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Exploring in Silence: Hearing and Deaf Infants Explore Objects 
Differently before Cochlear Implantation

Mary K. Fagan
Department of Communication Sciences and Disorders, Chapman University.

Abstract

Infant development has rarely been informed by the behavior of infants with sensory differences 

despite increasing recognition that infant behavior itself creates sensory learning opportunities. 

The purpose of this study of object exploration was to compare the behavior of hearing and deaf 

infants, with and without cochlear implants, in order to identify the effects of profound 

sensorineural hearing loss on infant exploration before cochlear implantation, the behavioral 

effects of access to auditory feedback after cochlear implantation, and the sensory motivation for 

exploration behaviors performed by hearing infants as well. The results showed that 9-month-old 

deaf infants explored objects as often as hearing infants but they used systematically different 

approaches and less variation before compared to after cochlear implantation. Potential 

associations between these early experiences and later learning are discussed in the context of 

embodied developmental theory, comparative studies, and research with adults. The data call for 

increased recognition of the active sensorimotor nature of infant learning and future research that 

investigates differences in sensorimotor experience as potential mechanisms in later learning and 

sequential memory development.

Object exploration is a sign of infants’ engagement with and motivation to learn about their 

world (Bradley-Johnson, Friedrich, & Wyrembelski, 1981; McCall, 1974; Ruff, Saltarelli, 

Capozzoli, & Dubiner, 1992; Thelen & Smith, 1994). They learn and remember more, in 

fact, from exploring objects themselves than from watching others act on the same objects 

(Daum, Prinz, & Aschersleben, 2011; Gerson & Woodward, 2014; Hayne, Barr, & Herbert, 

2003; Kubicek, Jovanovic, & Schwarzer, 2017; Needham, 2009; Thelen & Smith, 1994). For 

example, infants who performed actions demonstrated by an experimenter recalled and 

reproduced those same actions six weeks later, but infants who had only observed the 

experimenter did not (Hayne et al., 2003). The actions that infants perform themselves and 

the sensorimotor feedback they generate help to form and strengthen neural connections 

between perceptual and motor areas in the developing brain (Kohler et al., 2002; Marshall, 

Young, & Meltzoff, 2011).

Hearing infants are known to systematically vary their exploration activities, creating 

opportunities to discover object properties and affordances, maximizing opportunities for 

sensory learning (Bradley-Johnson et al., 1981; Eppler, 1995; Gibson, 1988; McCall, 1974; 
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Rochat, 1989; Ruff et al., 1992; Smith & Gasser, 2005; Thelen & Smith, 1994). These 

variations reveal both infants’ motivation to learn and also what in particular they are 

interested in experiencing at a given moment. Hearing infants, for example, often explore the 

auditory properties of objects (McCall, 1974; Ruff, 1984) but what infants do when they 

cannot hear is largely unknown.

Early Exploration in Hearing Infants

In the latter part of the first year, most hearing infants routinely engage in mouthing, 

fingering, inspecting, shaking, and banging objects; these behaviors then decline in the 

second year as relational and symbolic behaviors increase (Belsky & Most, 1981; Fenson, 

Kagan, Kearsley, & Zelazo, 1976; Mash, Bornstein, & Banerjee, 2014; McCall, 1974; 

Needham, 2009; Zelazo & Kearsley, 1980). Mouthing of objects, for example, was common 

among 7- to 11-month-old hearing infants, occupying approximately 10 to 20% of their 

exploration time (McCall, 1974; Palmer, 1989), but became less frequent after 15 months of 

age (Belsky & Most, 1981; McCall, 1974). Individually, all infants in one study engaged in 

mouthing behavior (Belsky & Most, 1981) and all infants in another shook or banged 

objects against a table at 7 to 12 months (Thelen, 1979). Additionally, for 8- to 10-month-

old infants, shaking and banging behaviors were more commonly performed with sounding 

objects than with non-sounding objects (Lockman & McHale; 1989; Palmer, 1989).

Infants with Profound Hearing Loss

How infants with auditory sensory differences explore objects with and without cochlear 

implants is unclear. It has been suggested that deaf infants (infants with profound 

sensorineural hearing loss, ≥ 90 dB HL) engage principally in visual exploration and that, 

given the absence of auditory feedback, they might explore objects less overall than hearing 

infants do (e.g., Koester, Papousek, & Smith-Gray, 2000; Liben, 1978; Spencer, & Deyo, 

1993). However, systematic studies of their early object exploration have not been done. 

Moreover, in neither population (hearing or deaf) have differences in sensory feedback from 

object exploration been discussed in conjunction with potential implications for broader 

aspects of learning, information processing (e.g., visual-spatial or auditory-temporal 

languages) or memory. If deaf infants do focus primarily on visual exploration, for example, 

it is unclear why they later show smaller visual sequential memory span scores compared to 

hearing children and adults (e.g., AuBuchon, Pisoni, & Kronenberger, 2015).

Many deaf individuals in the United States who currently use cochlear implants—neuro-

prosthetic devices that provide the sensation of hearing—received their cochlear implants 

between 2 and 6 years of age, and later. However, cochlear implantation began to occur at 

younger ages after 2000 in conjunction with changes in Food and Drug Administration 

guidelines that supported cochlear implantation at 12 months of age (U. S. Department of 

Health and Human Services, National Institutes of Health, National Institute on Deafness 

and Other Communication Disorders, 2011). Although today many children continue to 

receive cochlear implants during the preschool years, earlier implantation now permits 

investigating changes in infant behavior in relation to cochlear implantation. Identifying the 

exploration behaviors of deaf infants with and without cochlear implants is a step toward 
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understanding their early action-perception focus and potential implications for later 

learning and development.

Sensory Motivation

The perceptual feedback that motivates infant actions is sometimes unclear even in hearing 

infants. For example, whereas hearing infants frequently shake and bang objects (McCall, 

1974; Ruff, 1984), the rhythmic motor organization of these behaviors, rather than their 

auditory consequences, has often been examined in the past (Kahrs, Jung, & Lockman, 

2103; Thelen, 1981). Clarifying the sensory motivation for these and other common early 

exploration behaviors is challenging, however, given that most behavior generates 

multimodal feedback (Gibson, 1988; Meltzoff & Borton, 1979; Rakison & Woodward, 

2008; Thelen, 1979), feedback that provides redundant sensory information available across 

two or more senses simultaneously, and modality-specific information available to a single 

sense (Bahrick & Lickliter, 2014).

To temporarily limit multimodal exploration, Gibson and Walker (1984) briefly constrained 

12-month-old infants’ ability to access the visual modality during a study of object 

manipulation in the dark. After selective familiarization with rigid or soft objects, infants 

preferentially looked to objects with the familiarized affordance (rigid vs. soft), regardless of 

whether familiarization had taken place in the dark or in a lighted room. Despite this finding, 

infants in the study engaged in less varied object exploration in the dark than in the light; 

however, methods for coding exploration in each condition also differed.

Studying object manipulation in infants who have experienced limits on multimodal 

exploration for twelve months or more will further our understanding of how multimodal 

sensory feedback influences exploration overall. That is, controlling the influence of 

auditory perception and its effects on behavior by studying deaf infants presents a unique 

opportunity to identify the sensory experiences prioritized by deaf infants before cochlear 

implantation, the distinct behavioral effects of access to sound through cochlear implants 

(see also Corina & Singleton, 2009), and the sensory motivation for common infant 

exploration behaviors (e.g., shaking, visual inspection, etc.).

Current Study

This goal of this study of deaf and hearing infants was to test infants with profound hearing 

loss during the well-documented period of object exploration in the first year between 9 and 

12 months (before cochlear implantation), and then to observe the relatively immediate 

behavioral effects of access to auditory feedback approximately four months after cochlear 

implant activation, in comparison to hearing peers. To our knowledge, this study is the first 

to examine object exploration in this way.

An earlier study of hearing infants (Gibson & Walker, 1984) temporarily limited access to 

visual input and found reduced variation in exploration; however, exploration duration was 

not reported. Therefore, in this study, reduced variation was predicted before cochlear 

implantation, in comparison to hearing infants, with increased variation in exploration 

following access to auditory feedback after cochlear implantation (e.g., Eppler, 1995; 
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Gibson & Walker, 1984; Gliga, 2018). Evidence from comparing hearing and deaf infants is 

expected to support a role for auditory feedback in repetitive shaking and banging behaviors 

(see also Fagan, 2015), and to identify the behaviors less likely to vary with access to 

auditory feedback (e.g., inspection). Studying infants with differing sensory experiences is 

important for understanding learning and developmental processes across populations and to 

inform developmental theory more inclusively.

Method

Participants

Forty-three infants participated in the study, 27 hearing infants, and 16 infants with bilateral 

profound sensorineural hearing loss. Each infant participated at one of two time points 

(Time 1, or Time 2), with a subset participating at both time points (Time 1 and Time 2; n = 

8 hearing, n = 6 deaf). Table 1 shows the number of participants tested at Time 1 and/or 

Time 2 and the total number of sessions overall. Due to the difficulty of recruiting the 

relatively small population of infants with profound hearing loss and early cochlear 

implantation, testing infants at one or both time points in this mixed cross-sectional and 

longitudinal study allowed 57 data collection points in all.

All infants with profound hearing loss at Time 1 had been identified by medical providers as 

candidates for cochlear implant surgery, had received little to no benefit from hearing aid 

use, and were expected to receive cochlear implants within a few months. Infants with 

profound hearing loss at Time 2 all were cochlear implant users. Because the study was 

limited by funding timelines and surgery schedules, some infants with hearing loss had not 

received cochlear implants by the end of the study and so were seen only at Time 1 (n = 3; 

Table 1), and some were identified only after they had received cochlear implants (n = 5; 

Fagan, 2014) and so were tested only at Time 2. Thus, Time 1 and Time 2 are terms used to 

represent infant age (discussed below) and cochlear implant status (i.e., pre vs. post, 

respectively); however, they represent longitudinal data collection only for 14 of the 43 

participants.

Time 1 participants were 15 hearing infants (H1), and 11 infants with profound 

sensorineural hearing loss, who had not yet received cochlear implants (Pre-CI). The mean 

age of infants at Time 1 was 9.9 months (SD = 1.3). Table 2 shows participants’ mean age 

by group and time. The non-significant difference in deaf and hearing infants’ ages at Time 

1 (p = .49) reflects the small difference in number of participants per group (11 vs. 15).

Participants at Time 2 were 18 hearing infants (H2), and 13 infants with cochlear implants 

(Post-CI). Mean age at Time 2 was 17.7 months (SD = 2.9). Time 2 was designed to test 

Post-CI infants who had receive their cochlear implants at an early age (M age at implantation = 

12.9 months, SD = 2.3) and who had used their implants for a relatively short period of time. 

Mean age at cochlear implant activation (about 6 weeks after surgery) was 14.0 months (SD 
= 2.2); mean duration of implant use at Time 2 was 4.2 months (SD = 2.6). Testing infants, 

on average, 4.2 months after implant activation allowed maximal inclusion of known infants 

with cochlear implants (n = 13), and observation of the relatively immediate effects of 

access to auditory feedback on infant behavior.
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All infants (hearing and deaf) were born to hearing parents who used primarily spoken 

language with their children before and following cochlear implantation. At Time 1, none of 

the Pre-CI infants used words or signs and only one of the hearing (H1) infants used a single 

spoken word. All infants scored within the average range (M = 101, SD = 8.3) on the motor 

development subtest of the Vineland Adaptive Behavior Scales, Second Edition (Sparrow, 

Cicchetti, & Balla, 2005), administered during their first study visit. Mothers reported no 

developmental concerns other than hearing loss. Education level (in years) for mothers of 

hearing and deaf infants was 14.8 (SD = 2.8) and 14.3 years (SD = 2.9), respectively. Thirty-

three infants were Caucasian, 6 were African-American, and 4 were biracial. The study was 

conducted according to guidelines in the Declaration of Helsinki, with written informed 

consent for each child obtained from a parent before any assessment or data collection. All 

procedures involving human subjects were approved by the Institutional Review Board at 

Indiana University and the University of Missouri.

Materials

Two sets of 10 objects appropriate for infant manipulation were selected to be interesting, 

age-appropriate, easily grasped and manipulated, and varied in their visual, tactile, and 

auditory characteristics or affordances. The objects were similar in type to those used in 

other studies of infant exploration (e.g., bells, rattles) across the first and second years (e.g., 

6 to 24 months; Belsky & Most, 1981; Fagan & Iverson, 2007; Fenson et al., 1986; McCall, 

1974; Palmer, 1989). Compared to other studies, however, the number and types of objects 

were increased (i.e., 20 objects) in order to include systematic within-set variations in shape, 

size, texture, hardness, appearance, moving parts, and noisemaking potential (e.g., rattle, 

wand of glitter), and to have enough objects to form two sets for testing across two table 

surfaces.

Objects in each set are pictured in Figures 1 and 1B. Clockwise, beginning at the 12 o’clock 

position of each figure (i.e., call bells, with and without clapper; ring of bells, with and 

without pellets), object appearance and shape can be compared across sets. The objects in 

each set were chosen to present similar affordances and to contain some differences in 

appearance across sets to maintain infant attention. For example, Set 1 (Fig. 1A, 3 o’clock 

position) contained a wood bug with moveable parts (beads and disks), and Set 2 (Fig. 1B, 3 

o’clock position) contained a wooden ring with moveable trains and beads. Two objects that 

did not vary in shape or color/appearance across sets was a pair of wooden rings covered in 

plain, untextured, taupe-colored fabric (Fig. 1, 6 o’clock position in each set). These plain 

objects (one placed in each set) were created for comparison purposes to be the least 

visually, texturally, or auditorily interesting. Each object set contained two additional objects 

(not pictured), selected to elicit gesture use (e.g., comb), not analyzed here.

Among the objects in each set were three noisy-silent object pairs per set, similar in 

appearance within each pair. However, one object in each of the pairs was designed to 

readily produce noise when handled (e.g., bell with clapper), the other was altered so that it 

did not (e.g., bell with clapper removed). These six noisy-silent pairs were designed to test 

infants’ interest in sound-making affordances (among other affordances). Although many 

objects, including the silent bells might be used to make noise when banged against the hard 
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table surface, the noisy-silent object pairs allowed systematic comparisons of within-pair 

manipulation. In addition to documenting exploration within the noisy-silent pairs, however, 

eight target behaviors (described below) were documented across all objects.

Procedure

Infants were videotaped seated on the lap of a caregiver in front of a table. Infants were 

tested using routine procedures (e.g., Gibson & Walker, 1984; Palmer, 1989), while 

maximizing opportunities for object exploration by increasing both the number and types of 

objects infants could explore. The examiner, seated across the table from the infant, 

presented each object at midline, one object at a time. Infants could freely explore and 

manipulate each object for 30 s, beginning when the object was first touched. After 30 s 

elapsed, the object was retrieved by the examiner and another object was offered. Each 30 s 

period was monitored by the examiner using a stopwatch held under the table. To further 

vary sound exploration opportunities, a foam mat (1” thick) was placed on the table for 

presentation of one object set; the table surface was bare for the other set. Order of object set 

and table surface were counter balanced; objects within sets were presented in random order.

Coding

Eight object exploration categories, commonly coded in other studies of exploration (Gibson 

& Walker, 1984; Lockman & McHale, 1989; McCall, 1974; Palmer, 1989; Rochat, 1989; 

Ruff, 1984, 1986; Ruff et al., 1992) were identified from the video record as follows.

Finger: move fingers along the surface of an object or object part

Inspect: hold and visually inspect object for ≥ 1 s

Mouth: put object in mouth or touch object to lips or tongue

Pat: pat object with hand, or tap it against the hand

Shake/Bang: move object up-and-down or side-to-side in midair, or bang it against another 

surface

Slide: move object back-and-forth or side-to-side along the table surface

Throw: throw, toss, or release object by opening the hand to let it fall

Other: After coding all actions individually, the four least frequently occurring actions were 

grouped together in this category for data analysis. The mean proportion of exploration 

duration for these behaviors, in combination, was only .01 (SD = .02). The four infrequent 

actions were: flick—contract and extend fingers against an object (mean instances per 

participant = 0.21); press—press or squeeze object (mean instances = 1.25); pull—pull on 

object with fingers (mean instances = 0.11); and turn—spin or turn a moving object part 

(e.g., a bead; mean instances = 0.28).

The eight exploration behaviors were coded from the videotape record. Coding of the 

exploration behaviors for a given object began when the infant first touched the object (with 
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either or both hands) and ended 30 seconds after the first touch. The beginning and end time 

for each observed behavior was documented using the time clock on the video record for 

calculation of exploration duration for each behavior and with each object.

Additionally, number of instances per behavior (per object) was also documented, as was the 

number of complete cycles for shake/bang and slide behaviors. Brief interruptions in an 

ongoing behavior (≤ 1s) were considered part of one occurrence (e.g., infant removed object 

from mouth for <1 s then resumed mouthing). Behaviors interrupted for >1s were coded as 

separate instances of a given behavior. Holding an object only—without movement, 

manipulation, or visual inspection—was not coded, nor was looking toward an object when 

it was not being held, touched, or manipulated.

Reliability

Four graduate and undergraduate students trained on the coding categories identified and 

classified all exploration behaviors (type, duration, number of instances). To assess 

reliability, 11 randomly selected videotape records (19%) were independently coded in full 

by a second coder. The intra-class correlation coefficient (ICC) for the number of behaviors 

instances identified from these records was .921. The ICC for duration of behaviors 

identified was .95. Point by point percent agreement for classification of exploration type 

was 86.2%.

Statistical Analysis

To address both duration and type of object manipulation, the dependent variables were 

exploration duration, and number of occurrences of each identified behavior type above. 

Because some infants contributed data to both time points (Table 1), data for each time point 

were analyzed separately, using independent- or paired-samples t-tests and repeated-

measures Analysis of Variance (ANOVA). Because group sizes at each time point were 

relatively small, paired comparisons were minimized and alpha levels were uncorrected; 

however, effect sizes were also calculated and included. Arcsine transformations were used 

in all proportional data analysis (proportion of total exploration duration).

Results

Preliminary analyses showed that overall exploration duration did not differ significantly by 

object set, paired-samples t(56) = .77, p = .44; table surface, t(56) = .60, p = .55; order of set 

presentation, independent-samples t(55) = 1.73, p = .08; or gender, independent-samples 

t(41) = 1.56, p = .13.

Duration by Object Type

A repeated-measures ANOVA across all participants, indicated a significant difference in 

exploration duration among objects, F(9, 504) = 32.47, p < .001, ηp
2 = .371. Planned 

contrasts indicated that infants manipulated the taupe rings (created to be the least visually, 

texturally, or auditorily interesting) for less time on average than any of the other objects (all 

p < .01), except the baseball/soccer rattles, F(1, 56) = 1.74, p = .192. Yet infants manipulate 

even these plain taupe rings for about one-third of the 30 s time allotted per object (10.45 s). 
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Table 3 lists the average exploration time (in seconds) for objects within each pair and the 

overall mean (16.13 s).

Total Exploration Duration

Together, deaf and hearing infants explored objects for more than half the 600-second period 

(i.e., 10 minutes) allotted (M = 322.6 s, SD = 73.7). Independent-samples t-tests indicated 

no significant differences in overall exploration duration between groups at Time 1 (Pre-CI 

vs. H1), t(24) = .49, p = .62, or Time 2 (CI vs. H2), t(29) = .35, p = .72, and no differences in 

mean duration per object at either time point, Time 1, t(517) = 1.09, p = .28, or Time 2, 

t(618) = .66, p > .50. Thus, profound hearing loss did not affect infants’ overall motivation 

to explore or their attention to individual objects. Figure 2 shows overall exploration 

duration and duration per object by group and time.

Time 1 Exploration Behavior Types: Variation and Duration

Variation.—At Time 1, however, object exploration was significantly less varied in infants 

with hearing loss compared to their hearing peers. On average, the Pre-CI infants engaged in 

a mean of 6.6 (SD = 1.20) different exploratory behavior types overall, whereas hearing 

infants (H1) engaged in 8.0 (SD = .92), t(24) = 3.26, p < .01, d = 1.27. Figure 3 shows the 

mean number of different exploration behavior types for each group.

Duration proportions.—A Time 1 group (H1, Pre-CI) x behavior (8 behaviors) repeated 

measures ANOVA indicated a significant group x behavior interaction, F(7, 168) = 3.61, p 
< .01, ηp

2 = .13, with follow-up analyses showing Pre-CI infants differed significantly from 

hearing infants in two ways. First, Pre-CI infants spent nearly twice as much time, 

proportionally, exploring objects by mouthing as H1 infants did, 0.39 vs. 0.22), t(24) = 2.40, 

p < .05, d = .92. The second principal difference was that object shaking and banging 

occurred for a significantly smaller proportion of total exploration time in the Pre-CI than 

the H1 group, t(24) = 2.22, p < .05, d = 0.94. Figure 4 shows proportion of total exploration 

duration per behavior by group and time. Moreover, Pre-CI infants explored fewer than half 

as many objects by shaking (2.8 vs. 6.2), t(24) = 2.88, p < .01, d = 1.14, and their latency to 

first shake per object was more than twice as long as H1 infants’ (18.21 s vs. 9.05 s), t(24) = 

3.31, p < .01, d = 1.25.

Time 2 Exploration Behavior Types: Variation and Duration

Variation.—Post-CI and H2 infants engaged in similar numbers of different exploration 

behaviors overall at Time 2 (M =7.9, SD = 1.1, and M = 7.8, SD = 1.3, respectively), t(29) = 

0.07, p = .94.

Duration proportions.—For infants at Time 2, the group x behavior repeated measures 

ANOVA interaction was no longer significant, F(7, 203) = 0.95, p = .46, ηp
2 = .03. However, 

the main effect of behavior was significant, F(7, 203) = 61.82, p < .001, ηp
2 = .68; planned 

contrasts showed inspection proportions exceeded all other behavior proportions (all p < .

001), except fingering (p = .58). The main effect of group was not significant, F(1, 29) = 

0.84, p = .36, ηp
2 = .02. Thus, the Post-CI and H2 groups did not differ significantly for 

proportion of object shake/bang behaviors, t(29) = 1.41, p = .57, d = 0.17, or for proportion 
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of mouthing exploration behavior, t(29) = 1.53, p = .18. Mouthing in Post-CI infants was 

nearly one-fourth the level of Pre-CI infants’ (M = 0.11 vs. 0.39; Fig. 4).

Thus, Post-CI exploration was both similar in behavior type and as varied as H2 hearing 

peers’ only four months after infants with profound hearing loss received cochlear implants. 

In neither age group (Time 1 or Time 2) did infants with hearing loss (Pre- or Post-CI) 

visually inspect objects more than their hearing peers (Fig. 4), Pre-CI versus H1, t(24) = 

0.23, p = .81; Post-CI versus H2, t(29) = 0.22, p = .82, nor did they show a significant 

preference, proportionally, for visual inspection over other forms of exploration. For 

example, inspection and fingering proportions did not significantly differ between groups at 

either Time 1 or Time 2. For both groups (hearing and deaf), fingering proportions were 

larger at Time 2 compared with Time 1, but they did not differ significantly within each time 

point.

Descriptive Analysis of Longitudinal Data:

Statistical analyses were not performed across time points because the Time 1 and Time 2 

data sets were not independent (see method section). However, for descriptive comparison 

purposes, Figure 5 shows proportions of total duration for each exploration type only for 

those infants who were tested at both time points (i.e., n = 6 hearing, and n = 8 deaf infants; 

Table 1). Although the number of participants in each group with data at both time points 

was small, Fig. 5 shows exploration patterns roughly similar to those in Fig. 4 for the full 

data set. For example, from Pre- to Post-CI, shake/bang duration proportions nearly doubled 

(.07 to .14, respectively) in this small group (n = 8).

Noisy/Silent Object Pairs

A final set of analyses examined differential exploration duration within the six noisy/silent 

object pairs only. Across all groups, infants manipulated the noisy (M = 16.6 s, SD = 7.3) 

and silent (M = 16.1 s, SD = 7.2) objects in these pairs for a similar amount of time (in 

seconds) overall, paired-samples t(341) = 1.24, p = .21. However, at Time 1, a group 

(hearing, deaf) x object type (noisy, silent) repeated measures ANOVA indicated a 

significant group x object interaction, F(1, 24) = 5.20, p < .05, ηp
2 = .17, for shake duration. 

Paired-samples t-tests showed H1 infants spent more time shaking the noisy objects than the 

silent objects, t(14) = 2.47, p < .05, d = 0.89; Pre-CI infants did not (p = .34).

The group x object type interaction was no longer significant at Time 2, F(1, 29) = 0.007, p 
= .93, ηp

2 = .00. The main effect of group was also not significant, F(1, 29) = 0.44, p = .50, 

ηp
2 = .01. However, there was a significant main effect of object type, F(1, 29) = 9.07, p < .

01, ηp
2 = .23. Across groups (Post-CI and H2, combined), infants shook noisy objects longer 

than silent objects (M = 3.2 vs. 2.81 s, respectively). However, whereas H2 infants spent 

significantly more time shaking the noisy objects than the silent objects, t(17) = 2.40, p < .

05, d = 0.76, Post-CI infants showed a marginally significant difference in the same 

direction, t(12) = 1.90, p = .08, d = 0.67. Figure 6 shows mean shake duration (in seconds) 

for the noisy-silent object pairs by group and time.
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Discussion

Studying hearing and deaf infants together uncovered new evidence of associations between 

sensory perception and early behavior, revealed the sensory experience prioritized by infants 

with profound hearing loss during object exploration, and clarified the sensory motivation 

for exploratory behaviors commonly performed by hearing infants as well. The data showed, 

foremost, that profound hearing loss did not diminish infants’ motivation to explore objects. 

In terms of overall duration, they generated as much exploration activity as hearing infants 

did, regardless of the absence of auditory sensation. By robustly exploring objects 

themselves, they created opportunities for learning and multimodal feedback from non-

auditory modalities before cochlear implantation and from both auditory and non-auditory 

modalities after cochlear implantation.

However, compared to hearing infants of the same age, Pre-CI infants’ exploration was less 

varied and differed in emphasis in two ways. First, Pre-CI infants maximized sensory 

experience by mouthing objects significantly more than hearing infants did. By prioritizing 

mouthing exploration for nearly 40% of total exploration time—twice the duration 

demonstrated by the hearing infants in this study and others (McCall, 1974; Palmer, 1989)—

Pre-CI infants selectively focused on a feedback mechanism known to facilitate cross-modal 

learning about shape, size, and texture in hearing infants (Fagan & Iverson, 2007; Gibson & 

Walker, 1984; Meltzoff & Borton, 1979). After cochlear implantation, however, remarkably 

little time was devoted to mouthing by either group (Post-CI or H2; 6–11%), consistent with 

the decline in mouthing found in studies of hearing infants in the second year (Belsky & 

Most, 1981). If the Post-CI decline in mouthing in infants with cochlear implants could be 

wholly attributable to age, rather than to the effects of cochlear implantation, then 

differences in mouthing between 9-month-old hearing and deaf infants at Time 1 should not 

have occurred. That is, whereas 9-month-old hearing infants showed mouthing proportions 

similar to those documented in other studies of hearing infants in the first year (Belsky & 

Most, 1981; McCall, 1974; Palmer, 1989), only 9-month-old infants who could not hear 

(Pre-CI) overwhelmingly prioritized mouthing at Time 1.

Second, compared to their hearing peers, deaf infants spent less time shaking and banging 

objects before, but not after cochlear implantation, highlighting both a substantial role for 

auditory feedback in motivating these behaviors previously noted primarily for their 

repetitive cyclic organization alone, and infants’ new interest in generating auditory 

feedback soon after they could hear it. Interest in generating auditory feedback in repetition 

and vocalization has also been documented soon after cochlear implantation (Fagan, 2014, 

2015). Gliga (2018) and Eppler (1995) have argued, respectively, that increased motor 

activity and variability represent active learning, and that increased attention to auditory and 

visual object properties guides new actions. The increased variability (exploration types) and 

selective motor activity (shaking and banging) observed in this study, therefore, suggest 

periods of active learning and auditory attention with cochlear implants.

Although Palmer (1989) did not report duration, she also noted 9-month-old hearing infants’ 

interest in shaking and banging objects (i.e., 2–16 times per object); infants shook sounding 

objects more frequently than silent objects, consistent with the behavior of hearing infants at 
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Time 1 in this study. Post-CI infants’ behavior with the noisy-silent object pairs suggests 

they too were beginning to differentiate, selectively act on, and perhaps test hypotheses 

about auditory affordances (Eppler, 1995; Gliga, 2018; Mash et al., 2014).

The systematic differences in sensorimotor behavior evident in these exploration patterns 

extend and reveal anew the dynamic and reciprocal nature of early action-perception 

relationships. They show that infants actively and adaptively chose voluntary motor 

activities that generated sensory experiences they could perceive and control, in keeping 

with embodied, dynamic systems theories of development (Thelen & Smith, 1994). As 

Overton (2015) proposed, infants behaved and experienced the world not only as agents with 

a particular kind of body—but also as agents with particular sensory resources. When sound 

was inaccessible, 9-month-old Pre-CI infants flexibly adapted object manipulation to 

maximize sensory feedback from mouthing and other exploration behaviors. They engaged 

in behaviors typical for their age group (Belsky & Most, 1981; Fenson et al., 1976; McCall, 

1974; Palmer, 1989; Thelen, 1979; Zelazo & Kearsley, 1980) but in proportions redistributed 

to accommodate and exploit feedback they could perceive. Contrary to some beliefs, 

however, there was no evidence to suggest they were visual learners primarily, or that they 

engaged in visual exploration more than their hearing peers, Pre- or Post-CI.

Efforts to explain exactly how infant behavior shapes learning and cognitive development 

are growing (Gliga, 2018; Marshall, 2016; Rakison & Woodward, 2008; Smith & Gasser, 

2005; Tamis-LeMonda, Kuchirko, & Tafuro, 2013; Woodward & Needham, 2009). In 

experimental tasks with hearing infants, for instance, active object manipulation experience 

influenced word learning and neurocognitive representations, understanding of intention 

(Gerson & Woodward, 2014; Kannass & Oakes, 2008; Thelen & Smith, 1994; Yee, 

Chrysikou, Hoffman, & Thompson-Schill, 2013; Yu & Smith, 2012), and memory 

reactivation and generalization (Bahrick & Lickliter, 2014; Bauer, 2009; Hayne et al., 2003; 

Rovee-Collier, Hartshorn, & DiRubbo, 1999). The differing object exploration experiences 

of infants with profound hearing loss, therefore, are likely to shape learning, memory, and 

cognitive development in different ways.

More research is needed to investigate this possibility, perhaps by examining potential 

associations between spatial experience with objects and the established shape bias in object 

categorization (Samuelson & Smith, 2000), and between spatial and auditory experience 

with objects and visual and auditory sequential memory. The persistently short visual and 

auditory sequential memory spans of children with long-term cochlear implant experience is 

well established (AuBuchon et al., 2015; Conway, Pisoni, & Kronenberger, 2009; Fagan, 

Pisoni, Horn, & Dillon, 2007; Pisoni, Kronenberger, Chandramouli, & Conway, 2016), as is 

the short visual sequential memory span of deaf adults with sign language expertise (Boutla, 

Supalla, Newport, & Bavelier, 2004; Marschark, Sarchet, & Trani, 2016). Deaf adults who 

use American Sign Language (ASL), however, performed better than hearing individuals on 

synchronizing finger tapping to visual flashes (Iversen, Patel, Nicodemus, & Emmorey, 

2015).

Whether or not temporally organized auditory feedback from repetitive actions with objects 

(e.g., shaking noisy objects), as well as early spoken language experience, influences later 
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sequential encoding and retrieval is unclear. Torkildsen, Arciuli, Haukedal, and Wie (2018) 

recently found, however, that 7- to 12-year-old deaf children with cochlear implants showed 

implicit visual sequence learning comparable to that of hearing children.

Several studies of hearing adults are also relevant for questions about sequential memory 

and sensorimotor experience (Chemin, Mouraux, & Nozaradan, 2014; Guttman, Gilroy, & 

Blake, 2005; Hickok, Farahbod, & Saberi, 2015). In these studies, performing rhythmic 

body movements influenced adults’ rhythm perception and EEG patterns in response to 

ambiguous music patterns (Chemin et al., 2014), and Guttman et al. (2005) found 

rhythmically sequenced visual patterns became automatically encoded in an auditory form. 

These studies could be extended to include children and adults with cochlear implants.

Comparative research also found that routine differences in environmental exploration in 

genetically identical mice were correlated with differences in neuronal growth in the 

hippocampus (Freund et al., 2013), a cortical region active in memory tasks. The mechanism 

proposed was that, over time, the sensory feedback from wide-ranging environmental 

exploration signaled the presence of cognitively challenging environments best survived by 

adaptive neuronal growth. In effect, normal variation in exploration resulted in neuronal 

variation. Similarly, relatively small differences in early exploration in deaf and hearing 

infants may influence neuronal growth and organization.

The current study was limited by relatively small numbers of participants, one or two data 

points per individual, and the absence of a non-implanted participant sample at Time 2 to 

test the ongoing effects of limited auditory access across infant age. An additional limitation 

is that sequential memory was not assessed in this study. Although, exploratory variation did 

increase after cochlear implantation, most sequential memory studies have included children 

who received cochlear implants at considerably later ages than in the present study (e.g., 

Fagan et al., 2007; Marschark et al., 2015; Pisoni et al., 2016). Therefore, future studies 

should test sequential memory outcomes in children who receive cochlear implants by 12 

months of age or younger.

In summary, this study has shown that infants with profound sensorineural hearing loss 

explore objects differently than hearing infants before, but not after cochlear implantation. In 

new ways, the results demonstrate the influence of sensory feedback on object exploration 

and the effects of limited feedback from the auditory modality on variation specifically. The 

results extend evidence of decreased variation in object exploration under conditions of 

briefly limited access to the visual modality (Gibson & Walker, 1984) to more enduring 

limitations in access to the auditory modality. Despite the fact that, in most respects, Post-CI 

exploration patterns in this study appeared to match hearing peers’, the young 17-month-old 

Post-CI infants had at that time only a few months of experience with the timing and rhythm 

of the auditory consequences of their actions, whereas their hearing peers had nearly 18 

months of auditory experience. There is much still to be done to understand the potential 

effects of these early differences in auditory experience on later learning and memory.
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Figure 1. 
Objects in object set 1 (A) and object set 2 (B).
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Figure 2. 
Mean overall duration of object manipulation and duration per object by group and time. 

Pre-CI = before cochlear implantation (n = 11); H1 = hearing infants at Time 1(n = 15); 

Post-CI = after cochlear implantation (n = 13); H2 = hearing infants at Time 2 (n = 18). 

Note. Bars represent +/− 1 standard error.
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Figure 3. 
Mean number of different exploration behaviors by group and time. Pre-CI = before 

cochlear implantation (n = 11); H1 = hearing infants at Time 1 (n = 15); Post-CI = after 

cochlear implantation (n = 13); H2 = hearing infants at Time 2 (n = 18). Note. Bars represent 

+/− 1 standard error.
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Figure 4. 
Mean proportion of exploration time per behavior by group and time. Pre-CI = before 

cochlear implantation (n = 11); H1 = hearing infants at Time 1 (n = 15); Post-CI = after 

cochlear implantation (n = 13); H2 = hearing infants at Time 2 (n = 18). Note. Bars represent 

+/− 1 standard error.
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Figure 5. 
Mean proportions of exploration duration per behavior only for those infants who were 

tested at both time points. Pre-CI = before cochlear implantation (n = 8); H1 = hearing 

infants at Time 1 (n = 6); Post-CI = after cochlear implantation (n = 8); H2 = hearing infants 

at Time 2 (n = 6). Note. Bars represent +/− 1 standard error.
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Figure 6. 
Mean shake duration for silent versus noisy objects by group and time. Pre-CI = before 

cochlear implantation (n = 11); H1 = hearing infants at Time 1 (n = 15); Post-CI = after 

cochlear implantation (n = 13); H2 = hearing infants at Time 2 (n = 18). Note. Bars represent 

+/− 1 standard error
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Table 1

Number of Participants in each Group Tested at Time 1 and/or Time 2 and Total Number of Testing Sessions

Group Time 1 Only Times 1 and 2 Time 2 Only Experimental Sessions

Profound Hearing Loss (n = 16) 3 8 5 24

Hearing (n = 27) 9 6 12 33

Total = 57
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Table 2

Participants’ Mean Age (in Months) by Group and Time

Measure

Time 1 Time 2

Pre-CI H1 Post-CI H2

Participants 11 15 13 18

Age by Group 10.1 (1.3) 9.8 (1.4) 18.1 (2.6) 17.4 (3.2)

Age by Time 9.9 (1.3) 17.8 (2.9)

Note. Mean and (standard deviation). Within-time age differences n.s. (Time 1, p = .49; Time 2, p = .45).

Infancy. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fagan Page 25

Table 3

Mean (SD) Exploration Duration (in Seconds) for Objects within Object Pairs

Object Pair Duration

Taupe Rings 10.45 (7.55)

Baseball/Soccer Rattles 11.55 (6.99)

Donut-shaped Rattles 13.62 (7.26)

Colorful Textured Rings 14.35 (7.03)

Jingle Bells 17.00 (7.05)

Green/Orange Shakers 17.66 (5.94)

Glitter Wands 18.57 (6.49)

Blue/Yellow Shakers 18.61 (6.08)

Wooden Bug/Trains 19.59 (6.95)

Call Bells 19.85 (6.68)

 Overall Mean (SD): 16.13 (7.52)
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