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Optical characterization and distribution of
chromophoric dissolved organic matter (CDOM) in

soil porewater from a salt marsh ecosystem
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!School of Earth and Environmental Sciences, Schmid College of Science and Technology, Chapman University,
1 University Drive, Orange, CA 92866, USA
2present address: Department of Chemistry, College of Science and Engineering, Western Washington University,
Bellingham, WA 98225, USA

ABSTRACT: To characterize chromophoric dissolved organic matter (CDOM)} in marsh porewa-
ters and its contribution as a carbon source, optical properties (absorbance, fluorescence indices,
3-dimensional excitation-emission matrices [EEMs]) of soil porewater and surface water were
measured in a southern Californian salt marsh. Absorption coefficients and fluorescence intensi-
ties were higher in porewater than in overlying surface waters, consistent with higher CDOM
concentration at depth. Humic-type peaks A and C were observed in EEMs in all samples, and
peak M was observed in surface waters and shallow porewater to —5 cm depth. Fluorescence:
absorbance (flu:abs) ratios and spectral slopes (S} decreased across the surface interface, and
emission peak maxima were red-shifted — changes that are consistent with increasing molecular
weight (MW) and aromaticity in soil porewater due to humification, and lower-MW, less aromatic
material in oxic surface waters from oxidative photochemical and biological processing. At lower
depths, bands were observed where intensity, flu:abs ratios and S increased; absorption coeffi-
cients decreased; emission maxima for humic-type peaks were blue-shifted; and tryptophan-type
protein peaks were observed. These changes are consistent with lower-MW and less aromatic
material from enhanced microbial activity. Variations in iron concentrations and sulfate depletion
with depth were consistent with these bands having different dominant anaerobic microbial meta-
bolic pathways. Overall, optical property trends suggest that soil porewater is a reservoir of
CDOM in the salt marsh, with organic material from terrestrial watershed inputs and in situ
production from marsh vegetation stored and processed in sediments.

KEY WORDS: Salt marsh - Dissolved organic matter - CDOM - Fluorescence - Intertidal sediments -
Optical properties
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INTRODUCTION

Salt marshes are tidally forced wetlands that act
as key transformers of carbon as it moves between
adjacent terrestrial and marine ecosystems (Tobias
& Neubauer 2009). They sequester significant
amounts of organic carbon in their soils (Chmura et
al. 2003) because of an imbalance between inputs
from sedimentation and production by plants and
algae and outputs through microbial decomposition

*Corresponding author: catherine.clark@wwu.edu

and export. Carbon is exported and exchanged as
dissolved inorganic carbon, particulate organic
matter and dissolved organic matter (DOM) (Tobias
& Neubauer 2009). While the magnitude and com-
position of exported carbon varies based on hydrol-
ogy, productivity and geomorphology, most North
American Atlantic and Gulf Coast marshes are sig-
nificant DOM exporters (Moran & Hodson 1994,
Rochelle-Newall & Fisher 2002, McLusky & Elliot
2004, Gallegos et al. 2005, Gardner et al. 2005).

© Inter-Research 2014 - www.int-res.com
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Marsh-derived DOM plays an important role in
adjacent marine ecosystems in microbial food
webs, regulation of photochemistry and light avail-
ability and mediation of nutrient and pollutant
availability (Tzortziou et al. 2011, references
therein).

Omne approach to examine carbon sources and
transformations in wetlands is the optical properties
of the light-absorbing fraction of DOM (chromo-
phoric DOM [CDOM]}; Vodacek et al. 1997, Miller
1998). CDOM affects aquatic chemistry and carbon
biogeochemical cycling through sunlight-initiated
photochemical processes (Moran & Zepp 1997).
Optical characterization methods (e.g. spectral
slopes, fluorescence:absorbance [flu:abs] ratios, 3-
dimensional excitation-emission matrix [EEM] fluo-
rescence spectra) have been used to evaluate the
sources, distribution and fate of CDOM (Coble 1996,
Boyd & Osburn 2004). In particular, CDOM fluo-
rescence has proved a sensitive tool for studying
DOM sources and transport in estuarine and coastal
waters (Rochelle-Newall & Fisher 2002, Stedmon et
al. 2003, Chen & Gardner 2004). The few published
studies on optical properties of salt marsh-derived
CDOM have primarily focused on the USA eastern
Atlantic and Gulf Coasts, and Europe (Moran et al.
2000, Gardner et al. 2005, Tzortziou et al. 2007,
Otero et al. 2007), where coastal waters are domi-
nated by freshwater riverine inputs. Production of
DOM from detritus of vascular salt marsh plant spe-
cies in these ecosystems has been demonstrated
{(Moran & Hodson 1989, 1994, Vahatalo & Wetzel
2008, Wang et al. 2007).

Our previous work in Pacific Ocean systems on the
west coast of the United States indicated that salt
marshes were the primary source of CDOM to
coastal waters in the absence of rain events and asso-
ciated riverine inputs in regions with a semi-arid
Mediterranean-type climate (Clark et al. 2008). The
exported CDOM did not appear to be freshly pro-
duced material from marsh plants based on plant
leachate studies, and we hypothesized that soils
were the major carbon reservoir and primary source
of exported DOM (Clark et al. 2008). To characterize
salt marsh soil CDOM and assess the contribution of
soil porewater as a carbon reservoir, in this study we
measured optical properties of CDOM in surface
water and soil porewater as a function of depth.
Results are compared to measurements in adjacent
coastal receiving waters and salt marsh porewater in
other climate regions. These are the first results
reported for salt marsh porewater in a Pacific Ocean
ecosystem.

MATERIALS AND METHODS
Site description

The site is a ~0.25 km? salt marsh discharging into
the Santa Ana River (SAR) outlet in Huntington
Beach, Orange County, southern California (site map
in Clark et al. 2008). The US Army Corps of Engi-
neers acquired this land from an oil company in early
1990. Restoration was completed in 1992 as mitiga-
tion for the adjacent river channelization for flood
control. Channels were excavated for restoration
with native vegetation (pickleweed Salicornia virgi-
nica, saltbush Afriplex lentiformis, sea-fig Carpo-
brotus chilensis, saltwort Batis maritima, alkali
health Frankenia grandifiora). The river only flows
during and immediately after significant rain events
in the upper watershed, otherwise, the outlet is
tidally flushed with no freshwater flow. Tide gates
between the SAR and marsh provide tidal influence
with inflowing ocean water on a flood tide and out-
flowing water at ebb. Surface water salinities range
from 30 to 33 (Clark et al. 2008). To examine marsh
output, samples were taken on the bank of the main
channel discharging through tide gate Stn W5
{33°38.111'N, 117°57.298' W) into the adjacent SAR
(site description and figure in Clark et al. 2008).
Locations were 10 m from Stn W5 at 1 and 2 m from
the main channel (sites A and B, respectively). Water
samples were collected from above (heights ex-
pressed as positive-value depths) and below (depths
expressed as negative-value depths) the water-
ediment surface interface.

Sampling

Soil porewater was sampled in winter 2010 from 12
to 26 February (‘winter’) using porewater equilibra-
tors (peepers, Hesslein 1976) constructed from plexi-
glass (12 x 75 c¢m) with ~30 ml sampling chambers
every 3 cm. Sampling chambers were filled with dis-
tilled water and covered with a 0.2 pm Versapor
membrane (Pallj held in place with plexiglass covers;
the membranes act as filters during sample collec-
tion. Assembled peepers were submerged in
degassed distilled water to pre-equilibrate for 2 wk
before deployment. A guide was driven into exposed
marsh soil to a depth of approximately —30 ¢cm during
low tide, and peepers were inserted into the resulting
hole. Peepers were situated so the first sampling
chamber below the soil surface had an average depth
of —1.5 cm, and the first chamber above the soil was
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at an average height of 1.5 cm. Site A sampled pore-
water to a depth of ~31.5 cm, whereas site B sampled
to ~28.5 cm. Peepers were deployed for 2 wk (12—
26 February) to equilibrate with surrounding pore-
water. Over this period, tidal heights ranged from 0.4
to 0.8 m. During the sampling period, surface water
was collected at both sites 4.5 cm above ground level,
consistent with inundation at high tide. In February,
2 rainfall events occurred: a 7 cm rainfall on 6 Febru-
ary (6 d before deployment) and a 0.3 cm rainfall
during deployment on 24 February (SAR, https://
media.ocgov.com/gov/pw/watersheds/rainrecords).
Upon collection, water was removed from each sam-
pling chamber using plastic Luer lock syringes and
injected into evacuated serum bottles in the field.
Samples were returned to the laboratory and stored
in the dark at 4°C until optical analyses were per-
formed over the next 2 wk. Winter samples were
not refiltered in the laboratory. A single sample
(—28.5 cm at site B) was excluded from analysis, as it
was contaminated during sampling.

To assess seasonal differences, we redeployed at
site A from 6 to 20 July 2012 (‘Summer’). Over the
2 wk equilibration period, tidal heights ranged from
0.05 to 1.0 m. There was no rain in June pre-deploy-
ment, and a single 0.5 cm rain event occurred on 13
July (SAR, https://media.ocgov.com/gov/pw/water
sheds/rainrecords). Water was collected 7.5 cm
above the soil, consistent with inundation at high
tide. Samples were collected as before (i.e. filtered in
situ through the 0.2 pm peeper membrane) but were
stored in syringes equipped with 2-way stopcocks for
transport and refiltered in the laboratory (0.2 pm
polyvinylidene difluoride filters) in an anaerobic
glove box (<2% H, headspace with balance of Ny;
Coy Laboratory Products) to minimize oxygen expo-
sure prior to the iron and sulfur analyses.

Optical characterization

Absorbance spectra were measured with a diode-
array UV-visible spectrometer {Agilent 8453) from
200 to 700 nm in a quartz cell (path length = 10 cm)
with a deionized water blank. Instrument specifica-
tions give a spectral resolution of <2 nm and stray
light of <0.03%. Absorbance was transformed to the
Napierian absorption coefficient (m™!) by multiplying
the measured absorbance at 300 and 350 nm by 2.303
and dividing by path length (in m) (Hu et al. 2002);
300 nm is a wavelength commonly used for CDOM
intercomparisons (Miller 1998). Spectral slopes (S)
were calculated from Eq. (1) with a first-order linear

regression for 3 regions: 300 to 400 nm (S;) for com-
parison to our previous work (Clark et al. 2008, 2009,
2010), and 275 to 295 (S;) and 350 to 400 nm (S3) as
recommended by Helms et al. (2008):

-S = (InAbs/Ag)/(A - o) (1)

where Abs is absorbance at wavelength A, and A is
absorbance at reference wavelength A, (Green &
Blough 1994, Moran et al. 2000). For S; and S;, R? is
>0.999, with p < 0.0001. Helms et al. (2008) found
<1% difference for small spectral windows (25 to
50 nm for S, and S;) between S calculated from a
non-linear exponential fit to Eq. (1) vs. the linear
regression to log-transformed values used here (N =
48). The 100 nm range for S, in this study appears to
be well fit by the linear regression method (R? >
0.985, p < 0.0001). Slope ratio (Sp) is calculated as
5,/8;3 (Helms et al. 2008).

Three-dimensional EEM fluorescence spectra
were obtained with a scanning fluorometer (Quanta-
master, PTI) by ranging excitation wavelengths from
260 to 430 nm in 5 nm increments and emission from
260 to 650 nm in 5 nm increments. A water EEM
(Whatman Nanopure ion exchanger) was generated
daily to subtract out the water Raman peak and
Rayleigh scattering. Spectra were corrected for in-
strumental response using the manufacturer's cor-
rection file. Percent error on 3 duplicate absorbance
and fluorescence scans was <0.5%. Fluorescence
intensities (photons s™!) were converted to quinine
sulfate units (QSU; 1 QSU = 1 ppb quinine sulfate in
0.05 M H,S0O,) with a calibration curve (Mopper &
Schultz 1993). Samples were diluted prior to fluores-
cence measurements to minimize inner filter effects
as described in Burdige et al. (2004).

Three fluorescence indices were calculated follow-
ing methods summarized in Huguet et al. (2010),
specifically (1) f450/f500, the ratio of fluorescence
intensities at 450 and 500 nm at an excitation of
370 nm; (2) HIX, the ratio of the areas between 435
and 480 nm to 399 and 345 nm at an excitation of
254 nm (in our study, we used 260 nm, as this was the
lowest wavelength we scanned); and (3) BIX, the
ratio of the intensities at 380 and 430 nm at an excita-
tion of 310 nm.

Iron and sulfur analyses

To explore potential changes in the microbial car-
bon mineralization pathways, we measured iron and
sulfur in summer, Dissolved Fe(ll) was measured on
porewater samples immediately after filtering in the
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anaerobic chamber. Then, 1.0 ml of porewater was
added to a buffered ferrozine solution (0.1% ferro-
zine in HEPES buffer, pH = 7.0), and absorbance at
562 nm was immediately measured (Lovley & Phillips
1986). Subsamples of filtered porewater were frozen
(-4°C) until analysis for dissolved sulfate and chlo-
ride on a Dionex ion chromatography system with an
anion seli-regenerating suppressor. Thawed samples
were diluted using Nanopure water and analyzed
isocratically using an AG11-HC guard column, an
AS11-HC column and a 25 mM NaOH eluent. Based
on measured sulfate and chloride values, sulfate
depletion was calculated as:

SO, depletion = [(Clpw) x Rsw)™] = SO % pw  (2)

where (Clpy) and (SO4*py) are Cl~ and SO,*" pore-
water concentrations (in mM) from ion chromato-
graphy, respectively, and Rgy is the constant molar
ratio of CI” to SO, in surface seawater (19.33;
Bianchi 2007). Positive SO, depletion values repre-
sent a net depletion of SO,% compared to the value
predicted by the seawater C17:SO,*" ratio, presum-
ably from sulfate reduction by the microbial commu-
nity (Keller et al. 2009).

RESULTS

There was good agreement between absorption
coefficients measured at 300 and 350 nm (a300 and
a350) at sites A and B in winter (Table 1). For exam-
ple, a300 at site A increased from 2 m™! at the surface
to 14 m™" at 13.5 cm depth, while at site B, an increase
in a300 from 1 m™! at the surface to 13 m™' at 13.5 cm
depth was observed. Deeper in the porewater col-
umn, a300 values decreased before increasing back
to 16 m™! for site A and 11 m™ for site B at —19.5 cm
depth. At site A, a300 then decreased to 11 m™' at
-28.5 cm depth and increased back to 15 m™! at
-31.5 cm. At site B, a300 increased from 11 m™! at
~19.5 cm depth to 13 m™! at —25.5 cm. Similar trends
were observed in summer, with a300 increasing from
3 m™" in surface waters to 13 m™! just below the sur-
face (-1.5 cm depth) and to a maximum of 54 m™ at
~28.5 cm depth. Increases in absorption coefficient
were observed at depths of -16.5, -19.5 and -28.5 cm
(Table 1). In both seasons, a300 for surface water was
within range of prior studies at this marsh (Clark et
al. 2008).

Fluorescence trends differed from those observed
for absorption. In winter, intensities initially decrea-
sed below the surface and then increased in bands at
—-7.5, -16.5 and -28.5 cm depth (Table 1). In summer,

intensities were lower in surface water and increased
across the soil interface into shallow porewater
(Table 1), then decreased at —4.5 to =7.5 ¢cm depth
followed by an increase to a maximum at —-25.5 cm
and a decrease to —~31.5 cm. In summer, fluorescence
intensities were lower in surface water (factor of 10}
and shallower porewater (factor of 1.5 to 2) but com-
parable below —13.5 cm depth.

S values were calculated over 3 spectral ranges (S;,
300 to 400 nm; S,, 275 to 295 nm; S, 350 to 400 nm)
which all showed the same general trends. Note that
slopes are negative, but absolute values are reported:
increasing S corresponds to a steeper slope (more
negative number) and a larger reported absolute
value. In winter, S; (mean + SD) was 0.012 =
0.002 nm™" in surface water to <0.002 nm™* at =7 cm
depth (Table 1). After an initial decrease in Sover the
first few centimeters, 2 maxima occurred at depths of
-15 to =20 cm and -25 to -30 c¢m, concurrent with
minima and maxima in absorbance and fluorescence
(Table 1). Winter Sy varied from 0.56 to 2.8, averag-
ing 1.17 + 0.53 (mean +1 SD) for all samples at both
sites. Surface water and transitional samples (from
4.5 cm above to 4.5 cm below the surface) averaged
0.97 £ 0.15, whereas samples below —4.5 cm were
higher, 1.26 + 0.61. In summer, S, ranged from 0.011
£ 0.008 nm™ in surface water to 0.007 nm™' at
-28.5 c¢m depth (Table 1). In contrast to winter, S;
increased from 0.015 to 0.018 nm™! in porewater at
-1.5 to ~13.5 cm depth, followed by decreases to
<0.01 nm™ at ~16.5 and -28.5 cm depth. Summer Sz
values were similar to winter, varying from 0.5 to 2.0
and averaging 1.00 + 0.87 for surface waters and 1.28
+ 0.87 for porewater.

Three-dimensional EEMs have been shown to dis-
tinguish between CDOM sources in natural waters
{Coble 1896, de Souza Sierra et al. 1997, McKnight
et al. 2001). Peak locations and classifications used
here follow Coble (1996), with 5 main fluorescent
peaks with distinct excitation and emission wave-
length regions: (1) peak B, tyrosine protein-like
(maximum excitation wavelength:maximum emis-
sion wavelength 275/310 in nm); (2) peak T, trypto-
phan protein-like (275/340); (3) peak A, humic-like
(260/380-460); (4) peak M, microbial humic-like
312/380-420); and (5) peak C, terrestrial humic-like
(350/420~480). Parallel factor analysis (PARAFAC),
which can identify fluorescent components beyond
the Coble model, was not used in this study because
of the limited size of the database (PARAFAC mod-
els are based on hundreds to thousands of sample
EEMs; Stedmon et al. 2003, Stedmon & Markager
2005, Murphy et al. 2008).
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Table 1. Optical characteristics of salt marsh chromophoric dissolved organic matter (absorption coefficients at 300 and 350 nm

[a300 and a350; m™!], spectral slopes [S;, 300 to 400 nm; S,, 275 to 295 nm; S;, 350 to 450 nm], spectral slope ratio [Sg; S2/S3)s

fluorescence intensities [Flu in quinine sulfate units, QSU; excitation = 350 nm, emission = 450 nm] and peak excitation/

emission (ex/em) maxima [nm}) for humic excitation-emission matrix peaks A and C for samples collected in winter 2010 at
sites A and B and in summer 2011 at site A. — not determined

Depth a300 a350 Flu St S, S3 Sk Peak A Peak C
{cm) (ex/em) (ex/em)
Winter
Site A
4.5 2.0 1.1 124 0.012 0.011 0.011 1.00 260/445 3457435
1.5 1.8 1.0 112 0.013 0.011 0.014 0.79 2607445 345/430
~4.5 34 2.5 97 0.0057 0.0055 0.0062 0.89 260/445 345/430
~-7.5 7.8 7.3 112 0.001 0.0019 0.001 1.90 260/465 345/445
-10.5 14.4 13.6 95 0.0012 0.0012 0.0016 0.75 260/465 345/440
~13.5 13.8 13.2 92 0.0012 0.0009 0.0016 0.56 260/465 345/445
-16.5 8.9 7.5 133 0.0032 0.0035 0.0032 1.09 260/460 345/445
-19.5 16.4 154 91 0.0016 0.0011 0.0022 0.50 260/465 345/445
-22.5 11.6 10.4 121 0.002 0.0027 0.0021 1.29 2607465 345/445
-25.5 12.3 11.6 116 0.0011 0.0017 0.0012 142 260/465 345/440
-28.5 10.7 8.2 199 0.0064 0.0046 0.008 0.58 260/445 345/440
-31.5 15.1 14.5 139 0.0007 0.0014 0.0009 1.56 260/460 345/440
Site B
4.5 1.1 0.5 920 0.015 0.013 0.015 0.87 2607440 345/435
1.5 1.3 0.8 96 0.011 0.011 0.010 1.10 2607435 345/430
-1.5 6.3 5.8 86 0.0017 0.0023 0.0019 1.21 260/465 345/445
-4.5 10.6 10.0 78 0.0011 0.0013 0.0014 0.92 2607465 345/445
~7.5 13.1 12.8 166 0.0005 0.0009 0.0007 1.28 260/445 345/440
-10.5 12.9 124 84 0.001 0.0009 0.0014 0.64 260/465 345/445
~13.5 13.3 12.9 86 0.0007 0.001 0.0008 1.25 260/465 345/435
-16.5 4.9 34 192 0.007 0.0078 0.0071 1.10 260/450 345/440
-19.5 11.1 10.0 149 0.0017 0.003 0.0016 1.89 260/465 345/440
~22.5 11.7 10.6 166 0.0019 0.0032 0.002 1.60 260/465 345/440
-25.5 134 12.8 161 0.0011 0.0025 0.0009 2.8 260/465 345/440
Summer
7.5 3.3 1.78 8 0.011 0.002 0.004 0.50 260/440 340/435
4.5 3.8 2.5 7 0.007 0.001 0.002 0.50 260/445 340/425
1.5 8.95 6.43 22 0.006 0.004 0.002 2.00 260/450 340/425
~1.5 13.2 5.63 71 0.018 0.015 0.019 0.79 260/445 340/425
-4.5 6.55 3.15 44 0.015 0.009 0.010 0.90 260/425 340/420
-7.5 4.07 1.33 46 - 0.008 - - 260/435 340/425
-10.5 6.4 3.05 66 0.015 0.009 0.010 0.90 260/435 340/425
-13.5 8.7 1.58 74 0.017 0.017 0.012 142 260/445 340/425
-16.5 37.7 32.6 82 0.001 0.004 0.001 4.00 260/450 340/430
-19.5 41.6 241 99 0.011 0.006 0.013 046 260/440 340/435
-22.5 35.6 19.6 131 0.011 0.010 0.007 1.43 260/450 340/430
-25.5 27.9 13.2 150 0.016 0.014 0.016 0.88 260/445 340/435
~28.5 53.7 384 124 0.007 0.006 0.006 1.00 260/450 340/430
-31.5 18.8 8.7 117 0.010 0.012 0.008 1.50 260/450 340/430

Peaks at sites A and B showed similar trends with C were identified in surface and porewater from all

depth. Representative EEMs are shown in Fig. 1 for
site A in winter. Protein-like peaks were not ob-
served in surface water and most porewater samples
but occurred at —16.5 and -28.5 c¢m, coincident with
decreases in a300 and increases in fluorescence
(Table 1). M peaks, similar in intensity to A peaks,
were observed in surface water and shallow pore-
water samples to ~4.5 cm depth (Fig. 1). Peaks A and

depths, with intensities increasing with depth to
-7 cm by 120 QSU as maximum emission intensities
were red-shifted by 25 and 15 nm for A and C, res-
pectively. Some oscillations were seen from -7 to
~32 cm depth, where intensities decreased and
wavelengths were blue-shifted. Representative
EEMs vs. depth are shown in Fig. 2 for summer.
Peaks A and C were again identified in surface and
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porewater from all depths but at lower intensities.
The mostintense protein-like peaks were at -25.5 cm,
where a300 decreased and fluorescence increased
(Table 1). In contrast to winter, no M peaks were
observed in surface or shallow porewaters. Higher
peak A and C intensities were observed from -22.5
through -28.5 cm with intense protein peaks. Another
feature with excitation at 400 to 420 nm and emission
at 630 to 650 nm was observed in pore water samples
below -7.5 cm, most notably at depths of -16.5 cm
and —-28.5 cm and at higher intensities in winter vs.
summer. Based on the optical characteristics, we
attribute this feature to chlorophyll or pheophytin, a
degradation product of chlorophyll (French et al.
1956).

The £450/f500 nm index averaged 1.3 and 1.8 for
surface water samples in winter and summer, respec-
tively. Porewater samples in winter averaged 1.2
across all depths, except for slight increases to 1.3 at
depths of —16.5 and ~28.5 cm. In summer, values in
the shallower porewaters to a depth of —10.5 cm aver-
aged 1.5, and the deeper porewaters averaged 1.3.
The calculated average values had a standard devia-
tion of £0.1. HIX values in summer ranged from 1.8 +
0.3 for the surface waters to 4.5 x 0.2 for the porewa-
ter. In winter, HIX averaged 7 = 0.8 in the surface
waters and 10 = 1 in most of the porewater samples.
Decreased values {5 + 2) were cbserved at depths of
—7.5,-16.5 and -28.5 cm. In winter, BIX values aver-
aged 0.66 + 0.6 in both surface waters and pore-
waters. In summer, BIX values averaged 0.73 £ 0.4 in
the surface and deeper porewaters and 0.86 + 0.3 in
the shallower porewaters to a depth of —=10.5 cm.

To assess potential differences in porewater micro-
bial processing, we measured dissolved iron and sul-
fur in the summer study. Fe(ll) concentrations in-
creased from near zero in surface and shallow
porewater to 286 pM at -16.5 cm depth followed by a
decrease to 5 pM at -28.5 cm (Fig. 3). SO, depletion
was fairly constant, around 0 mM, in surface waters
and porewater to —4.5 ¢m depth, increasing to 8 mM
at =28.5 cm depth and decreasing at -31.5 em. The
rate of increase in SO, depletion with depth de-
creased at —16.5 cm, where a spike in Fe(Il) concen-
tration occurred. The reverse was observed at
-28.5 cm, where a peak in SO, depletion corre-
sponded to decreasing Fe(Il) concentration. These
results are consistent with sulfate reduction as the
dominant anaerobic microbial process, except for
porewater at —=16.5 cm depth, where higher Fe(Il)
levels suggest that anaerobic microbial carbon min-
eralization may be occurring via iron rather than sul-
fate reduction (Megonigal et al. 2004), While rates of

sulfate and iron reduction are not available for this
site, variations in iron and sulfate levels with depth
have been observed in marshes near this region
(Berner 1964, Leslie et al. 1990, Elrod et al. 2004).

DISCUSSION

Optical properties of porewater CDOM may be in-
fluenced by both physical and biological processes,
e.g. variation in quantity or composition of organic
matter (OM) entering the ecosystem from production
and sedimentation, photochemical and biological
processing as OM is deposited, and physical soil
properties. Changes in CDOM f{luorescence and
absorption magnitude are associated with changes in
both the composition and concentration of dissolved
organic compounds, while wvariability in spectral
slope, fluorescence spectral shape and fluorescence
per unit absorbance reflect changes only in CDOM
composition and chemical structure (McKnight et al.
2001, Tzortziou et al. 2011). Absorption coefficients
in the surface waters and porewater were generally
lower in winter (wet season} vs. summer (dry season).
In general, significant increases were observed in
a300 below —4.5 cm depth, with decreases in bands
at lower depths. Increased fluorescence relative to
surface water occurred below —16.5 cm depth. High-
er fluorescence and absorption are consistent with
higher CDOM concentrations in porewater vs. over-
lying surface waters. The more intense fluorescence
in porewater vs. surface waters previously observed
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Fig. 3. Fe(Il) concentration (B, pM) and SO, depletion ([,
mM) vs. depth (cm) in porewater for site A in summer
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in coastal sediments {(Chen & Bada 1989) and man-
groves (Marchand et al. 2006) was attributed to the
release and subsequent anoxic degradation of OM
released from the solid phase. Increased fluores-
cence with depth in suboxic sediment porewater has
been directly associated with increased total dis-
solved organic carbon levels (Burdige et al. 2004).
We report S values here for 3 ranges to allow for
intercomparison between our previous work at this
site (S;, 300 to 400 nm; Clark et al. 2008} and other
marsh sediment studies (S5, 275 to 295; S;, 350 to
400 nm; Tzortziou et al. 2007, 2011, Helms et al.
2008); all ranges showed the same general trends. S
increases as CDOM is photobleached in oxidative
environments and decreases with aging in suboxic
soils and sediments because of increasing aromati-
city and humification (Stabenau et al. 2004, Tzortziou
et al. 2007). Lower S values are indicative of CDOM
that is more humic or terrestrial in nature (Green &
Blough 1994, Vodacek et al. 1997). In this study, S
was generally lower in the porewaters vs. surface
water by as much as a factor of 10, with the most dra-
matic change across the soil-water interface. Svalues
varied with depth. Burdige et al. (2004) reported S
values for porewaters in estuarine sediment on the
Atlantic Ocean that were only slightly lower (~20%)
than the overlying waters and showed no significant
variation with depth. The decrease from surface to
porewater in this study would be consistent with a
transition between regions where CDOM is photo-
chemically and aerobically processed to anaerobic
processing. Surface water S values in this study are
on the low end of the range of 0.012 to 0.018 nm™
reported for estuarine waters (Vodacek et al. 1997,
Burdige et al. 2004, Stabenau et al. 2004, Tzortziou et
al. 2007, Helms et al. 2008) and tidal outwelling from
marshes (Tzortziou et al. 2011) but similar to values
previously obtained for surface waters ebbing from
this marsh (0.010 = 0.002 nm™!, Clark et al. 2008).
Previous studies report Sin different spectral ranges,
which affects values and complicates intercompar-
isons (e.g. Vodacek et al. 1997 vs. Stabenau et al.
2004). S; averaged 0.97 + 0.15 for surface water and
1.26 + 0.61 for porewater in winter and was similar in
summer (1.00 x 0.87 for surface water, 1.22 + 0.82 for
porewater). Average values obtained here are within
the range previously obtained in the Delaware estu-
ary (Helms et al. 2008, 0.88 to 1.32). Helms et al.
(2008) attributed Sk >1 in an estuarine to ocean tran-
sect to waters that are mainly marine in character vs.
Sg <1, which are mainly terrestrial. Since higher-MW
material was associated with lower Sy values (Helms
et al. 2008), the increases in Sy at depths of ~7.5,
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Fig. 4. Absorption coefficients (m™) at 300 nm vs. 350 nm for
surface and soil porewater (m™) in winter (#) and summer
(®@). Lines shown from linear regression fits: (#) R? = 0.99,
slope = 1.00 = 0.02, intercept = -0.9 + 0.2 (n = 23); (@) R? =
0.97, slope = 0.77 + 0.06, intercept =-6.0+ 1.7 (n = 7). Open
circles (n = 7) represent a subset of the summer samples
(surface and shallow porewater down to —10.5 cm and at
-16.5 cm depth) which fall along the winter regression line

-16.5 and -31.5 ¢cm in our study suggest lower-MW
material in these regions.

Oscillations in a300 and fluorescence were ob-
served at the same depths where S; increased. Vari-
ability in absorbance and fluorescence could be due
to differences in both CDOM quantity and composi-
tion. To examine variability in composition, the ratio
of absorption coefficient at 2 different values (300
and 350 nm) can be used (Clark et al. 2008); this ratio
should not change for porewater with varying
amounts of CDOM due to differences in deposition
rate, solubility, soil conductivity or compaction. In
winter, a constant ratio of 1.00 + 0.02 across all
depths suggests that CDOM in surface and porewa-
ter is from similar sources (Fig. 4; a300 vs. a350 nmy;
R? = 0.99). In summer, surface and shallower porewa-
ter samples down to -10.5 cm fall on the same line.
However, deeper porewater samples are offset to the
right, with lower-than-expected absorbance in the
longer-wavelength region, suggesting more humi-
fied, older material. The exception is at —-16.5 c¢m
depth, which falls on the same line as for the winter
samples, possibly because of OM processing and
production by anaerobic bacteria.

The flu:abs ratio is one measure of CDOM compo-
sition changes, with decreasing values associated
with increasing MW, humification and aromaticity
(Belzile & Guo 2006). In winter, flu:abs ratios were
highest in the surface waters (12 to 16) and then
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decreased in the deeper porewaters to lows of 1 to 2
(Fig. 5), consistent with lower-MW material at the
surface and higher-MW material at depth. The
flu:abs ratio increased at depths of —7.5, -16.5 and
~28.5 cm to values of 4 to 8, suggesting lower-MW
material in these regions. Similar low values (1 to 2}
were obtained in the deeper porewaters in summer.
Increases were again observed at -7.5 and -28.5 cm,
consistent with lower-MW material at these depths,
possibly from enhanced microbial processing. The
more intense protein peaks observed at these depths
in the porewater EEMs support this hypothesis, since
protein-like peaks are associated with amino acids
free or bound in proteins, and the tryptophan-like
peak T indicates recent origin (Yamashita & Tanoue
2003, Fellman et al. 2008). Flu:abs ratios were un-
usually low in the surface waters compared to winter.
This could be explained by the presence of a strongly
absorbing, weakly fluorescing compound in addition
to the CDOM typically found in the marsh waters.

Humic-type peaks A and C were observed in all
surface and porewater samples in both seasons.
These have been observed in terrestrial, coastal and
oceanic waters (Stedmon & Markager 2005, Clark et
al. 2008). Production of humic materials from east
coast Atlantic marsh plants (mangrove, sawgrass,
cordgrass, sea grass) has been shown (Moran et al.
1991, Moran & Hodson 1994, Scully et al. 2004,
Stabenau et al. 2004). In winter, peaks A and C in
surface water may arise from autochthonous marsh-
produced material and allochthonous terrestrial
material from tidal inflow, runoff and rain events.
The lower-intensity peaks A and C observed in sur-
face waters in summer vs. winter are consistent with
reduced DOM inputs in the summer dry season. The
intensities of peaks A and C in deeper porewater in
summer vs. winter were also lower, possibly because
of DOM leaching from the soil reservoir depleting
porewater levels.

In contrast to peaks A and C, peak M was observed
only in the surface and shallow porewaters in winter.
Since prior studies at this site (Clark et al. 2008)
showed that several marsh plants produced peak M,
this absence suggests no significant net production
from marsh plants in summer. Peak M has been asso-
ciated with microbial activity in seawater but also has
been observed in wastewater, wetlands, salt marshes
and agricultural environments (Stedmon & Markager
2005, Clark et al. 2008, Fellman et al. 2008). Peaks A,
C and M have been previously observed in waters
ebbing from this marsh, but only peaks A and C were
routinely observed in the adjacent coastal receiving
waters (Clark et al. 2008, 2009, 2010). This suggests
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that peak M is removed through the marsh-coastal
water transition through photochemical or biological
processing. Photodegradation of peak M from south-
ern California salt marsh plant leachates has been
previously reported, with half-lives from 10 to 20 h,
on the order of the residence time of water in the
marsh due to tidal flushing (Clark et al. 2008). Simi-
larly rapid photodegradation with half-lives of 9 to
22 h was observed for fluorescing humic materials
from Florida Everglades plants (Scully et al. 2004).
Peak M from cordgrass has also been shown to
undergo rapid oxic microbial processing into peak C
{Wang et al. 2007).

Fluorescence indices provide additional evidence
for potential CDOM sources. The f450/f500 index
provides an estimate of the degree of aromaticity;
values of ~1.9 have been obtained for aquatic and
microbial sources and ~1.3 for terresirial and soil
sources (McKnight et al. 2001). Values of 1.2 to 1.3 for
surface water and porewater samples in winter and
porewater samples in summer are consistent with
predominantly terrestrial and soil sources, whereas a
higher value of 1.8 for surface waters in summer sug-
gests aquatic and microbial sources. The HIX index
is another measure of aromaticity and the degree of
maturation (Zsolnay et al. 1999). Higher values (10 to
16) are associated with highly humified OM of pre-
dominately terrestrial origin, whereas lower values
(<4) have been associated with autochthonous OM
(Huguet et al. 2010). In this study, HIX values ranged
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from highs of 7 to 10 in the winter to lows of 2to 4 in
the summer. In both seasons, HIX values were higher
in the porewater vs. surface water, consistent with
increased humification in soil. Decreases in HIX val-
ues at depths of -7.5, —=16.5 and -28.5 cm suggested
the presence of autochthonous OM in these regions,
possibly from enhanced microbial processing. The
more intense protein peaks observed at these depths
in the porewater EEMs support this hypothesis, since
protein-like peaks are associated with amino acids
free or bound in proteins, and the tryptophan-like
peak T indicates recent origin (Yamashita & Tanoue
2003, Fellman et al. 2008). The BIX index is a meas-
ure of autochthonous biological activity in estuarine
and marine environments; higher values (>1) are
attributed to autochthonous DOM and OM f{reshly
released in water, whereas lower values (0.6 to 0.7)
are associated with reduced in situ DOM production
{Huguet et al. 2010). BIX values of 0.7 obtained for
the surface and most porewaters in this study in win-
ter and summer are consistent with a predominately
allochthonous terrestrial DOM source. Some higher
values, for example 0.9 at ~7.5 cm depth in summer,
indicate that increased in situ production may occur
in some regions.

These results overall suggest that DOM in pore-
water arises primarily from imported allochthonous
terrestrial humic material in addition to autochtho-
nous microbial and aquatic sources. Another DOM
source that could be significant is importation of mar-
ine particles on the incoming tide, which may deposit
in the marsh, solubilize to DOM and be exported on
outgoing tides. Prior studies have shown high levels
of pheophytin in marine sediments in the Pacific
Ocean due to diagenesis and deposition of plankton-
derived marine particles (Wakeham et al. 1997, Lee
et al. 2000). The intense peak we observed in deeper
porewater in winter with optical characteristics con-
sistent with chlorophyll or its degradation product
pheophytin (French et al. 1956, Krauss & Weiss 1991,
Hense et al. 2008) would be consistent with deposi-
tion of marine particles. The lower levels in the sum-
mer study may arise from seasonal variations in
phytoplankton production.

CONCLUSIONS

Results from this study suggest that soil porewater
is a major reservoir of CDOM in the salt marsh, with
organic material from terrestrial watershed inputs
and in situ production from marsh vegetation stored
and processed in sediments. Optical property trends

from surface waters to porewater are attributed to
differences in biological and photochemical process-
ing in oxic and anoxic environments. At the transition
from surface water into deeper soil porewater, in-
creased absorption and fluorescence correlated with
red-shifted emission wavelengths, and lower flu:abs
ratios suggest more aromatic, higher-MW material.
Bands at depths of —16.5 and -28.5 cm, where ab-
sorption decreases, fluorescence increases, flu:abs
ratio increases and HIX decreases, are associated
with tryptophan-type protein T peaks, blue-shifted
emission wavelengths for peak A and variations in
Fe(ll} concentrations and SO, depletion. We hypo-
thesize that these optical property changes at anoxic
depths are due to enhanced anaerobic microbial
activity producing remineralized, lower-MW DOM,
with the dominant metabolism pathway potentially
varying from sulfate to iron reduction.
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