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ABSTRACT 

Identifying a Target Protein and Ligands for Autoimmune Disorders 

by Sarah N. Caruthers 

 

 Systemic Lupus Erythematosus (SLE) is an autoimmune disorder characterized by 

unprovoked inflammatory responses that lead to tissue degradation. Patients suffering from SLE 

display an overexpression of master regulatory protein HIF-1𝛼. HIF-1𝛼	is a transcription factor 

for pro-inflammatory cytokine interleukin-17A (IL-17A), which is highly involved in 

inflammatory reactions within the body. To search for a treatment for SLE, computer aided drug 

discovery techniques were utilized. The transcription factor complex for IL-17A was 

reconstructed through multiple protein docking techniques. The heteroprotein complex was 

profiled using 3D macromolecular visualization software and binding cavities within HIF-1𝛼 

were calculated. Molecular docking simulations were run on the binding cavities of HIF-1𝛼	in 

complex with 140,00 naturally occurring products from Coconut Database. Three suitable drug 

candidates for SLE were identified, all from different chemical classes and plant species.  
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 1 Introduction 

1.1 Computer-Aided Drug Discovery 

The field of Bioinformatics is a recently emerging discipline with growing contributions to 

the Biotechnology industry. One relevant application involves the convergence of protein and 

small molecule databases, homology modeling software, and protein-ligand docking software to 

model protein-ligand interactions with the goal of providing new pharmacological insights. Such 

research methods have become intermittent in drug discovery and drug repurposing, and thus has 

become an important aspect of the pharmaceutical industry [1].   

If not previously determined, the first step in the drug discovery process is identification of 

a target protein [2].  Such proteins can be found via research in pathway databases, which are 

online repositories of current knowledge of experimentally determined signal transduction 

pathways. These pathways are represented by a graph 𝐺 with a defined set 𝑉 vertices, each vertex 

having a unique number of 𝐸 edges representing the relationships between adjacent nodes, yielding 

the function 𝐺	=	(𝑉,	𝐸). Each edge 𝐸 represents the connection between vertex 𝑣 and vertex 𝑢	and 

can be mathematically represented as 𝐸	=	(𝑢,	𝑣) [3]. Pathway databases provide a comprehensive 

visual of a specific signal transduction pathway, with specific metabolite/enzymatic information 

repositories linked within each respective node on the pathway. In a specific biological network, a 

suitable target protein is identified through betweenness centrality metrics. Reaction intermediates 

with the highest centrality measures are often referred to as hubs, which defines a node in a 

pathway that is highly interconnected with many other nodes and is therefore an essential step 

successful completion of a cell signaling pathway.  The three most highly considered types of 
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centralities are degree centrality, closeness centrality, and shortest path betweenness centrality [3]. 

Degree centrality is calculated for each vertex as the number of edges possessed. Closeness 

centrality measures how close a node is to all other nodes in a graph; if a given node is close to 

many others, the node is theoretically highly important to the cell signaling pathway as the 

corresponding metabolite can be used to synthesize various other important metabolites in its 

respective pathway. Closeness centrality can be mathematically represented as:  

Equation 1:   𝐶clo(𝑢)	=	 !
"!"##$%&((,*)

	

The domain of Equation 1 is only defined for pairs of connected vertices and therefore can 

only be applied to highly connected networks. The shortest path betweenness centrality quantifies 

the number of all shortest paths that pass through a vertex, suggesting the respective metabolite 

enables connection from one important reaction or set of reactions in a cell signaling pathway to 

another. The metric is mathematically represented by:   

Equation 2:   𝐶%,-(𝑣) = 	Σ%.*/0Σ&.*/0𝛿%&(𝑣)	

Where s and t represent adjacent vertices,  𝛿st(𝑣)	=	1$%(2)	1$%
 , 𝜎st(𝑣) represents the number of 

shortest paths between nodes s and t that use vertex v as a passing node, and 𝜎st denotes the number 

of shortest paths between nodes s and t [3]. These characteristics render a protein a suitable drug 

target, since hindrance of function by a tightly binding drug will theoretically destroy a signal 

transduction pathway and halt the biological response associated with the medical condition of 

interest [3].   

  Once an optimal drug target is identified, the 3D structure can be profiled using 

macromolecular visualization software. Sophisticated software must be used to view and gain a 

complete understanding of the target protein’s binding pocket chemistry. Use of proper software 
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will allow an in-depth understanding of the shape, energetics, and interacting atoms of the binding 

pocket and is essential for potential ligand selection and design [5].   

Once the target protein has been profiled and potential ligands have been designed or 

selected, docking between the protein and the ligand must be simulated using protein-ligand 

docking software. AutoDock Vina is a free, open-source, computationally efficient docking 

software which provides accurately docked protein-ligand complexes.  AutoDock Vina uses a 

combination of machine learning and scoring functions to yield a theoretically stable protein-

ligand complex [5]. The machine learning model used is Montecarlo Simulations, which model a 

series of probability density functions (PDFs) and then repeatedly pull samples from the defined 

PDFs [7]. In terms of protein-ligand docking, these PDFs represent the docking of the protein and 

ligand in random conformations. Each docked conformation is scored based on the molecular 

interactions of the protein’s interacting residues with the ligand and is repeated until a global 

minimum score is reached. The global minimum represents the docked protein-ligand 

conformation with the overall lowest molecular energetics, yielding the most stable complex [65]. 

The general scoring function for the docked complex is mathematically represented as:   

Equation 3: C = Σ$45𝑓&&𝑓&'(𝑟$5) 

Where i is an atom interacting with atom j, 𝑓&& 	𝑓&' ’	 is the set of all interaction functions 

between i and j influenced by the interatomic distance 𝑟$5[5]. Equation 3 accounts for all binding 

interactions, such as Van Der Waals interactions, dipole moments, water desolvation, electrostatic 

forces, and hydrogen bonding energetics. The protein-ligand conformation that yields the overall 

lowest score using Equation 3 will be defined as the global minimum and will determine which 

ligand is the best drug target for the protein of interest as well as the mechanism of action.   
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1.2 Application of CADD to Autoimmunity 

 Th17 cells are inflammatory response mediators which cause the expression of 

interleukins and pro-inflammatory cytokines and chemokines [7].  A hallmark interleukin 

produced by the CD4 T lymphocyte subtype is IL-17A (interleukin-17A), which causes 

expression of genes that attract myeloid cells and neutrophils when activated. Myeloid cells and 

neutrophils cause acute inflammatory responses at the site of injured tissue. Previous studies 

have shown positive correlation between dysregulation of Th 17 cell activity and onset of 

autoimmune diseases and symptoms [7, 8, 9]. The transcription factors required for synthesis of 

IL-17A have been identified and validated in human Th 17 cells [7, 10, 11, 12]; CADD will be 

conducted to find a suitable antagonist for an IL-17A transcription factors to hinder onset of 

autoimmune diseases.  
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 2 Methods 

2.1 Creating and Analyzing a Protein Network 
To create a protein network to import into Cytoscape, all transcription factors from 

Figure 1 in reference [7] were entered into STRING database as a multiple protein query. 

Proteins were selected if their description highlighted transcriptional activity and by correct 

name. A network was generated and exported to Cytoscape version 3.9.1. The Network 

Analyzer tool was used to compute the average node degree and centrality metrics. 

2.2 Analyzing Individual Proteins 

PDBe codes 1l3e (HIF-1a), 1p4q (p300), 5c4o (RORgt),  and 1ljm (RUNX1) for Homo 

Sapiens were extracted and loaded into PyMoL and saved as pdb files. Zinc residues were removed 

from 1p4q and 1l3e, and sulfate groups were removed from 5c4o using PyMol. Cavity detection 

using CB-Dock-2 was performed on each protein using their pdb file, and the potential binding 

sites of 1l3e were recorded, seen in Table 2.  

2.3 Docking Proteins 

CB-Dock-2 web server was used for all protein dockings. The following proteins and their 

PDB codes were docked: HIF-1a, p300, RORgt, and RUNX1. Different docking orders were 

conducted in attempts to recreate the natural order of assembly for IL-17A transcription factors 

and achieve the proper protein conformation. The protein assembly orders are summarized below 

in Table 1.  
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 Assembly 1 Assembly 2 Assembly 3 

 

Docking Iteration 1 

HIF-1a docked to 

RORgt 

 

RORgt docked to 

RUNX1 

 

HIF-1a docked to 

RUNX1 

 

 

Docking Iteration 2 

HIF-1a- RORgt 

docked to RUNX1 

RORgt-RUNX1 

docked to HIF-1a 

HIF-1a-RUNX1 

docked to RORgt 

 

 

Docking Iteration 3 

HIF-1a- RORgt-

RUNX1 docked to 

p300 

 

RORgt-RUNX1- 

HIF-1a docked to 

p300 

 

HIF-1a-RUNX1- 

RORgt docked to 

p300 

 

Table 1: Various orders of assembly with protein docking to reproduce the region of interest of the transcription 

factor complex for IL-17A. 

2.4 Analysis of Heteroprotein Complexes 

The complete, docked protein complexes from PyDock were saved to separate pdb files and 

loaded into PyMol for analysis. The Adaptive Poisson-Boltzmann Solver (APBS) plugin was 

applied to Assembly 3, Docking Iteration 2 with default metrics to analyze binding electrostatics, 

and the electrostatic pockets between individual proteins were recorded.  
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The heterprotein complex most homologous the transcription factor structure of IL-17A 

(Figure 9) was selected for further analysis. Protein complex HIF1a-RUNX1- RORgt (from 

Assembly 3, Docking Iteration 2) was loaded into CB-Dock-2 web browser for target cavity 

detection. The maximum number of cavities was selected for output and chains C and D (focusing 

cavity searching on HIF-1a) were selected for cavity searching.   

Target cavity selection for the heteroprotein complex was conducted based on three criterion: 

selection of cavities containing residues proven to be important in binding of  HIF-1a to p300 in 

previous literature [32], location of the cavity on HIF-1a in complex, and homology to target 

cavities identified on HIF-1a alone by CB-Dock-2. The chosen protein cavity was selected using 

PyMol and the cavity center was calculated using commands from PyMol API.  

2.5 Analysis of Potential Ligands 

A list of 10 natural products and 7 synthesized ligands found in [33] were proven to be strong 

inhibitors of isolated HIF-1a-p300 interaction. To assess the behavior of these ligands in complex 

and to provide a positive control for assessment of new ligands, these pre-identified compounds 

were docked to protein complex HIF1a-RUNX1- RORgt. All docking simulations were run using 

CB-Dock-2. 19 docking conformations were specified for the output and the range of docking 

residues was (368:C, 28:D), following the format “Residue index:Chain index”, separated by 

commas. The simulations were run at varying cavity sizes since the size of the selected target 

cavity could not be pre-determined. The results of these docking simulations can be viewed in 

Table 6. The cavity size of the selected binding pocket on HIF1a-RUNX1- RORgt was selected 

based on docking results in Table 6. 
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To search for new ligand candidates CB-Dock-2 docking simulations were run on a 

supercomputer cluster with 140,000 natural products taken from Coconut Database. The list of 

natural products was split into 10 random sets of 14,000 compounds, yielding 10 separate docking 

runs on the supercomputer. 19 docking conformations were specified for the output and the range 

of docking residues was (368:C, 28:D), following the format “Residue index:Chain index”, 

separated by commas. The results were organized by ascending docking score, and the top 40 

lowest scoring docked complexes were analyzed. The list of potential ligands was narrowed down 

from the top 40 based on docking score, docking conformation, and contacting residues. The final 

most optimal drug candidates can be seen in Table 7. 

 3 Review Section 

3.1 Biological Network Analysis 

The analysis of biological networks is essential for understanding the complexity of 

biological systems. Many software packages have been developed to perform network analysis. 

Cytoscape is an open-source software package for visualizing and analyzing biological networks. 

It has a user-friendly interface, which makes it easy to use for researchers with different levels of 

expertise [23]. Cytoscape provides a wide range of features for network analysis, including 

network construction, data integration, visualization, and analysis. Many popular file formats for 

importing and exporting network data are also supported by the software package.  

One of the main advantages of Cytoscape is flexibility. A wide range of plugins for 

extending its functionality, including plugins for community detection, network clustering, and 

pathway analysis is provided. This makes Cytoscape suitable for various applications, from basic 
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research to drug discovery techniques. The performance of Cytoscape was evaluated in terms of 

accuracy, speed, and ease of use. Three other common software packages were chosen for 

comparison: Gephi, igraph, and NetworkX.  

Cytoscape outperformed the other software packages in terms of accuracy and ease of use. 

Cytoscape provided more accurate results in community detection and network clustering, as well 

as better visualization options. Cytoscape was easier to use, especially for users without 

programming experience. In terms of speed, Cytoscape was slower than igraph and NetworkX, 

but faster than Gephi [24,25,27]. Due to the user accessibility, high accuracy of computer network 

metrics, and small size of the network analyzed, Cytoscape was the software package utilized in 

this study.   

3.2 3D Protein Modeling Software 

Once an optimal drug target is identified, its 3D structure can be profiled using 

macromolecular visualization software. PyMol is a popular and highly useful software package 

written in Python that provides highly detailed 3D protein structures used for understanding the 

chemistry of the target protein’s binding pocket. PyMol allows for the protein surface to be 

displayed in mesh, which allows the size of the binding pocket, its 3D conformation, and its 

participating residues to be visible. Additional plug-ins such as the Adaptive Poisson-Boltzmann 

Solver (APBS) can be installed to generate information about the electrostatic properties of the 

molecule [4]. Due to the large library of plug-ins, the high-quality image rendering, and variety of 

measurement metrics, PyMol is the most suitable software package for 3D profiling of a protein’s 

binding pocket. Gaining an in depth understanding of the shape, energetics, and interacting atoms 
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of the binding pocket is essential for potential ligand selection and design, making PyMol an 

important tool in the drug discovery process.  

3.3 Target Protein Selection 

 

Figure A: Expression levels of the HIF-1a  protein in healthy control (HC) patients against patients with Systemic 
Lupus Erythematosus (SLE), a prominent autoimmune disorder, from study [18].  

The Hypoxia-inducible factor (HIF-1) protein is a dimer consisting of the constitutively 

active HIF-1b subunit and one of the following a subunits: HIF-1a, HIF-2a, or HIF-3a. HIF-1 is 

a master regulator transcription factor that activates transcription of over 60 genes and consists of 

three helix-loop-helix motifs [13, 14]. The protein is synthesized as part of oxygen-dependent 

transduction pathways and is expressed in all mammalian cells to increase cellular oxygen 

consumption [13]. One way HIF-1 can cause increase cellular oxygen levels is via initiation of 

angiogenesis. Although the mechanism is not fully understood, [14] found positive correlation 

between angiogenesis, synovial membrane inflammation, and chondrocyte apoptosis, leading to 
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chronic inflammatory and autoimmune diseases [14, 15].  Study [18] found positive correlation 

with increased expression of the HIF-1a protein subunit in patients with chronic inflammatory and 

autoimmune diseases, seen in Figure A. The distribution of HIF-1a in healthy control (HC) and 

Systemic Lupus Erythematosus (SLE) patients was normalized and yielded a p-value of p < 0.001 

indicating a statistically significant increase in HIF-1a expression in SLE patients [18], providing 

a good lead on a target protein.   
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 4 Results 

Cavity ID  Cavity Volume  

(Å𝟑)  

Cavity Center  

(x, y, z)  

Cavity Size  
(x, y, z)  

Residues  

  

 

 

H1 

 

 

218 

 

 

(8, -5, -4) 

 

 

(10, 8, 11) 

H347, K350, 
C351, R352, 
R353, E354, 
N357, V361, 
Q363, C364  

 

 

H2 

 

 

217 

 

 

(9, -9, 12) 

 

 

(9, 8, 13) 

L346, K350, 
W402, L417, 
K418, A420, 
S4, V8, Q6, 
V7, N8  

 

 

 

H3 

 

 

 

119 

 

 

 

(-2, 15, 12) 

 

 

 

(6, 7, 8) 

K386, C388, 
Q389, V390, 
A391, H392, 
C393, A394, 

S395, Q26, L27, 
T28, S29  

  

   

H4  

  

   

91  

  

  

(-9, 1, 6) 

  

  

 (5, 6, 6)  

L337, Q340, 
H368, M16, 
L18, K22, 
E23, L24, P25  

  

  

 H5  

  

  

 71  

  

  

 (12, 6, -5)  

  

  

 (6, 4, 6)  

Q352, E355, 
Q356, E360, 
V361, R362, 
N377  

Table 2: Binding cavities for HIF-1a  identified by CB-Dock-2.  
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Protein Name  Betweeness  Closeness  Degree  

P300  0.248  0.899  8  

IRF4  0.044  0.899  8  

STAT3  0.044  0.899  8  

HIF-1a  0.044  0.899  8  

Table 3: Centrality metrics computed using Cytoscape on the protein network seen in Figure 1.  

 

  

Figure 1: Protein network of the transcription factors required for transcription of interleukin-17a.   
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Figure 2a: The 3D modeled structure of HIF-1a in PyMol, with chain A in yellow and chain B in purple.  

 

 

Figure 2b: The 3D modeled structure of p300 in PyMol, with chain A in yellow and chain B in purple.  
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Figure 2c: The 3D modeled structure of RORgt in PyMol, with chain A in yellow.  

 

 

Figure 2d: The 3D modeled structure of RUNX1 in PyMol, with chain A in yellow and chain B in purple.  
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Figure 3: The complete docked complex of  HIF-1a (green), p300 (blue), RORgt (purple), and RUNX1 (red) as 
seen in the transcription factor complex for IL-17A. 

 

 

Figure 4: A comparison of the detected binding pockets on HIF-1a with the binding cavities utilized by HIF-1a in 
the transcription factor complex of IL-17A. Cavity 3 residues are colored pink and cavity 4 residues are colored 

green.  

 



 

17 

 

 Figure 5: Electrostatic surface displays of protein Assembly 3, Docking Iteration 2 using the Adaptive Poisson-
Boltzmann Server in Pymol.  

 

 

Figure 6: Binding cavities C10 and C12 shown on Assembly 3, Docking Iteration 3, where HIF-1a is in blue and 
p300 is theoretically situated directly above the highlighted cavities.  
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Figure 7: Binding residues between p300 and HIF-1a determined by [32] highlighted in orange. 

 

 

 

Cavity Name 

 

Cavity Volume (Å*) 

 

Cavity Center (x, y, z) 

 

Cavity Size (x, y, z) 

 

C10 

 

155 

 

(-18, 47, 44) 

 

(7, 9, 6) 

 

C12 

 

77 

 

(-15, 59, 45) 

 

(5, 7, 8) 

Table 4: Binding cavities of the HIF-1a-RUNX1- RORgt complex detected by CB-Dock-2 which most closely 
match the cavities determined by [32] between HIF-1a and p300 in isolation.  
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HIF-1a-p300 binding residues 
determined by [home_run-1.pdf] 

 

Residues in cavity C10 of the HIF-1a-
RUNX1- RORgt complex determined 

by CB-Dock-2   

 

Residues in cavity C12 of the HIF-1a-
RUNX1- RORgt complex determined 

by CB-Dock-2   

 

Q26, L27, T28, S29, Y30, D31, C32, 
E33, V34, N35, A36, P37 

 

K386, C388, Q389, V390, A391, 
H392, C393, A394, S395, Q26, L27, 

T28, S29 

 

K386, Q398, E33, P37, I38, G40, R42, 
N43, L44 

Table 5: Binding residues between HIF-1a and p300 determined by [32], and cavities C10 and C12 of the HIF-1a-
RUNX1- RORgt complex. Common residues between C10 and those determined by [32] are highlighted in orange, 

while common residues from C12 are highlighted in green.  

 

 

Figure 8: The determined binding site of Assembly 3, Docking Iteration 2 as a combination of cavity C10 (pink) and 
C12 (orange), shown on HIF-1a in isolation for better viewing purposes. 
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 (13, 13, 
13) 

(14, 14, 
14) 

(15, 15, 
15) 

(16, 16, 
16) 

(17, 17, 
17) 

(18, 18, 
18) 

(19, 19, 
19) 

(20, 20, 
20) 

(25, 25, 
25) 

Coconut 
ID 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

Best 
Score 

199499 116.795 97.756 75.884 28.657 33.944 7.727 -4.805 -5.428 -6.492 

414588 13.762 5.073 -0.951 -5.333 -5.726 -6.263 -6.672 -7.648 -8.851 

359188 161.515 49.814 58.972 12.495 7.404 -6.209 -6.769 -9.798 -10.535 

233015 10.382 0.752 -3.107 -3.017 -7.034 -8.308 -8.840 -8.433 -9.664 

986755 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -3.604 

753076 17.552 -1.777 -5.283 -6.357 -6.552 -7.295 -7.811 -8.496 -9.264 

431416 8.365 0.023 -4.161 -6.577 -7.022 -7.213 -7.385 -7.907 -9.555 

399505 -1.415 -6.072 -6.068 -6.536 -7.140 -7.326 -7.800 -7.804 -9.158 

447234 NA NA NA NA NA NA NA NA NA 

356430 -3.471 -5.112 -5.316 -5.256 -5.846 -5.831 -5.921 -6.249 -6.327 

344706 46.651 24.422 5.270 -4.535 -5.185 -6.602 -7.458 -7.798 -9.356 

567708 33.511 11.214 4.414 -3.606 -5.428 -5.358 -6.627 -7.162 -7.635 

899023 11.364 -1.313 -2.414 -5.442 -6.618 -6.512 -7.667 -8.031 -8.719 

289736 -3.631 -4.306 -4.617 -5.005 -5.111 -5.278 -5.454 -5.678 -6.364 

140416 70.930 42.517 0.866 -4.871 -5.601 -6.345 -8.371 -8.495 -8.871 

Table 6: Docking results between Assembly 3, Docking Iteration 2 and HIF-1𝛼 binding ligands determined by [33] 
at various cavity sizes (x, y, z). 
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Drug Candidate 

ID 

Docking Score Binding 

Residues 

Chemical Family Therapeutic 

Applications 

CNP0010055 -9.4 K386, A394, 

S395, L27, 

T28,  S29, E33, 

P37, I38, G40, 

R42, N43, L44 

N-acyl-alpha amino 

acids 

Anti-

inflammatory, 

receptor 

mediated 

signaling 

CNP0098754 -11.3 K386, Q389, 

V390, A391, 

H392, C393, 

A394, Q26, 

L27, T28,  S29, 

E33, P37,  I38 

Anthraquinones Anti-fungal, 

Anti-viral, Anti-

microbial 

CNP0177090 -12.9 K386, Q389, 

A394, L27, 

T28, S29, E33, 

P37, I38, G40, 

R42, N43,  L44 

Hydrophenanthrenes inflammatory, 

Anti-allergic, 

Anti-microbial 

Table 7: A summary of the three potential drug candidates to block interaction of 
HIF-1a- RUNX1- RORgt with p300. 

 



 

22 

The protein network generated in STRING database was analyzed on Cytoscape and 

produced the centrality metrics shown in Table 3. Only the scores for the top four best scoring 

proteins are shown, as only the best scoring proteins can be considered for target proteins.   

Binding cavities on the HIF-1a protein in complex searched for using AutoDock Vina. The 

binding cavities of interest can be seen in Figure 4, with cavities 3 and 4 surface highlighted 

(binding residues for cavities 3 and 4 can be seen in Table 2). 

PyMol’s Adaptive Poisson-Boltzmann Solver (ABPS) was used to calculate the 

electrostatics of the binding residues on HIF-1a. High electrostatic activity was observed in the 

regions containing binding cavities H3 and H4 on HIF-1a, seen in Figure 5.    

   Protein Assembly 3, Docking Iteration 2 was the only order of docking that 

produced a heteroprotein complex resembling the transcription factor complex for IL-17A seen in 

Figure 9. The conformation of protein Assembly 3, Docking Iteration 2 can be observed in Figure 

3. The electrostatics score for this protein complex is -15.788, with a -15.583 desolvation score, 

and a total free energy score of -28.299. 

   Calculated through electrostatic energies in Figure 5 and seen as the point of docking in 

Figure 4, the observed binding site on the HIF-1a-RUNX1- RORgt complex utilizes residues 

from binding cavities H3 and H4 of HIF-1a; possible residues involved in the docking of p300 to 

HIF-1a in complex include those corresponding to H3 and H4 listed in Table 2.  

   Cavity C10 detected by CB-Dock-2 of the HIF-1a-RUNX1- RORgt complex 

(from Assembly 3, Docking Iteration 2) consisted of identical residues to cavity H4 of HIF-1a, 

seen in Figure 6. Cavity C10 had a volume of 80 Å6, had a (x, y, z) center of (-5, 39, 51), and 
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measured at size (6, 6, 6). Cavity C10 contains binding residues between HIF-1a and p300 from 

[32], including: Q26, L27, T28, and S29. L27 in cavity C10 is one of the 3 most important 

binding residues determined by [32]. Cavity C12 of the HIF-1a-RUNX1- RORgt complex also 

consisted of binding residues between HIF-1a and p300 from [32]; such residues were identified 

as E33 and P37. P37 in cavity C12 is one of the 3 most important binding residues determined 

by [32]. Figure 7 displays the binding residues between HIF-1a and p300 determined by [32], 

highlighted in orange. Cavities C10 and C12 of the HIF-1a-RUNX1- RORgt complex contains 

the same orange residues in Figure 7 from [32]; the target binding cavity of the HIF-1a-RUNX1- 

RORgt complex was determined to be a combination of cavities C10 and C12. Summary 

statistics for cavities C10 and C12 and their residues compared to those specified in [32] can be 

viewed in Table 4 and Table 5. 

   The combined (x y, z) center of cavities C10 and C12 on the HIF-1a-RUNX1- RORgt 

complex was (-14.650414, 51.720701, 43.226586). This cavity center was docked to known 

inhibitors listed by [33], and the scores were reported in Table 6; docking simulations with a 

cavity size of (25, 25, 25) yielded the best energetic scores, with an average score of -8.17. These 

ligands and their docking data were used as comparators for docking simulations of the HIF-1a-

RUNX1- RORgt complex to all 140,000 potential natural ligands from Coconut Database. 

   Three potential drug candidates  from coconut database were identified to block 

interaction between HIF-1a-RUNX1- RORgt and p300. The first candidate was CNP0098754 

with a docking score of -11.3. This ligand utilized 11 residues from cavity C10 and 3 residues 

from cavity C12, including important binding residues L27 from C10 and P37 from C12. The 

next drug candidate was CNP0010055 with a docking score of -9.4. This ligand utilized 6 
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residues from cavity C10 and 7 residues from cavity C12, including important binding residues 

L27 from C10 and P37 from C12. The last drug candidate identified was CNP0177090 with a 

docking score of -12.9. This ligand utilized 6 residues from cavity C10 and 10 residues from 

cavity C12, including important binding residues L27 from C10 and P37 from C12. A summary 

of these candidates and additional information can be viewed in Table 7.  
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 5 Discussion 

  
Figure 9: Transcription factors required for production of interleukin-17A (IL-17A) as seen in inflammatory cell 

signaling pathways.   

 

 

Figure 10: The drug class Anthraquinone base moiety from [34]. 

 

 

Figure 11: Examples of N-acyl-alpha amino acids from [35]. 
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Figure 12: The base moiety of drug class hydrophenanthrenes from [36]. 

 

Cytokines are soluble glycoproteins that control the remodeling of tissues with the capacity to 

cause inflammation if their activity is improperly regulated. When cytokines adhere and bind to 

various tissues in a chaotic fashion, they can induce transcription of immune members such as 

macrophages, tumor necrosis factor (TNF)- a, and interleukins. Synthesis of such substances are 

favorable in the event of infection or injury, however patients with autoimmune diseases synthesize 

and release cytokines without any pathogenic signaling. Elevated levels of pathogen fighting cells 

in the absence of infection causes digestion of healthy tissue by macrophages and other synthesized 

immune members leading to inflammation and loss of function or strength in various tissues, 

characterizing the onset of autoimmunity [26]. Tissue destroyed in this manner can include blood 

vessels, introducing hypoxia into the surrounding cellular matrix. Expression of the HIF-1a 

subunit is initiated in a hypoxic environment due to the overactive immune system [16, 18].  HIF-

1a  initiates and regulates immune activity by accelerating the differentiation of CD4+ T cells to 

Th17 cells. Th17 cells enhance production of cytokines such as interleukin-17A (IL-17A) which 

is an angiogenesis promoter produced in the synovium that causes degradation of the extracellular 
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matrix, contributing to the symptoms of autoimmunity [14]. Study [18] found increased HIF-1a  

expression in patients with Systemic Lupus Erythematosus (SLE), which is an autoimmune and 

inflammatory disease. Significant positive correlation between HIF-1a  expression and other 

autoimmune and inflammatory diseases such as multiple sclerosis and rheumatoid arthritis was 

also found [18].   

  The abundance of the HIF-1a  protein in mammalian cells, the involvement of HIF-1a  in 

inflammatory transduction pathways, and the statistically significant increased gene expression of 

HIF-1a  associated with autoimmune and inflammatory diseases make HIF-1a  a good drug target. 

To verify the viability of the HIF-1a  protein as a drug target, network analysis was completed in 

Ctyoscape using the protein network shown in Figure 1 that was found on STRING database based 

on the known transcription factors for interleukin-17A (IL-17A) shown in Figure 9. For a protein 

to be a good drug target, it must have a high degree, a high closeness score, and a low betweenness 

score. A graph node with a high degree is a node that has a lot of connections to other nodes; a 

protein representing a node with a high degree is a protein that is highly interconnected within the 

cell signaling pathway represented by the graph. A graph node with a high closeness score means 

the node is very close to all other nodes in the graph; a protein representing a node with a high 

betweenness score is a metabolite in close relation to other metabolites in a given cell signaling 

pathway. A graph node with a low betweenness is reachable through a short path by many other 

nodes; a protein representing a node with a low betweenness is a vital intermediate step to 

synthesize a product from a reactant in a cell signaling pathway. Proteins with high degrees, high 

closeness, and low betweenness scores represent proteins that are vital to the survival of a cell 

signaling pathway. Table 3 shows the top four transcription factors of IL-17A which have the best 

scores. Considering HIF-1a ’s increased expression levels, involvement in immune related cell 
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signaling pathways, and tie with p300 (despite the lower betweenness of p300), IRF4, and STAT3 

for the highest scores, HIF-1a  can be selected as the target protein in the search for viable ligands 

to treat autoimmunity. 

Once the target protein is selected, possible binding sites must be identified. The five 

binding sites identified in Table 2 represent the binding sites with the lowest amount of available 

free energy in descending order. No scores are reported because AutoDock Vina only reports Vina 

scores for protein-ligand docking and not cavity detection. The free energy is calculated based on 

molecular energetics such as hydrogen bonding interactions, water desolvation and sequestration, 

electrostatic forces, Van Der Waals interactions, and dipole moments. Binding pockets with lower 

available energy are more stable and better suited to host a ligand; ligands often bind in 

hydrophobic pockets where the protein environment is sequestered from water and hydrogen 

bonding forces from water do not interfere with interactions between the ligand and protein 

residues. Notice in Figure 2a, the middle of HIF-1a  is a large pocket surrounded by chain A and 

chain B. The pocket is a region of the protein where water cannot enter due to the electrically 

charged residues facing the outside of the protein, creating the perfect environment to host binding 

pockets H1 – H5..   

  HIF-1a  becomes buried amongst the other transcription factors required for transcription 

of IL-17A. A ligand designed only to bind to HIF-1a  may not be efficient in halting transcription 

of IL-17A, since the protein becomes significantly less accessible once p300 binds to and buries 

HIF-1a  in a transcription factor pile. Since transcription of IL-17A will not take place unless all 

transcription factors seen in Figure 9 are present, searching for an antagonist for the binding site 

of p300 on HIF-1a may be a more effective approach. Seen in Table 3, p300 is a protein with 



 

29 

favorable scores of degree, betweenenss, and closeness, so breaking the relationship between HIF-

1a  and p300 is theoretically a promising avenue to explore.   

 Protein-protein interaction causes conformational change within each individual protein 

involved. Conformational changes cause unique differences in potential binding pockets and 

electrostatic interactions in every protein depending on the state of the interaction. Therefore, 

binding cavities found on HIF-1a and its interacting residues with p300 in isolation may not be 

the same as those found on HIF-1a when it is complex with other proteins. To properly represent 

the binding behavior of HIF-1a to potential ligands when it is acting as a transcription factor for 

IL-17A, the conformation of this transcription factor complex must be recreated. Due to the 

number of proteins involved in the transcription of IL-17A, the proteins surrounding HIF-1a 

(p300, RUNX1, and ROR𝛾𝑡) were docked in all possible order combinations, seen in Table 1.  

Only the most immediate proteins bound to HIF-1a (p300, RUNX1, and ROR𝛾𝑡) were included 

in the multiple protein docking assays since these proteins have the most influence over HIF-1a’s 

conformational changes and would determine its behavior in complex; the influence of other 

transcription factors over the behavior of HIF-1a decrease with increasing proximity from HIF-

1a. Each docking Iteration of the different orders will render a differently shaped protein complex 

since the observed conformational changes of the docked proteins are customized to the order in 

which they are docked. Due to this inherit behavior of proteins, it was plausible that only one 

docking order would render a protein complex homologous to that seen in Figure 9 (Assembly 3, 

Docking Iteration 2, seen in Figure 3), and this docking order proposes the actual order in which 

these proteins assemble in vivo. 
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The python Adaptive Poisson-Boltzmann Server (APBS) performs Poisson-Boltzmann 

electrostatic calculations on biomolecules. This package evaluates and reports electrostatic forces 

through an easily interpretable surface cover which quantifies the electrostatics through color 

saturation [31]. Red represents negative electrostatic forces, while blue represents positive. Color 

saturation is directly proportional to strength of electrostatic force; regions of macromolecules with 

strong electrostatic forces are more likely to attract electrically charged regions of other 

surrounding molecules. Therefore, running the ABPS server on Assembly 3, Docking Iteration 2 

seen in Figure 3 provides insight on which regions of the heteroprotein complex are susceptible to 

attracting ligands. Seen in the top row in Figure 5, the ABPS run showed strong color saturation 

in the region where HIF-1a is bound to p300, providing confirmation that HIF-1a can participate 

in favorable interactions with a potential drug candidate in that region of the protein. The bottom 

row of Figure 5 reveals the underlying protein motifs in the electrically charged region of interest 

on Assembly 3, Docking Iteration 2, which shows high electrical activity and close contact with 

p300 on or around the second alpha helix (the small, top green one) on chain B of HIF-1a. This 

reveals an approximate location for the target binding cavity on HIF-1a, contained within residues 

G328 – F400, and S29 – S41.  

  To determine the precise locations of potential binding cavities and its constituting 

residues, the heteroprotein complex from Assembly 3, Docking Iteration 2 was run through a cavity 

detection software using CB-Dock-2 web server. Two cavities were identified in the region of 

interest by CB-Dock-2, which is the region of HIF-1a on Assembly 3, Docking Iteration 2 where 

p300 binds (making Assembly 3, Docking Iteration 3). The data gathered on these cavities (cavities 

C10 and C12) can be viewed in Table 4. As a point of reference and comparator to the differences 

in behavior and docking cavities of HIF-1a in isolation and in complex, cavity detection was also 
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performed on HIF-1a itself; the cavity data for HIF-1a can be seen in Table 2. Cavity C10 (seen 

in Figure 6) has resident residues identical to those found in cavity H3 of  HIF-1a in isolation. 

Cavity C12 (seen in Figure 6) has resident residues identical to those found in cavity H4 of HIF-

1a in isolation. This conservation of cavity residues and location between HIF-1a and Assembly 

3, Docking Iteration 2 suggest cavities C10/H3 and C12/H4 are vital to the functionality of HIF-

1a since they are maintained across various conformational changes; this provides additional 

insight into further investigation of these two cavities as the final target cavities of HIF-1a in 

complex.  

  Study [32] isolated both the HIF-1a and p300 proteins and performed binding assays using 

the yeast two-hybrid method, fluorescent titrations, and isothermal titration calorimetry. The 

structure of the bound protein complex was analyzed through NMR spectroscopy and 

reconstructed using 3D protein modeling software. All three binding assays produced consistent 

protein complexes that consisted of HIF-1a and p300 bound by in the same region of HIF-1a. A 

target binding cavity on HIF-1a in isolation for p300 was identified along with its resident 

residues[32]. Each of the binding residues within the target cavity was mutated and the binding 

assays were repeated, and only single point mutations of residues L27, C32, and P37 prevented 

binding of HIF-1a to p300. Therefore study [32] deduced that the L27, C32, and P37 residues 

were essential binding residues between the two proteins while the remainder acted as stabilizing 

residues. Binding cavity C10/H3 of HIF-1a in complex contains important residue L27, while 

C12/H4 contains P37. Other common residues shared between cavities C10, C12, and those 

determined by [32] can be seen in Table 5; of the three most important binding residues (L27, C32, 

and P37), two are contained within cavities C10 and C12 (L27 and P37, respectively). This 
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suggests candidacy of these cavities of HIF-1a in complex as a viable target cavity. Consistency 

in binding of the same region of HIF-1a to p300 with the same residues across various 

conformational changes between HIF-1a in isolation and in complex provides a suitable and 

reliable drug target to combat the binding of HIF-1a to p300 in complex. Due to the conserved 

nature of cavities C10/H3 and C12/H4 in isolation and in complex, as well as the dispersal of the 

important binding residues between the cavities, the selected target region resulted in a combined 

cavity consisting of C10 and C12. The final target cavity can be seen in Figure 8.  

 Study [33] conducted a review of natural and synthesized ligands that were found to bind 

to HIF-1a and inhibit its interaction with p300 through the residues found in [32]. Although these 

residues and ligands were studied on HIF-1a in isolation, due to the conserved binding residues 

of HIF-1a in isolation and in complex it was feasible to study the interactions of these known 

inhibitors with HIF-1a in complex. All 15 of these known compounds (10 natural, 5 synthesized) 

were docked to Assembly 3, Docking Iteration 2 using CB-Dock-2. The summarized results of 

these docking simulations can be seen in Table 6. Since the target cavity was a combination 

between cavities C10 and C12, the cavity size in (x, y, z) format could not be pre-determined and 

therefore the docking simulations were performed using various cavity sizes. The simulations 

performed best at the largest cavity size of (25, 25, 25), which was expected since the target cavity 

consists of two separate cavities. The size of the target binding pocket was assigned (25, 25, 25); 

cavity sizes larger than this are often rare and could prompt test ligands to bind to residues outside 

the region of interest on HIF-1a. The average docking score of the known inhibitors with cavity 

size (25, 25, 25) was -8.17, so any test ligands that bind to HIF-1a using residues from C10 and 

C12  that score around -8.00 can be considered suitable drug candidates. The rest of the docking 
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simulations on all 140,000 natural products from Coconut Database were conducted using the 

combined target cavity with a size of (25, 25, 25).  

 Suitable drug candidates were selected based on the following criterion: utilization of 

residues from both cavities C10 and C12 on HIF-1a in complex (cavity coverage), inclusion of 

important binding residues L27 and P37 (residue inclusion) and docking score (score). There were 

no pre-defined thresholds set for acceptable values of the criterion, rather ligands with a good 

balance of cavity coverage, residue inclusion, and score were considered. Any ligands similar in 

chemical make-up and conformation, or within the same family, were narrowed down to the one 

which optimized the balance between cavity coverage, residue inclusion, and score in order to 

gather as many unique drug candidates as possible. A summary of all suitable drug candidates can 

be viewed in Table 7.   

 The first suitable drug candidate was CNP0098754. This compound has a chemical formula 

of C80H83N7O11 and is part of the chemical family Anthraquinones. Anthraquinones are a class 

of biomolecules with various therapeutic applications including antifungal, antiviral, and 

antibacterial properties. The base moiety of this drug family consists of a cyclic diketonic 

compound surrounded by 2 aromatic rings. This chemical moiety is naturally occurring, and can 

be found in emodin, aloe-emodin, rhein, and chrysophanol [34]. The base anthraquinone moiety 

can be viewed in Figure 10. Anthraquinone base moieties are rigid and planar molecules that can 

act as DNA intercalators, which is a valuable chemical property utilized by drug anticancer agents. 

In addition to its therapeutic applications and anticancer properties, the anthraquinone drug 

derivatives are relatively easy to synthesize in a laboratory setting using basic and widely available 

commercial reagents [34]. CNP0098754 had a docking score of -11.3, which is considerably 

higher than the average score of -8.17 from the known inhibitors. Since the known inhibitors 
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proved to block interaction of HIF-1a and p300 in vitro, the considerably higher docking score of 

-11.3 suggests CNP0098754 will bind to HIF-1a with significantly high affinity and poses a 

reasonable chance of competition with p300. This ligand utilized 11 residues from cavity C10 and 

3 residues from cavity C12 for binding, which is significant enough interaction within each cavity 

to suggest CNP0098754 binds to a hybrid C10-C12 cavity. Important binding residues L27 from 

C10 and P37 from C12 were included in the list of binding residues between HIF-1a and  

CNP0098754, suggesting tight binding with highly favorable interactions since the known ligands 

would not bind to HIF-1a in the absence of L27 and P37. Due to the low docking score, utilization 

of residues from C10 and C12, use of important binding residues, and therapeutic properties of its 

chemical class, CNP0098754 is a suitable drug candidate to explore in the effort to combat 

autoimmune disorders.  

 Another suitable drug candidate found through docking simulations using ligands from 

coconut database was CNP0010055. This compound has a chemical formula of C19H18N2O4 and 

is part of the chemical family N-acyl-alpha amino acids and derivatives (NAAs). NAAs are 

endogenous signaling molecules which consist of an amino acid covalently bound to the acyl 

moiety of a long chain fatty acid via an amide bond, seen in Figure 11. NAAs are a large family 

of structurally diverse molecules responsible for receptor mediated signaling in various organ 

systems including the cardiovascular and nervous system [35]. Due to the amphipathic nature of 

these compounds, they have become highly investigated as drug transport systems since they are 

able to carry compounds through the blood stream and interact with structures on and within the 

cell membrane. NAAs have also been shown to exhibit anti-inflammatory activity in vivo by 

improving glucose homeostasis and increasing oxygen reactivity in affected tissues [35]; 

unregulated production of glucose and loss of oxygen sensitivity are hallmark inflammatory 
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markers that were shown to increase expression of HIF-1a which causes synthesis of pro-

inflammatory cytokine IL-17A [18]. CNP0010055 bound to HIF-1a with a docking score of -9.4, 

which is significantly high binding affinity compared to the docking score of the positive control 

ligands at -8.17. CNP0010055 utilized 6 residues from cavity C10 and 7 residues from cavity C12 

on HIF-1a, posing high interaction with each cavity suggesting CNP0010055 binds to a hybrid 

C10-C12 cavity. Important binding residues L27 from C10 and P37 from C12 were included in 

the list of binding residues between HIF-1a and  CNP0010055, suggesting tight binding with 

highly favorable interactions since the known ligands would not bind to HIF-1a in the absence of 

L27 and P37. Due to the low docking score, utilization of residues from C10 and C12, use of 

important binding residues, and anti-inflammatory properties of its chemical class, CNP0010055 

is a suitable drug candidate to explore in the effort to combat autoimmune disorders.  

Another suitable drug candidate found through docking simulations using ligands from 

coconut database was CNP0177090. This compound has a chemical formula of C57H60N4O7S2 

and is part of the chemical family hydrophenanthrenes. Hydrophenanthrenes are aromatc 

metabolites formed by oxidative coupling of aromatic rings. An example of a hydrophenanthrene 

can be viewed in Figure 12. Hydrophenanthrenes are natural plant products mainly from the 

Orchidaceae family, and have great structural diversity based on their number and position of 

oxygen molecules. Hydrophenanthrenes are a diverse class of biologically active compounds that 

have presently been unresearched and under-exploited in the pharmaceutical industry. Due to their 

structural diversity, hydrophenanthrenes have been shown to have a wide range of therapeutic 

effects and is a very prominent compound found in many Chinese medicines; some of these 

therapeutic effects include anti-microbial, spasmolytic, anti-allergic, anti-inflammatory, and 

antiplatelet aggregration effects [36]. CNP0177090 bound to HIF-1a with a docking score of -
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12.9, which is significantly high binding affinity compared to the docking score of the positive 

control ligands at -8.17. CNP0177090 utilized 6 residues from cavity C10 and 10 residues from 

cavity C12 on HIF-1a, posing high interaction with each cavity suggesting CNP0177090 binds to 

a hybrid C10-C12 cavity. Important binding residues L27 from C10 and P37 from C12 were 

included in the list of binding residues between HIF-1a and  CNP0177090, suggesting tight 

binding with highly favorable interactions since the known ligands would not bind to HIF-1a in 

the absence of L27 and P37. Due to the low docking score, utilization of residues from C10 and 

C12, use of important binding residues, and diverse therapeutic applications of its chemical class, 

CNP0177090 is a suitable drug candidate to explore in the effort to combat autoimmune disorders.

  

 6 Conclusion 

Autoimmunity describes a large range of diseases and disorders characterized by the 

dysregulation of cell signaling pathways involved with the production of cytokines. While the 

exact cause of faulty cell signaling is unknown, many differences in the cell signaling pathways 

between heathy individuals and those suffering from autoimmunity have been identified. One 

major biomarker is the significant increase in expression of HIF-1a  in patients with autoimmune 

disorders. HIF-1a provides a promising drug target whose binding sites can be computationally 

analyzed in complex to help provide new insights in the search for suitable ligands. With three 

strong ligand candidates identified, experimental assays guided by the findings of the 

computational analysis can be conducted. With this approach, the time and cost associated with 
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drug development can be significantly reduced, highlighting the growing importance of computer 

aided drug discovery (CADD) in modern pharmaceutical practices. 
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