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ABSTRACT 

CHARACTERIZATION OF THE GROWTH FACTOR RECEPTOR NETWORK 

ONCOGENES IN LUNG CANCER 

by Ashley H. Duche 

 

Lung cancer remains the leading cause of cancer related deaths worldwide, reportedly 

contributing to 1.8 million of the 10.0 million mortalities documented in the year 2020. Although 

advancements have been made in therapeutics and diagnostic methods, formulation of effective 

treatments and development of drug resistance continues to be a challenge. These challenges arise 

from our lack of understanding of intricate signaling pathways, such as the Growth Factor Receptor 

Network (GFRN), which contributes to complex lung tumor heterogeneity allowing for drug 

resistance development. In this study, gene expression signatures of six GFRN oncogenes 

overexpressed in human mammary epithelial cells (HMECs) were generated to interrogate this 

pathway’s downstream crosstalk, beyond initial mutation status. Utilization of this method may 

reveal novel phenotypic patterns that could be used to improve targeted therapies for lung cancer. 

Thus, using computational analysis tools, gene expression signatures were generated of BAD 

(BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (G12V), using the Bioconductor 

package, Adaptive Signature Selection and InteGratioN (ASSIGN). Gene lists of various lengths 

were generated ranging from 5 to 500 genes produced in 25 gene increments. Pathway activation 

estimates were predicted in 541 lung adenocarcinoma (LUAD) tumors acquired from The Cancer 

Genome Atlas (TCGA). Each gene signature underwent validation using proteomics data from 

The Cancer Proteome Atlas (TCPA) and gene expression. Following thorough analysis, optimal 

gene signatures were determined for the genes BAD, HER2, IGF1R, RAF and KRAS. In all, the 
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optimized GFRN pathway-specific gene signatures were able to distinguish upregulated pathway 

activity within TCGA patient tumor samples. With the use of drug response data, novel phenotypic 

patterns may be revealed identifying drug targets to improve individualized drug targeted therapy 

for lung cancer.  
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“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.” 

Stephen Hawking 
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CHAPTER 1 

INTRODUCTION 

 Lung cancer remains the leading cause of cancer related deaths despite progressive 

advancements in therapeutic and diagnostic methods worldwide. According to the American 

Cancer Society (ACS), it is estimated that of the 608,570 cancer related mortalities projected to 

occur in the United States in 2021, 131,880 cases will be due to lung cancer [1]. Similar to other 

cancers, lung tumors develop due to epigenetic factors causing genetic alterations, such as somatic 

mutations, gene amplifications and chromosomal rearrangements/translocation, affecting a cell's 

regulatory mechanisms and normal functions[1, 2]. With traditional methods, lung tumors can be 

classified into two major types, including small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC)[3]. Within NSCLC there are three main subtypes - squamous cell carcinoma, 

adenocarcinoma, and large cell carcinoma. Although through the advancements of diagnostic 

methods with the incorporation of molecular profiling, further tumor heterogeneity has emerged 

revealing diversification of lung tumors within the same histological subtype [2]. Such molecular 

profiling methods include immunohistochemistry (IHC), chromogenic/fluorescence in situ 

hybridization (CISH/FISH), next-generation sequencing, sanger and pyrosequencing, as well as 

quantitative polymerase chain reaction (qPCR) and fragment analysis (FA/Frag.Analysis) [4]. 

These methods allow for specific genetic alterations, referred to as biomarkers, to be identified 

within a tumor and used to make improved diagnosis, prognosis and therapeutic treatments. 

Although, a challenge continually faced is targeted mutations do not always respond to oncological 

treatments and consequently form mechanisms that allow resistance to therapeutic treatments [5]. 

This can result from unknown downstream signaling that remains uncharacterized in complex 

oncogenic networks such as the Growth Factor Receptor Network (GFRN) [7]. 
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1.1 Overview 

The GFRN is a known driving oncogenic network in lung cancer consisting of parallel 

signaling pathways responsible for regulating developmental and growth processes within the cell 

(Figure 1.1) [6]. Two stimulated growth factor pathways comprising of this network include the 

phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/ mechanistic target of rapamycin 

kinase (mTOR) as well as the RAS/serine-threonine protein kinase (RAF)/ mitogen-activated 

protein kinase (MAPK) pathway [7, 8]. The PI3K/AKT/mTOR pathway is commonly associated 

with NSCLC responsible for controlling cell survival, metabolism and proliferation [7]. Within 

this pathway, upstream activation of receptor tyrosine kinases (RTKs) such as EGFR, HER2, and 

insulin-like growth factor receptor (IGF1R), initiates a complex signaling cascade leading to the 

activation of PI3K lipid kinases [7]. A signal is then relayed resulting in the activation of AKT, in 

turn activating serine/threonine (Ser/Thr) kinase mTOR [9]. Many negative feedback regulators 

are associated with this pathway such as the inactivation of AKT through phosphatase and tensin 

homolog (PTEN) tumor suppressor, as well as the inhibition of IGF1R signaling by downstream 

products of mTOR [9]. To bypass these negative feedback mechanisms, the PI3K/AKT/mTOR 

pathway interacts with the neighboring pathway RAS/RAF/MAPK [9, 10]. The RAS/RAF/MAPK 

pathway is also associated with tumorigenesis initiated through the phosphorylation of RTKs, such 

as EGFR [9]. Following receptor mediated activation, a signaling cascade is initiated activating 

the GTPase protein KRAS, transmitting a signal activating the Ser/Thr-protein kinase RAF1, also 

known as c-RAF [10]. Subsequent activation leads to phosphorylation of MEK1/2 resulting in 

activation of Ser/Thr kinases, ERK1/ERK[8, 10]. What ultimately makes this pathway difficult for 

formulation of effective drug targeted treatments is the alternate pathway activation that can occur 

between these parallel signaling pathways. For instance, alternate pathway activation of PI3K can 
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be transduced through RAS signaling, mTOR can be activated through ERK, and AKT can inhibit 

activation of RAF as well as BAD (BCL2 Associated Agonist of Cell Death)[11, 12]. Therefore, 

simultaneous characterization of the GFRN is warranted for applying targeted therapies in lung 

cancer.  

 

To begin to characterize the network of complex signaling pathways within lung cancer, 

gene expression signatures can be utilized to interrogate GFRN activity within lung tumors. A 

gene expression signature is a gene, or a combined group of genes expressing aberrant or normal 

pathway activity associated with causing a disease or biological process [13, 14].  Signatures 

consist of selected genes quantitatively expressing varying levels of gene expression in respect to 

the biological state of the pathway being explored [13, 14]. They can be used to represent a 

single pathway or be leveraged in conjunction to explore multiple activated pathways 

simultaneously [5]. This allows for a comprehensive profile of interconnecting signaling networks 

to be explored which can potentially be used to make improved prognostic, diagnostic, and 

therapeutic treatment decisions [6].   

 

In summary, the utilization of generated gene expression signatures can be leveraged to 

explore complex signaling pathways using selected genes of possible significance to reveal 

underlying molecular mechanisms of a disease. Applying this concept, the objective of my 

research was to generate GFRN pathway-specific gene expression signatures of the pathways BAD 

(BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (KRAS, G12V mutation). It was 

hypothesized that if pathway-specific gene expression signatures of GFRN activity can be 
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generated, representing the oncogenic state of that pathway, GFRN activity can be characterized 

within lung tumors to reveal novel phenotypic patterns to make drug response predictions.  

 

1.2 Relevance of Exploration for Selected GFRN Oncogenes 

 Proven by previous studies, the GFRN has played a critical role in driving oncogenic 

processes leading to lung tumor formation. As referenced in Figure 1, the pro-apoptotic protein 

BAD, is one of the many signaling pathways comprising this network. BAD plays an important 

role in promoting apoptotic cell death, which has made it a predictive biomarker within lung 

cancer[11, 12]. Low levels of BAD expression have been associated with tumorigenesis across 

many other cancers as well, indicating its importance in anti-cancer cellular functions [11]. 

Inhibition of this pathway, as previously mentioned, stems from the activation of PI3K signaling 

activating AKT, which in turn inhibits the pro-apoptotic protein [6, 7, 12].  Having the knowledge 

of BAD’s anticancer characteristics, and its role in tumor progression, studies have suggested that 

overexpression of this protein can also allow BAD to act as a tumor suppressor [11, 12]. This 

makes BAD a promising target for future use of formulating effective therapeutic treatments.  

 

 Another associated GFRN pathway is the protein tyrosine kinase HER2. HER2 is a cell 

surface receptor associated with PI3K pathway activation initiating tumorigenesis [15]. In recent 

studies, the presence of HER2 mutations within NSCLC patients may be correlated with lower 

survival rates [15, 16]. Additionally, utilization of molecular profiling methods may have revealed 

further intrinsic subtypes, showing a correlation with HER2 mutations with the presence of EGFR 

mutations, and ALK translocations[9, 15, 16]. Although there has been conflicting evidence of 

HER2’s involvement in lung cancer making further exploration of this pathway essential.  
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In addition to BAD and HER2, another GFRN pathway associated with lung tumor 

development is IGFR. This RTK has shown correlations of overexpression linked to increased cell 

survival and proliferation of malignant cells [17]. Acquired resistance to therapies such as gefitinib 

and erlotinib have been observed with possible intrinsic subtypes such as the presence of EGFR 

mutations as well as ALK arrangements, similar to HER2 [17]. Additionally, IGF1R intrinsic 

subtypes may have also been correlated with the development of resistance to EGFR targeted 

treatments[17].  Benefits of further exploration of this pathway may lead to the development of 

effective therapeutic treatments against EGFR drug resistance mechanisms using molecular 

profiling to reveal cancer promoting cellular mechanisms.  

 

As revealed in prior studies, the proto-oncogene RAF, has shown associations with the 

RAS signaling pathway within the GFRN [10]. Also known as RAF1 or c-RAF, the full 

characterization of this pathway’s activation remains unclear, as well as its role in lung tumor 

development [10]. Although, studies have supported c-RAF activation is required for the initiation 

of tumorigenesis through KRAS transduction [10]. Within lung cancer, the development of KRAS 

drug resistance has continually been a challenge due to the ineffectiveness of current therapeutic 

treatments, as well as efficacy issues with targeted treatments of ERK/MAPK inhibition[10]. 

Possible leverage of targeting the c-RAF pathway, as well has further exploration revealing its 

molecular mechanisms, mays be used to develop novel effective treatments targeting KRAS with 

reduced drug resistance development. 
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 Previously mentioned, a common mutation associated with lung cancer development is the 

RAS Family, proto-oncogene KRAS. Various variants of KRAS mutations have been identified 

including G12C, G12B, and G12V, classified based upon their amino acid substitution.  The 

significant prevalence of this mutation within lung cancer presses the need for effective therapeutic 

treatments. Although, due to the complex signaling and alternate pathway activations, formulation 

of effective therapeutic treatments continues to be a challenge (Figure 1.1)[10, 18]. In an attempt 

to formulate targeting treatments for KRAS combating drug resistance development, exploration 

of coinciding mutations has been performed in previous studies[18]. Possible associations between 

the presence of KRAS coinciding with EGFR was revealed but little significance was observed 

pertaining to prognosis [18]. Although, additional studies have showed promise applying this 

method leading to further subtyping of KRAS using co-existing mutations revealing novel drug 

susceptible targets.   

 

 In all, our lack of understanding of underlying GFRN molecular mechanisms and intricate 

signaling pathways, stems our need for enhanced characterization methods such as gene expression 

signature exploration. Through the utilization of this method, a comprehensive profile of the 

GFRN, beyond initial mutation status, can begin to be developed and utilized to improve current 

therapeutic treatments to fight the development of drug resistance observed in lung cancer.   
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CHAPTER 2 

METHODS 

 

2.1 Generation of GFRN-Specific Gene Expression Data 

  To begin GFRN pathway analysis, previously processed RNA sequencing gene expression 

data generated from a published study was acquired [6]. Briefly, the cells used to produce the 

biological replicates were human mammary epithelial cells (HMECs) acquired from non-

cancerous breast tissue. HMECs were transfected using recombinant adenovirus of GFRN-specific 

oncogenes BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), and KRAS (G12V) to 

capture a transcriptional profile of aberrant pathway activity. Cells used to produce the biological 

replicates were produced using 0.25% serum-free mammary epithelial basal medium (MEBM) in 

conjunction with a Lonza “bullet kit” as referenced in the protocol [7]. HMECs expressing GFRN 

oncogenes BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1) or GFP (control) were 

incubated for 18 hours to capture the initial transcriptional profile. HMECs transfected with KRAS 

(G12V) along with its GFP respective controls were treated for 36 hours. Western blot analysis 

was then performed using corresponding protein antibodies to each GFRN oncogene to ensure 

successful overexpression of GFRN oncogenes within HMECs. Following validation mRNA was 

extracted from cells to generate 6 biological replicates for BAD (BAD), IGF1R (IGF1R), and RAF 

(RAF1), with 5 produced for HER2 (ERBB2). For the separately treated HMECs expressing KRAS 

(G12V), 9 biological replicates were produced along with 9 GFP respective controls. The generated 

biological replicates of the overexpressed GFRN oncogenes from HMECs were then sequenced 

and aligned computationally using Rsubread R package (Version 1.14.2) to produce the gene 

expression RNA-Seq datasets.  
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2.2 Obtained RNA Sequencing Datasets 

 To begin gene signature generation and analysis, various databases were used to acquire 

the publicly available RNA-sequencing data (Table 2.1). From the National Center for 

Biotechnology Information (NCBI), Gene Expression Omnibus (GEO), the previously mentioned 

gene expression data was collected containing the 6 overexpressed GFRN oncogenes and their 

respective controls from 2 separate datasets [7]. The first dataset included the genes BAD (BAD), 

HER2 (ERBB2), IGF1R (IGF1R), RAF (RAF1), with the GFP samples (the control) treated for 18 

hours (GSE83083). The second dataset included the gene KRAS (G12V) with GFP samples (the 

control) treated for 30 hours (GSE83083). From TCGA, 541 LUAD patient tumor samples were 

collected along with a separate dataset used to classify and specify the cancer type (GSM1536837, 

GSE62944). Lastly, to perform validation, proteomics data was collected from TCPA. 

 

2.3 Data Refinement 

 Utilizing the prcomp function from the stats R package, the collected gene expression data 

along with the TCGA patient tumor samples, were visualized using Principal Component Analysis 

(PCA) within Rstudio (Version 1.2.5019) (Figure 2.1 a-d). PCA is a statistical procedure used to 

produce principal components representative of the greatest variation occurring in the 

multidimensional data [12]. The first principal component produced represents the greatest 

variation, while the second represents the second greatest variation in the multidimensional data 

and so on (Figure 2.1 a and c) [12]. Due to the datasets being separately processed, significant 

batch effects and confounding variables were observed (Figure 2.1 a-b). This could be due to many 

external factors, such as tissue mishandling when producing the samples, varying lab protocols 

and conditions, as well as human error. Such variability can negativity affect the generation of our 



 

 9 

signatures and its ability to predict pathway activity within the tumor samples. To begin to reduce 

variations, the datasets underwent refinement to remove technical artifacts from the gene 

expression datasets. This included filtering of rows containing a certain percentage of zero values 

to capture genes with most variance in the dataset. PCA was then utilized throughout the study to 

ensure optimization of the data and signature generation. 

 

2.4 Batch Adjustment 

Following refinement of the RNA seq. data, the significant variances and confounding 

batch effects were adjusted for using the ComBat function from sva R package (Version 3.34.0) 

and visualized using PCA (Figure 2.1 c-d). This included specifying the gene expression data and 

patient tumor samples into 3 separate batches and performing a two-step batch adjustment. First, 

the appropriate training model was specified which included the 6 biological replicates for each 

oncogene including BAD (BAD), IGF1R (IGF1R), RAF (RAF1) and 5 for HER2 (ERBB2); along 

with its 12 GFP controls treated for 18 hours (control). The second batch, also specified as the 

training data, included the 9 biological replicates for KRAS (G12V) with its respective 9 GFP 

replicates, pre-treated for 36 hours (control). The first batch adjustment was then performed only 

including the training data, with the first batch specified as the reference used to compare and 

optimize data similarity. Following the first adjustment, the third batch was then specified as the 

541 LUAD patient tumor samples from TCGA, classified as the test data. The second combat 

adjustment was then performed using the combat adjusted gene expression data (training data) 

combined with the TCGA patient tumor sample (test data) with the first batch selected as the 

reference batch. A PCA was then performed to confirm variances and confounding batch effects 

were removed to improve data similarity (Figure 2.1 c-d). 
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2.5 Gene Expression Signature Generation 

With the adjusted data, gene expression signatures were generated representing pathway 

specific GFRN activity. This was performed using the “All-in-one” assign.wrapper function from 

the “semi-supervised pathway profiling toolkit”, Adaptive Signature and InteGratioN (ASSIGN; 

Version 1.9.1). Within each pathway-specific gene expression signature, genes quantitatively 

expressing varying levels of expression were selected by ASSIGN to define a phenotypic pattern 

representative of aberrant GFRN-specific pathway activity. This included creating two distinctive 

patterns of expression within the signature to represent pathway activity turned on versus pathway 

activity turned off. For each GFRN specific pathway, this was produced internally by comparing 

the GFP gene expression data (control) to the specified overexpressed oncogene expression data.  

 

2.6 ASSIGN Gene Expression Signature Output 

Various gene lists of specified lengths were then generated ranging from lengths of 5 to 

500 genes produced in 5 or 25 gene increments using the assign.wrapper function; utilizing a single 

pathway setting. The Bayesian variable selection approach was used to select genes expressing the 

greatest fold-change of differential expression from normal pathway activity to generate the 

signature. These genes selected displayed the highest signal strength and signal weights 

representing their possible contribution to the overall development of the disease. Additionally, an 

anchor gene was selected for the genes as follows BAD (BAD), HER2 (ERBB2), IGF1R (IGF1R) 

RAF(RAF1), and KRAS (KRAS). This ensures the overexpressed oncogene specific to the pathway 

being investigated is included in each gene signature output. Additional ASSIGN criteria were also 

specified including adaptive signature background parameters. This included the adaptive_B = 

TRUE, default parameter, which allows ASSIGN to adjust the test data baseline measures. Next, 
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adaptive_S = FALSE was specified, preventing the adaptability of the gene signatures to adhere 

to the test data. Additional default parameters were also included specifying probability measures 

such as p_beta = 0.01, theta0=0.05, theta1=0.9. Next, the iteration was increased from the default 

parameter of iter = 2,000 to iter = 100,000 to increase the number of Markov Chain Monte Carlo 

(MCMC) simulations. Lastly, the number of burn-in iterations was increased from the default of 

burn_in = 1,000 to burn_in = 50,000 to optimize gene signature output. From the produced output, 

those that passed the internal leave-one-out cross validation (LOOCV) then underwent external 

validation using proteomics and gene expression data. 

 

2.7 External Validation 

Using the cor.test function from the stats package (Version 4.0.3) correlations were 

performed to validate the generated pathway activation estimates from ASSIGN. First, using 

proteomics data, Pearson pairwise correlations were calculated between Reverse Phase Protein 

Array (RPPA) data from The Cancer Proteome Atlas (TCPA) with the generated pathway 

activation estimates. This was performed using the cor.test function from the R stats package 

(Version 4.0.3), using the Pearson method. Pathway activation estimates were considered to be 

validated if the “Pearson’s product moment”, calculated using a 95% confidence interval, had a p-

adjusted value of < 0.002. The p-adjusted value was calculated due to the high quantity of TCGA 

patient tumor samples. The same parameters and cor.test function were used to validate the 

pathway activation predictions correlated to the TCGA patient tumor sample gene expression data. 

Lastly, using the function boxplot2 from the package gplots (Version 3.1.1), boxplots were 

produced expressing predicted pathway activity levels within the TCGA patient tumor samples. 

The data was first scaled to optimize boxplot generation along with specification of pathway 
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activity levels by low, intermediate, and high percentiles. Samples with expression in the 10th 

percentile or below were classified as “low” expressing. Samples with expression in the 90th 

percentile or above were classified as “high” expressing. Samples with the expression above the 

10th percentile and below the 90th percentile were classified as “intermediate” expressing samples. 

Pathway-specific boxplots were considered to be validated if higher predicted pathway activity 

could be seen within the patient tumor samples categorized in the “high” expressing percentile in 

comparison to the “intermediate” and “low” expressing percentiles. 

 

 

CHAPTER 3 

RESULTS 

 

3.1 Pathway-Specific Gene Expression Signature Generation 

With the use of RNA sequencing data of HMECs overexpressing GFRN oncogenes, gene 

expression signatures of varying gene list lengths were generated using Rstudio (Version 1.2.5019) 

(Table 3.1-3.5). Pathway activation estimates were also produced by projecting the signatures onto 

the 541 LUAD patient tumor samples to predict levels of pathway activity. These signatures were 

produced by comparing the overexpressing HMECs to its respective GFP (control) HMEC 

samples. To ensure the signatures’ ability to capture the levels of pathway activity are expressed 

within the HMEC samples, pathway-specific cross-validation scatterplots of the training data was 

assessed.  Produced scatterplots of each GFRN pathway-specific oncogene that accurately 

displayed low levels or no level of pathway activity for GFP (control) versus high levels of activity 

for the overexpressed GFRN HMECs were considered to be internally validated. This included the 
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gene lists lengths with the corresponding GFRN pathway being investigated as follows BAD 

(BAD), 475; HER2 (ERBB2), 5; IGF1R (IGF1R), 25; RAF (RAF1), 275; and KRAS (KRAS, G12V), 

500 (Table 3.1-3.5). External validation was then performed using proteomics and gene expression 

data to determine if the generated gene expression signatures accurately predicted levels of 

pathway activity within the LUAD patient tumor samples from TCGA.  

 

3.2 Proteomics Validation  

 First, using proteomics data from TCPA pathway activation estimates were validated 

through statistical analysis. This included performing Pearson pairwise correlations between the 

produced pathway-specific gene expression signatures and their predicted pathway activity to 

RPPA protein expression data from TCPA (Table 3.6). For the signature validation of BAD, the 

TCPA protein expression of PDK1_pS241 phosphoprotein was correlated to the predicted levels 

of pathway activation for BAD. Due to the upstream signaling of PDK1 leading to the activation 

AKT which in turn inhibits BAD, negative correlations were observed as anticipated. Strongest 

negative correlations for BAD were most optimally seen using the 475-gene signature list (cor = -

0.247206, p-value = 1.63E-06, optimal gene list = 475). For the signature validation of HER2, the 

phosphoprotein HER2_pY1248 showed a strong positive correlation to the predicted pathway 

activity using the 5-gene signature list (cor = 0.3180165, p-value =4.54E-10, optimal gene list = 

5). Next, for RAF the phosphoprotein of CRAF_pS338 showed a significant positive correlation 

using the 275-signature gene list (cor = 0.3176497, p-value = 4.77E-10, optimal gene list = 275). 

Lastly, for the signature validation of KRAS the phospho-protein MEK1_pS217S221 was utilized 

due to downstream activation of MEK1 as a consequence of KRAS upstream activation. The 

highest positive correlation was observed using the KRAS 500-gene signature list (cor = 
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0.1643924, p-value = 0.001577, optimal gene list = 500). All gene expression signatures were able 

to be validated using protein expression levels, except for IGF1R, as referenced in Table 3.6.  

 

3.3 Gene expression Validation  

Next, Pearson pairwise correlations were performed between the signature predicted 

pathway activity of the respective GFRN pathway to the expression levels of the gene of interest 

within the LUAD patient tumor samples from TCGA (Table 3.7). For the validation of BAD, the 

estimated pathway levels predicted by the BAD 475- gene signature showed a positive correlation 

to the patient samples expressing higher levels of bad activity indicating accurate signature 

predictability (cor = 0.1127843, p-value = 0.008649, optimal gene list = 475). Next, for HER2 

validation, the 5-gene signature showed a strong positive correlation to HER2 mutated levels of 

activity within the patient tumor samples (cor = 0.4114047, p-value = < 2.2e-16, optimal gene list 

= 5). Lastly, IGF1R was validated using the IGF1R oncogene test gene expression with the 

strongest positive correlation being seen using the 25-gene signature list (cor = 0.178464, p-value 

= 2.98E-05, optimal gene list = 25). Overall, with the corresponding oncogene expression from 

the patient tumor samples, the pathways BAD, HER2, and IGF1R were validated with the 

exceptions of RAF and KRAS, summarized in Table 3.7.   

 

3.4 Gene Expression Boxplot Validation 

Additionally, gene expression box plots were generated to distinguish levels of pathway 

activity within patient tumor samples using the predicted pathway activity levels from the gene 

expression signatures (Figure 3.1). As mentioned, prior, patient tumor samples were classified into 

“low”, “intermediate”, and “high” percentiles based upon their levels of expression. As 
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summarized in Table 3.8 and Figure 3.1, this method was able to validate the GFRN pathways 

BAD, HER2, IGF1R with the exception of RAF and KRAS.  

 

3.5 Optimal Gene Signature Selection 

In all, optimal gene list lengths were determined through statistical analysis by cross 

referencing proteomics and gene expression correlations (Table 3.8).  For the GFRN pathway 

BAD, proteomics, gene expression, and gene expression box plots validated the 475-signature 

gene list (Table 3.1). For HER2, all three methods were also used to validate the HER2’s 5-

signature gene list (Table 3.2). Next, for IGF1R, only the gene expression and generated gene 

expression boxplot was used for validation of the 25-signature gene list (Table 3.3).  For the GFRN 

RAF, only protein expression was used for the validation of its 275- signature gene list (Table 3.4). 

Lastly, for KRAS, only protein expression was used for the validation of the 500-signature gene 

list (Table 3.5).  
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CHAPTER 4 

DISCUSSION 

 

4.1 Significance of Findings and Future Implications 

In this study, GFRN-specific gene expression signatures, represented of aberrant pathway 

activity, were generated to interrogate GFRN pathway activity within lung tumors. Optimal gene 

expression signatures were then determined for the GFRN pathways BAD (BAD), HER2 (ERBB2), 

IGF1R (IGF1R), RAF (RAF1), and KRAS (G12V) using proteomics and gene expression 

data (Figure 4.1). For the signatures HER2(ERBB2), IGF1R(IGF1R), RAF(RAF1) and 

KRAS(G12V), predicted pathway activity showed a positive correlation with downstream protein 

expression levels, indicating downstream pathway activation of the investigated pathways. For the 

signature BAD, protein expression representing downstream activation of the AKT pathway, 

activated upstream by PDK1, showed corresponding negative correlations indicating inhibition of 

the BAD pathway activity, as anticipated. Next, corresponding higher levels of gene expression 

were observed in HER2 and IGF1R when correlated with mutated levels of gene expression 

supporting aberrant pathway activation of the two pathways. In addition, upregulated levels of 

AKT pathway activity were used to validate BAD’s signature representing abnormal pathway 

activity, in which negative correlations were seen, accurately depicting the inhibition of BAD by 

AKT activation.  In addition, boxplots were used to validate signature generation for the pathways 

BAD, HER2, and IGF1R. A percentage of the tumor samples were distinguished to have higher 

levels of pathway activity signifying the gene expression signatures ability to characterize mutated 

levels of pathway activity. In all, it was concluded that the generated GFRN-pathway specific gene 
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expression signatures, representative of aberrant GFRN activity, accurately distinguished higher 

levels of pathway activity within LUAD patient tumor samples. 

 

In future studies, a multiple pathway analysis will be performed using the generated gene 

expression signatures to begin to comprehend underlying molecular mechanisms of the GFRN. 

Through the projection of these signatures, simultaneously onto lung cancer cell lines, hierarchical 

clustering can be utilized to reveal patterns of gene expression. These gene expression patterns, or 

phenotypic patterns, can be characterized to reveal drug sensitive or resistant phenotypes by 

performing drug response predictions. Potential intrinsic subtypes could also be revealed exposing 

sensitivity patterns within this complex network. Overall, with the use of multiple-pathway 

analysis with the GFRN pathway-specific gene expression signatures, a potential comprehensive 

profile of the GFRN can be built to reveal novel phenotypic patterns and identify drug sensitivities. 

This in turn, can be used to enhance prognostic, diagnostic, and therapeutic treatment decisions 

against lung cancer, overall enhancing precision medicine approaches to combat drug resistance 

development.   
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Table 2.1 Publicly available datasets acquired for gene signature generation and analysis consisting of 

gene expression signature data along with LUAD patient tumor samples and proteomics validation 

dataset. 

 

Dataset  Source  Content  

Accession 

GSE83083  

NCBI 

GEO  

Gene expression data of overexpressed HMECs   

• GFP18: 6 controls              IGF1R: 6 samples  

• BAD (BAD): 6 samples     RAF (RAF1): 6 

samples  

• HER2(ERBB2): 5 samples  

Accession 

GSE83083  

NCBI 

GEO  

Gene expression data of overexpressed HMECs  

• GFP30: 9 controls  

• KRAS_GV (G12V): 9 samples  

Accession 

GSE59765  

NCBI 

GEO  

Gene expression data of overexpressed HMECs:  

• Control: 6 EGFR controls  

• EGFR (EGR1): 6 samples  

Accession 

GSM1536837  

NCBI 

GEO  

TCGA Patient Tumor Samples gene expression:  

• LUAD: 541 samples  

Accession 

GSE62944  

NCBI 

GEO  

TCGA Cancer Type Samples TCGA tumor sample barcode with 

corresponding sample classification.  

  _____ TCPA  Proteomics expression levels of corresponding GFRN 

downstream pathway activations.  
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Table 3.1 Optimal signature gene list generated for BAD pathway listing all 475 genes and their 

associated weight in the signature in predicting BAD pathway activity.  
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Table 3.2 Optimal signature gene list generated for HER2 pathway listing all 5 genes and their associated 

weight in the signature in predicting HER2 pathway activity. 

 
 
 
 
 
 
 
 
 
 
Table 3.3 Optimal signature gene list generated for IGF1R pathway listing all 25 genes and their 

associated weight in the signature in predicting IGF1R pathway activity. 
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Table 3.4 Optimal signature gene list generated for RAF pathway listing all 275 genes and their associated 

weight in the signature in predicting RAF pathway activity. 
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Table 3.5 Optimal signature gene list generated for KRAS pathway listing all 500 genes and their associated 

weight in the signature in predicting KRAS pathway activity. 
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Table 3.6 Optimal gene list selection using proteomics validation calculated with Pearson pairwise 

correlations between predicted pathway activations and TCPA protein expression levels.  

 Pathway  List length Antibody cor p-value 

BAD 475 PDK1_pS241 -0.247206 1.63E-06 

HER2 5 HER2_pY1248 0.3180165 4.54E-10 

IGF1R 25 IGF1R_pY1135Y1136 x x 

RAF 275 CRAF_pS338 0.3176497 4.77E-10 

KRAS 500 MEK1_pS217S221 0.1643924 0.001577 

 

 

 
Table 3.7 Optimal gene list selection using gene expression validation calculated with Pearson pairwise 

correlations between predicted pathway activations and TCGA patient tumor expression levels. 

 Pathway List length Validation Gene cor p-value 

BAD 475 BAD x x 

HER2 5 ERBB2 0.4114047 < 2.2e-16 

IGF1R 25 IGF1R 0.178464 2.98E-05 

RAF 275 RAF1 x x 

KRAS 500 KRAS x x 

 

 

 

Table 3.8 Summary table of gene signature selection and methods used for validation.  

Pathway Oncogene  List length Proteomics Gene Box plot 

BAD BAD 475 PDK1_pS241 BAD ✔️ 

HER2 ERBB2 5 HER2_pY1248 ERBB2 ✔️ 

IGF1R IGF1R 25 x IGF1R ✔️ 

RAF RAF1 275 CRAF_pS338 x x 

KRAS G12V 500 MEK1_pS217S221 x x 
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Figure 1.1 Schematic overview of the driving oncogenic Growth Factor Receptor Network (GFRN) 

responsible for cell survival, growth, and metastasis. Consist of two intercommunicating parallel signaling 

pathways including RAS/RAF/MAPK pathway, shown in green, and the PI3K/AKT/mTOR, shown in blue. 

RAS pathway activation can be initiated by EGFR receptor mediated signaling leading to activation of 

RAF, in turn initiating MEK activation, as a result initiating tumorigenesis through ERK activation. Its 

neighboring pathway PI3K can be initiated through HER2(ERBB2) receptor mediated signaling as well as 

RAS activation. This then results in the inactivation of PDK1 activating AKT signaling which can inhibit 

the BAD pathway and/or lead to activation of mTOR resulting in tumorigenesis. Additional, signaling 

pathways can be initiated such as the inhibition of ERK leading to inhibition of RAF through mTOR 

activation. Although various alternate pathways of activation leading to drug resistance remain 

uncharacterized.  
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(a)                                                                         (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)       (d) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 (a)Principal component Analysis (PCA) expressing the first two PCAs representing the greatest 

variations between the gene expression data and LUAD patient tumor samples from TCGA. Due to external 

factors significant variances and confounding batch effects are observed. (b) PCA scatter plot displaying 

the first two PCAs representing the greatest variations between the datasets. This included the gene 

expression data, shown in green, and LUAD patient tumor samples from TCGA, shown in red, in which 

significant confounding variables and variances were observed. (c) The PCA following adjustment and 

refinement of gene expression data and patient tumor samples using the ComBat function resulting in 

increased data similarity.  (d) PCA scatter plot displaying the gene expression data, shown in red and LUAD 

patient tumor samples, shown in green, following ComBat adjustment displaying significant improvement 

in data similarity and reduction of variances and confounding batch effects. 
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(a)                  (b) 
 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Gene expression box plots used for gene expression signature validation. (a) Generated box plot 

used for validation of BAD displaying the signature’s ability, shown on the x-axis, to distinguish levels of 

pathway activity within LUAD patient tumor samples shown on the y-axis. As a result, higher levels of 

pathway activity were predicted in 55 samples classified as “HIGH” expressing, while 331 showed 

“intermediate” pathway activity, and 155 showed low levels of BAD pathway activation classified as 

“LOW” expressing samples. Concluding the signature’s ability to distinguished levels of aberrant activity 

with TCGA samples. (b) In this figure, the generated gene expression signature of HER2 predicted higher 

levels of pathway activity in 55 patient tumor samples classified as high expressing, 161 intermediate 

expressing samples, and 125 low expressing samples distinguishing levels of pathway activity further 

validating the signature. (c) Lastly, the gene expression signature of IGF1R was able to distinguish levels 

of increased pathway activity within 55 patient tumor samples, classified as “HIGH” expressing, 176 were 

identified as “intermediate” expressing, and 310 were characterized as low expressing. In all, validating the 

signature’s ability to distinguish accurate levels of pathway activity.   

 

 

  



 

 34 

(c) IGF1R Signature  
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Figure 4.1 Complex heatmaps generated of optimized gene expression signatures representative of aberrant 

pathway activity for the GFRN pathways (a) BAD, 475-gene signature (b) HER2, 5- gene signature 

(b) HER2 Signature  
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(c)IGF1R, 25-gene signature (d) RAF, 275-gene signature, and (e) KRAS, 500 gene-signature. The black 

bar indicates normal pathway activity or the respective GFRN pathway turned off, expressed using the 

HMECs overexpressing GFP (control). The red bar is then used to represent aberrant pathway activity or 

pathway activity turned on, generated by the HMECS overexpressing the GFRN-pathways respective 

oncogene. Relative to the pathway’s state of activation, genes comprising the signature are shown on the 

right expressing varying levels of activity, indicated in red or blue. Genes expressing upregulated levels of 

expression are represented in red, and the brighter the red, the higher levels of activity while blue indicates 

downregulated levels of activity and the darker the blue, the lower the level of activity. 
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