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ABSTRACT 

Predicting eye movement and fixation patterns on scenic images using Machine Learning for 

Children with Autism  

by Raymond Anden 

 

This study uses eye-tracking experiment data to predict the fixation points for children with 

Autism Spectrum Disorder (ASD) and Typically Developing (TD) for 14 ASD and 14 TD 

subjects for 300 scenic images [1]. Based on explanatory Logistic Regression models, it is 

evident that fixation patterns for both ASD and TD subjects focus near the center of each scenic 

image. Using gradient boosting the researchers successfully identify 31.7% and 39.5% of all 

fixation points in the top decile of predicted fixation points for ASD and TD subjects 

respectively. Results conclude that TD subjects have less variability in their eye movement and 

fixation points leading to increased accuracy in predicting where they will look.  
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 1 Introduction 

1.1 Background 

Past work has studied eye tracking, fixation and scan paths to determine age, predict fixation 

paths, and diagnose patients with conditions such as dyslexia and Autism Spectrum Disorder 

(ASD). This paper focuses on leveraging machine learning to identify the similarities and 

differences in predicting fixation points between ASD and Typically Developing (TD) subjects 

and their inherent behaviors.  

Aligned to the intent of this paper, Judd et al studied scan paths to identify where subjects would 

fixate on a given image. Their study recorded data for tracking paths and fixation location for 15 

viewers both male and female between the ages of 18 and 35. They found that 40% of all 

fixations occurred within the center 11% of an image, and 70% of fixations occur within the 

center 25% of an image [2].  

A study by Dalrymple et al used machine learning to classify the age of toddlers using data form 

patients 18 and 30 months old studying their fixations and gaze patterns. They were able to 

identify key differences in age based on bright, dark and length of the fixations between the 18 

and 30-month-old toddlers. They had success in classifying age groups with classification 

accuracy of 0.83 and AUC of 0.90 [3]. 

Rello and Ballestos used eye movement data to predict with 80.15% accuracy subjects with and 

without dyslexia using a Support Vector Machine. The dataset used contained observations for 

Spanish speaking subjects between the ages of 11 to 54 years old, 97 subjects with normal or 
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corrected-to-normal vision and 48 with diagnosed with dyslexia. They were able to prove that 

readers with dyslexia have longer fixations which lead to longer reading times [4]. 

A study by Carette et al used visual representations of eye tracking scan paths to build Artificial 

Neural Network models that predict ASD with AUC over 0.90 on a group of 59 ASD (29) and 

TD (30) children with the average age of 8 years old. In this study subjects watched a set of 

videos to capture the ocular activity which varied in content and length. Here the primary goal 

early detection and diagnosis of ASD [5].  

Pierce et al took a deep dive to study toddlers respective behavior characteristics by studying 

visual fixation patterns towards geometric images to classify children from 14 to 42 months with 

ASD. In this study, a one-minute video was used to capture total fixation behavior for 37 

toddlers with ASD, 22 with developmental delay and 51 typically developing. They were able to 

find that toddlers that spent 69% or more time fixating on geometric patterns, they could 

accurately classify 100% of toddles as having ASD [6]. 

A longitudinal study evaluating infants between 2 and 6 months concluded that a decline in eye 

fixation over time lead to an increase in ASD Diagnosis later in life. This finding is a very early 

indicator of social disability as very early eye looking appears to begin at normal levels and 

decile during the observation window which can be leading indicator for early intervention [7]. 

Prior work studying fixation pattens along with the experiment performed by Duan et. Al that 

becomes the focus of this research, present an opportunity to leverage one experiment data set 

for a group of children with Autism Spectrum Disorder (ASD) and Typically Developing (TD) 

children in multiple ways. Previous studies focus on a single main modeling objective, while 
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having very interesting findings there is an opportunity to extract more from a given experiment. 

The initial starting point was to predict fixation points on a given image for the two groups 

independently, in which the conclusion shows that TD children do have a bit more consistent and 

predictable behavior. This problem and conclusion in itself aim to aid in potential diagnosis in 

future studies for similar aged and characteristic children, again similar to prior diagnosis type 

research in the past.  

A novel approach to understanding the differences between the fixation patterns is presented 

when we model fixation ownership meaning given a fixation point, is it possible to predict 

whether that prediction comes from an ASD or TD subject. An additional new approach to using 

models built on child fixations but applied to adult fixations rounds out the research. While there 

is decay in the model performance for very different subjects, it is still very promising that there 

is predictive ability of the models when given a new data set. While there were many successful 

learnings in the research, there was one unsuccessful modeling approach attempting to predict 

the duration of fixation for our subjects. While unsuccessful in the predictive accuracy sense, a 

baseline is created for future work. 

1.2 Machine Learning & Methods 

Machine learning and the algorithms leveraged in the studies of this paper can be classified as 

either Supervised or Unsupervised learning. Supervised learning is used when we have a known 

outcome that we are building models on, fixation points, duration of fixation, classification of 

fixation point subject, etc. Unsupervised learning methods principal component analysis and k-

means are used when we are not attempting to predict a dependent attribute rather aiming to 

understand relationships between independent variables and between the subjects of the study. 
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The supervised machine learning ensemble random forest and gradient boosting are black boxes 

algorithms in the sense that we do not have an additive or linear equation given in generalize 

linear modeling techniques. The benefit of these ensemble methods is that they are able to 

generate several (dozens, hundreds or thousands etc.) models that outperform a single model. 

While these methods are built using multiple simple models, in combination they prove to 

significantly outperform all single model baselines studied in this paper.  

1.2.1 Logistic Regression 

Generalized Linear Model that can be applied when the response variable is translated into a 

binary variable (yes or no event). The logistic regression model is used to output a probability of 

the binary class variable known as the target variable. Logistic regression estimates the 

parameters of independent input variables that will be summed to create a linear combination 

summation of log-odds. After the log-odds are generated from the linear combination summation 

of independent variables, the exponent of the log-odds is taken to then give the predicted odds. 

Lastly to translate the odds to the final predicted probability, the odds are divided by 1 + odds. 

The ‘stats’ R package is used to fit the logistic regression models [9]. 

𝑙𝑜𝑔𝑜𝑑𝑑𝑠 = L 𝑛 (
𝑃(𝑦𝑒𝑠)

1 − 𝑃(𝑦𝑒𝑠)
) = 𝐵0+. . +𝐵𝑘 

𝑜𝑑𝑑𝑠 = 𝑒𝑙𝑜𝑔𝑜𝑑𝑑𝑠 

𝑃𝑟𝑜𝑏(𝐸𝑣𝑒𝑛𝑡) =  
𝑜𝑑𝑑𝑠

1 + 𝑜𝑑𝑑𝑠
 

Figure 1-1 Logistic Regression Equation 
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1.2.2 Stepwise Variable Selection 

To reduce the independent variable candidate set in the generalized linear regression models, 

stepwise variable selection is used to generate the best fitting model based on AIC. Stepwise 

variable selection begins with no variables and adds the most significant variable in the candidate 

independent variable set. The selection process then considers adding and subtracting variables 

in sequence until the minimum AIC is established. The ‘stats’ R package is used for the stepwise 

variable selection [9]. 

1.2.3 Variable Importance 

Variable importance in logistic regression model ranked by the value of the z statistic for each 

model parameter used, generated by taking the coefficient divided by its standard error. This 

ranking gives the relative strength of each variable in the model. The ‘caret’ R package is used to 

generate the variable importance of our models[10].   

1.2.4 Random Forest 

Ensemble method using a collection of simple decision trees, each using a random subset of all 

observations and a random subset of all predictors. Each individual tree casts a prediction and the 

final prediction is based on a voting scheme, thus creating an ensemble of independent voting 

trees. For our modeling purposes we set the number of trees to 500 and variables to try to be 

Number of Variables / 3. Because random forest is a tree-based method, it is able to discover and 

handle nonlinearities and work with high dimensional data better than that of our generalized 

linear modeling techniques. Random forests can be used on both classification and regression 

problems. The ‘ranger’ R package is used [11].  
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1.2.5 Gradient Boosting 

Ensemble method that is additive simple tree models sequentially fit to reduce residual of each 

step where each iteration uses a random subsample of training data used. Gradient boosting like 

random forest, uses a combination of simple individual models combined together to create an 

ensemble. While random forest builds independent models in parallel, gradient boosting business 

additive simple tree models that are sequentially fit to reduce the residual of each step where 

each step uses a random subsample of training data. Each successive iteration of the model 

focuses on accurately predicting the cases the prior model performed poorly on. Again, this 

ensemble method can be used on both classification and regression problems. The ‘gbm’ R 

package is used [12]. 

1.2.6 Principal Component Analysis 

Unsupervised learning method that summarizes a dataset based on the most important 

information for a multivariate dataset that creates new variables called principal components that 

are a linear combination of the originals. Principal component analysis is traditionally used for 

variable reduction when the number of independent features is combined into principal 

components. The principal components and their variable loadings can also be used to identify 

the key attributes and how much variance of the independent dataset they explain. Later in this 

paper we leverage PCA for the latter use case, trying to understand he attributes and their 

combinations that are capturing the variation in the data set. The ‘stats’ R package is used [9]. 

1.2.7 K-Means Clustering 

Unsupervised learning method that groups observations into analyst pre-defined number of 

similar groups or clusters based on their similarity and closeness. Based on the number of 
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clusters, that number of centroids are initialized randomly. To find the distance between 

observations, the Euclidean distance is calculated between each observation and all centroids 

assigning each observation to its closest centroid cluster. This process is repeated by updating 

each centroid position based on the updated cluster around that centroid, the process is continued 

until the centroids for each cluster are no longer changing. To select the number of clusters, the 

elbow method can be used where a range of clusters can be generated and the within cluster sum 

of squares is output and the number of clusters is selected based on where the curve flattens out 

having lower within cluster sum of squares. Reducing within cluster sum of squares is there for 

reducing the variability within each cluster resulting in similar observations comprising each 

cluster. The ‘stats’ R package is used [9]. 

1.3 Model Measurement Criteria 

The standard model measurement statistics leveraged in the analysis to compare performance for 

each of the studies are in the following section. In supervised learning classification models, it is 

important to measure not only the overall model performance or fit, but also the performance at a 

given cut point or threshold of interest. For example, the AUC (c statistic) can be used for an 

overall measure of model fit and performance in classification outcome models. One misleading 

metric in classification problems is overall accuracy of prediction depending on the distribution 

of your target variable. For example, if one were predicting an event with a 1.5% occurrence, if 

one predicts the event occurs 0% of the time, the model has a 98.5% accuracy.  

In most use cases it is more important to apply supervised learning models to a portion of the full 

population based on a threshold. This threshold can be a probability threshold or relative ranking 

of probabilities, creating cut points at a given predicted probability or proportion of all 
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observations. In our fixation prediction models, we establish the probability threshold to be set at 

the top 10% or first decile of highest predicted probabilities of fixation. Based on this threshold 

we can use the additional statistics of precision, recall and F1 at the given cumulative proportion 

of the dataset. 

1.3.1 Area Under the Curve (AUC) 

Area under the ROC (receiver operating characteristics) curve which plots the true positive rate 

on the y-axis and the false positive rate on the x-axis for all predicted probabilities [8]. R 

package ‘pROC’ is used [13].  

1.3.2 Precision 

The Positive Predictive rate equal to the number of correctly predicted positive observations 

divided by the total number of predicted positive observations [8]. The ‘caret’ R package is used 

to create a confusion matrix to derive this metric [10].  

1.3.3 Recall 

The true positive rate or capture rate is calculated by using the number of observations identified 

as true positives divided by the total actual number of positive observations [14]. The ‘caret’ R 

package is used to create a confusion matrix to derive this metric [10].  
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1.3.4 F1 Score 

Model performance metric derived from a balance of Precision and Recall for uneven class 

distributions (Figure 1-1) [14].  

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                       

Figure 1-2 F1 Score Equation 

1.3.5 Root Mean Squared Error (RSME) 

The Root Mean Squared Error is used to measure how spread out the residuals are between the 

actual and predicted values. It is calculated by: (i) squaring all residuals between the Predicted 

and Actual values (ii) Finding the average of all residuals (iii) Taking the square root of the 

result.  

𝑅𝑀𝑆𝐸 = [∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2/𝑁

𝑁

𝑖=1

]

1/2

 

Figure 1-3  Root Mean Squared Error Equation 
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 2 Experiment Source and Data 

Engineering 

2.1 Measures and Experiment Source Data  

This analysis utilizes the eye-tracking experiment performed by Duan et. Al. which contains the 

fixation and scan paths for children with Autism Spectrum Disorder (ASD) and Typically 

Developing (TD) children [1]. The images used in the experiment are comprised of natural 

scenic images such as unique faces, poses, animals, background settings, machinery, food, waves 

crashing, among others. Each of the 300 source images used in the experiment have resolutions 

varying between 1,280 x 960 to 768 x 1024 (width x height). The experiment resulted in data for 

each subject, image shown and the location of each fixation of that image. The fixation points are 

given by the x and y coordinates indicating a pixel on the image along with the duration of each 

fixation for the given subject.  

2.2 Experiment Design and Participants  

The eye tracker used in the experiment was a Tobii T120 with a 17-inch monitor resolution of 

1280 x 1024 (width x height). Tobii Studio software was used to obtain the eye fixations of each 

patient. Each patient was placed approximately 65 cm from the screen. Each image was viewed 

at its full resolution on the screen. Each image was on screen for 3 seconds with a grey interval 

of 1 second between each image. The 300 source images used in the experiment were randomly 

presented to each patient, which 30 selected images were shown in 10 recording sessions.  
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The experiment comprised of 14 ASD subject and 14 TD subjects seeing each image. The age of 

ASD subjects ranged from 5 to 12 years old, with a mean age of 8 years old. The mean age of the 

TD subjects was also 8 years old for a paired control age group. During the experiment, some 

ASD subjects did not look at the screen while some images were presented, leaving some images 

with less than 14 ASD subjects data points. 

2.3 Scenic Image Samples and Fixation Points 

As described in the Experiment overview, the 300 scenic images varied between animals, images 

of children, landscapes and more. The following examples are provided to demonstrate the types 

of scenic images that the participants would view.  

 

Figure 2-1 Scenic Image of Girl in front of a lake 
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Figure 2-2 Example Image of Animal 

 

 

Figure 2-3 Example Scenic Image of Tree and Snow 

When Fixation points were recorded using the Tobii T120 software, the x and y coordinates of 

each fixation along with the length of time in milliseconds was captured. Based on the x and y 

coordinates we can create a fixation point plot as seen in Figure 2-4.  
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Figure 2-4 Example Fixation Points based on Figure 2-1  

When the element duration of each fixation is added, we can plot not only the fixation point but 

the length of time for each fixation creating a Heat Map as seen in figure 2-5. Here we can 

clearly see that the participants were focused on the young girl in the foreground of the photo. 

One can hypothesize that based on the age of the participants, they were drawn to the young 

girls, while that also appears to be the focal point of the image. There is also some focus on the 

buoys in the lake which are a contrast to the lake itself, along with a few fixation points in the 

background near the forest or trees in the background of the image itself.  
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Figure 2-5 Example Heat Map of Figure 2-1 

2.4 Model Training Data 

The output of the experimental data contains a file for each image in the experiment containing 

each Patient ID in the experiment and their fixation and scan paths. These fixation and scan paths 

are given by the x and y coordinates of the patients’ fixation along with the duration of the 

fixation. While this provided data will be used to identify the fixation points on each of the 300 

images in the experiment, we do not have any data prepared for each of the images giving meta 

data about each of the fixation points.  

The experiment captured 29,089 fixation points for the 14 ASD subjects, compared to 34,538 for 

the 14 TD subjects. The subject fixation points will be used as the ‘duration_flag = 1’ for the 

binomial outcome modeling where any pixel with a duration greater than 0 will be flagged as a 
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pixel that a subject viewed. While the duration of each fixation was captured by the experiment, 

it was not used in this analysis as the focus is prediction fixation points rather than the duration 

of each fixation.  The remaining approximately 226 million image pixels that were not viewed 

will be the ‘duration_flag = 0’ for the model target.  

Due to the amount of non-fixation data points, 1/100th sample was taken on the non-fixation 

pixels. The random sample was taken across all images to get a fair representation of each image. 

This 1/100th sample generated approximately 7,500 non fixation pixels for each image, totaling 

2,267,205 data points. The modeling data set is therefore under sampled on the fixation pixels 

compared to the non-fixation pixels.  

Training and Test data sets were randomly split 70% and 30% respectively based on the 300 

scenic images with 210 images being used for training the models and 90 images held out for 

testing the model accuracy for each algorithm. The training and test sets were consistent for both 

the ASD and TD subject groups.  

To convert each pixel into a data vector, the R package ‘imager’ was used to translate each point 

on the pixel grid into a data frame with the red, green, blue color dimension values in 3 columns 

[8]. This data transformation gives us a usable data frame for each image that we can merge with 

the patient fixation paths to understand the characteristics of each fixation point. This data frame 

is also the use for our non-scanned data points where patients did not fixate, giving us a binomial 

indicator for each pixel on each of the 300. 
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2.5 Data Dictionary 

The Fixation data provided generated by the experiment contained information on the Patient ID, 

Image ID, x and y coordinates of each fixation and the length in milliseconds while additional 

transformations of each pixel created more attributes for the analysis.  

Table 2-1: Data Dictionary 

Variable Description 

PatientID Unique Identifier for each Patent 

ImageID Unique Identifier for each Scenic Image 

x x coordinate of each fixation point 

y y coordinate of each fixation point 

Duration Milliseconds of fixation 

c.1(red) Transformation of image pixel into 0-1 

scale for red, green and blue 

1.0 

c.2(green) 

c.3(blue) 

2.6 Data Engineering Enhancements 

With the goal of creating more explanatory attributes to compare relative model importance 

between ASD and TD subjects, additional Data Engineering was used to create additional 

attributes for the x and y coordinate of each pixel and each color attribute. To identify where on 

the photo a subject was fixating, each pixel was grouped into 5 categories for their x position and 

5 categories for their y position. The categories for both x and y dimension attributes are 0-200, 

201-400, 401-600, 601-800, and 801-Maximum. The color dimensions are split into 10 levels to 

further explain the color range in the pixel location that is driving the fixation. The color 
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dimension attributes are already scaled from 0-1, each level increments by 0.10 to the next for 

the 10 groups.  

The data enhancements give us an independent variable list of the original 5 numeric attributes: x 

and y coordinates, and the RGB (c.1, c.2, c.3) color transformations along with 5 additional 

attributes with multiple levels for the original numeric attributes. For each of the modeling 

techniques the newly created attributes will generate binary dummy variables giving us a total of 

45 potential attributes for the algorithms to use. 

Table 2-2: Enhanced Data Dictionary 

Variable Description 

PatientID Unique Identifier for each Patent 

ImageID Unique Identifier for each Scenic Image 

x x coordinate of each fixation point 

y y coordinate of each fixation point 

Duration Milliseconds of fixation 

c.1(red) Transformation of image pixel into 0-1 

scale for red, green and blue 

1.0 

c.2(green) 

c.3(blue) 

x_pos Split X and Y axis into 5 ranges based 

on coordinates y_pos 

c.1_dec r/g/b variables into 10 ranges (0-.1,.11-

.2, etc.) to capture more position 

granularity 

c.2_dec 

c.3_dec 
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 3 Unsupervised Learning 

3.1 Exploratory Data Analysis 

The starting set of independent variables for the analysis are quite simple and straightforward to 

begin with, focusing on the metadata available for each image and their pixels. The five variables 

that would be available for any image would be the location of the pixel, their x and y 

coordinates along with the Red, Green, Blue (RGB) color dimensions indicate by c.1, c.2 and c.3 

respectively.  

 

Figure 3-1 Distribution of c.1(red) color transformation for Subject fixation points  

When analyzing the independent variables between the subject groups, and their boxplots the 

similarities stand out more than the differences right away for almost all attributes when 

completing a univariate analysis in Table 3-1 and 3-2. To identify any differences in the mean 

values of each variable between the ASD and TD group, Table 3-3 gives results of a two-sample 
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t-test which proves that the only variables with a statistical difference in mean value are the x 

and y coordinates along with the c.1 (red) color dimension. 

Table 3-1: ASD Subject Independent Variable Summary Statistics 

Measure 
Variable 

x Y c.1(red) c.2(green) c.3(blue) 

Min 1 1 0 0 0 

1st Quartile 365 278 0.243 0.212 0.169 

Median 487 380 0.455 0.396 0.341 

Mean 490.6 393.7 0.467 0.418 0.382 

3rd Quartile 611 493 0.675 0.596 0.5657 

Max 1020 1024 1 1 1 

St. Dev. 186.84 166.29 0.2693 0.252 0.260 

 

Table 3-2: TD Subject Independent Variable Summary Statistics 

Measure 
Variable 

x Y c.1(red) c.2(green) c.3(blue) 

Min 2 1 0 0 0 

1st Quartile 392 292 0.255 0.220 0.172 

Median 501 378 0.475 0.404 0.341 

Mean 505.6 390.1 0.478 0.421 0.382 

3rd Quartile 613 472 0.682 0.596 0.557 

Max 1023 1019 1 1 1 

St. Dev. 172.122 145.34 0.266 0.248 0.257 

Focusing first on the color dimension, there is almost no discernable difference between the 

subject groups when comparing the RGB attributes. For example, the c.1 boxplot is shown in 

Fig. 3-1 where the distributions look almost identical. When looking at the actual summary 

statistics we also see very similar statistics for each group across color dimensions. However, the 

two-sample t test does indicate a statistical difference between the mean values of the c.1 (red) 

color dimension. 
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Table 3-3: Two Sample T-test for ASD and TD Subjects 

Variable ASD Mean TD Mean t-Statistic p-value 

x 490.6 505.6 -10.458 < 0.01 

y 393.7 390.1 2.884 < 0.01 

c.1(red) 0.4669 0.4779 -5.159 < 0.01 

c.2(green) 0.4183 0.4213 -1.505 0.1324 

c.3(blue) 0.382 0.3819 0.029 0.9771 

duration 260.6 318.2 -19.824 < 0.01 

The x and y coordinates of scan paths have very similar minimum and maximums between each 

subject group however the x and y coordinate of the scan path mean, median and standard 

deviation values begin to show differences between the consistency of the location of the scan 

path. This is visually evident in the boxplots in Fig. 3-2 and Fig. 3-3 respectively where the TD 

group has much tighter bounds around the median and quartiles for the x and y coordinates of 

scan paths. The boxplot also gives better indication of the outliers presented in each of the 

groups, while the minimum and maximum statistics do not seem inherently different, the boxplot 

calculates the minimum and maximum values as 1.5 multiplied by the interquartile range (1st 

and 3rd Quartile). These visuals representation indicate that the variability of the ASD scan paths 

is going to be larger than TD subjects and may impact the ability to predict in the later modeling. 

The two-sample t-test proves that there is indeed a statistical difference between the mean x and 

y coordinate between the two subject groups. 
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Figure 3-2 Distribution of x pixel fixation point of ASD and TD Subjects 

 

Figure 3-3 Distribution of y pixel fixation point of ASD and TD Subjects 

Being that the distribution of each independent variable used in the modeling are part of a finite 

distribution on the x and y axis of an image or on a scale from 0 to 1, we also explored a two-

sample KS test to compare the distributions of the values these variables take between TD and 

ASD subject fixations in Table 3-4. When running these tests, we found that all variables are 

significantly different in the distributions that they take for fixation points. While the averages 

and t-tests show slights differences between the populations, are in fact significantly different. 
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Table 3-4: KS Test for ASD and TD Subjects 

Variable D Statistic p-value 

x 0.0555  < 0.001 

y 0.0407  < 0.001 

c.1(red) 0.0243  < 0.001 

c.2(blue) 0.0133 0.007 

c.3(green) 0.0113 0.0351 

duration 0.0773  < 0.001 

3.2 Principal Component Analysis 

Principal Component Analysis was used to better understand the similarities and differences 

been the two subject groups and their fixation data. Before getting into the loadings that 

comprise each principal component, it is staggering at the similarity between the variance 

explained for the 2 groups being almost identical presented in Figure 3-4 and 3-5. 

 

Figure 3-4 PCA for ASD Subjects 
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Figure 3-5 PCA for TD Subjects 

When we review the loadings of each Principal component, we do see some similarities and 

differences between the two groups in Table 3-5 and 3-6. Each of the Principal Components 

contain very similar proportion of variation along with main variable loadings. For both groups 

Principal Component 1 is heavily driven by Color Combination, Principal Component 2 is 

comprised of the x and y position of each fixation and Principal Component 3 is all about the 

Duration of the fixation. These 3 make up almost 95% of the Variance in the dataset which now 

can be reduced to Color, Location and Duration of subjects’ fixation. Prior to running this 

analysis, no hypothesis was formed or expected conclusion to be reached but it is very interesting 

that the behaviors and results are so similar between the groups.  
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Table 3-5: ASD Subject Principal Components Results 

  PC1 PC2 PC3 PC4 PC5 PC6 

x 0.012 -0.689 0.279 -0.669 -0.015 0.000 

y 0.062 0.695 -0.001 -0.715 -0.032 0.014 

c.1(red) -0.561 0.007 -0.002 -0.001 -0.740 0.372 

c.2(green) -0.600 0.030 0.003 -0.041 0.054 -0.797 

c.3(blue) -0.567 0.023 0.003 -0.048 0.670 0.476 

duration -0.001 0.201 0.960 0.194 0.000 0.002 

 

Table 3-6: TD Subject Principal Component Results 

  PC1 PC2 PC3 PC4 PC5 PC6 

x 0.002 -0.710 0.220 -0.669 -0.010 -0.007 

y -0.056 0.701 0.158 -0.692 -0.027 -0.020 

c.1(red) 0.560 0.010 -0.003 0.004 -0.738 -0.377 

c.2(green) 0.602 0.033 0.009 -0.039 0.051 0.796 

c.3(blue) 0.567 0.027 0.016 -0.028 0.672 -0.474 

duration -0.004 0.047 0.962 0.267 -0.007 0.004 

3.3 K-Means Cluster Analysis 

K-Means Cluster Analysis was leveraged to identify similarities and differences between the 

groups of subjects within our ASD and TD subject groups. The original fixation attributes were 

used to create the clusters: x and y pixel locations, red/green/blue color scale and fixation 

duration. Each subject group was placed in to 6 clusters for comparison, summarized in Table 3-
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7 and Table 3-8 respectively. For each group the 6th cluster is the largest comprised of over 28% 

of each subject group. The ASD cluster #5 and TD Cluster #2 are both the smallest cluster for 

each subject group, however they have the longest duration for each subject cluster. Being that 

each color attribute is a 0-1 scale, we can create a color for each combination in which we see 

that they are all unique colors, although the color scales look similar across groups. 

Table 3-7: ASD Subject Cluster Summary 

 

Table 3-8: TD Subject Cluster Summary 

 

Visually we can see one key difference between each group’s clusters. Our Clusters are made up 

of x and y pixel coordinates along with color and duration attributes. To visualize this, we have 

plotted each of the color scale combinations with the average x and y coordinate while the size of 

each point is the average duration of fixation for the cluster group.  
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 In our ASD clusters, we begin to see a bit more variability as only 3 of the clusters compared to 

5 of the TD clusters fall between the x (300,600) and y (200,600) coordinates (Callout A in 

Figure 3-6 and 3-7). We also see that the largest cluster for each of the subject groups is the 

lowest point on the Y axis (Callout B). The smallest cluster for both groups has the longest 

duration and is the most center (Callout C).  

 

Figure 3-6 Cluster Analysis for ASD Subjects 
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Figure 3-7 Cluster Analysis for TD Subjects 

 

While there are similarities observed between the subject groups, it leads to the hypothesis that 

the TD subjects may be more consistent in their fixation patters having less variability in the x 

and y coordinates of each fixation.  
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 4 Predicting Fixation between ASD and 

TD Subjects 

4.1 Introduction  

In this section we provide the results for multiple machine learning algorithms built to predict the 

fixation points for both ASD and TD subject. Models are built for each subject group 

independently to compare the key drivers in each logistic regression model and determine if 

ASD and TD subject’s fixation points can be predicted to the same level of accuracy. First, we 

begin with a baseline logistic regression model from each subject group using the initial 5 

variables in the dataset: x and y coordinates of each pixel along with their RGB color 

transformation. Data engineering is used to create interpretable attributes for deeper insight in 

another round of an enhanced logistic regression. Lastly, additional machine learning techniques 

are leveraged to compare performance and incremental lift. 

4.2 Baseline Logistic Regression Model 

Initially logistic regression is used to build separate models for the ASD and TD Subject fixation 

points respectively with the goal of identifying the similarities and differences in the model 

drivers for each population’s fixation points. These models will be used as the baseline to 

compare the predictive accuracy of additional modeling techniques in addition to the value of 

additional data transformations.  

In the initial logistic regression equations, we see that the coefficients of the two models all have 

the same positive or negative direction implying the same effect on predicting fixation points. 
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We also see that the most important variable, based on the z value of each coefficient, is the 

c.1(red) color transformation, followed by the c.2(green) color transformation and the y axis 

position of the pixel. The only differences in variable importance between the models is the x 

axis position is the lowest variable of importance in the ASD subject model and it is the fourth 

most important variable in the TD subject model. The similarities in the variable importance 

between the models again leads us to conclude that fixation points appear to be consistent 

between the ASD and TD subjects. 

Table 4-1: ASD and TD Subject Logistic Regression V1 Coefficients and Importance 

 ASD Subjects TD Subjects 

Variable Coeff. Var 

Imp. 

Rank Coeff. Var Imp Rank 

x 2.37E-05 0.955 5 0.00020 8.85 4 

y -0.00022 7.256 3 -0.00026 9.374 3 

c.1(red) 1.842 35.173 1 2.303 50.04 1 

c.2(green) -2.082 22.191 2 -2.333 28.064 2 

c.3(blue) 0.1944 2.912 4 0.094 1.547 5 

4.3 Enhanced Stepwise Logistic Regression 

To select the best model using the additional attributes, stepwise variable selection in the 

enhanced logistic regression model. Looking first at the ASD Subject model in Table VI, we see 

that the c.1(red) color dimension is no longer the most important variable rather the largest 

drivers are associated to pixel position in the image. In the original model, the x position had the 

lowest variable importance but with the additional transformations we see that the pixel position 

being on the x axis between 401 and 600 is the most important factor in the model. The second 

highest driver is the pixel position being between the 201 and 400 x axis position, and the third 

highest driver is the pixel being between the 601 and 800 x axis position. This indicates that 
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horizontal location plays a major role in the fixation patters for ASD subjects. These top 3 

variables all indicate the scan paths being primarily in the center of the photo per the x axis 

association. The next 2 variable drivers are all associated to the y position of the pixel. In order 

of importance the y position between 201-400 and 401-600 which again focus on the center of 

the image. The coefficients for all these top 5 variables have a positive coefficient meaning that 

there is a higher likelihood that an ASD patient will look at the pixel towards the center of a 

given image. These main drivers support the earlier work by Judd et al who found that 70% of 

fixation occur within the center of an image [1]. 

The TD subject model has the same top 5 variables based on variable importance of the model; 

however, the order is different with the y position variables being the top 2 variables, followed 

by the x position of the pixel. This again supports those subjects will fixate on the center of 

images based on the x and y coordinates. We also see that the signs of each coefficient are 

negative except for x position of 401-600 which is opposite from the ASD subject model.  

As observed in the baseline model, the most important color dimension in the enhanced model is 

the c.1(red) dimension is the top color variable in each of the subject models, while the c.2(blue) 

and c.3(green) color dimensions fall lower on the importance list.  

Table 4-2: Subject Enhanced Logistic Regression Coefficients and Importance 

 ASD Subjects TD Subjects 

Variable Coeff. Var 

Imp. 

Rank Coeff. Var 

Imp 

Rank 

x_pos_401_600 1.896 61.940 1 2.044 40.482 4 

y_pos_201_400 1.179 34.965 4 -0.517 72.038 1 

x_pos_201_400 1.441 45.435 2 -0.017 41.251 3 

y_pos_401_600 0.760 13.897 5 -0.208 52.873 2 

x_pos_601_800 1.247 38.299 3 -0.221 19.657 5 
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c.1 1.452 5.779 7 -0.219 8.825 6 

y_pos_801_1024 -0.759 6.605 6 -0.245 7.610 7 

c.3_d6 0.245 5.368 8 -0.348 4.789 8 

c.2 -1.334 5.197 9 -0.423 2.592 22 

X   NA -0.579 4.045 9 

c.3_d5 0.168 3.971 10 -0.611 3.736 11 

y_pos_601_800 -0.267 3.413 13 -0.540 3.913 10 

 

4.4 Ensemble Methods & Model Performance 

The 30% test set of 90 images is used and their respective data to compare the performance of 

the ASD and TD Subject models. To compare the model performance, we set a threshold of the 

Top Decile for predicted probability of a pixel being a fixation point, where a fixation point was 

defined in the training data set as a duration greater than 0 and a target variable 

‘duration_flag=1”. Due to the imbalance of the dataset, Accuracy is of little value in comparing 

model performance as we would be over 98% accurate if we predicted every pixel to be 0.  

The main model performance metrics we will be reviewing are Precision, Recall and F1 Score. 

Precision is a valuable metric because it indicates the true positive rate of the top decile, meaning 

what is the actual fixation rate of all data points in the decile of predicted probabilities.  Recall is 

valuable in evaluating model performance because it indicates how many of the actual fixation 

points, we are able to capture in the top decile threshold cutoff. The F1 score uses both precision 

and recall values to evaluate the overall performance of a model into a single metric. There is 

low cost to false positive categorization in the model prediction, therefore recall is going to be 

the primary metric we use to evaluate model performance, again what is the fixation capture rate 

in the top decile for each of the models.  
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First evaluating the Performance of the ASD Subjects baseline logistic regression model 

compared to the enhanced logistic regression models, there is over a 71.5% increase in Precision, 

Recall and F1 score. For ASD subjects, Recall increases from 18.5% to 31.7%. The performance 

increases even more between the Baseline and enhanced logistic regression model for the TD 

subjects, with 84.2% increases across precision, recall and F1 score. Recall increases from 19.8% 

to 39.6% of all fixation points being identified in the top decile.   

With the value of the enhanced data set clear, additional machine learning models were run to 

improve the predictive ability of fixation points. Random forest and gradient boosting models 

were run using the enhanced variable data set to improve each model set. For both ASD and TD 

subjects, the random forest models performed slightly lower than the enhanced logistic 

regressions across all performance metrics. However, the gradient boosting models outperformed 

the enhanced logistic regression models. For the ASD subjects, the best model performance is 

seen with gradient boosting, where recall is 33.1%. The same is seen for the TD subjects, where 

gradient boosting increases Recall to 39.6%. These top decile capture rates prove there is large 

predictive lift in predicting fixation paths for both ASD and TD subjects. 

Table 4-3: ASD Subject Modeling Test Data Performance 

Algorithm Performance Metric 

AUC Accuracy Precision Recall F1 

Score 

Baseline Logistic 

Regression  

0.585 0.892 0.023 0.185 0.041 

Enhanced Logistic 

Regression  

0.743 0.895 0.039 0.317 0.070 

Random Forest 0.720 0.895 0.035 0.282 0.062 

Gradient Boosting 0.751 0.898 0.042 0.331 0.074 
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Table 4-4: TD Subject Modeling Test Data Performance 

Algorithm Performance Metric 

AUC Accuracy Precision Recall F1 

Score 

Baseline Logistic 

Regression  

0.594 0.891 0.029 0.198 0.051 

Enhanced Logistic 

Regression  

0.798 0.896 0.054 0.365 0.094 

Random Forest 0.769 0.053 0.359 0.359 0.092 

Gradient Boosting 0.788 0.897 0.059 0.396 0.102 

 

4.5 Discussion 

By comparison it is possible to predict the fixation points of TD subjects more accurately than 

ASD subjects when comparing the performance metrics it’s observe higher performance metrics 

of the TD models with a 37% higher F1 Score, 19.7% higher, recall and 40% higher. In both 

subject populations, adding the new data transformations along with the machine learning 

ensemble methods improved model performance compared to logistic regression models only 

using the x and y coordinates and the RGB color transformation of a give images pixels. This 

type of analysis can be used to study future patients eye movement and fixation patterns and 

compare to their expected scan patterns for an ASD or TD subject. 

This research can be paired with prior research in predicting the ASD diagnosis of patients, by 

focusing on how similar a subject’s scan path is to ASD or TD behaviors. This can be done with 

both fixation point predictions along with coupling prior research that sims to understand patient 

perception applications identifying where patients look and what they are interested in. Prior 
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work mainly focused on the diagnosis of patients, however leveraging fixation patterns, 

durations and visual shapes of focus in developing children can aid in early detection of ASD.  

A future research opportunity is to predict the duration of each fixation for each data point given 

the fixation has occurred on a given pixel. Based on the two-sample t-test and KS test there is a 

significant difference between the duration of ASD and TD scan durations. Understanding the 

drivers of scan duration would deepen the insight gained from this experiment.  
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 5 Predicting ASD vs TD Fixation Point 

5.1 Introduction 

In this Chapter, the analysis conducted leverages all fixation point data for both the ASD and TD 

Subjects. Rather than predicting the fixation points for each subject, models are built to predict 

whether the fixation came from an ASD or TD Subject. The modeling approach is the same as 

Chapter 4 where a baseline logistic regression is built, then an enhanced logistic regression with 

additional data enhancements followed lastly by our machine learning methods.  

5.2 Model Data Flow 

The key data in building this model is the Patient Fixation points, where we have 29,089 and 

34,538 for the ASD and TD subjects respectfully. We also have all the Image Metadata 

transformed into Pixel information for each of the fixation points. The full fixation data set is 

then randomly split into a 70% training and 30% test data set maintaining the ratio of ASD vs 

TD subject fixation points. The modeling objective is now to predict the likelihood the fixation is 

an ASD subject or not.   

5.3 Baseline Logistic Regression Model 

When predicting ASD vs TD subjects we are now able to leverage duration in our model as we 

are no longer only trying to predict a fixation but leverage the information about the given 

fixation to predict the subject group. Table 5-1 displays the attributes along with their importance 

to the baseline logistic regression model. We see that duration is indeed the top attribute in the 

model with a slight negative coefficient. This indicates that the longer a fixation duration, the 
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less likely the duration is from an ASD Subject. This supports one of the exploratory findings 

where we saw TD subjects have longer fixation on average. The performance of this model using 

the test data set and a top 30% probability threshold cutoff gives a performance recall of 0.3360, 

cumulative lift of 1.12.  

Table 5-1: Subject Prediction Logistic Regression V1 Coefficients and Importance 

Variable Coeff. Odds 

Ratio 

Var. Imp Rank 

duration 

(milliseconds) 

-0.001 0.9993 19.7 1 

x -0.0004 0.9996 8.3 2 

c.1 (red) -0.528 0.5895 6.7 3 

c.2 (green) 0.482 1.6199 3.5 4 

y 0.0001 1.0001 1.2 5 

c.3 (blue) -0.046 0.9549 0.5 6 

Test Set 

Performance 

Recall = 0.3360 

5.4 Enhanced Stepwise Logistic Regression 

Once again to further improve the performance of our model, stepwise variable selection was 

used to build a model based on our enhanced data set attributes. In this model we again see that 

duration of a given fixation is the key attribute in the model. The negative coefficient indicates 

that longer durations represent a lower likelihood of the fixation subject being an ASD Subject. 

For example, a 250 millisecond longer fixation results in 23% lower likelihood of the fixation 

being an ASD Subject. Next, we see that y axis position of each fixation pixel is more predictive 

than the x axis position. Recall in our cluster analysis we did see that all ASD clusters were 
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higher on the y axis which holds true in the model. Model performance increases 5.9% with the 

Recall Test data set performance increasing from 0.33 to 0.36 

 Table 5-2: Subject Prediction Logistic Regression V2 Coefficients and Importance 

Variable Coeff. Odds 

Ratio 

Var. Imp Rank 

duration(ms) -0.001 0.9993 19.3 1 

y_posy_201_400 -0.447 0.6398 12.9 2 

y_posy_401_600 -0.390 0.6772 11.0 3 

c.1(red) -0.425 0.6535 5.7 4 

c.2(green) 0.353 1.4232 4.4 5 

x_posx_401_600 -0.331 0.7184 4.2 6 

y_posy_601_800 -0.188 0.8286 4.1 7 

x_posx_201_400 -0.214 0.8073 3.7 8 

y_posy_801_1024 0.243 1.275 2.7 9 

x 0.000 0.9996 2.6 10 

x_posx_601_800 -0.205 0.8149 1.9 11 

x_posx_801_1024 0.016 1.0158 0.1 12 

Test Set 

Performance 

Recall = 0.3559 
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5.5 Ensemble Methods 

Further leveraging machine learning ensemble methods again prove to result in the best 

performance across our performance metrics given in Table 5-3. Random Forest results in a 

9.4% increase in recall while gradient boosting results in a 10.6% increase in recall. When 

evaluating the improvement of the models in Table 5-4, we can conclude that 5.9% of the 

improvement is contributed to adding the enhanced data to our model evident in the enhanced 

logistic regression model. The gradient boosting algorithm then attributes for the addition 4.7% 

of improvement to the recall statistic in our model.  

Table 5-3: ASD vs TD Model Test Data Performance 

Algorithm Performance Metric 

Precision Recall F1 

Score 

Baseline Logistic 

Regression  0.5195 0.3360 0.4081 

Enhanced Logistic 

Regression  0.5502 0.3559 0.4322 

Random Forest 0.5684 0.3676 0.4468 

Gradient Boosting 0.5743 0.3715 0.4511 
 

Table 5-4: ASD vs TD Model Performance Improvement 

Algorithm Performance Metric 

Precision Recall F1 

Score 

Baseline Logistic 

Regression  

   

Enhanced Logistic 

Regression  5.9% 5.9% 5.9% 

Random Forest 9.4% 9.4% 9.5% 

Gradient Boosting 10.5% 10.6% 10.5% 
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5.6 Discussion 

Similar to predicting fixation points for ASD and TD subject, we see that our models are more 

predictive than random where even our baseline logistic regression model has a slight lift over 

random. Again, we have seen that gradient boosting produces the highest recall of 0.3715 and lift 

of 1.24 at the 3rd decile. Data transformations along with machine learning methods improve our 

ability to predict the fixation behaviors. Gradient Boosting increased recall by 10.6%, 5.9% 

attributed to new variables and 4.7% to the method. Being that data is limited in this study, one 

hypothesizes that additional features about each subject will likely lead to increased model 

predictiveness.  
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 6 Predicting Duration of Subject 

Fixation 

6.1 Introduction  

Continuing to leverage the dataset and experiment performed by Duan et. Al., in this chapter the 

analysis conducted attempts to predict the duration of each fixation for the ASD and TD Subjects 

independently. This allows for a second comparison into the ability for machine learning to be 

leveraged in predicting subject behaviors.  

6.2 Model Data Flow 

The target variable in the analysis is duration in milliseconds for each subject fixation. Due to the 

variability and outliers of fixation duration, especially in the ASD subject group a decision was 

made to create a cap of each fixation length at the 95th percentile for each respective group. The 

boxplot in Figure 6-1 presents the distribution with a 99th percentile cap in comparison to the 95th 

percentile cap boxplot in Figure 6-2.  Based on the exploratory analysis and insight from the 

boxplots, the target variable duration of fixation was capped at 800 milliseconds.  

The modeling population utilizes the ASD and TD Fixation points randomly split into a 70% 

training and 30% testing data set (210 images in training, 70 images in testing). In total we have 

29,089 and 34,538 fixation points for the ASD and TD respective models. The independent 

variables used in our models are the image and pixel metadata for each of the fixation points.  
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Figure 6-1 99th Percentile Cap on Scan Fixation Duration 

 

Figure 6-2 95th Percentile Cap on Scan Fixation Duration 
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6.3 Baseline Linear Regression Model 

Due to modeling a continuous dependent outcome in this model iteration, a linear regression is 

first used to establish our baseline model summarized in Table 6-1. In terms of variable 

importance, the y axis position of the fixation point proves once again to be the most important 

variable in predicting subject behaviors. In comparison, the model predicting ASD subject 

fixation duration slightly outperforms the TD subject model with a lower RMSE of 206.97 

compared to 219.40. The correlation between the model predicted duration and actual duration is 

also given, both are very low at 4.55% and 1.17% for the ASD and TD subjects respectfully.  

Table 6-1: Duration Prediction Linear V1 Coefficients and Variable Importance 

 ASD Subjects TD Subjects 

Variable Coeff. Var 

Imp. 

Rank Coeff. Var Imp Rank 

x -0.003 0.335 4 0.029 3.492 2 

y 0.020 2.324 1 0.047 3.567 1 

c.1(red) -0.687 0.088 5 14.532 3.267 3 

c.2(green) 16.867 0.811 3 -60.620 3.043 4 

c.3(blue) -13.638 0.973 2 44.148 1.273 5 

Test Set 

Performance 
RMSE = 206.97, 𝒓=4.55% RMSE = 219.40, 𝒓=1.17% 

6.4 Gradient Boosting  

While the baseline model performance did not appear to be a great beginning to the predictive 

nature of this analysis, gradient boosting is again leveraged to explore model improvement and 

variable importance for each respective subject group. The variable importance for this model 

iteration along with the test set performance are given in Table 6-2.  
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Table 6-2: Gradient Boosting Variable Importance 

 ASD Subjects TD Subjects 

Variable Var 

Imp. 

Rank Var Imp Rank 

y 34.800 1 26.032 1 

x 14.355 2 23.240 2 

c.3_dec 7.256 6 13.284 3 

c.1_dec 8.047 5 12.371 4 

c.2_dec 10.912 4 3.151 8 

y_pos (ranges) 12.649 3 0.000 10 

c.1 3.116 8 7.915 5 

c.2 4.536 7 7.253 6 

c.3 1.874 10 4.217 7 

x_pos (ranges) 2.453 9 2.537 9 

Test Set 

Performance 

RMSE = 206.67, 

𝒓=6.53% 

RMSE =219.40, 

𝒓=2.16% 

For each of the Subject groups, location is the key driver as the y and x axis location of each 

fixation point is the most important attribute. This is consistent with prior model iterations and 

attempts. The ability for gradient boosting to capture nonlinear relationships give us a new and 

different insight from prior model iterations. In this model, the raw location x and y axis position 

is more important than the grouped location ranges that were predictive in the logistic regression 

models presented in earlier chapters. When comparing the subject groups, we see a significant 

mix in the difference of variable importance beyond the raw x and y axis fixation location. While 

the RMSE and correlation on the test data sets have increased in this iteration, it’s hard to claim 

that either of the models are doing well in predicting duration with such high RMSE and very 

low correlation. 

6.5 Discussion 

By comparison it is possible to predict the fixation points of ASD subjects slightly more 

accurately than TD subjects when comparing RMSE and correlations. While this iteration of 
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modeling lacks accuracy, it creates a baseline for future models with additional data points about 

the subjects. Creating segments prior to modeling duration may improve accuracy. Cluster 

analysis shows that duration differs based on the location of fixation point.  
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 7 Applying Machine Learning Fixation 

Models on New Data 

7.1 Introduction  

In this chapter we apply our fixation prediction gradient boosting models for ASD and TD 

subjects onto a new population. The experiment and research study are like that of Duan and 

team, conducted by Shuo et. Al [15], where the subjects were twenty high functioning people 

with ASD along with nineteen neurologically and psychiatrically healthy subject with no family 

history of ASD. In this study, the major difference is that the ASD group had a mean age of 30.8 

years compared to mean age of 8 years old in our prior research data. The dataset used in the 

experiment was comprised of 700 images that contained multiple dominant objects in each 

scene. The models were not built on specified multiple dominant objects per image nor on fully 

functioning adult subjects with ASD which will factor into the application of the models 

themselves.  

A sample image in Figure 7-1 demonstrates the multiple dominant objects that appear in the 

images. In this example we see multiple puppies in a line creating multiple dominant images 

along the bottom of the image. In sharp contrast there are also four bright blue plates above the 

dogs creating even further dominant objects within a single image. 
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Figure 7-1 Multiple Dominant object image 

7.2 Model Data Flow 

Each of the 700 images had an approximate aspect ratio of 800 x 600 creating 480,000 pixels of 

metadata for each image. Due to the large scale of this data set, 3 out of every 7 images were 

selected from the pool of images and fixation points for the analysis resulting in 210 images and 

over 100-million-pixel observation points to predict fixation points. The twenty ASD subject had 

a total number of fixation points of (). This again leads to a very under sampled target variable 

when trying to predict whether a fixation occurs.  

7.3 Model Performance and Discussion 

The best performing models when attempting to determine a subject fixation in Chapter 4 were 

built using gradient boosting. This machine learning technique proved to have the best statistical 

performance for both ASD and TD subjects. When applying each respective gradient boosting 
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model to this new experiment data source and looking at performance of the top 10% highest 

probability of fixation cutoff the AUC and recall statistics are presented in Table 7-1. The model 

built on ASD children has a recall of 0.223 and AUC of 0.694, while the model built on TD 

children has a recall of 0.244 and AUC of 0.691. Thus, the model built on TD children does a 

slightly better at identifying the fixation points of the highly functional subjects in the Shuo 

experiment.  

There is significant decay in the performance of each model where earlier applied on the new 

data set where we have seen the Recall degrade substantially, however using the top 10% cutoff, 

there is still significant lift over random when applying these models. While the subjects and the 

types of images used in the experiment are substantially different it is a terrific outcome that the 

models were predictive in this application.  

Table 7-1: ASD & TD Gradient Boosting Performance on New Experiment Data 

Gradient Boosting 

Algorithm 

Performance Metric 

AUC Recall 

ASD Development 

Data  

0.751 

0.331 

TD Development Data  0.788 0.396 

ASD Model Applied 

to New Dataset 

0.694 

0.223 

TD Model Applied to 

New Dataset 

0.691 

0.244 
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 8 Conclusion 

While there is significant research done applying supervised learning on ASD subjects as 

documented in the literature review completed by Hyde et. Al [16], this paper was able to 

generate a multitude of findings. The research presented in this paper extracts several uses and 

modeling opportunities using the same dataset spanning from unsupervised learning techniques 

to supervised machine learning techniques.  

When applying unsupervised learning (chapter 3), it became evident that ASD and TD subjects 

did in fact have many similar behaviors and variation in terms of fixation location and patterns 

given by the likeness between the principal components for each subject group. However, when 

digging deeper into the clusters created using leveraging k-means begin to show us some 

inherent differences in the fixation locations along with the consistency of the fixation points 

where ASD subjects had more variability in the locations they would fixate.  

The bassline logistic regression models used to predict fixation for the respective ASD, and TD 

groups provided a starting point at further understanding if there are differences in key attributes 

that lead to fixation in chapter 4. Initially we see that color is the dominant factor, but when 

additional attribute transformations are created and fed into our enhanced logistic regression it 

becomes evident that the location of each pixel is the dominant factor in whether a subject will 

fixate on a given pixel. Furthermore, we see the additional value in leveraging machine learning 

as gradient boosting proves to be the most accurate model in predicting the likelihood of fixation 

on a given pixel. Across all models and building upon the insights derived from our unsupervised 
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learning chapter it is proven that the TD subjects and their models perform slightly better than 

the ASD subjects and respective models based on the reduce variability in their behavior.  

Given a fixation point for either ASD or TD subject group, there was a slight ability to predict 

the subject group when using our baseline logistic regression approach. While the results were 

not nearly as predictive in chapter 5 compared to chapter 4, we were able to quantify the 

performance improvement that can be attributed to additional data transformations along with 

more advanced machine learning techniques. The results conclude that a 10.6% recall 

improvement could be made by leveraging gradient boosting and additional data transformation, 

of which 5.9% are attributed to the additional data and 4.7% is attributed to gradient boosting. 

This finding is key as data or method alone will not extract the full predictive capability in the 

modeling.  

Next in chapter 6 we had a very interesting yet unsuccessful application of machine learning 

when attempting to predict the duration of fixation for ASD and TD subjects respectively. Much 

of the poor performance is attributed to the variability observed in the fixation durations 

themselves, however we did see model improvement when leveraging random forest and 

gradient boosting compared to linear regression. This model performance can be used as a 

baseline for future work of the same nature.  

The main purpose of the research had been to extract several use cases and finding out of the 

given experiment performed by Duan et. Al. until the research and experiment conducted by 

Shuo et. Al. presented the opportunity to apply our fixation models onto a dataset comprised of 

significantly different images and subjects. In chapter 7, we applied our gradient boosting 

fixation models build on ASD and TD subjects onto a fixation dataset of subjects almost 4 times 
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older than they were built. While there was significant decay in model performance with recall 

statistics dropping, significant lift over random was observed. One hypothesizes that for all the 

modeling and research presented, increased predictability will come with additional information 

about subjects.  
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