of the triangular matrices. For training purposes of

the second decoder, the reference parameters of the triangular matrix are determined using

Cholesky decomposition of the eigenstates [201]. In linear algebra, the Cholesky decomposi-

tion is a decomposition of a Hermitian, positive-definite matrix A into the product of a lower

triangular matrix T , which is discussed in Section 7.2.3, and its conjugate transpose T †, as

A = T T †, the general formula to determine the components of the Cholesky factor T is,

tkk =

√√√√√akk −
k−1∑
j=1

t2kj , (7.10)

tik =
1

tkk

(
aik −

k−1∑
j=1

tij tkj

)
, (7.11)
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where tkk (akk) are the diagonal elements of matrix T (A), and tik (aik) are the off-diagonal

elements of T (A).

For density matrix decomposition, in addition to the conditions that are discussed above, it

should be normalized, therefore the final decomposition relation for the density matrix takes

the form

ρ̂ =
T̂ T̂ †

Tr[T̂ T̂ †]
, T̂ =

 t1 0

t3 + it4 t2

 . (7.12)

The elements of Cholesky factor of density matrix T are used (as an array) as training labels

for the second decoder, [t1, t2, t3, t4]. This output design guarantees that the estimated

state will be a physical state while removing the difficulty of manually interpreting how

information is encoded in the learned state representation within the bottleneck. Note that

the DAE decoder and the second decoder are independently trained.

7.6 Results

7.6.1 Numerical Simulation of One-Qubit System

Fidelity of Reconstructed States

Having trained three separate DAEs with each of the measurement schemes, Fig. (7.3 a-c),

where the training and testing ensemble sizes are N train
n = N test

n = 1000, we tested each

model with 2000 test states that are distributed on the Bloch sphere. Fig. (7.5) illustrates

the fidelity heat map for each cases. Linear inversion method is used to reconstruct the test

states.

The angles θ and ϕ are the polar and azimuthal angle of the Bloch sphere, respectively.

These results are achieved by training the DAE with only eigenstates. At the beginning

110



Figure 7.5: The fidelity heatmap for three separate DAEs which are trained with three differ-
ent measurement schemes: Bloch measurement, supplemented Bloch measurement, symmet-
ric tetrahedron measurement. The training and testing ensemble sizes are N train

n = N test
n =

1000. The additive noise to simulate the experimental error was 5% simulated readout error,
with 2% asymmetry. The model is tested with 2000 states that are distributed on the Bloch
sphere. These results are achieved by training the DAE with only measurement eigenstates.
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the eigenstates were chosen because by measuring them one of the elements of expectation

values becomes 1 and it can be faster for neural network to learn the structure and converge

fast, also, in the laboratory the eigenstates are already being prepared by the measurements,

and re-using them as training preparation shortens the experimental training procedure.

However, achieving an average fidelity over 0.99% by DAE that is trained only with the

eigenstates and for such a small training and testing ensemble sizes were not expected.

The additive noise to simulate the experimental error was 5% simulated readout error, with

2% asymmetry 3. Although the Bloch (Fig. (7.5a)) and the supplemented Bloch (Fig.

(7.5b)) measurements do reconstruct the states with high average fidelity (the number of

realizations for computing the average fidelity is 1000), the heat map still shows hot spots

in the middle, indicating that reconstruction fidelity is state-dependent. In contrast, the

doubled tetrahedron basis (Fig. (7.5c)) has uniform performance over the entire sphere. In

other words the symmetric and overcomplete structure of the tetrahedron basis cancels noise

most uniformly for all states.

In the next step, to see how the training ensemble size and the amount of the additive

noise affect the fidelity of the test states, we choose the symmetric tetrahedron measurement

scheme, which has the highest average fidelity, and train it independently for different train-

ing ensemble size N train
n and the readout noise p, see Fig. (7.6) As we can see in Fig. (7.6),

increasing training ensemble size boosts learned state fidelity

Latent Layer of Denoising Autoencoder

The DAE with only one hidden layer (which is the latent layer) automatically selects three

nodes to reconstruct the high fidelity test states, we checked this by adding more nodes to

the latent layer that does not increase the average fidelity, see Table (7.1), for computing

3. For the rest of this chapter these values will be used as the simulated readout error.
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Figure 7.6: The reconstructed fidelity vs. traning ensemble size for different value of reaout
noise p (with constant additive asymetry ε = 0.02) shows that even for small N train

n = 1000,
which is small compared to the ensemble sizes used in the lab (N lab

n = 105−106), the fidelity
of the estimated state reconstructed by the clean outputs of the DAE is over 0.98 for small
amount of noise (The states here, are reconstructed by applying linear inversion method on
the clean output of the DAE).

the average fidelity we choose the same 2000 test states discussed in previous section with

tetrahedron measurement scheme. Table (7.1) demonstrates that the DAE is able to figure

Average Fidelity of 2000 test states - Symmetric Tetrahedron
number of nodes 1 node 2 nodes 3 nodes 4 nodes 5 nodes 6 nodes
Average Fidelity 0.375 0.775 0.987 0.987 0.986 0.987

Table 7.1: The average fidelity vs. number of nodes in latent layer.

out the correct dimensionality of the quantum state space and discards superfluous nodes,

even though it has very little prior information and nothing specific about quantum built

into its design.

Knowing that denoising autoencoder learns the qubit states with high fidelity, we can peek

into neurons of the latent layer to see if the network encoded the learned state within the

bottleneck in way that can be easily interpreted by a human. In order to do it I chose the
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Figure 7.7: The output of three neurons in the latent layer for the states that are picked from
one of the parallel azimuthal circles of the Bloch sphere with constant polar angle θ = π/4
and varying azimuthal angle ϕ ∈ [0, 2π), and testing ensemble size of N test

n = 104. (d) To
compare the results of different testing ensemble size we reproduced the first neuron’s output
using only N test

n = 1000. A linear regression model is fitted to manually extracted outputs
of the latent nodes, in red curve. In figure (d), the average deviation of this fit increases by
reducing the testing ensemble size from 0.01 to 0.03, but its result is still comparable with
the usual projective state tomography.

trained model of the tetrahedron measurement due to having the highest average fidelity

compared to the other two measurement schemes (Fig. (7.5)). Fig. (7.7 a-c) shows the

output of three neurons in the latent layer for the states that are picked from one of the

parallel azimuthal circles of the Bloch sphere with constant polar angle θ = π/4 and varying

azimuthal angle ϕ ∈ [0, 2π), and testing ensemble size of N test
n = 104. To compare the

results of different testing ensemble size we reproduced the first neuron’s output using only

N test
n = 1000 testing ensemble size, in Fig. (7.7d).

Fitting a simple linear regression model to manually extracted outputs of the latent nodes,

114



in red curve, we can see that the DAE reproduces a scaled and shifted version of the usual

orthogonal Bloch vector representation as a minimal encoding. The average deviation of

this fit increases by reducing the testing ensemble size from 0.01 to 0.03, but its result is

still comparable with the usual projective state tomography. Thus once the representation

correspondence is calibrated with such a fit after training the network, the same fit can be

used to directly translate the latent node data into human-readable quantum states without

the need for linear inversion.

Comparing Five Estimation Strategies

So far we only reconstructed the test states from the DAE output layer using the standard

linear regression model, to compare the performance of all five estimation strategies discussed

in Section 7.5, the fidelity of 2000 test states with N train
n = N test

n = 1000 and tetrahedron

measurement scheme are computed, see Table (7.2) The last column of Table (7.2) is the

Fidelity of Five Different Measurement Strategies - Simulated Data
Method LI MLE Clean-LI Clean-MLE NN
Average 0.970 0.970 0.982 0.983 0.997
Median 0.970 0.969 0.982 0.982 0.999
Min 0.772 0.792 0.832 0.888 0.9910
Max 0.993 0.995 0.999 0.999 0.999

Table 7.2: Fidelity of five different measurement strategies of simulated data.

fidelity measure for the second decoder, which outperforms the other four strategies. This

could be because training the second decoder removes the noise for the second time (after

training with DAE), and direct positive state estimation ensures that the state is not outside

the Bloch sphere.
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Figure 7.8: 500 random states are reconstructed with three different strategies: linear inver-
sion, maximum likelihood estimation and the denoising autoencoder with second decoder.
the MLE method only slightly improves LI in practice which was expected since we use LI
to initialize the MLE algorithm. The denoising autoencoder with a second decoder on the
other hand substantially improves fidelity over the usual methods (∼ 2%).

7.6.2 Experimental Data of a Planar Multi-Transmon Qubit

These results are verified with the experimental data obtained from measuring a planar multi-

transmon qubit, in Fig. (7.8). 500 random states are reconstructed with all five different

strategies that were discussed, see Fig. (7.5). In Fig. (7.8), the infidelity of three of them

(to keep the plot simple, and also compare the performance of the second decoder with the

standard methods that are used in laboratory) are compared which are: linear inversion,

maximum likelihood estimation and the denoising autoencoder with second decoder. As

we can see MLE only slightly improves LI in practice which was expected since we use

LI to initialize the MLE algorithm. To compare the performances of all five estimation

strategies, see Table 7.3, This table shows that the denoising autoencoder with a second
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Fidelity of Five Different Measurement Strategies - Experimental Data
Method LI MLE Clean-LI Clean-MLE NN
Average 0.971 0.975 0.980 0.984 0.996
Median 0.970 0.973 0.981 0.981 0.999
Min 0.731 0.733 0.868 0.873 0.910
Max 0.991 0.994 0.999 0.999 0.999
Std 0.12 0.12 0.06 0.06 0.02

Table 7.3: Fidelity of five different measurement strategies of experimental data.

decoder substantially improves fidelity over the usual methods (∼ 2%).

7.6.3 Two-Qubit System

In order to scale up to multi-qubits, there are different neural network design choices that

one will need to make: A shallow network with only one hidden latent layer, or a deeper

network with several hidden layers. These choices can be made independently for either

the encoder or the decoder since the two have distinct purposes. As discussed in Chapter

5, adding extra hidden layers introduces more nested non-linear activation functions which

can in principle emulate more complicated nonlinear functions using fewer nodes, which may

have advantages during training.

One of the biggest benefits of the shallow design is that it forces an embedding space that is

linearly related to the orthogonal coordinates of quantum states. It means that the learned

embedding space will contain the entire physical state space and identify its dimension, even

though it has been trained with very small subset of the state space: The eigenstates of the

measurement. For example, the standard Bloch measurement uses only the 6 cardinal points

for training, but the NN is able to infer that the minimum-dimension embedding space for all

states must have dimension 3, and in the latent nodes correctly reconstructs physical states

as appearing within a unit sphere volume in that embedding space, up to the scaling and

shifting identified in the linear regression of the latent nodes. The second decoder further
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improves this latent node estimate to force a physical state output, much like MLE does for

LI, but even without this second decoder the NN has already identified the essential state

space structure of the qubit without having that information a priori. The con of the shallow

design is it will need to learn the maximum number of parameters to reconstruct the state.

For example in the case of one and two qubits the latent layer of the shallow network will

need to have 3 and 15 nodes respectively during the training, in order to reconstruct the high

fidelity states. This means if we increase the number of qubits the numbers of parameters

will scale up exponentially, therefore, will not solve the scaling problem.

The deep design on the other hand, can learn a submanifold of the embedding space that

is specified to the chosen set of training states. For example for a single qubit, rather than

learning 3D space the Bloch sphere, the added nonlinear complexity of the network allows

it to learn the 2D curved manifold of the Bloch sphere, which reduces the dimensionality of

the compressed representation in the latent nodes by one. This number will be 6 for two

qubit pure states. In order to train such a deep network that is able to learn the curved

structure of the space, the sample set of states for training needs to be evenly chosen from the

surface, i.e., the surfaces of Bloch sphere. This means that we will need to have high fidelity

preparations that cover the submanifold evenly. In this work these states are randomly

sampled according to the Haar measure [202].

For two-qubit state tomography, we trained a shallow network with only 36 product states

and tested with a set of states in the form

|ψ(ϕ)〉 ∝ |00〉+ |01〉+ |10〉+ eiϕ |11〉, (7.13)

that are parametrized by a single phase parameter ϕ. 2000 test states are prepared by

varying the phase parameter ϕ between 0 and 2π. These test states are product states only

for ϕ = 0 and ϕ = 2π, and are maximally entangled for ϕ = π. Therefore the test states are
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Figure 7.9: The fidelity of the reconstructed 2000 test states versus the phase variable of
|ψ(ϕ)〉 ∝ |00〉+ |01〉+ |10〉+ eiϕ |11〉, for different number of nodes in the latent layer.

varying between product and maximally entangled states.

The fidelity of the reconstructed test states versus the phase variable is shown in Fig. (7.9),

which compares its performance for different choices of latent node number (6,9,12,15) rang-

ing from the minimum number needed to represent all pure entangled states to the number

required for arbitrary 2-qubit density matrices. The NN was trained independently for each

number of nodes to assess whether it was able to identify the nonlinear structure of the

specific submanifold containing the training data. For numbers of nodes less than 15, the

product states are reconstructed with a reasonable fidelity but the fidelity degrades with in-

creasing entanglement. The fidelity improves as more latent nodes are added, but, entangled

states only achieve fidelity comparable to the pure state fidelity when the latent layer has all

15 nodes needed to describe any density matrix. Although the representation dimensionality
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is not compressed by the shallow network, it is notable that high fidelity for all entangled

states can still be achieved with 15 nodes despite using only product eigenstates during

training. This economy of training data could be very useful for diagnosing two-qubit gate

errors and multi-qubit cross-talk, since the 36 product eigenstates used for training can all

be experimentally prepared with high-fidelity using only optimized single-qubit gates and

projective readout. Two-qubit gates are significantly more difficult to calibrate, whereas

single-qubit gates can be reliably calibrated to high-fidelity. Thus, a NN trained using only

product eigenstates will have high-quality training preparations that do not depend upon

any imperfections of the two-qubit control. Nevertheless, the trained NN will still be able to

reconstruct all entangled states and thus help identify where there are mismatches between

intended control and the actual state being produced.

For the deep network, with 3 hidden layer in the middle including the latent layer, with the

only important difference being that 500 product states sampled from Haar measure have

been used for training the network. Table 7.4 compares the fidelity for different nodes, The

Fidelity vs. Number of Nodes
Fidelity ϕ = 0 ϕ = π
6 Nodes 0.992 0.280
9 Nodes 0.992 0.412
12 Nodes 0.993 0.563
15 Nodes 0.993 0.584

Table 7.4: Fidelity vs. Number of Nodes in Latent Layer for Deep Network.

deep network is able to reconstruct product states with high fidelity using any of the tested

node numbers, it can no longer reconstruct entangled states with high fidelity, even with 15

nodes. This means that the deep design of the denoising autoencoder has learned the product

state space that matches the structure of the chosen training data, but does not preserve

the full embedding space structure like the shallow design. Instead, it specializes its learned

representation to more closely match the training data, so can no longer encode states that

fall outside that specialized internal representation. The benefit of this specialization is that
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fewer latent nodes are needed to encode an appropriate submanifold that includes the training

data, making the network operation more efficient once trained. Moreover, if the structure

of a set of training data is unknown, the NN will identify the relevant structure internally.

The latent nodes can then be examined to identify how the appropriate manifold is being

efficiently parameterized by the trained network. This feature of the deep network may be

useful for auto-learning optimal parameterizations for physically relevant submanifolds in

multi-qubit systems. The structure of these parameterizations may provide insight into the

relevant many-body states while drastically lowering the dimension necessary for practical

characterization of the many-body system.
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8 Conclusion and Outlook

Physicists are now applying machine learning, especially deep learning, to a wide variety

of topics, from state estimation to analysis of measurement data and optimization of con-

trol strategies. All of these applications automatically benefit from the astonishing rate of

progress in the machine learning community. The purpose of this thesis was to compare the

performance of traditional methods and modern deep learning models for estimating and

tracking the quantum states of superconducting processors.

For quantum state tracking, we have shown that LSTM recurrent neural networks produce

accurate trajectories of quickly driven qubit dynamics even in parameter regimes where

conventional reconstruction methods are less accurate. Our results open up a new area of

continuous qubit monitoring where the dynamics of individual qubit trajectories is allowed

to change rapidly compared with the detection bandwidth, which in principle can enable

tracking of qubit trajectories to diagnose errors during quantum gates, and other exciting

feedback control or closed-loop optimization applications.

As another example, our LSTM approach shows promise for detection and classification

of stochastic errors in continuous quantum error correction experiments [46, 166, 167]. An

interesting future direction to this work could be improving the LSTM accuracy for parameter

estimation by adding physical constraints to the LSTM loss function, which can facilitate

extracting interesting system parameters such as the memory kernel learned automatically

during the training process. In addition, other neural network architectures, such as tensor

networks [203–205] or wavenets [206], may improve reconstruction accuracy, or reconstruct

trajectories with fewer training data.

For the task of quantum state tomography we used a state-of-the-art autoencoder model,

inspired by the denoising autoencoder. We showed that our method robustly reconstructs

quantum states even in the presence of experimental imperfections, with accuracy as good or
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better than methods such as linear inversion and maximum likelihood estimation. Notably,

its mitigation of troublesome state preparation and measurement (SPAM) errors performs

particularly well due to the auto-calibration of the typical readout error during the training

process. While we have shown preliminary data for how to extend this technique to two-

qubit state tomography, the next step in this line of research is to investigate how to scale

the method to while keeping data collection and training overhead sufficiently low to remain

practical larger systems.

It has become apparent in recent years that the exchange of ideas between quantum com-

puting and machine learning has its own genuine questions and promises as we also saw in

this work. There are still a lot of areas that machine learning might be applied to improve

the methods that have been used to control and manipulate the quantum systems and even

help with the scaling problem using generative models such as different type of autoencoders

to extract a minimal representation of the quantum states. Also, neural networks can be

used for characterization of experimental devices, specifically when the relationship between

the observations and the underlying parameters is more complex and can not be done easily

experimentally or numerically.

It is also possible that rather than only interpreting a given set of measurement outcomes,

similar to what we do in Chapter 6, one can use neural networks to choose the most infor-

mative measurements instead. Given a sequence of prior observations, the observable for the

next measurement can be selected to maximize the information. In other words, we are look-

ing for an adaptive-measurement strategy that represents a high-dimensional optimization

problem. Machine learning tools can help discovering such strategies.
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[191] J. Řeháček, Z. Hradil, and M. Ježek, Iterative algorithm for reconstruction of entangled
states, Physical Review A 63, 040303 (2001).

[192] J. Řeháček, Z. Hradil, E. Knill, and A. Lvovsky, Diluted maximum-likelihood algorithm
for quantum tomography, Physical Review A 75, 042108 (2007).

[193] A. Anis and A. Lvovsky, Maximum-likelihood coherent-state quantum process tomog-
raphy, New Journal of Physics 14, 105021 (2012).

136



[194] A. I. Lvovsky, Iterative maximum-likelihood reconstruction in quantum homodyne
tomography, Journal of Optics B: Quantum and Semiclassical Optics 6, S556 (2004).
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