
Chapman University Digital Chapman University Digital

Commons Commons

Computational and Data Sciences (PhD)
Dissertations Dissertations and Theses

Fall 1-2021

Applications of Machine Learning to Facilitate Software Applications of Machine Learning to Facilitate Software

Engineering and Scientific Computing Engineering and Scientific Computing

Natalie Best
Chapman University, best120@mail.chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/cads_dissertations

 Part of the Data Science Commons, Numerical Analysis and Scientific Computing Commons, and the

Software Engineering Commons

Recommended Citation Recommended Citation
N. Best, “Applications of machine learning to facilitate software engineering and scientific computing”,
Ph.D. dissertation, Chapman University, Orange, CA, 2021. https://doi.org/10.36837/chapman.000223

This Dissertation is brought to you for free and open access by the Dissertations and Theses at Chapman
University Digital Commons. It has been accepted for inclusion in Computational and Data Sciences (PhD)
Dissertations by an authorized administrator of Chapman University Digital Commons. For more information,
please contact laughtin@chapman.edu.

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/cads_dissertations
https://digitalcommons.chapman.edu/cads_dissertations
https://digitalcommons.chapman.edu/etd
https://digitalcommons.chapman.edu/cads_dissertations?utm_source=digitalcommons.chapman.edu%2Fcads_dissertations%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.chapman.edu%2Fcads_dissertations%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.chapman.edu%2Fcads_dissertations%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.chapman.edu%2Fcads_dissertations%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.36837/chapman.000223
mailto:laughtin@chapman.edu

Applications of Machine Learning to Facilitate Software
Engineering and Scientific Computing

A Dissertation by

Natalie Claire Best

Chapman University

Orange, CA

Schmid College of Science and Technology

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational and Data Sciences

January 2021

Committee in charge

Erik Linstead, Ph.D., Chair

Elizabeth Stevens, Ph.D.

Ruben Ramirez-Padron, Ph.D

The dissertation of Natalie Claire Best is approved.

Applications of Machine Learning to Facilitate Software
Engineering and Scientific Computing

Copyright © 2021

by Natalie Claire Best

III

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Erik Linstead, for not only his continued support, patience,

and guidance but also for welcoming me into MLAT all those years ago.

To Dr. Ruben Ramirez-Padron, I am incredibly grateful for the generous feedback and mentoring

while a member of my committee and also during my internship at Disney.

I would also like to thank Dr. Elizabeth Stevens for her advice and help, especially during my time

as a Graduate Teaching Assistant.

I wish to thank the friends and colleagues who supported me along the way. Especially my bestie,

Dr. Viseth Sean, whose friendship and positivity got me through the toughest times.

My deepest gratitude and appreciation goes to Jordan Ott, for his constant love, inspiration, and

encouragement to accomplish hard things.

IV

LIST OF PUBLICATIONS

Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic, Pierre Baldi, ”A Fortran-Keras

Deep Learning Bridge for Scientific Computing”, Scientific Programming, vol. 2020, Article ID

8888811, 13 pages, 2020. https://doi.org/10.1155/2020/8888811

Natalie Best, Jordan Ott, Erik Linstead. ”Exploring the Efficacy of Transfer Learning in Mining

Image-Based Software Artifacts”. Journal of Big Data, vol. 7, no. 59, 2020

Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cristiano Firmani,

and Erik Linstead. ”Learning lexical features of programming languages from imagery using

convolutional neural networks.” 2018 IEEE/ACM 26th International Conference on Program

Comprehension (ICPC), pp. 336-3363. IEEE, 2018

Abigail Atchison, Christina Berardi, Natalie Best, Elizabeth Stevens, and Erik Linstead. ”A time

series analysis of TravisTorrent builds: to everything there is a season.” 2017 IEEE/ACM 14th

International Conference on Mining Software Repositories (MSR), pp. 463-466, 2017

Abigail Atchison, Haley Anderson, Christina Berardi, Natalie Best, Cristiano Firmani, Rene German,

and Erik Linstead. 2018. ”A topic analysis of the R programming language.” In Proceedings of

the 40th International Conference on Software Engineering: Companion Proceeedings (ICSE ’18).

Association for Computing Machinery, New York, NY, USA, 183–184.

V

ABSTRACT

Applications of Machine Learning to Facilitate Software
Engineering and Scientific Computing

by Natalie Claire Best

The use of machine learning has risen in recent years, though many areas remain unexplored due

to lack of data or lack of computational tools. This dissertation explores machine learning

approaches in case studies involving image classification and natural language processing. In

addition, a software library in the form of two-way bridge connecting deep learning models in

Keras with ones available in the Fortran programming language is also presented.

In Chapter 2, we explore the applicability of transfer learning utilizing models pre-trained on

non-software engineering data applied to the problem of classifying software unified modeling

language diagrams where data is scarce. Our experimental results show training reacts positively

to transfer learning as related to sample size, even though the pre-trained model was not exposed

to training instances from the software domain. We contrast the transferred network with other

networks to show its advantage on different sized training sets.

Implementing artificial neural networks is commonly achieved via high-level programming

languages like Python and easy-to-use deep learning libraries like Keras. These libraries come

pre-loaded with a variety of network architectures, provide autodifferentiation, and support GPUs

for fast and efficient computation. Many large-scale scientific computation projects are written in

Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this

problem, we introduce a software library, the Fortran-Keras Bridge (FKB), that connects

environments where deep learning resources are plentiful, with those where they are scarce.

Chapter 3 describes several unique features offered by FKB, such as customizable layers, loss

functions, and network ensembles.

VI

In Chapter 4, Latent Dirichlet Allocation (LDA) is leveraged to analyze R and MATLAB

source code from 10,051 R packages and 27,000 open source MATLAB modules in order to

provide empirical insight on the topic space of scientific computing. This method is able to

identify several generic programming concepts and, more importantly, concepts that are highly

specific to scientific and high performance computing applications. We are also able to directly

compare these topics using document entropy and topic uniformity scoring.

VII

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . IV

LIST OF PUBLICATIONS . V

ABSTRACT . VI

LIST OF FIGURES . X

LIST OF TABLES . XII

LIST OF LISTINGS .XIII

LIST OF ABBREVIATIONS .XIV

1 Introduction . 1
1.1 Machine Learning . 1

1.1.1 Deep Learning . 2
1.1.2 Topic Modeling . 8

2 Exploring the Efficacy of Transfer Learning in Mining Image-Based Software Artifacts 10
2.1 Introduction . 10
2.2 Data . 11
2.3 Methods . 13
2.4 Results . 14

2.4.1 Class Activation Mapping . 17
2.5 Related Works . 18

3 A Fortran-Keras Deep Learning Bridge for Scientific Computing 21
3.1 Introduction . 21
3.2 Fortran Projects . 23
3.3 The Python Anchor (Deep Learning) . 25
3.4 The Fortran Anchor (Scientific Computing) . 27
3.5 Features of FKB . 28

3.5.1 FKB/P . 29
3.5.2 FKB/F . 30

3.6 Case Study . 37

4 An Information-Theoretic Analysis of Scientific Computing Software with Unsupervised
Machine Learning . 45
4.1 Introduction . 45
4.2 Data . 46
4.3 Methods . 47
4.4 Results . 48

VIII

4.4.1 Topic Modeling: R Files . 48
4.4.2 Topic Modeling: MATLAB Files . 51
4.4.3 Topic Modeling: C++ Files . 53
4.4.4 Topic Modeling: R, MATLAB, C++ . 56

4.5 Related Works . 66

5 Conclusion . 69

REFERENCES . 72

IX

LIST OF FIGURES

1.1 A simple Artificial Neural Network architecture with 2 hidden layers. 3

1.2 Example of convolution given an image and kernel. 4

1.3 Three locations we expect to see improvement in model performance from a knowledge
transfer. 7

1.4 Graphical model representation of LDA. 8

2.1 One example of each type of diagram used in this study: (a) sequence diagram and
(b) class diagram . 12

2.2 Networks used a) The four convolutional layers, interspersed with max pooling for
downsampling followed by dropout, max pooling, and fully connected layers for
classification. b) Standard Visual Geometry Group (VGG) network with sixteen
convolutional layers. 13

2.3 Accuracy achieved by each network at the corresponding sample sizes, from 50 to
1800 samples in each Unified Modeling Language (UML) category. 15

2.4 Accuracy achieved by each network at the corresponding sample sizes, from 5 to
50 samples in each UML category. 16

2.5 CAM result for a selected UML class diagram, original image on the left, resized
image in the middle, and heatmap indicating significant features on the right 17

2.6 CAM result for a selected UML sequence diagram, original image on the left,
resized image in the middle, and heatmap indicating significant features on the right 18

3.1 (a) Usage of programming languages for machine learning and data science. Statistics
are from the 2018 Kaggle ML & DS Survey [73]. (b) Usage metrics of deep learning
frameworks. Statistics are from the 2019 Kaggle State of Data Science and Machine
Learning report [74]. 25

3.2 Positioning of FKB within Fortran and Python ecosystems. 26

3.3 The time-evolution of the tropospheric (a) temperature and (b) humidity biases,
colorized by the offline validation error . 41

X

3.4 Offline performance - validation mean squared error (MSE) - vs online performance
- number of steps until crash. (a) All models. (b) By batch normalization usage.
(c) By Dropout amount. (d) By leaky ReLU coefficient. (e) By learning rate. (f)
By number of dense nodes per layer. (g) By number of layers. (h) By total number
of model parameters. (i) By optimizer type. 43

4.1 This chart shows the document entropy across all topics generated for each of the 3
languages included in this study . 50

4.2 This chart shows the uniformity metric across all topics generated for each of the 3
languages included in this study . 50

4.3 This chart shows box and whisker plots of normalized entropy for each language. . 55

4.4 The topics shown in Table 4.5 versus their normalized entropies. 55

XI

LIST OF TABLES

3.1 SHERPA Hyperparameter Space . 39

3.2 Spearman correlation of corresponding hyperparameter with online performance,
and associated p-value. 44

4.1 This table shows the number of files, total lines of code, and number of unique
tokens for topic modeling for MATLAB and R. 48

4.2 A sampling of the 100 topic models created from R source code files. 51

4.3 A sampling of the 100 topic models created from MATLAB source code files. . . . 53

4.4 A sampling of the topic models created from C++ source code files. 54

4.5 This table shows the topic model, sorted by entropy, created from all MATLAB, R,
and C++ source code files. 59

XII

LIST OF LISTINGS

3.1 Original forward pass code from the Neural Fortran library 31

3.2 Forward pass in the FKB network module. 32

3.3 Example of extending the layer type to implement Batch Normalization 32

3.4 Implementation of crossentropy loss function. 35

XIII

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

API Application Programming Interface

CAM Class Activation Mapping

CNN Convolutional Neural Network

CRAN Comprehensive R Archive Network

CRM Cloud Resolving Model

DNN Deep Neural Network

FKB Fortran-Keras Bridge

GPU Graphics Processing Unit

HDF5 Hierarchical Data Format version 5

LDA Latent Dirichlet Allocation

MAE Mean Absolute Error

MATLAB Matrix Laboratory

MSE Mean Squared Error

NN Neural Network

PNG Portable Network Graphics

ReLU Rectified Linear Unit

RMSProp Root Mean Square Propogation

SGD Stochastic Gradient Descent

SPCAM3 Superparameterized Community Atmospheric Model version 3.0

SVM Support Vector Machine

UML Unified Modeling Language

VGG Visual Geometry Group

XIV

1 Introduction

This dissertation presents three studies I have worked on during my time at Chapman University

and is structured as follows. In Chapter 1, I introduce several methods that are used throughout

the subsequent chapters. Presented in Chapter 2, is a study that employs transfer learning to

enable classification in a domain that lacks sufficient data to train a typical neural network from

scratch. In Chapter 3, a Fortran deep learning library is proposed that allows users to implement

deep neural networks in Fortran and access these networks in Python with all of the existing Keras

capabilities. In Chapter 4, the source code of two scientific computing programming languages is

explored with Latent Dirichlet Allocation (LDA).

1.1 Machine Learning

The field of machine learning contains a wide range of techniques and methods aimed at teaching

computers a specific task. The models generated are trained and validated by data in the form of

examples or past experiences. Machine learning algorithms are typically broken down into three

main subgroups; supervised, unsupervised, and reinforcement learning.

Supervised learning algorithms are those for which the targets, whether categorical or

continuous, are known when training a model. For example, in Chapter 2, the task of classifying

UML diagrams is considered supervised due to the fact that we know at the outset which images

are sequence diagrams and which are class diagrams. Using the example inputs and

corresponding known targets, we can improve our model incrementally during training to help it

learn a general model for the data. Depending on the type of supervised model, the evaluation

metric used to determine success will differ. For classification tasks, accuracy is a common

1

metric, which is defined as the proportion of correct predictions out of all predictions. In addition,

metrics such as precision and recall may also be useful tools by which to judge a model. For

regression tasks Mean Squared Error (MSE) or Mean Absolute Error (MAE) are popular metrics

to determine overall how accurately a model can predict targets.

Unsupervised learning algorithms do not have access to any ground truth and must find the

latent structure within a feature space. Types of unsupervised tasks include clustering and

dimensionality reduction. In Chapter 2, underlying themes are generated from programming

language source code using LDA, a popular unsupervised algorithm for natural language

processing. To train a model, the algorithm requires a corpus of text documents along with

declaration of several hyperparameters. However, because there is no test set. The topics it

produces are what we call latent variables, or variables that are not directly observed but can be

inferred from the data. The success of unsupervised methods is more difficult to judge due to the

lack of truth data.

1.1.1 Deep Learning

Within the field of machine learning, deep learning employs Artificial Neural Networks (ANNs),

whose architectures are inspired by the biological neural networks within the brain. ANNs can be

trained to perform human-like tasks including speech recognition, image classification, and

natural language processing. As shown in Figure 1.1, ANNs are made up of layers of nodes that

are typically fully connected in which a vector of data is fed through to produce some prediction.

Each node in the network is connected to all nodes in the previous layer and the output of a node

is the dot product of the incoming weights and input values. This dot product is run through an

appropriate activation function and the result is sent on to the next layer. Non-linear relationships

in the data can be modeled by using sigmoidal activation functions, like the logistic or hyperbolic

tangent functions. Weights within the network are trained using gradient descent to minimize the

error between output and truth data through the backpropagation process. This is possible due to

the activation functions’ continuous and differentiable nature.

2

As ANNs grow in size with multiple hidden layers, we refer to them as a Deep Neural Network

(DNN). For example, in Chapter 2, a DNN is used that contains 21 layers of various types. Then in

Chapter 3, we present a library to enable the use of DNNs models in Fortran along with a bridge

to transfer those models between Fortran and Keras, a popular Python deep learning library.

Figure 1.1: A simple Artificial Neural Network architecture with 2 hidden layers.

Convolutional Neural Networks

Convolutional Neural Networks are a type of deep learning architecture used in image analysis,

due to the network’s ability to preserve spatial information that would be lost in a fully-connected

feedforward network. For example, if we had a 10 x 10 pixel image and were to send it through a

fully-connected feedforward network, the image would need to be flattened into a 100 x 1 vector.

In which case, the spatial relationship between pixels is erased.

The inspiration for Convolutional Neural Network (CNN) architecture is derived from

experiments performed by Hubel and Wiesel on the cat visual cortex [1]. Convolutional networks

incorporate a weight matrix, or kernel, that is convolved over the input image. Figure 1.2 shows an

example image and kernel along with the resulting output. The green weights are slid over the

blue image and the sum of element wise multiplication results in one element of the purple

3

feature. Typically, the weights of the kernel are shared over the entire image, although Free

Convolutional Networks that do not use a shared weight paradigm have been explored [2]. In the

case where weights are shared, the number of learnable parameters is drastically reduced. The

default activation function used in conjunction with CNNs is the Rectified Linear Unit (ReLU)

[3]. The sigmoidal and hyperbolic tangent functions are not typically used with deeper networks

due to the vanishing gradient problem, which ReLU is able to combat. The output of ReLU is the

maximum between the input, xi, and 0: yi = max(0, xi). The DNN used in Chapter 2 contains 16

convolutional layers with ReLU activations, out of a total 21 layers. This network is aptly named

VGG-16. Training CNNs through backpropagation was first proposed by LeCunn et al.[4]. After

the convolution layers there may be a number of full connected layers, allow us to condense the

output into a more understandable and usable form.

Figure 1.2: Example of convolution given an image and kernel.

4

Class Activation Mapping

Class Activation Mapping (CAM) is a visualization technique that allows us to investigate further

what parts of an image a convolutional network uses to make its prediction [5]. Using the Keras

Visualization Toolkit [6], we will produce CAM results in Chapter 2 of this paper. The result

produced by CAM is a heat map indicating the features a network relies on most to make its

prediction. The most heavily weighted areas of an image, are highlighted in red, while less

important areas are blue.

In addition to showing the features of an image important to a network, CAM results also

allow us to ensure those features make sense. For example, say we were to build a CNN to

distinguish between images of cats and dogs. We could expect to see CAM highlighting features

such as the face, ears, body, and tail of the animal. We would be concerned about our network and

dataset if CAM results showed the backgrounds being the most important in its decision, e.g.

grass for the dog photos and indoor furniture for cats.

Transfer Learning

Transfer learning is the process of taking a model trained for one task, where data is more readily

available, and applying it to a new but similar task [7]. Traditionally, given two separate tasks, we

would have to obtain two distinct training sets and build models for each task. Unfortunately, large

amounts of data in every domain are not always available, and in a lot of cases are not always

needed if two tasks are similar enough.

When considering how humans learn to do new tasks, they rarely have to start at the absolute

beginning - tabula rasa - and typically are building off of similar previous experiences. If one tries

to learn a new language, or how to play a new game, one draws on prior knowledge and adapts to

complete the task at hand. This is core idea of transfer learning; to learn general features in one

domain and apply those features to another, similar domain. Transfer learning can take a few

different general forms depending on the source and target domains, as well as the source and

target tasks [7]. Inductive transfer learning occurs when the source and target domains are the

5

same but the tasks to be performed differ. The inductive biases of the source task algorithm are

used to help improve the target task algorithm. Unsupervised transfer learning is similar, in that

the tasks differ, except that labeled data is unavailable in both the source and target domains. This

type may include tasks such as clustering and dimensionality reduction. Transductive transfer

learning occurs in scenarios where the source and target tasks are similar but the domains are

different. In this situation, the source domain typically has a sufficient amount of training data

while the target domain does not. This type of transfer learning will be used in Chapter 2.

In our case, we transfer general features learned when the VGG network has been trained on

the ImageNet [8] dataset and fine tune it to the task of UML classification. We choose this

classification task for our experiment for three reasons. First, the work in [9] used this same data

to demonstrate the inability of deep networks such as VGG-16 to learn features when training

samples are limited, requiring custom architectures to be built. Second, UML is sufficiently

dissimilar to other objects found in ImageNet that we can be confident that pre-trained models will

not have already learned features directly applicable to the classification task. Finally, the

automated classification of software artifacts is an essential task when curating data on an

Internet-scale as is typically the case in empirical software engineering studies. In our study, we

will implement the same networks used by Ott et al. as baselines [9].

When applying transfer learning, a decision must be made to determine how much will be

borrowed from the original algorithm. It is common practice to take an established architecture

and freeze some amount of the original layers, while fine tuning the rest to the specific needs of a

problem. As a result, only the unfrozen layers are trained - resulting in far fewer learnable

parameters which decreases the size of the required labeled dataset for training. The amount

frozen and fine-tuned is variable depending on the task at hand. We will explore two variations on

the VGG-16 architecture, as well as a shallow CNN in Chapter 2. In one VGG network, we fine

6

tune all available weights and see poor accuracy when dealing with small training samples due to

the large parameter space that must be learned. In the second, we freeze the majority of weights

while fine tuning only the final layer and see accuracy near 90% even at very low numbers of

training samples.

Figure 1.3: Three locations we expect to see improvement in model performance from a knowledge
transfer.

In general, when implementing transfer learning, we must look in three areas for possible

superiority over other networks, as shown in Figure 1.3 [10]. First, we may find a higher starting

accuracy, at the beginning of training, before the model has been refined further. Second, we

could see a steeper or faster rate of improvement of accuracy as training continues. Finally, we

look for a higher asymptote, or greater accuracy toward the end of training. In our results, we find

that the frozen VGG network exhibits higher accuracy in all three of these areas over the

pre-trained VGG and a shallow CNN.

7

1.1.2 Topic Modeling

Topic modeling methods aid humans in organizing, understanding, searching, summarizing and

searching massive collections of text documents. We are able to reveal the underlying themes that

exist within the collection. From these general themes, individual documents can be tagged with

those that apply. Although these tags may not be perfectly accurate, they enable us to organize,

summarize, and then search the individual documents using those tags.

Latent Dirichlet Allocation is a statistical topic modeling algorithm capable of learning the

underlying document-topic and topic-word distributions from a text corpus [11]. This

unsupervised machine learning model is used in Chapter 4 to extract latent topics from the source

code of two programming languages. LDA represents documents as bags of words, meaning that

only the frequency of each word in the document, and no other language structure, needs to be

taken into account. For a corpus, C, consisting of d documents and a total vocabulary size of v,

we construct a document word matrix, DW , of size d× v, with each row representing an

individual document, and each column a unique word. Hence, the element DW (i, j) consists of

an integer denoting the number of times document i contains word j.

Figure 1.4: Graphical model representation of LDA.

8

As shown in Figure 1.4, the LDA model is represented as a probabilistic graphical model. In

this diagram, the parameter α is the per-document topic distributions and parameter β is the

per-topic word distribution. Further, θ represents the topic distribution for document m, ϕ is the

word distribution for topic k, while z is the topic assignment for the n-th word in document m, and

w is a word.

Given the document topic matrix, LDA learns the necessary posterior distributions to infer

document-topic and topic-word mixtures, assuming an underlying multinomial model. The

process is made Bayesian by adding Dirichlet priors, which are typically assumed to be symmetric

for simplicity, though more recent works suggests asymmetric priors can be beneficial [12].

Training is accomplished via Gibbs sampling or variational Bayesian methods. The result is a full

mixture model of document-topic and topic-word probabilities, which can form the basis for

content-based classification or clustering models.

9

2 Exploring the Efficacy of Transfer Learning in

Mining Image-Based Software Artifacts

2.1 Introduction

Despite the recent successes of deep architectures, such as convolutional neural networks, on

software engineering data, the lack of sufficiently large training sets for some applications

continues to be a substantial hurdle. This requirement has led researchers to label tens of

thousands [13] and even millions of images [14] by hand. Recent work has shown that this

precludes the use of many off-the-shelf convolutional neural network architectures, requiring

empirical software engineering researchers to rely on custom (more compact) architectures [9].

Another possible solution, however, is to leverage transfer learning to deal with large parameter

spaces. Through this process models learn in one domain - where data is plentiful - and transfer

this knowledge to a domain where data is scarce.

One significant limitation in deep learning is data dependence. As computational ability and

available algorithms have improved significantly over the years, many deep learning techniques

are still held back by the need for massive amounts of labeled truth data. As architectures increase

in depth and number of parameters, the amount of data needed to train networks increases as well.

When large datasets are not available, or are difficult to curate, researchers must turn to other

methods in order to improve their models. Other possible solutions to small amounts of data have

been investigated including low shot learning, meta-learning, and data augmentation [9].

Although, even with these other methods to combat small datasets, the bottleneck of large

10

parameter spaces and the computation time needed to train a deep neural network remains. As an

example, the very deep convolutional networks developed by the Visual Geometry Group at the

University of Oxford, take about 2-3 weeks to fully train the 130-140 million parameters in a

network, depending on the architecture [15].

In this chapter, we explore transfer learning as a way to combat the issues related to limited

data. Many publicly-available, state-of-the-art models already exist and have been trained on huge

amounts of data including VGG [15], AlexNet [16], ResNet [17], and Inception[18]. These

networks have repeatedly been applied to different tasks from which they were originally trained

[13, 19, 20, 21, 22]. We will also apply an off-the-shelf architecture, fine tuning it to our task, to

show the advantages of knowledge transfer when working with limited data in the software

domain. We focus on the classification of UML diagrams into class and sequence diagrams from

a publicly-available dataset [23]. This dataset has been previously leveraged to demonstrate

barriers that arise when applying deep architectures with vast parameter spaces.

2.2 Data

From the Lindholmen Dataset [23], an initial corpus of 14,815 Portable Network Graphics (PNG)

images of UML diagrams is obtained. That is then reduced to 13,359 images when only active

UML diagrams are considered. Of the active diagrams, there were 11,319 Class Diagrams and

2040 Sequence Diagrams. Examples of these diagrams are shown in Figure 2.1. We resize all

images to 250x250 pixels for uniformity. To resize a file, we sample the pixels depending on how

large the original image was. For example, given a 1024x1024 pixel image, every 4th pixel would

be used in the x and y direction, or 1024 // 250 = 4. This dataset was chosen for its small size and

its relation to software repositories. The VGG-16 networks we include in our tests have been

trained on the ImageNet dataset which includes over 1,000,000 natural images belonging to 1,000

categories. Although the natural images of ImageNet and UML diagrams exist in quite different

domains, we still see improvement in classification when using knowledge transfer.

11

(a) (b)

Figure 2.1: One example of each type of diagram used in this study: (a) sequence diagram and (b)
class diagram

12

2.3 Methods

In our experiments, we compare three CNN architectures on their classification ability of UML

diagrams. First, we use a simple network with four convolutional layers, max pooling, dropout,

and global average pooling layers followed by fully connected dense layers for classification. This

network contains 2,260,000 trainable parameters. Two other networks explored are variations of

the popular VGG network with sixteen convolutional layers modified to fit the size of our input

data [15]. The first VGG we test starts with the original weights and we then allow all 14,715,000

trainable parameters to be updated as we train for our task. Conversely, in the second VGG, we

freeze the majority of layers, and then modify and train only the last layer containing only 1,026

trainable parameters. The four layer CNN and VGG architectures are shown in Figure 2.2. All

networks are implemented in Keras with a TensorFlow backend.

Figure 2.2: Networks used a) The four convolutional layers, interspersed with max pooling for
downsampling followed by dropout, max pooling, and fully connected layers for classification. b)
Standard VGG network with sixteen convolutional layers.

13

These three models were trained as binary classifiers to differentiate UML diagrams as either

sequence or class diagrams. To show the advantages of transfer learning, we incrementally

increase the available training data in two tests. We begin with 50 samples of each class and

increase by increments of 250 to 1800 samples. A second test to show the accuracies at very low

samples is performed beginning with 5 samples and increasing by increments of 5 to 50 samples.

Upon incrementing the sample size, each network is reset to the same original weights.

Each model was trained for a minimum of 5 epochs and stopped when the accuracy had not

improved after a patience of 5 epochs. We implemented 5 fold cross validation for robustness. It

is common practice to include a patience in order to control training time [24]. Therefore, when a

model shows no signs of improving, and we have met an established minimum number of epochs,

we are free to stop. For example, in our test of the 1800 diagram sample size, our frozen VGG

network quickly reached an accuracy of around 93%, on each fold, after an average of only 15

epochs. Continuing to train would likely not improve our model by any significant amount and

could even lead to overfitting.

The code and data to train all models, as well as the learned models themselves, are available

publicly at: (removed for anonymity) We hope they, in turn, will be utilized for transfer learning in

future deep learning applications on software data.

2.4 Results

Figure 2.3 shows the test accuracy achieved by each network from 50 to 1800 samples of each

class, or 100 to 3600 total images respectively. Both the frozen VGG and 4 layer CNN are

eventually able to classify the given diagrams with about 90% accuracy given a sufficient amount

of samples. Although, we see a significant difference in the starting accuracies as well as faster

convergence.

14

Figure 2.3: Accuracy achieved by each network at the corresponding sample sizes, from 50 to 1800
samples in each UML category. For robustness, 5 trials were run for all training samples tested.
The color bands indicate the distribution of results from the 5 trials.

However, we are also interested in the best accuracy achievable with the least amount of data.

The frozen VGG is able to classify with an about 80% accuracy after only 100 total training

samples while the 4 layer CNN falls short at about 52% accuracy. As can be expected, the VGG

that was left free to train the massive number of parameters within its network, also performs

poorly, barely reaching 50% accuracy. In which case, it would be no better than simply flipping a

fair coin to classify each diagram. The tiny amount of training data given to this network is, of

course, nowhere near enough to train all 14 million parameters.

15

Figure 2.4 shows the training accuracy for all three networks when given 5 to 50 samples of

each class, or 10 to 100 total images. We include this figure to demonstrate the superiority of the

frozen VGG over both networks especially at very low samples. Even with only 10 total samples,

the frozen VGG is able to classify the UML diagrams with an average 73% accuracy, compared to

an accuracy of only 50% for both other networks.

Figure 2.4: Accuracy achieved by each network at the corresponding sample sizes, from 5 to 50
samples in each UML category. For robustness, 5 trials were run for all training samples tested.
The color bands indicate the distribution of results from the 5 trials.

We also compared the computational cost of training only the last layer of the frozen network

to the entire unfrozen network. Training time for each model varies based on the number of

epochs completed but generally, each one of these models can be fully trained in 30 minutes. The

VGG model with frozen weights averages a little less than half a second faster, per epoch, than the

16

VGG model training all layers. The difference results from less computations required during the

backpropagation of errors in models with frozen weights. As the dataset increases in size one can

expect the difference in time between the two models to increase as more batches are completed

per epoch. We can also compare our computation time to the computation time needed to train the

original VGG-16. No doubt the difference in dataset size has an effect in reducing computation

time, as the original network was trained on the large ImageNet dataset, but so would the number

of trainable parameters. Simonyan and Zisserman, the creators of the VGG network, report that

training a single network took 2-3 weeks depending on the specific architecture [15].

2.4.1 Class Activation Mapping

Using the Keras Visualization Toolkit [6], we produce CAM results for one UML sequence

diagram and one class diagram. CAM results are shown in both Figure 2.5 and Figure 2.6 for the

frozen VGG-16 network trained on 1800 sample images from each class. CAM produces a heat

map highlighting the regions most heavily weighted by the network. We are able to see clearly

that the network learns features specific to sequence and class diagrams. Specifically, in class

diagrams, the boxes containing class attributes and methods have been highlighted. Conversely, in

sequence diagrams, the vertical lifelines are more significant.

Figure 2.5: CAM result for a selected UML class diagram, original image on the left, resized image
in the middle, and heatmap indicating significant features on the right

17

Figure 2.6: CAM result for a selected UML sequence diagram, original image on the left, resized
image in the middle, and heatmap indicating significant features on the right

2.5 Related Works

The classification of UML diagrams has been studied through a variety of machine learning

techniques. Ho-Quang et al. [25] proposed a logistic regression model using 19 of their 23

proposed features for classifying UML and non-UML class diagrams (CD). When trained on a

corpus of 1300 images, their model achieved 96% accuracy for UML-CD and 91% of accuracy

for non-UML CD. Years later, Ho-Quang et al. [25] furthered their work to differentiate between

diagrams that were hand-made as part of the forward-looking development process (FwCD), and

diagrams that were reverse engineered from the source code (RECD). However instead of

classifying the images directly, the authors extract various features and implement a random forest

model to achieve 90% accuracy in distinguishing the two types of class diagrams. In another

study, using a corpus of 1300 UML and non-UML images, Hjaltason et al. [26] trained a support

vector machine Support Vector Machine (SVM) with an average classification accuracy of

92.05% . Moreno et al. [27] conducted a similar study to classify web images as UML and

non-UML class diagrams using a rule based approach. By extracting features from the images, in

a corpus of 19000 web images, their algorithm reached an accuracy of 95%.

18

While we believe this is one of the first attempts to study the applicability of transfer learning

to images within software engineering, transfer learning in general has been studied in many

domains and aided in the development of powerful machine learning models. Authors in [28],

propose the use of ’bellwethers’, or the software project whose data yields the best predictions on

all other projects. They argue that a simple transfer learner constructed from the bellwhether’s

data should be used as a baseline for future transfer learning work. In their study, they found that

the simple transfer learner yielded comparable predictions to other more complex models. Effort

estimation is just one area within the software domain where transfer learning has proven

valuable. In an extension of previous work, Kocaguneli et al. [29], explore transfer learning in the

field of effort estimation and for both the cross-company learning problem and cross time learning

problem. Similarly, Ying et al. [30] also investigate transfer learning for cross-company defect

prediction in software. Another study, takes one step further to include canonical correlation

analysis into their study of cross-company defect prediction [31]. In physical applications, such as

robotics, training samples can be especially costly, both in time and energy costs. In order to learn

most efficiently while balancing these costs, transfer learning has been employed to predict the

performance of physical systems under different configurations [32]. As a result, models do not

need to be trained from scratch for each time and existing configurations can be adapted with few

additional training examples.

Shin et al. [19] investigated the effectiveness of CNN architectures and transfer learning in

detecting thoraco-abdominal lymph nodes and classifying interstitial lung disease from images.

The authors achieve state-of-the art performance and find transfer learning to be beneficial despite

the natural images used to train ImageNet being significantly different from medical images.

Another study applied transfer learning to four medical imaging applications in 3 specialties

including radiology, cardiology, and gastroenterology [33]. Their experiments transferred weights

from ImageNet layer-wise, using none, a few, or many layers and found that transferring a few

layers improved performance compared to training from scratch.

19

As stated previously, transfer learning in the space of software imagery was motivated by the

work in [9]. Here the authors showed definitively that deep networks like VGG were unable to

compete with smaller architectures when labeled data was sparse. A viable workaround was to

create custom, shallower architectures that were compatible with available data volumes. The

work presented here shows that off-the-shelf architectures can be used, but demand more efficient

learning solutions - specifically the kinds produced via transfer learning.

The ultimate goal of the work in this chapter is to make deep learning and off-the-shelf

convolutional architectures more available to empirical software engineering researchers who

have a need to classify software artifacts. While large, labeled datasets are readily available for

textual source code, for image-based artifacts such as UML, the curation of large volumes of

training data continues to be a hurdle. This complicates the use of standard deep architectures

such as VGG. The results achieved here indicate that transfer learning provides a path forward to

researchers who wish to apply deep learning architectures to software artifact classification when

only modest amounts of data are available. Specifically, pre-training with ImageNet using

standard VGG architectures results in excellent classification performance of class and sequence

diagrams despite the fact that the ImageNet dataset itself contains no examples of these artifacts.

These benefits are in addition to those provided by transfer learning when massive training sets

are available, in particular shorter model training times.

As with all work, there are some limitations to the experimental results presented here that are

worth noting. First of all, experiments make use of only one data set based on UML. In future

work, we will apply our transfer learning approach to other image-based software artifacts.

Secondly, the classification task detailed here is binary, and discriminates only between class and

sequence diagrams. It will be important to generalize this work to multi-class classification

problems where only small amounts of training data are available. Finally, it would also be useful

to assess the performance of datasets other than ImageNet as a basis for transfer learning.

20

3 A Fortran-Keras Deep Learning Bridge for

Scientific Computing

3.1 Introduction

The Fortran programming language was originally developed in the 1950s and published in 1957.

It was created to help programmers implement solutions for scientific and engineering problems

on the IBM 704 computer, which at the time needed to be written in machine or assembly

language. Fortran has been regarded as revolutionary and possibly one of the most influential

software products in history [34]. Having evolved many times since its creation, with the most

recent release in 2018, each version adds new features and capabilities. Fortran initially gained

popularity and remains a widely used language due to its fast and efficient computational ability.

Additionally, Fortran’s strength is its backward compatibility, which allows modern compilers to

build code written in the 60s and 70s.

Though not as popular as it once was, Fortran is still used in specialized fields, including

oceanography, solid mechanics, computational physics, earthquake simulation, climate modeling,

and aerospace. Because of Fortran’s continued use, a great deal of legacy code and new code

exists. Unfortunately, it is difficult to rewrite all existing code bases in more mainstream

languages, due to their size and complexity. Therefore, when algorithms and extensive libraries

are created in modern languages, backwards compatible methods must be developed to make

them available in older legacy code, like Fortran.

In recent years, the rise of machine learning and deep learning has led to successful

applications in various domains. Substantial improvements in the size of the training sets and

available computing power have led to a new wave of implementations [35, 36]. In turn, this

success has increased the usage and dissemination of deep learning. These methods have been

21

applied to a variety of domains, e.g., ranging from remote sensing [37, 38] to computer vision

[39, 40, 21, 41, 42], and to games [43, 44]. Specifically, within scientific computing, many

advancements have been achieved through the application of neural networks. Neural networks

have been augmented with physically informed capabilities [45, 46], better suiting them for

conservation restrictions. Learning partial differential equations [47, 48] has proved valuable in

multiple scientific domains.

The success and popularity of deep learning has inspired the creation of powerful software

libraries written in several modern programming languages. However, Fortran is not among the

modern languages that benefit from these deep learning libraries. This absence leaves Fortran

programmers with few options to implement deep neural networks.

The implementation of deep neural networks, in Fortran, may be achieved via two primary

pathways. One solution is to rewrite all existing deep learning libraries in Fortran. The second

solution is to leverage existing frameworks and bridge available functionalities to Fortran. The

former is extremely arduous and time consuming, considering the size and scope of existing deep

learning packages and the dizzying pace of their evolution [49, 50, 51]. The latter approach,

which this chapter describes, is to allow users to leverage the power of existing frameworks while

providing a bridge between paradigms where deep learning resources are plentiful and those

where they are scarce. In this way, we can leverage aspects of currently available deep learning

software libraries, like Keras [49], and bring them to large-scale scientific computing packages

written in Fortran. To this end, we propose the Fortran-Keras Bridge (FKB) – A two-way bridge

connecting models in Keras with ones available in Fortran. The source code is publicly available

and can be found here: https://github.com/scientific-computing/FKB. We begin by reviewing

existing Fortran projects that would benefit from the integration of FKB.

22

https://github.com/scientific-computing/FKB

3.2 Fortran Projects

FKB can be integrated with many existing large-scale and computationally intensive projects

written in Fortran. These projects will benefit from the easy integration of neural network models,

which FKB makes possible.

For example, Fortran is used to do a great deal of work in climate and ocean modeling. For

instance, the US-produced Community Earth System Model [52] is written in object-oriented

Fortran-90; this is the most widely used climate model in the world. So are the other climate

simulation codes used by the US Department of Energy [53] and the National Oceanographic and

Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory [54]. Meanwhile, the

Nucleus for European Modelling of the Ocean (NEMO) engine is used for studying ocean

circulation problems on regional and global scales [55] and making future predictions, is also

written in Fortran. The Hybrid Coordinate Ocean Model (HYCOM) [56], also used for ocean

modeling, extends traditional ocean models to allow for a smooth transition from the deep ocean

to coastal regimes. Researchers have also developed models for the modeling of waves and wind

stress [57]. The Weather Research and Forecasting Model (WRF), is arguably the most widely

used numerical weather prediction models for regional decision support [58]. Since its release in

2000, the number of WRF registrations has grown to over 36,000. WRF produces atmospheric

simulations with support for special applications, including air chemistry, hydrology, wildland

fires, hurricanes, and regional climate, and is again a Fortran-based model.

Fortran has found continued use in solid mechanics packages for implementing finite element

methods. Popular packages such as ANSYS [59], ABAQUS [60], and LS-DYNA [61] are written

in Fortran or accept Fortran subroutines. Similarly, in earthquake modeling, the SPECFEM3D

[62] package leverages Fortran for simulations.

23

The list goes on. Code Saturne [63], developed by Électricité de France, and NEK5000 [64],

are Fortran open-source computational fluid dynamics packages. Code Saturne allows for user

customization via Fortran subroutines, which is just one application domain for FKB. NEK5000

is actively used in the Center for Exascale Simulation of Advanced Reactors (CESAR) projects.

Fortran has also been continually used for molecular modeling within chemistry and physics. The

Chemistry at Harvard Macromolecular Mechanics (CHARMM) Development Project has

produced a powerful molecular simulation program in Fortran [65]. This simulation program

primarily targets biological systems but can also be used for inorganic materials. A similar tool,

NWChem, has been developed by the Molecular Sciences Software Group at the Pacific

Northwest National Laboratory [66]. NWChem is a computational chemistry software that

includes quantum chemical and molecular dynamics functionalities. Within the molecular physics

domain, Fluktuierende Kaskade (FLUKA) is a proprietary tool for calculations of particle

transport and interactions with matter [67].

The models mentioned above and projects can leverage the FKB library to implement neural

networks within their codebases. For example, neural networks have proven useful in modeling

sea surface temperature cooling for typhoon forecasting [68]. Therefore the integration of FKB

with tools like NEMO, HYCOM, or WRF models is a possibility. In a recent study of

computational fluid dynamics, Ling et al. solve the Reynolds-averaged Navier-Stokes equations,

similar to Code Saturne and NEK5000. By implementing deep neural networks, the authors

report that the architecture improved prediction accuracy [69]. Finally, the Fluka tool contains a

wide range of molecular physics applications, including dosimetry calculations. Vega-Carrillo et

al. have shown neural networks aided in the calculation of neutron doses [70]. For global climate

simulation, there is proof that deep neural networks can offer skillful alternatives to

assumption-prone approximations of sub-grid cloud and turbulence physics in the atmosphere

[71, 72]. We hope that the FKB library enables Fortran users to expand their research and projects

to include neural networks.

24

(a) (b)

Figure 3.1: (a) Usage of programming languages for machine learning and data science. Statistics
are from the 2018 Kaggle ML & DS Survey [73]. (b) Usage metrics of deep learning frameworks.
Statistics are from the 2019 Kaggle State of Data Science and Machine Learning report [74].

Having reviewed several Fortran based projects that can leverage FKB, we now introduce the

two sides of this bridge. The following sections will develop the foundations on which to anchor

each side of this two-way bridge. We start by introducing the deep learning anchor.

3.3 The Python Anchor (Deep Learning)

Many programming languages offer tools and libraries for implementing artificial neural

networks. However, in recent years, Python has emerged as the clear favorite within this domain.

Metrics in Figure 3.1a display Python’s dominance. Python is used nearly 50% more than the

second most popular language, R. Python’s ubiquitous presence in machine learning makes it the

obvious choice to leverage existing libraries for Fortran. The question then becomes, which

available software library within Python, is best suited to bridge to Fortran?

25

Figure 3.2: Positioning of FKB within Fortran and Python ecosystems.

Of the available deep learning libraries, Keras [49] is the most popular among practitioners

(Figure 3.1b). Keras is an Application Programming Interface (API) built on top of Tensorflow

[50], that provides users the ability to implement quickly, train, and test networks. This

convenience encapsulates much of the low-level complexity one must manage when implementing

deep networks from scratch. Keras abstracts many of the complicated aspects of Tensorflow while

still providing customizability and ease of use. This combination makes Keras the first choice of

many for deep learning applications. As a result of its popularity and ease of use, Keras is the

clear choice on which to build one end of the two-way bridge.

Figure 3.2, depicts the positioning of the Python anchor, FKB/P, within the deep learning

ecosystem. The Keras API leverages Python to build deep neural networks. FKB/P resides on top

of Keras to access models produced from Keras and transmit them to the Fortran anchor, FKB/F.

This structure allows for integration with Fortran applications that wish to leverage deep neural

network architectures. Having described the deep learning anchor within Python, the next section

develops the foundation for anchoring the bridge with Fortran.

26

3.4 The Fortran Anchor (Scientific Computing)

Several attempts have been made to implement neural networks in Fortran, with some success [75,

76, 77, 78, 79]. However, many implementations resort to hacking a single-use neural network by

hand, or binding code from other languages [79]. Along these lines, one may consider accessing

Python functionality directly from Fortran, by running a Python instance within Fortran. While

providing flexibility and ease of use, this is vulnerable to extreme deficiencies in speed and

computational resources as we found in preliminary tests. As a result, this solution becomes

untenable for large-scale computation projects like the ones described in section 3.2. Another

possible solution that could be pursued, is to call a machine learning model via a web API, as is

common practice in industry production environments. This approach was not explored in this

study. Although, we believe the same issue of speed would arise, especially in a setting like our

case study, in which thousands of models are needed.

There are a small number of existing neural network libraries in Fortran [79, 80, 75]. The

most recent and well developed library is Neural Fortran [75], a lightweight neural network

library, written natively in Fortran. The Neural Fortran library provides the ability to implement

artificial neural networks of arbitrary size with data-based parallelism. Additionally, in

benchmark studies, Neural Fortran was shown to have comparable compute performance with

Keras while maintaining a lower memory footprint. This library offers a foundation to anchor the

Fortran side of the two-way bridge, FKB/F. By extending - and building on top of - Neural

Fortran, we can convert Keras models to ones readily available in Fortran and implement them in

existing Fortran projects.

The positioning of FKB within the scientific computing ecosystem is shown in Figure 3.2.

The Fortran anchor, FKB/F, can use models originally constructed and trained in Keras, which

can then be transferred to Fortran via FKB/P. To use these models, the Fortran side of FKB

implements a neural network library. This portion of FKB can be used within large-scale

scientific computation software, like the projects identified in section 3.2.

27

By leveraging FKB, it becomes seamless to train networks in Python and transfer them to

Fortran, to run inside large scale simulations. Similarly, neural network models constructed in

Fortran can be transferred to Python for additional analysis, expansion, and optimization -

including hyperparameter searches using available tools in Python [81, 82, 83]. As both sides of

the bridge have been properly introduced, the following section will describe the specific features

and functionalities of FKB.

3.5 Features of FKB

Once a neural network is trained in high-level APIs like Keras, the practitioner has few practical

avenues for using this model in Fortran-based projects. One approach may be to hard code

network operations inside Fortran while manually moving parameters from the Keras model.

Several examples of this can been seen in climate modeling [71, 72, 84, 85].

To provide one specific example, in [71], the authors trained a DNN to represent sub-grid

cloud and convective energy transport processes, in Keras. To assess its credibility, they needed to

test the DNN’s two-way interactions when thousands of replicates of it were embedded within a

coarse-resolution global atmospheric model, written in Fortran – neural network emulated clouds

interacting with deterministic physical calculations of planetary geophysical fluid dynamics. As

the global atmospheric simulator does not offer native neural network support, the authors

hardcoded their DNN model into the global simulation software framework. This approach has

obvious disadvantages. Every minor change made to the model in Keras requires rewriting the

Fortran code. If one wishes to test a suite of models in Fortran, this approach becomes untenable.

As each network may require different hyperparameters and, as a result, necessitates rewriting

and compiling the Fortran code for every new model. This process drastically limits the breadth of

available models to be tested within the simulator. This bottleneck is currently a significant

roadblock to ongoing debates in the climate simulation community, more broadly, about whether

28

or not to use DNN representations of subgrid physics in next-generation climate modeling.

Insufficient testing of diverse candidate Neural Networks (NNs) means that little is known about

how minor imperfections in the fit of one NN can amplify when the NN is coupled to fluid

dynamics, which is just beginning to be explored [86].

These issues demand a solution, in the form of a bridge between Keras and Fortran. The FKB

software solves these issues via two key elements. First, it provides a neural network library

implemented in Fortran (FKB/F). Second, it offers the ability to parse existing Keras models into

formats consistent with the Fortran neural network library (FKB/P). As a result, users can switch,

seamlessly, back and forth between Python and Fortran. This context provides a way for iterative

neural network tuning (Python) and testing (Fortran), with a simple way to translate between the

two software environments. Additionally, FKB offers currently unavailable Fortran specific

features for neural networks. It will be useful to highlight those new features while documenting

the format to which FKB adheres. The following subsections describe the Python and Fortran

anchors’ features, FKB/P and FKB/F, respectively.

3.5.1 FKB/P

Keras models - once built, trained, and saved - are stored in Hierarchical Data Format version 5

(HDF5) files. These files contain the network architecture, weights, biases, and additional

information - optimizers, learning rates, gradients, etc. From the HDF5 file, FKB/P parses the

network architecture, extracting the number of layers, activation functions, nodes per layer, and all

weights and biases. This information is converted to match the Fortran neural network

configuration in FKB/F. This allows users to build an equivalent network in Fortran, which can

easily be loaded and used within a Fortran environment. If any modifications to the model are

made inside Fortran, FKB/P will parse this back into the equivalent HDF5 file to be used in Keras

once again.

29

On the other hand, networks may be initially constructed in Fortran. After initial training and

testing, a user can switch to Keras for further evaluation. From Keras, users can conduct

additional testing or hyperparameter tuning where these tools are readily available [81].

The ability to seamlessly pass neural network architectures between Python and Fortran is

essential for any practitioner working in this space. This bridge allows users to take advantage of

the high-level Keras API - training on computationally efficient Graphics Processing Units

(GPUs) - then to insert their trained model into a Fortran codebase. The functionality provided

bridges the chasm between Keras and Fortran.

3.5.2 FKB/F

The Fortran anchor of FKB leverages and extends the original Neural Fortran library. Below we

introduce newly implemented features to make Neural Fortran more flexible and able to

communicate on the two-way bridge.

Custom Layers

To implement neural networks in Fortran, FKB leverages and extends the Neural Fortran library

[75]. The prototype Neural Fortran library format that we build on was only capable of

implementing a fully connected layer. Forward and backward operations occurred outside this

layer - in the network module. An example of this is shown in Listing 3.1. From the listing, one

can observe hard-coded matrix multiplication of layer weights, the addition of biases, and the

activation functions inside the network module. This network-level subroutine accesses and

modifies individual layer attributes. This rigid format is inconsistent with modern neural network

implementation paradigms [49, 50, 51], but it makes it impossible to implement other layers or

custom operations. To increase the library’s flexibility, operations must be encapsulated inside the

layer, consistent with current practice.

30

pure subroutine fwdprop(self, x)

! Performs the forward propagation and stores arguments to activation

! functions and activations themselves for use in backprop.

class(network_type), intent(in out) :: self

real(rk), intent(in) :: x(:)

integer(ik) :: n

associate(layers => self % layers)

layers(1) % a = x

do n = 2, size(layers)

layers(n) % z = matmul(transpose(layers(n-1) % w), layers(n-1) % a) &

+ layers(n) % b

layers(n) % a = self % layers(n) % activation(layers(n) % z)

end do

end associate

end subroutine fwdprop

Listing 3.1: Original code from [75]. Layer operations occur inside the network module, limiting

flexibility.

In FKB we introduce an extendable layer type module (Listing 3.2). To implement a layer, one

simply extends the layer type and specifies the construction of the forward and backward

functions. Adhering to this format offers several advantages. By restructuring the format of the

library, we offer the ability to implement arbitrary layers. Additionally, in the network module, all

layers are stored in an array of pointers. This leads to the encapsulated version shown in

Listing 3.2 wherein a forward pass, in the network module, calls the layer-specific forward

function. In this way, all operations are confined to the layer module, and the output from one

layer is passed as input to the next.

31

function output(self, input) result(last_layer_output)

...

! iterate through layers passing activation forward

do n = 1, size(layers)

call layers(n) % p % forward(layers(n-1) % p % o)

end do

! get output from last layer

last_layer_output = layers(size(layers)) % p % o

end function output

Listing 3.2: Forward pass in the FKB network module. Each layer simply calls its own forward

function. The technical operations occur within each layer.

FKB supports fully connected or dense layers, dropout [87, 88], and batch normalization [89].

Shown in Listing 3.3 is an example of extending the layer type to implement a Batch

Normalization layer. This format translates to increased functionality and customizability to the

user. As a result, more standard layers from Keras are available, while giving users the flexibility

to implement their own custom operations.

! BatchNorm layer - extends from base layer_type

! Implements batch normalization

type, extends(layer_type) :: BatchNorm

! epsilon parameter

real(rk) :: epsilon

contains

procedure, public, pass(self) :: forward => batchnorm_forward

32

procedure, public, pass(self) :: backward => batchnorm_backward

end type BatchNorm

Listing 3.3: Example of extending the layer type to implement Batch Normalization

Training in Fortran

It is necessary to distinguish between the terms offline versus online for the following section.

These terms serve to distinguish two different settings in which a neural network can be used in a

Fortran computing package. Both settings can make use of historical or simulated data to train an

artificial network. The distinguishing feature is how the predictions of a model are used. In an

online setting, predictions from the model are used to evolve a physical process. The predictions

at one time step effect how the system acts at the following time step. As a result, inputs to the

model will change based on how the model acted in the past. In offline settings, this is not the

case. Predictions made in the past do not affect the input to the model in the future.

In many cases, offline training may be sufficient to learn a model, if enough prior data is

available. However, in some cases, online training may be the method of choice. To this end, FKB

is equipped to handle backpropagation for gradient descent optimization of a specified cost

function.

The layer encapsulation mentioned above of forward and backward operations (Section 3.5.2)

becomes extremely valuable in training. Instead of all computations occurring within the network

module [75], they are contained in layer-specific functions. Much like the forward pass, backward

operations occur in the layer. In this fashion, each layer is responsible for computing its gradients

with respect to its parameters and returning the gradient with respect to the layer below it.

33

Online training can serve a variety of purposes. First, a neural network model may be learned

entirely in Fortran, based on the evolving state variables during the integration of a physical

dynamical system simulation, and then transferred to Keras after the fact. In this setting, the

ground truth, from the simulator, is passed to the network for it to calculate its errors and update

its parameters accordingly through backpropagation. Second, online training could serve to

provide gentle corrections to an imperfect pretrained model, for instance, to hedge against the

amplification of its imperfections that are only revealed once the NN is coupled to other physical

calculations. Here a model is trained offline in Keras and transferred to Fortran (Section 3.5.1). In

some cases, for a variety of reasons, the offline training data may have a differing distribution than

that of the online data. In such a setting, it proves beneficial to offer slight corrections to the

network. Finally, a secondary model may be constructed to learn and compensate for the

deficiencies in the primary model. In this way, the two networks work together to balance out any

instability issues.

The ease of use and proper format directly results from the encapsulation of layer operations.

Online training offers a solution to tackle a suite of potential problems. As a result, models may

be updated with slight corrections or learned entirely online.

Custom Loss Functions

In many applications, practitioners may wish to optimize a unique quantity - a function other than

a mean squared error or cross-entropy. This is common when target variables interact or

additional information is known about their relationship in a desired application. For example, in

modeling any physical system, predictions from a neural network must not violate physical

constraints - energy cannot be created or destroyed in the system. To satisfy this restriction, a loss

function can be written to quantify the amount of violation of physical properties. This

construction can then be minimized to alleviate constraint infractions [46].

34

The implementation of custom loss functions is standard for high-level APIs like Keras,

Tensorflow, and PyTorch to provide this ability in their codebase [49, 50, 51]. As FKB is designed

for those working in the physical sciences where environmental, physical, or application-specific

constraints are common, it provides the ability to implement custom loss functions. To take

advantage of this functionality, users must implement their desired loss function, just as they

would in Keras. As FKB does not provide automatic differentiation, the derivatives with respect

to the input are also required for training. Once these functions have been specified they can be

dropped into the existing framework and run normally, much like Keras.

real(rk) function crossentropy_loss(self, y_true, y_pred)

! Given predicted and expected output, returns the scalar loss

class(network_type), intent(in out) :: self

real(rk), intent(in) :: y_true(:), y_pred(:)

loss = - sum(y_true * log(y_pred))

end function loss

function d_crossentropy_loss(self, y_true, y_pred) result(loss)

! Given predicted and expected output

! returns the loss with respect to softmax input

class(network_type), intent(in out) :: self

real(rk), intent(in) :: y_true(:), y_pred(:)

real(rk), allocatable :: loss(:)

loss = y_pred - y_true

end function d_loss

Listing 3.4: Implementation of crossentropy loss function and the corresponding derivation with

respect to the input logits.

35

This capability is demonstrated through the implementation of the cross-entropy loss function

in Listing 3.4. To implement this previously unavailable loss function, we first declare two

functions. First, the cross-entropy scalar loss is defined. Second, the loss with respect to the input

logits is derived. These two functions are then referenced as the loss and d loss, respectively. By

providing this functionality, users may leverage a variety of loss functions that can be used to

minimize application-specific quantities. Once described, they may be included with the existing

framework and used during online training.

Ensembles

Ensembles consist of different models, each trained on the same, or bootstrapped, data. The

output of the ensemble will be an average of all its member’s predictions. In machine learning,

ensembles of models typically perform better than any one of its members alone. The ensemble

strategy exploits the fact that each model will make different errors. Therefore, when averaged

together, these predictions become more accurate, as certain errors get smoothed out. A consensus

from machine learning practitioners is ensembling gives 1-2% improvement in performance [90].

As a result of this averaging, ensembles provide a boost in performance as well as additional

robustness. In domains where physical constraint violations yield stability issues, ensembles may

be applied to dampen these problems. By averaging across many networks, the instability of any

one model will be drastically reduced in the presence of more sound predictions.

The functionality provided requires the user to specify a directory that contains the models of

interest and a desired amount of noise. The ensemble type will read in each model and construct a

network corresponding to each of them. To get a prediction from the ensemble, an input vector is

passed to it. For non-zero amounts of noise, Gaussian noise is applied to the input vector each

time it is passed to an ensemble member. This allows each member to see a slightly different

variant of the input, increasing the robustness of prediction around that point. This operation runs

36

in parallel using OpenMP, where each network can be given its thread to expedite computation;

such an approach could easily be adapted via OpenACC for GPU-based threading of large

ensemble network calculations. Following the computation, the predictions are averaged together,

and the final output is given.

3.6 Case Study

The following section provides a case study demonstrating an application of FKB to experimental

next-generation climate modeling. The Superparameterized Community Atmospheric Model

version 3.0 (SPCAM3) is used for all simulations in this study. SuperParameterization is an

approach that confronts the decades-long problem of representing subgrid cloud physics in

climate models by embedding thousands of limited-domain explicit sub-models of moist

convection within a conventional planetary-scale model of the large scale atmosphere [91, 92, 93,

94]. This approach tends to involve two orders of magnitude more computational intensity per

unit area of the simulated earth, but recently Rasp et al. used a deep neural network to emulate all

of the expensive subgrid Cloud Resolving Model (CRM) and their influence on the planetary host

at drastically reduced computational expense [71]. This study, along with others in the emerging

climate modeling literature [72] have demonstrated the potential advantages of a data-driven

approach for addressing the critical unresolved effects of clouds and convection on planetary

climate, as compared to previous, heuristic based, approximations to subgrid physics. However,

the idea of emulating turbulence in climate simulation is still an emerging one, with unclear

trade-offs, including frequent instabilities when NN emulators are coupled with fluid dynamics,

which the community is seeking to learn how to control [72]. It has even been questioned whether

the offline skill of such emulators, during their training, is predictive of their online performance

[95, 96], an important open question.

37

These questions are understudied primarily due to the lack of the simple software interface

that FKB now enables for climate scientists to test diverse candidate neural networks, and

ensembles within planetary climate models. To illustrate an advance on this front we now apply

FKB to shed new light on two related questions currently in debate:

1. Does offline performance translate to online model performance [95, 96]?

2. Which neural network hyperparameters most affect online performance?

Using FKB, the study can be broken into two stages. First, a suite of 108 candidate neural

network models of convection are trained, via Keras, on simulated data from the SPCAM3.

Second, the models are converted to Fortran and run online (i.e. coupled to planetary fluid

dynamics) in the SPCAM3 simulator. The number of steps serves as a preliminary metric of

performance until catastrophic failure. It is clear that in the absence of the FKB library, running

hundreds of candidate neural network submodels of convection within the Fortran based model of

the rest of the planet’s atmosphere would be nearly impossible. This is due to the fact that each

network contains various hyperparameters, each with different weights and biases learned during

training, including layer-specific properties such as optional use of dropout or

batch-normalization. In order to leverage the FKB library with SPCAM3, we simply compile the

neural network library in advance and link it to the compilation of SPCAM3. Documentation and

steps for implementation of this case study are provided here:

https://github.com/scientific-computing/FKB/blob/master/SPCAM Instructions.md.

The input to this neural network model is a 94-dimensional vector. Features include vertically

resolved vectors representing the large scale (host model) temperature, humidity, meridional wind

vertical structure, surface pressure, incoming solar radiation, sensible heat flux, and latent heat

flux scalars. The output of the network is a 65-dimensional vector composed of the embedded

models’ influence on their host - i.e. the sum of the CRM and radiative heating rates, the CRM

moistening rate, the net radiative fluxes at the top of the atmosphere and surface of the earth, and

the precipitation.

38

https://github.com/scientific-computing/FKB/blob/master/SPCAM_Instructions.md

Name Options Parameter Type
Batch Normalization [yes, no] Choice
Dropout [0 - 0.25] Continuous
Leaky ReLU coefficient [0 - 0.4] Continuous
Learning Rate [0.00001 - 0.01] Continuous (log)
Nodes per Layer [128,256,512] Discrete
Number of Layers [4 - 11] Discrete
Optimizer [Adam, RMSProp, SGD] Choice

Table 3.1: SHERPA Hyperparameter Space

The training data used here are challenging to fit, as they come from an enhanced version of

the CRM training data that was originally studied by [71]. In superparameterized simulations, one

can control the degrees of freedom of the interior resolved scale through the room available for

interesting forms of sub-grid storm organization to form. One can control the physical extent (i.e.

number of columns used in) each embedded CRM array [97]. In [71], CRM arrays with only 8

columns (32-km extent, given the 4-km horizontal resolution) were used. Here we quadruple the

extent (from 32 km to 128 km, i.e. from 8-columns to 32-columns) to improve its physical

realism. Despite several attempts, these data have never been fit successfully. NNs trained from

the enriched data tend to produce crashes within just a few simulated weeks after they are

embedded in the climate model (see discussion of “NN-unstable” by [86] for details).

Our working hypothesis is that historical failures in free-running tests when emulators are

trained on higher quality CRM training data reflect a broader issue of insufficient hyperparameter

tuning in climate model applications. To address this, we conducted neural network optimization

via a random search using SHERPA [81], a Python library for hyperparameter tuning. We detail

the hyperparameters of interest in Table 3.1, as well as the range of available options during the

search. The hyperparameters of interest consisted of whether or not to use batch normalization,

39

the amount of dropout, the leaky ReLU coefficient, learning rate, nodes per layer, the number of

layers, and the optimizer. The random search algorithm has the advantage of making no

assumptions about the structure of the hyperparameter search problem and is ideal for exploring a

variety of settings.

We attained 108 candidate neural network model configurations, each trained for 25 epochs

with early stopping monitoring the validation loss. Following the offline training stage, the neural

network models were converted into their Fortran counterparts and ran inside SPCAM3. We

underscore that this critical step would have been prohibitive using standard tools that have

required manual translation of each candidate model. However, by leveraging the FKB library,

each model was loaded independently into Fortran and run as the subgrid physics emulator inside

SPCAM3’s host planetary model, of the large-scale atmospheric state. Each model was coupled to

fluid dynamics, to run a wide ensemble of prognostic tests across an unprecedented diversity of

candidate neural network architectures. Each of the one hundred and eight candidate neural

network models - with their various numbers of layers, layer-specific settings

(batch-normalization, relu magnitude, etc), nodes per layer, weights, and biases - were run online,

all without rewriting any Fortran code.

In order to address the first question and evaluate a neural network model’s performance, we

compare its validation MSE during training with the time-to-failure of the online tests in which

8,192 instances of the NN, spaced at regular intervals around the globe, are coupled interactively

to their host global atmospheric model of large scale geophysical fluid dynamics. This yields

Figure 3.4a, which sheds new light on the offline vs. online relationship.

The results in this figure demonstrate a relationship between offline validation error and online

performance. There is a distinct, negative, relationship between offline MSE and online stability

(Spearman correlation of −0.73; p = 4.961e−19. Intriguingly, the mean-squared error loss of our

multi-layer perceptron is a reasonable predictor of stability once coupled to the climate model,

40

Figure 3.3: The time-evolution of the tropospheric (a) temperature and (b) humidity biases,
colorized by the offline validation error

insofar as the time-to-failure is concerned. This finding is interesting in the context of the recent

speculation by [95] that such a relationship might not exist using similar NNs in a similar setting,

as well as the comments by [96] about similar incongruities even in reduced-order dynamical

systems when emulated with generative adversarial networks.

Of course, stability alone is a necessary but not a sufficient condition of prognostic success,

which also requires an in-depth analysis of biases in the simulated climate. Figure 3.3 shows the

time-evolution of the tropospheric temperature and humidity biases, colorized by the offline

validation error. These metrics reveal that although our search has uncovered many runs that are

“stable” - can run without catastrophically crashing for several months - most of these runs would

not be very useful in an operational setting. Almost all NNs exhibit major errors in the simulated

climate, having drifted to erroneous attractors with root-mean-square errors in temperature

frequently above 10 K. However, the NN that produced the best offline validation error stands out

as having the combined desired qualities of stability and skill with temperature biases of less than

2 K, competitive with [71]. Interestingly, coupling instead to the ensemble mean of a few of the

best-ranked models (magenta dashed lines) does not outperform coupling to the best fit model, the

value of having found it using SHERPA (Figure 3.3).

41

In short, we have produced a successful coupled simulation that was particularly challenging

without formal hyper-parameter tuning and FKB. This result suggests that sufficient

hyperparameter tuning may be critical to solving chronic instability in climate model applications

of DNNs for subgrid physics.

The second question naturally arises as to which of the hyperparameters are most impactful to

the online performance. To assess this, Figure 3.4b-i decomposes the sensitivity of the baseline

relationship to individual hyperparameter choices. The choice of optimizer is shown to correlate

most strongly with online performance (Figure 3.4i). This finding is confirmed by Spearman

values, shown in Table 3.2. The optimizer hyperparameter has the largest absolute correlation

value with online performance. No other hyperparameter shows as clear a distinction in

correlation that is evident in the choice of optimizer, including the network depth and total

number of parameters, which are known to be important to offline fits for this problem [98], but

are surprisingly not as predictive of coupled skill as the choice of optimizer, whose impact has not

previously been isolated (for this application).

Further investigation into the specific optimizer used, reveals the Stochastic Gradient Descent

(SGD) optimizer to perform poorly; NNs fit with SGD never run longer than 1,000 steps when

coupled online (Figure 3.4i). Again the visual intuition from Figure 3.4i is confirmed by

Spearman correlation values. SGD, Adam, and Root Mean Square Propogation (RMSProp) have

Spearman values of −0.6670, 0.5936, 0.0586 respectively. These values demonstrate that the use

of SGD is negatively correlated with online performance, whereas Adam positively correlates

with online performance. This result leads one to speculate that increased improvements in online

skill may be realized from more advanced optimizers with enhanced gradient update schedules.

Finally, after answering the two questions motivating this case study, we can compare the

results of the best performing model with that of previously published models of [71] when

applied to the challenging limit of CRMs with 32-km horizontal extent. The model proposed by

Rasp et al. was a single deep neural network. The hyperparameter space of this model was not

fully explored online in large part due to the laborious process required to transfer those models

42

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Offline performance - validation mean squared error (MSE) - vs online performance
- number of steps until crash. (a) All models. (b) By batch normalization usage. (c) By Dropout
amount. (d) By leaky ReLU coefficient. (e) By learning rate. (f) By number of dense nodes per
layer. (g) By number of layers. (h) By total number of model parameters. (i) By optimizer type.

43

Correlation P-Value
BatchNorm 0.0859 3.7896e-01
Dropout 0.1919 4.7591e-02
Leaky ReLU 0.0055 9.5465e-01
Learning Rate -0.2087 3.0923e-02
Dense Nodes 0.1427 1.4249e-01
Layers 0.0410 6.7491e-01
Optimizer -0.6998 5.0177e-17
Parameters 0.1528 1.1609e-01

Table 3.2: Spearman correlation of corresponding hyperparameter with online performance, and
associated p-value.

into Fortran. The Rasp et al. model (provided by the authors) ran for 128 steps before crashing

due to instability issues. The five best models achieved in this study ran to completion of a 5-year

simulation, i.e. for 87,840 steps; of these, two of the five models further exhibited

root-mean-square errors in simulated tropospheric temperature of less than 2 degrees Celsius.

This dramatic improvement in stability is a direct result of the ease with which a wide variety of

models (identified by SHERPA) can be transferred between Python and Fortran (thanks to FKB).

We also note that this method is preferable to another approach that was recently proposed to

begin stabilizing the same model, through small-amplitude Gaussian input perturbation [86] - a

strategy that, while promising, adds computational expense and introduces out-of-sample

extrapolation issues that can be avoided with the brute-force optimization and wide-ensemble

prognostic testing path to stabilization we have outlined here.

This case study has investigated two closely entangled questions: 1) Does offline performance

correspond to online model performance? 2) What neural network hyperparameters most effect

online performance? Both of these questions have been answered by leveraging the FKB library.

The library offers the ability to expeditiously transfer models trained in Keras to Fortran, where

they may be run online in existing simulators. In the absence of FKB, neither one of these

questions could be approached without unreasonable human intervention, as the operational target

is a climate model with over a hundred thousand lines of code written in Fortran.

44

4 An Information-Theoretic Analysis of Scientific

Computing Software with Unsupervised Machine

Learning

4.1 Introduction

The proprietary language, Matrix Laboratory (MATLAB) [99], has been a language of choice for

those across industry and academia with backgrounds in engineering, science, and economics.

MATLAB is a multi-paradigm numerical computing environment that offers a plethora of

graphics functions, dedicated statistics functions, and a core focus on matrix operations. An open

source competitor of MATLAB is the R programming language [100], which, despite it’s

appearance in 1993, has recently gained favor due to its breadth of statistical functionality, as well

as its ability to easily integrate with more performance-minded (compiled) languages, such as

C++ and Fortran. Moreover, many extensions are available to integrate with high performance

techniques, including GPU-based computing, which paves the way for state-of-the-art machine

learning algorithms (e.g. deep learning). Additionally, R has become a favored programming

language for academic research, including some statistics journals, which require that R code used

for analysis be made available along with data to maximize reproducibility of results. Given these

considerations, it is no surprise that a recent survey conducted by the Institute of Electrical and

Electronics Engineers (IEEE) reported R as the fifth most popular programming language,

substantially above other scientific computing languages such as MATLAB and Scala, which

occupy places fourteen and fifteen, respectively [101].

45

Despite its increasing popularity and the availability of large repositories of open source code,

R, and statistical computing languages in general, have received relatively little attention from the

empirical software engineering community. While this is ironic in the sense that many of the tools

used to mine software repositories are implemented in these languages (including the tools and

algorithms used in this paper), this also creates opportunities for new research questions. One

such question is what are the typical functions of scientific computing languages, and how are

they different from those found in other domains, such as enterprise computing applications?

Further, how does the application of these functions across source code packages compare

between open-source and enterprise computing? Though basic, answering these questions can

help shed light on the nuances of scientific computing software and where it fits in the landscape

of open source software repositories supporting computational science.

In this chapter we apply topic modeling, in particular LDA [11], to identify functional

concepts from over 10,000 R packages and 27,000 MATLAB modules in order to compare how

these concepts are applied across their respective languages. The results of our analysis provide

insight into the underlying characteristics of scientific computing algorithms in general, with

potential to guide further research in this area.

4.2 Data

The Comprehensive R Archive Network (CRAN) presently consists of 16,054 unique R packages

[102]. This study examines 10,051 of these packages. The requirements for submitting R

packages are documented on CRAN, as well as the extensive review process each package

undergoes before it is added to the repository. Each package is composed of R files, with varying

amounts of C, and C++ files for performance optimizations. In addition to R and MATLAB, we

include these C++ files in our topic analysis.

46

Despite MATLAB’s proprietary nature, over 38,000 open source packages are publicly

available via the MathWorks File Exchange [103]. Our collection of MATLAB code consists of

27,130 modules, written entirely in the MATLAB programming language. Both the MathWorks

File Exchange and CRAN represent a diverse collection of functionality geared toward scientific

and high performance computing.

4.3 Methods

LDA-based approaches to modeling software repositories have been shown to be more effective

than non-statistical techniques [104]. Since its first application by Linstead and colleagues [105],

LDA and similar topic models have been used for a wide variety of software analysis applications

[106, 107]. This includes the work in [108], which proposes that the topics identified by LDA

correspond to aspects, and that information-theoretic techniques such as entropy analysis can be

used to measure topic distributions across software repositories.

To prepare our corpus for LDA, we parsed the source code files, filtering stop-words. We

applied standard naming heuristics to split camel case and underscore identifiers within the

corpus. Although stemming is commonly leveraged in topic modeling research [109] to prevent

words with common roots from diluting the topics produced (i.e. ”model” and ”models” being

considered two separate tokens), in the context of software packages a single letter could

significantly change the function of that package and thus we chose to omit it from our processing.

Table 4.1 shows the resulting vocabularies for each respective language, with their corresponding

number of tokens. This input was processed using the LDA implementation provided by the R

package, Mallet [110], a popular toolbox for topic modeling. The number of topics to be extracted

was determined empirically by creating topic models of various sizes, and assessing the results for

human interpretability. The Dirichlet priors on the document-topic and topic-word distributions

were determined via Mallet’s built-in hyperparameter optimization routine rather than using the

default heuristics for symmetric priors. The importance of this has recently been reported in the

empirical software engineering literature [111].

47

Language File Count Lines of Code Tokens
MATLAB 187,938 11,760,856 31,432,343
R 178,320 14,949,905 56,948,438

Table 4.1: This table shows the number of files, total lines of code, and number of unique tokens
for topic modeling for MATLAB and R.

Once a model is trained using LDA, the degree to which topics are spread across documents

(source files) and to which words (tokens) are spread across topics can be measured qualitatively

via information-theoretic techniques as first proposed in [108]. Specifically, entropy scores were

calculated for each topic. These scores represent the probability of documents given a topic by

normalizing the frequency of a topic across all documents in the model and then calculating the

entropy of that distribution. For these document entropies, a low entropy indicates that the topic is

concentrated in a few documents while a high entropy indicates a more even spread across many

documents. We measure topic uniformity using Mallet’s built in method, which is based on

calculating the Kullback-Leibler divergence to measure the distance from a topic’s distribution

over words to a uniform distribution.

4.4 Results

4.4.1 Topic Modeling: R Files

Table 4.2 provides a sample of the LDA topics produced by our model when trained on exclusively

R packages collected from CRAN. The topics produced include applications both non-specific

and specific to R. Topic 26, for example, illustrates the use of R to produce summary statistics on

existing data sets (”par”, ”lower”, ”upper”, ”dist”, ”distribution”) while, topics 14 and 34

demonstrate R functionality associated with api usage (”url”, ”query”, ”api”, ”json”, ”status”) and

I/O operations (”file”, ”read”, ”write”, ”header”, ”append”). Extending beyond these fundamental

48

concepts are topics that demonstrate the specific domains in which R is commonly applied. Topic

28 alludes to DNA sequencing (”gene”, ”data”, ”verbose”, ”ontology”, ”flag”). Topic 32

demonstrates processing light spectrum (”spec”, ”wave”, ”frequency”, ”seq”, ”matrix”) and topic

59 shows a study of gender mortality rates (”age”, ”sex”, ”data”, ”summary”, ”mortality”).

Most importantly, though, is the multitude of topics in which R is clearly being leveraged for

its statistical computing capabilities. Topic 12 demonstrates functions for depth-based

classification (”ddalpha”, ”points”, ”patterns”, ”depths”, ”classifier”). Topic 55 presents key

phrases used in diagnostics for univariate stationary extreme value mixture models such as kernel

density estimation (”lambda”, ”kernal”, ”density”, ”kerncentres”, ”gaussian”). Topic 65 shows the

use of seeding techniques through random number generation and non-negative matrix

factorization (”seed”, ”nmf”, ”rng”, ”set”, ”random”), while topic 75 alludes to the practice of

imputing data (”amelia”, ”tcltk”, ”priors”, ”frame”, ”state”). Various statistically-grounded

algorithms can be specifically identified in topics as well. For example, topics 84 and 85

demonstrate the use of multi-state Markov models and time series analysis, respectively. Topic 5,

11, and 16 all outline clustering and classification techniques.

When the document entropies of these topics are plotted against those of MATLAB and C++,

in Figure 4.1, it can be seen that R topics consistently have a higher document entropy. This

demonstrates that in comparison to MATLAB and C++ the topics produced in our modeling, and

by extension the applications of R, are more generally spread across packages rather then being

highly specific. This is unexpected considering the source code from which R topics were

produced had over 9,000 fewer files than the MATLAB source code used in this study in

Table 4.1. Further, considering that R is a highly leveraged open-source language that attracts a

very diverse community of developers one might expect the application of R to be highly specific

rather than generalized. Additionally, we considered the topic uniformity scores assigned to each

R topic in comparison to MATLAB and C++ in Figure 4.2. In this comparison, R topics were the

49

Figure 4.1: This chart shows the document entropy across all topics generated for each of the 3
languages included in this study

Figure 4.2: This chart shows the uniformity metric across all topics generated for each of the 3
languages included in this study

50

Topic
5 fit family coef model weights
11 cluster dist means result cores
12 ddalpha points patterns depths classifier
13 env gui envir container exists
14 url query api json status
16 species train prediction data lda
26 par lower upper dist distribution
28 gene data verbose ontology flag
32 spec wave frequency seq matrix
34 file read write header append
55 lambda kernel density kerncentres gaussian
59 age sex data summary mortality
65 seed nmf rng set random
75 amelia tcltk priors frame state
84 msm states population transition covariates
85 time date year period series

Table 4.2: A sampling of the 100 topic models created from R source code files.

most uniform across the distribution of topics, indicating that terms tended to co-occur together

frequently. This reinforces the trend identified in document entropy. If utilities are more generally

applied, producing a high document entropy, their application can be expected to be more

uniform. This is the behavior we find demonstrated in the R source code environment.

4.4.2 Topic Modeling: MATLAB Files

The LDA topics represented in Table 4.3 depict a small subset of the 100 topics generated from

the MATLAB packages retrieved for this study. Within these topics, the general utilities one

would expect in a mature software environment can be found. Topics 11, 33, and 99 demonstrate

different graphing applications, while topic 41 encompasses data streaming and topic 50

represents basic data investigation.

51

Domain-specific applications of MATLAB surface in select topics. These include frequency

processing in topic 6, physics-centered computations in topic 40 and 59, as well as numerical

computing in topic 67. Topic 77 exhibits functionality within MATLAB associated with EEG and

eye tracking experiments. Topic 78 show Other utilities specific to MATLAB appear as well, such

as variable-length input arguments implemented by the keyword ”varargin” in topic 17.

More computationally intensive applications of MATLAB are surfaced as well. Topic 2

represents distribution and density calculations through the surfacing of cumulative distribution

function, ”cdf”, and probability density function, ”pdf”. Topic 43 covers date-based data analysis

in time series (”date”, ”year”, ”day”, ”series”, ”period”). Topic 51 centers on image processing

(”image”, ”imshow”, ”gray”, ”imread”, ”rbg”) and topic 95 covers trigonometric calculations

(”cos”, ”sin”, ”angle”, ”theta”, ”length”).

Statistically-motivated topics identified demonstrate utilities that differentiate MATLAB from

non-statistically leveraged languages. Topic 15 represents cost-sensitive classification (”cost”,

”cluster”, ”prob”, ”size”, ”population”) while topics 24 and 35 cover supervised learning. Topic

60 shows neural network construction (”net”, ”layer”, ”network”, ”hidden”, ”weights”) and topic

13 alludes to leveraging of C++, a practice commonly used to optimize more computationally

intensive statistical operations as discussed in Section subsection 4.4.3.

To further our investigation into the application of MATLAB we can again consider all 100

topics generated when compared against those of R and C++ for both document entropy and topic

uniformity. In general, the document entropy of MATLAB topics was lower than that of R topics

in Figure 4.1. This trend demonstrates that different applications of MATLAB were more specific

to smaller groupings of documents rather than being spread across a larger section of source code.

Further, MATLAB topics were less uniform than R topics in Figure 4.2 indicating that the

application of concepts in MATLAB is less specific compared to R, a surprising trend considering

that R is open-source and thus may be leveraged for a more diverse set of problems.

52

Topic
15 cost cluster prob size population
23 node graph tree edges root
27 wavelet qmf filter transform signal
35 class train features labels classifier
40 force velocity stress mass joint
43 daily asset series stock portfolio
51 image imshow gray imread rgb
57 file fprintf filename read fopen
59 heat pressure flow gas density
60 model net layer parameters input
64 font text size alignment style
77 eeg saccade subject eye blink
78 spot indx price call option
92 earth orbit vector gps longitude
95 cos sin angle theta degrees

Table 4.3: A sampling of the 100 topic models created from MATLAB source code files.

4.4.3 Topic Modeling: C++ Files

Within the statistical computing community, the standard approach to implementing particularly

computationally intensive programs in R and MATLAB has been to leverage C++. This trend is

surfaced in topic modeling conducted on C++ files found within the packages of R and MATLAB.

Topic 3 outlines the use of network graphs (”graph”, ”parameters”, ”neighbors”, ”parser”,

”edges”). Topic 5 relates to the implementation of the zmq package [112], used for distributed

messaging across platforms and languages (”size”, ”event”, ”mesg”, ”zmq”, ”layer”). Topic 40

features the implementation NOMAD package (Non-smooth Optimization by Mesh Adaptive

Direct search) [113] (”nomad”, ”point”, ”eval”, ”mesh”, ”model”).

Aside from these statistically intensive applications general utilities also surface in C++ topic

modeling. Topic 14 demonstrates file I/O (”file”, ”string”, ”read”, ”write”, ”stream”), topic 15

deals with matrices (”matrix”, ”row”, ”col”, ”nrow”, ”sum”), and topic 45 demonstrates the basic

leveraging of trees which could perhaps allude to deeper statistical leveraging of this data

structure (”node”, ”tree”, ”split”, ”parent”, ”child”).

53

Topic
3 graph parameters neighbors parser edges
5 size event mesg zmq layer
14 file string read write stream
15 matrix row col nrow sum
22 mult size kriterium alle genoptions
32 type input traits lhs rhs
40 nomad point eval mesh model
42 license gnu general software version
45 node tree parent child leaf
49 cluster model stk init algo

Table 4.4: A sampling of the topic models created from C++ source code files.

When considering the document entropy and uniformity of C++ topics very clear trends

emerge in comparison with R and MATLAB. The document entropy of C++ topics is significantly

lower than those of MATLAB and R shown in Figure 4.1. While individual low entropy scores

could be due to uncommon coding practices such as topic 32 which implement right-hand side

and left-hand side comparison (”type”, ”input”, ”traits”, ”lhs”, ”rhs”) or something more

fundamental like comments written in another language as in topic 22 which includes German

vocabulary (”mult”, ”size”, ”kriterium”, ”alle”, ”genoptions”). This overall trend demonstrates

that while some applications of C++ in statistical computing are more generalized across

documents, most are much more specific. This demonstrated specificity confirms the hypothesis

that C++ code is embedded in R and MATLAB packages for optimization because the needs of

different packages varies, producing much more specific topics. This trend continues when topic

uniformity is considered. The uniformity of C++ topics in Figure 4.2 is much lower than

MATLAB and R. Since C++ is being used to optimize code this makes sense as the utilities

needed for each specific optimization most likely vary package to package.

54

Figure 4.3: This chart shows box and whisker plots of normalized entropy for each language.

Figure 4.4: The topics shown in Table 4.5 versus their normalized entropies.

55

4.4.4 Topic Modeling: R, MATLAB, C++

In our analysis of the entire collection of source code, we created LDA topic models of all R and

MATLAB source code files combined. In the previous sections, each language was analyzed

separately to generate a topic model on only source code of that language. The topic models

generated for this combined study can be seen in Table 4.5. We also calculate the relationship

between a topic and each of the 2 main languages we are studying (R, MATLAB) by normalizing

the summed probability that a specific code file relates to that topic for each language. We then

take the entropy of these 2 calculated probabilities and have sorted the topics by this value. A

higher entropy then demonstrates that the topic is more widely related to both languages while a

lower entropy demonstrates that the topic is more specifically related to a single language, what

language that is can be identified by then looking back at the probabilities.

Figure 4.4 illustrates the the normalized entropy across the topics produced, when they are

sorted by entropy. The trend in the graph demonstrates that the majority of the topics fall under a

high entropy (0.8 or greater). In this context a high entropy is surprising as it indicates that the

topic being considered relates in a small amount to a large number of files. Considering the

language of R and MATLAB varies, one would expect to find many topics with very low

entropies, illustrating the specificity of the languages. However this is not the case, this could

indicate that the application of MATLAB and R is more uniform than originally thought. We will

investigate the trends of high and low entropy topics in the remainder of this section.

Within the topics generated with low entropies the differences in language between MATLAB

and R to implement similar functions is evident. Topic 3 covers the creation of graphs and is

highly correlated to MATLAB. This topic is similar in theme to the R correlated topic 12 but is

surfaced in a distinct topic due to the use of different keywords across the two languages (”xlab”

vs. ”xlabel”, ”ylab” vs. ”ylabel”, etc.). This trend continues in topic 7 which covers the creation

of statistical models with keywords like ”input” and ”parameters”. Although this topic is closely

related to MATLAB it is similar to the topic 16 which is related to R but contains language that

covers testing like ”expect” and ”verbose”.

56

The R language plays a large role in the open source statistical analysis community. In the

topics highly correlated with only R, this is clearly demonstrated. Topics 5 and 8 are related to list

manipulation while topic 12 includes common R keywords used when formatting visualizations.

Testing keywords like ”test” and ”verbose” appear in topic 16 while data formatting is supported

by topic 17 through words like ”format”, ”cat”, and ”round”. There are also less generalized

topics found that highlight specific uses of R such as topic 18 which references the use of outside

sources through ”url” and ”api” calls as well as the subsequent parsing of the response.

Topics in Table 4.5 highly correlated to MATLAB demonstrate some of the strengths within

this language. Aside from the more generalized functions that one would expect to see in a

language used widely throughout academia for statistical processing like plotting in topic 3 and

model creation in topic 7, there are more specific topics that demonstrate what MATLAB may be

utilized for over other languages. MATLAB’s ability to handle functions dynamically is

represented in topic 2 which holds keywords like “varargin”, a keyword that enables a function to

accept any number of input arguments. Other MATLAB specific utilities are also represented as

can be seen by image formatting and signal processing topics indicated by topic 11 and topic 13

respectively.

The C++ programming language is commonly leveraged within MATLAB and R packages.

This integration is supported by topic 6 and topic 9 which contain keywords like “sexp” and

“rcpp”. The use of C++ in R and MATLAB as a way to perform generalized tasks like formatting

is demonstrated in topic 4 and topic 15 as well as error coding in topic 20. Other coding best

practices also seem to be contained within C++ and then utilized by R and MATLAB. Monitoring

code behavior through gsl is shown in topic 19 while versioning of software keywords like

“copyright” and “distributed” appear in topic 1.

The normalized entropy across all topics for each language was found to be very similar across

each language (R, MATLAB, C++) as demonstrated in Figure 4.3. This is notable as it indicates

that no language is particularly unique in its application by the community that uses it, at least in

comparison to the other two languages in this study. Further, on a topic by topic basis, when the

57

topics are sorted based on the normalized entropy in Table 4.5 the top 20 lowest entropies feature

MATLAB 6 times, R 7 times, and C++ 7 times. This even representation in low entropy topics,

which indicate that one language was significantly more related to that topic than others, further

affirms the overall neutrality of the topics produced for this section.

When considering the 10 topics with the highest entropies displayed in Table 4.5 we can

extract trends that are generally applicable to all languages. Utilities necessary to a wide range of

disciplines surface such as iteration (topic 98), feature extraction and storage (topic 92), and

investigating the modality of data (topic 96).

Overall, the topics generated across the entire mined corpus of MATLAB and R source code

demonstrate that the application of MATLAB and R, to statistical computing problems, is more

uniform than expected, diverging from this uniformity mainly when a difference of keywords

comes into play.

58

Table 4.5: This table shows the topic model, sorted by entropy, created from all MATLAB, R, and
C++ source code files. The second column represents how much each language corresponds to that
topic. The third column is the normalized entropies of the values in the second column. An entropy
of 1 corresponds to the languages being evenly split with the topic. Where as an entropy of 0 means
a single language exclusively relates to that topic.

R M C/C++ Entropy Topics
1 0.003 0.002 0.993 0.038 license gnu general version software free warranty

program copyright org foundation details distributed
terms copy modify purpose implied file http

2 0.003 0.993 0.003 0.039 cell size varargin isempty disp fprintf length input
nargin zeros strcmp find array numel matlab output
repmat sprintf reshape str

3 0.003 0.993 0.003 0.042 plot axis figure title size hold set color subplot xlabel
ylabel font grid disp marker gca max legend width
zeros

4 0.004 0.006 0.988 0.063 size type array ptr string set begin key back base
stream push copy map add cast src element pointer
internal

5 0.984 0.007 0.008 0.084 list names length paste stop character call numeric sep
missing match lapply fun check levels unique unlist
sapply values collapse

6 0.018 0.015 0.966 0.155 sexp integer ret real elt protect set alloc string
unprotect pointer logical nil realsxp rprintf length
numeric ptr len names

7 0.013 0.958 0.027 0.181 number values output input size order sum points
compute zeros parameters linear note functions
algorithm point returns space variables matrix

8 0.955 0.016 0.027 0.192 matrix dim length nrow ncol rep sum stop apply
list numeric colnames integer cbind seq drop array
rownames dimnames max

9 0.030 0.028 0.941 0.240 mat rcpp arma vec numeric trans matrix list named
sexp wrap cube cpp pow zeros rcout cal colvec begin
rows

10 0.936 0.024 0.039 0.254 code param link item examples eqn number values
details numeric seealso description rdname author list
logical package title keywords emph

11 0.032 0.934 0.032 0.260 image img size mask images slice pixel max rgb width
gray imshow color video min frames pixels height
zeros uint

12 0.926 0.039 0.033 0.285 col plot cex xlab par ylab lty lwd ylim type length
legend xlim lines pch axis max labels points text

Continued on next page

59

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
13 0.042 0.922 0.034 0.296 filter signal freq length frequency noise phase aux time

fft peak abs wave window max zeros snr amp peaks
delay

14 0.057 0.884 0.058 0.399 set position string color style units text callback fig
tag axes font parent uicontrol button figure normalized
handle visible gui

15 0.060 0.062 0.877 0.415 string status pattern code length set unicode entry
format icu len match locale pat start utf text number
dest stable

16 0.852 0.084 0.062 0.472 test expect equal verbose check equals identical
context tests set expected list equivalent tolerance skip
unit works nbr units assert

17 0.838 0.082 0.078 0.503 cat print paste sep results digits round summary cor
score format names stats scores output colnames corr
items rownames table

18 0.834 0.089 0.076 0.512 url http query api list key json character search org
request response session data https message web token
www paste

19 0.107 0.104 0.787 0.604 gsl free prop lam rprintf pow matrix malloc calloc ini
printf beta set fabs surv time lambda alloc cov log

20 0.088 0.133 0.778 0.616 msg handle assert message tbb device port status task
command thread cmd server serial set queue buffer job
req connection

21 0.769 0.096 0.133 0.634 res formula family coef terms weights fit response
term model call coefficients residuals glm attr
intercept data fitted resp offset

22 0.757 0.095 0.146 0.651 test method conf boot level statistic interval sum
estimate pval stat surv confidence strata bootstrap risk
pvalue values alternative stop

23 0.118 0.748 0.133 0.671 block sys set blocks add system param position time
pid blk mdl built step abc gain control input output vel

24 0.131 0.738 0.129 0.687 handles object eventdata set string gui background
edit handle guidata color callback matlab future data
version reserved fcn structure gcbo

25 0.136 0.139 0.724 0.709 arg git buf bat type len repo mal ctx str oid ptr dst stk
free lng commit repository readstat nil

26 0.104 0.177 0.717 0.710 matrix diag sparse inv eigen scalar diagonal matrices
svd solve det norm coeff symmetric eig compute real
vectors chol product

Continued on next page

60

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
27 0.075 0.683 0.240 0.726 point cos angle sin points length mesh face radius

vertex vertices cgal center coord rad plane direction
rot faces rotation

28 0.682 0.169 0.147 0.768 data frame group dataset groups raw meta names
variable grp factor variables column values set unique
subset columns dat datasets

29 0.641 0.165 0.193 0.819 object method set generic signature methods objects
slot type call standard numeric definition list character
rdname valid poped show representation

30 0.631 0.214 0.153 0.827 width color plot height panel ggplot text size fill geom
scale label top colors aes layout axis colour title legend

31 0.194 0.182 0.623 0.840 graph edge igraph network edges net unit vertex head
layer degree nodes ptr tail act vertices directed deg
hidden adj

32 0.586 0.297 0.116 0.840 file path dir files filename read output write save txt
directory load package csv folder lines run exists sep
system

33 0.169 0.618 0.212 0.843 attr mem attributes attribute xxxx tidy att disc core
elem subj ida subject mac retval bio matfmatl vode
set attrs

34 0.249 0.600 0.150 0.853 flow temperature pressure tmax unit gsw water station
wind speed flux density units tmin output fraction
depth debug weather velocity

35 0.581 0.169 0.248 0.875 model cov est models fixed parameters var matrix
variance list estimate values fit data bic covariance
estimates aic covariates estimation

36 0.118 0.372 0.508 0.877 fid file read field header fprintf uint hdr offset write
type fread bytes data filename format record len fields
fclose

37 0.230 0.194 0.574 0.887 type input args parameter traits rcpp method cpp fun
sexp base string lhs rtype rhs result met signature valid
ptr

38 0.136 0.340 0.523 0.889 sol bar copyright software conditions provided
including binary stri notice tensor limited warranties
implied liability source list contributors mpfr
disclaimer

39 0.567 0.232 0.199 0.894 pred train predict test model data newdata training
prediction set classes auc roc fold predicted loss
validation models forest ensemble

Continued on next page

61

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
40 0.196 0.566 0.236 0.894 cfg channel mutil data channels sint vol chan source

time elec isfield trip sens ops label trial errcode freq
meg

41 0.145 0.519 0.334 0.898 fix isempty work precision integer dumvar lda
complex abs array iwork size real ierr writef kprint
format reshape prologue subroutine

42 0.189 0.265 0.545 0.908 index count current max order length indices len left
min sort counter total find number flag pair sorted
values prev

43 0.235 0.546 0.217 0.912 coef dec ord coefs actual test expctd img subband hex
lppufb transform diff wavelet values level dist size
zeros sprintf

44 0.208 0.539 0.252 0.916 num str fcn den fcns handle qmx set stdcall ptr task
rhs strcat lhs max calltype channel dig reset cstring

45 0.533 0.194 0.272 0.917 gene seq snp chr genes sequence length ids inds
ped ann data marker allele gap sequences names
annotation fam chrom

46 0.539 0.227 0.232 0.918 fit obs mod number chunk code rnw parm avg data set
fitted cand list eval fits summary library type gof

47 0.363 0.165 0.471 0.928 prior mcmc post posterior samples chain beta model
burnin iter parms accept thin sample sigma chains log
parameters prob gamma

48 0.514 0.243 0.242 0.937 time dat date year times day age start month format
dates days years zone posi interval period duration sex
calendar

49 0.226 0.511 0.261 0.937 triangle element pts tri boundary energy elements
voxel material number field particle point stress dof
xdim strain reg dtype basis

50 0.246 0.241 0.511 0.938 row col rows column cols columns rhs lhs glp nrows
number ncols matrix mpl csa max check set val add

51 0.500 0.208 0.291 0.939 scale lower upper shape bound length tail bounds log
stop list distribution limit eta location numeric link rep
prob extra

52 0.269 0.507 0.223 0.939 obj properties set property props methods java cls
add access object board prop player objects check
component handle update cdata

53 0.491 0.253 0.254 0.951 var env frame variable vars text tkgrid tclvalue paste
box command envir sep tcl variables rcmdr sticky
entry gettext active

54 0.256 0.253 0.489 0.952 sqlite cache hash page pool fts flags file parse assert
key table memory expr cursor mem token list lock free

Continued on next page

62

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
55 0.218 0.469 0.311 0.956 kernel func reg domain chebfun dom deriv pass

bandwidth pref continuous ordered eval ode prod fun
norm tol jac unordered

56 0.478 0.272 0.248 0.958 map lat poly spatial area region coords lon raster proj
points coordinates geo polygon track polygons bbox
grid point projection

57 0.293 0.240 0.466 0.963 lambda digamma knots spline penalty pen string
fullcond lambdas datamatrix lasso knot beta intercept
degree compute mult back der push

58 0.245 0.288 0.466 0.963 info rank constraints constraint solution problem
comm dsdp norm solver set mpi solve dual cone status
constr sol objective rhs

59 0.466 0.288 0.245 0.964 diff length max probs min cut fac median breaks
quantile arr sum med quant quantiles density abs dens
coo perc

60 0.278 0.467 0.254 0.964 val ref rand imp del single reference disp para aux
los conj datos details impute las imputation maxtime
imputed maxdiff

61 0.276 0.465 0.258 0.965 bin omega hist bins acc json histogram uni contrast
hit length nbins contr sum syn sds counts len histo
number

62 0.212 0.409 0.378 0.966 par params prob gen pdf distr parameters distribution
unur cdf probability set parameter sum check discrete
log plate exp distributions

63 0.444 0.234 0.320 0.969 text xml tag html doc word string tags div document
content words foo corpus parse character style token
css add

64 0.247 0.307 0.444 0.972 base comp bits bit mad ptr token nxs master count
string comps symbols phase ctype gas cxx surface msg
map

65 0.320 0.241 0.438 0.973 para cross geno covar mixture algo pheno markers
marker map qtl dfr strategy chr wts gaussian covars
mixmod output criterion

66 0.399 0.376 0.224 0.973 series lag price period trend portfolio time lags
forecast date returns stock risk rate prices vol call acf
asset trx

67 0.414 0.228 0.357 0.973 tree root species node edge split child parent tip phy
length branch children phylo leaf nodes trees leaves
list taxa

68 0.256 0.436 0.307 0.977 des def vect fin nom les traj coord pour pro fprintf
indice est pas orbit matrice dans sun quali mog

Continued on next page

63

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
69 0.437 0.299 0.263 0.977 sim rate site eval simulation process list set nsim rates

sites echo simulate fig type simulated cap expression
length simulations

70 0.427 0.253 0.319 0.979 table sql select rel tbl list tables conn query create
column join schema type dplyr categories category
connection database res

71 0.266 0.306 0.427 0.981 node idx nodes arc graph links ctrl parents parent dag
arcs garch list modelinc set find max spec ipars dfa

72 0.340 0.401 0.258 0.985 options threshold opts option thresh check length thr
thresholds outliers kmax method outlier robust flag set
gpd phiu sde center

73 0.417 0.292 0.289 0.985 theta sigma tau rho sqrt copula der teta log exp sum
length yych cop eta thetas pdf family margins derp

74 0.380 0.365 0.253 0.986 range curve dose calc band max interp min values trim
curves length fct sat spectra ranges wavelength spct
bands lum

75 0.403 0.264 0.332 0.986 dist cluster distance weight weights clusters sum clust
parallel method matrix number distances weighted
min metric max centers clustering size

76 0.408 0.286 0.305 0.988 gtk window widget type text container handler action
view check gdk button add set ptr svalue gui icon
package call

77 0.392 0.334 0.272 0.990 label labels basis smooth lab proc fuzzy data list
functional sse values meth smoothing fdata nclass
scores coefs length nbasis

78 0.401 0.313 0.285 0.990 beta delta phi gamma lambda eta psi hat sum sqrt
kappa omega star inv alpha diag abs solve exp alfa

79 0.398 0.319 0.282 0.990 sample pars samples power cost size samp trace
stage sampling length number sizes sam traces nmax
replace seismic costs total

80 0.395 0.278 0.326 0.990 log alpha exp expr sum lik likelihood sqrt loglik
lgamma ifelse alphas mle length numeric dep
exponential distribution grad sealen

81 0.385 0.275 0.338 0.991 random seed rand profile slope rng mass prec dummy
number generate runif length generator reps nmf
rnorm dum ran profiles

82 0.305 0.298 0.395 0.992 result user err ptr object check cutoff type version
pointer gint file atk cdr data cancellable setcar info
callback string

Continued on next page

64

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
83 0.363 0.273 0.362 0.992 temp loc pop curr locus swf loci length allele alleles

sum freq hap genotype number freqs populations rare
genotypes population

84 0.334 0.384 0.280 0.992 con stack summ decision imax rst imin glob jmax
relation max cue ladder nodo truth tee del arrival
rapidjson nominal

85 0.286 0.324 0.388 0.992 state rule states buffer depth transition cimg rules
gram tth setup dparser lex scanner current trans scan
bus arg transitions

86 0.285 0.332 0.381 0.993 config population pop batch crit size spot alg objective
fitness shark number algorithm criteria set multi funstr
parameters individual search

87 0.305 0.386 0.307 0.994 ind ext color xyz rgb coord red texture green extproc
lenum init arb vertex apientry tex lint blue thres lab

88 0.384 0.297 0.317 0.994 design factor effect cond effects eff mix treat treatment
outcome lik trt gpcf fact factors study condition marg
sum full

89 0.384 0.308 0.306 0.994 sig vals perm icd counts dif permutation chi
permutations cases miss itr res focal sum controls
major permute spp nperm

90 0.316 0.300 0.383 0.994 vec spec span zeta history length blpapi order quad
delt add tst checkb max tvec lamb print set fnu xvec

91 0.380 0.324 0.294 0.994 tab sel xmax seg xmin ymax measure comb ymin gvar
biplot smat segs min transf tabs points mds gbp river

92 0.308 0.314 0.376 0.996 level feature alt storage trees stages features lst bson
opencv haarcascade frontalface mongoc array msa val
feat bmp imread mongo

93 0.353 0.353 0.293 0.996 target event source events trial sgp time baseline times
dose iso targets eeg trials number grade epoch sources
conc subject

94 0.295 0.343 0.361 0.996 roi run historical scenario data list rcp amon tas air
spm pcs rcm reloclim amount cmip file update esm
gfdl

95 0.343 0.299 0.357 0.997 sym segment mark segments marks parser rmax
npoints npts window balance yyval bws yyvsp
correction points ppp ppm action xrange

96 0.330 0.306 0.362 0.997 tmp start mode modes inp starts points leb shimmer
ends gauss starting stop lebedev reccurence neuron
xtmp output bhat mvar

Continued on next page

65

Table 4.5 – Continued from previous page
R M C/C++ Entropy Topics
97 0.356 0.332 0.311 0.998 pos grid cnt neg make desc dev learner positions

position task card length regr mydata ngrid hand
mumps tiling asym

98 0.321 0.356 0.322 0.998 max min iter control opt step tol init eps abs method
initial grad iterations fun norm optim gradient conv
iteration

99 0.325 0.349 0.324 0.999 stat cont part length mid big joint alp beam cairo width
partition pad spacing pin spc ndim funwords parts
moment

100 0.337 0.324 0.338 0.999 cur low high rec symbol cum atom ctr matrix upp locs
spike length lab spikes atoms support ntimes scl step

4.5 Related Works

While we believe we are the first to take a machine learning approach to analyzing R and

MATLAB with topic models, including a preliminary topic analysis [114], previous efforts have

been made to gain insight into the R ecosystem. Others have analyzed the strengths and

weaknesses of R, such as Caragea et al. in their SWOT (Strengths, Weaknesses, Opportunities,

Threats) analysis [115], or Culpepper et al. in their review of the limitations and benefits of a

statistical computing tool that is continuously being updated [116]. German et al. inspected R

packages found on CRAN, although they focused specifically on the growth and evolution of core

and contributed projects over time. This work was extended to other repositories in [117], which

analyzed the origin and dependencies SoftwareMining-2017, October 2017, Urbana-Champaign,

Illinois USA of more than 12,000 packages in order to more completely characterize the R

ecosystem. Despite the inclusion of more data, they concluded that CRAN still remained central

to the R ecosystem, although other repositories, mainly GitHub, were being used to leverage the

advantages that accompany open source development.

66

Some have taken a different approach to analyzing the R packages and other resources that can

be downloaded from CRAN. The work in [118] inspected the large range of style guides and

naming conventions that were in use throughout packages pulled from CRAN, and noted many

inconsistencies. These inconsistencies led, in part, to our own decision to not do a deep parse of R

code for this pilot study and instead only focus on API documentation.

Others have noted the rise of the R programming language and what it could mean for

statistical computing. Hornick, 10 years after his original analysis of R in [119], which largely

introduced the language to the statistical community, returned to inspect the evolution of R

through the lens of the multitude of R packages that had become available in the intervening

decade [120]. This later work served to encourage the statistical computing community to work

towards establishing a common understanding of software quality.

After a literature review, we noticed a significant gap in research pertaining to the MATLAB

environment. Many papers noted above study the R ecosystem, but few MATLAB equivalents

were found. The Mathworks team claims the simplicity of the MATLAB language and its

similarity to English, make it easier to learn compared to R which was created for statisticians

[121]. They also report that MATLAB tends to be faster than R for technical computing tasks,

statistics, and machine learning in part due to built in multi-threading. The authors in [122],

performed aspect mining and studied the cross cutting concerns showing the advantages of aspect

oriented programming in MATLAB.

Though research of the MATLAB ecosystem is limited, other programming languages have

been studied in informative ways. Linstead et al. also extracted concerns from Java source code,

as latent topics, to study the Java software vocabulary and measured scattering and tangling of

those topics [123]. Zhang et al. [124] also explore topics present in Java source code in several

projects chosen from the large corpus curated in [125]. The authors propose a new topic extraction

method, Embedded Topic Extraction (EmbTE), and compare the topics found to those produced

LDA and Non-negative Matrix Factorization (NMF). Perez et al analyzes and compares Python to

R and other established computing languages in [126]. They note the rapid progress of Python

67

numerical processing, documentation, data visualization, and the language’s other high-quality

tools. Ugurel et al. mined source code of multiple languages from IBiblio, Sourceforge, as well as

other archives in a classification study [127]. Though not topic modeling, they performed feature

extraction through expected entropy loss. The authors trained a support vector machine to classify

the source code into eleven application topics and ten programming languages based on those

features. Although topic classification was only attempted on C/C++ source files, the language

classification analysis consisted of eleven categories including MATLAB. The authors in [128],

expanded on this study to include API calls from third party libraries as possible features for topic

classification in closed and open source Java applications. The authors in [129], take a deep dive

into several LDA hyper-parameters and their impact on the resulting LDA model.

With precedent established for other languages and a lack in research pertaining to MATLAB

environment, we believe this could be a significant future research area. We are confident in the

assumption that R and MATLAB’s influence in the world of computing will continue to grow in

the coming years. With this growth, it is imperative to continue to investigate these languages, and

similar languages, to understand fundamental differences from the procedural and object-oriented

technologies that have been the emphasis of research in mining software repositories. To this end,

we intend to expand the initial work described here to include more facets of contemporary

scientific computing software packages. To start, we will expand our corpus by parsing the

original R source code in addition to the RPM documentation. This will allow us to study facets

of R programming at a lower level of granularity. Additionally, we would like to explore the

naming conventions of R, and how they compare to what has already been observed in languages

such as Java [123].

68

5 Conclusion

This dissertation has highlighted three applications of machine learning in previously unexplored

and under explored areas. A central theme of these applications has been applying and enabling

machine learning use in new domains.

In Chapter 2, we extended previous work regarding the application of machine learning

techniques for classification of UML images. Transfer learning allows us to take, in effect, a

shortcut in training deep architectures. Given limited data, it is nearly impossible to train a

network with the depth and substantial number of parameters as in VGG. However, by transferring

knowledge learned from one task to another, we are able to tune off-the-shelf deep architectures

and achieve high classification accuracy, rather than having to design new architectures with fewer

layers and smaller parameter spaces to learn. Most importantly, the knowledge that forms the

basis of the transfer learning needs no previous exposure to artifacts from the software domain,

suggesting that transfer learning can be applied broadly to applications of deep learning within

empirical software engineering.

Experimental results have shown training is positively effected by transfer learning even when

the number of samples shown to the network is kept small. In contrast, even a smaller network

with substantially fewer parameters is unable to learn as well. As a control, an off-the-shelf VGG

network was also tested and the entire architecture containing over 14 million parameters was

allowed to train. As expected, this network failed to improve beyond 50% accuracy even when

shown the maximum number of samples tested.

69

In addition to affirming the utility of transfer learning for mining software artifacts, our results

suggest that as a research community we should be more proactive in curating machine learning

models trained on software data, in addition to the software data itself. Such repositories of

pre-trained models would allow empirical software engineering researchers to apply transfer

learning to new applications using models already tuned using software data of various types.

The ubiquitousness of deep learning has resulted from extensive free and open source libraries

[49, 50, 51]. Deep learning’s success and popularity merit its integration in large-scale computing

packages, like those written in Fortran. Instead of rewriting all existing libraries in Fortran, we

introduced a two-way bridge between low-level, Fortran, and Python through the FKB Library in

Chapter 3. The library provides researchers the ability to implement neural networks into Fortran

code bases while being able to transfer them back and forth with Keras.

Fortran, which has been a staple within computationally intensive fields for decades, will

undoubtedly see continued use due to its fast computational ability and vast amounts of legacy

code. The FKB library enables users to access many features of the Keras API directly in Fortran,

including the ability to create custom layers and loss functions to suit their needs. We demonstrate

the integrability of FKB through our case study involving the SPCAM3 simulator. An advantage

of FKB is its ease of use, demonstrated by its ability to be compiled in advance and once linked

can be easily leveraged in existing large scale simulators, as we have illustrated for the application

of multi-scale physical simulations of the global atmosphere. In Chapter 4, the use of Latent

Dirichlet Allocation allowed insight into specific use cases and application domains of the

statistical programming languages analyzed in this study. LDA models of individual languages

allow for analysis of topics, specific to that programming paradigm. Topic models of all languages

allow cross-cutting concerns to be identified, while quantitatively analyzing (entropy) how much a

topic relates to all languages. C++ files, used in conjunction with R and MATLAB, are

specifically for optimization tasks. This is confirmed by C++ topics focusing on high efficiency

and optimization. Additionally, low entropy and high uniformity scores signal highly specific use

cases. Topics gathered from R and MATLAB models show a plethora of statistical computing

70

capabilities. This non-surprising result attests to the validity of methods used in this study. Our

results indicate that MATLAB is used for more specific domains. This is confirmed by

MATLAB’s lower document entropy score compared to R, as well as a higher uniformity score.

The results of our analysis provide insight into the underlying characteristics of scientific

computing algorithms in general, with potential to guide further research in this area.

71

REFERENCES

[1] D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, 1962.

[2] J. Ott, E. Linstead, N. LaHaye, and P. Baldi, “Learning in the machine: To share or not to
share?” Neural Networks, vol. 126, pp. 235–249, 2020.

[3] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in ICML, 2010, pp. 807–814.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[5] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for
discriminative localization,” CoRR, vol. abs/1512.04150, 2015. arXiv: 1512.04150.

[6] R. Kotikalapudi and contributors, Keras-vis, https://github.com/raghakot/keras-vis, 2017.

[7] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[9] J. Ott, A. Atchison, and E. J. Linstead, “Exploring the applicability of low-shot learning in
mining software repositories,” Journal of Big Data, vol. 6, no. 1, p. 35, May 2019.

[10] E. S. Olivas, J. D. M. Guerrero, M. M. Sober, J. R. M. Benedito, and A. J. S. Lopez,
Handbook Of Research On Machine Learning Applications and Trends: Algorithms,
Methods and Techniques - 2 Volumes. Hershey, PA: Information Science Reference -
Imprint of: IGI Publishing, 2009, isbn: 1605667668.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of Machine
Learning Research, vol. 3, no. Jan, pp. 993–1022, 2003.

[12] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking lda: Why priors matter,” in
Advances in neural information processing systems, 2009, pp. 1973–1981.

[13] J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead, “A deep learning approach to
identifying source code in images and video,” May 2018, pp. 376–386.

72

https://arxiv.org/abs/1512.04150
https://github.com/raghakot/keras-vis

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[15] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image
recognition, 2014. arXiv: 1409.1556 [cs.CV].

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 1, ser. NIPS’12, Lake Tahoe, Nevada:
Curran Associates Inc., 2012, pp. 1097–1105.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Computer Vision and Pattern
Recognition (CVPR), 2015.

[19] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers, “Deep convolutional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learning,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1285–1298, May 2016.

[20] N. Bayramoglu and J. Heikkilä, “Transfer learning for cell nuclei classification in
histopathology images,” in Computer Vision – ECCV 2016 Workshops, G. Hua and
H. Jégou, Eds., Cham: Springer International Publishing, 2016, pp. 532–539, isbn:
978-3-319-49409-8.

[21] J. Ott, A. Atchison, P. Harnack, N. Best, H. Anderson, C. Firmani, and E. Linstead,
“Learning lexical features of programming languages from imagery using convolutional
neural networks,” in Proceedings of the 26th Conference on Program Comprehension,
ACM, 2018, pp. 336–339.

[22] M. Alahmadi, J. Hassel, B. Parajuli, S. Haiduc, and P. Kumar, “Accurately predicting the
location of code fragments in programming video tutorials using deep learning,” in
Proceedings of the 14th International Conference on Predictive Models and Data
Analytics in Software Engineering, ACM, 2018, pp. 2–11.

[23] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A. Fernandez, “The quest
for open source projects that use uml: Mining github,” in Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems,
ser. MODELS ’16, Saint-malo, France: ACM, 2016, pp. 173–183, isbn:
978-1-4503-4321-3.

73

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385

[24] Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,”
CoRR, vol. abs/1206.5533, 2012. arXiv: 1206.5533.

[25] T. Ho-Quang, M. R. V. Chaudron, I. Samuelsson, J. Hjaltason, B. Karasneh, and
H. Osman, “Automatic classification of uml class diagrams from images,” 2014 21st
Asia-Pacific Software Engineering Conference, vol. 1, pp. 399–406, 2014.

[26] J. Hjaltason and I. Samuelsson, “Automatic classification of uml class diagrams through
image feature extraction and machine learning,” 2015.

[27] V. Moreno, G. Génova, M. Alejandres, and A. Fraga, “Automatic classification of web
images as uml diagrams,” in Proceedings of the 4th Spanish Conference on Information
Retrieval, ser. CERI ’16, Granada, Spain: ACM, 2016, 17:1–17:8, isbn:
978-1-4503-4141-7.

[28] R. Krishna and T. Menzies, “Bellwethers: A Baseline Method For Transfer Learning,”
arXiv e-prints, arXiv:1703.06218, arXiv:1703.06218, Mar. 2017. arXiv: 1703.06218
[cs.SE].

[29] E. Kocaguneli, T. Menzies, and E. Mendes, “Transfer learning in effort estimation,”
Empirical Softw. Engg., vol. 20, no. 3, pp. 813–843, Jun. 2015.

[30] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software
defect prediction,” Inf. Softw. Technol., vol. 54, no. 3, pp. 248–256, Mar. 2012.

[31] X. Jing, F. Wu, D. Xiwei, F. qi, and B. Xu, “Heterogeneous cross-company defect
prediction by unified metric representation and cca-based transfer learning,” Aug. 2015,
pp. 496–507.

[32] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar, “Transfer learning for
improving model predictions in highly configurable software,” CoRR,
vol. abs/1704.00234, 2017. arXiv: 1704.00234.

[33] N. Tajbakhsh, J. Shin, S. Gurudu, R. Hurst, C. Kendall, M. Gotway, and J. Liang,
“Convolutional neural networks for medical image analysis: Full training or fine tuning?”
IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1299–1312, May 2016.

[34] IBM, Fortran, https://www.ibm.com/ibm/history/ibm100/us/en/icons/fortran/, Mar. 2011.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[36] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

74

https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1703.06218
https://arxiv.org/abs/1703.06218
https://arxiv.org/abs/1704.00234

[37] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, “Deep
learning in remote sensing: A comprehensive review and list of resources,” IEEE
Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 8–36, 2017.

[38] N. LaHaye, J. Ott, M. J. Garay, H. M. El-Askary, and E. Linstead, “Multi-modal object
tracking and image fusion with unsupervised deep learning,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 8, pp. 3056–3066,
2019.

[39] J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead, “A deep learning approach to
identifying source code in images and video,” in 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), IEEE, 2018, pp. 376–386.

[40] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time continuous pose recovery of
human hands using convolutional networks,” ACM Transactions on Graphics (ToG),
vol. 33, no. 5, p. 169, 2014.

[41] J. Ott, A. Atchison, and E. J. Linstead, “Exploring the applicability of low-shot learning in
mining software repositories,” Journal of Big Data, vol. 6, no. 1, p. 35, 2019.

[42] G. Urban, P. Tripathi, T. Alkayali, M. Mittal, F. Jalali, W. Karnes, and P. Baldi, “Deep
Learning Achieves near Human-level Polyp Detection in Screening Colonoscopy,”
Gastroenterology, vol. 155, no. 4, pp. 1069–1078, 2018.

[43] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi, “Solving the rubik’s cube with deep
reinforcement learning and search,” Nature Machine Intelligence, vol. 1, no. 8,
pp. 356–363, 2019.

[44] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484,
2016.

[45] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707,
2019.

[46] T. Beucler, M. Pritchard, S. Rasp, P. Gentine, J. Ott, and P. Baldi, “Enforcing analytic
constraints in neural-networks emulating physical systems,” arXiv preprint
arXiv:1909.00912, 2020.

[47] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven
discretizations for partial differential equations,” Proceedings of the National Academy of
Sciences, vol. 116, no. 31, pp. 15 344–15 349, 2019.

75

[48] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of partial
differential equations,” Science Advances, vol. 3, no. 4, e1602614, 2017.

[49] F. Chollet et al., Keras, https://github.com/fchollet/keras, 2015.

[50] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in
12th Symposium on Operating Systems Design and Implementation 2016), 2016,
pp. 265–283.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[52] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kushner,
J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay, et al., “The community earth
system model: A framework for collaborative research,” Bulletin of the American
Meteorological Society, vol. 94, no. 9, pp. 1339–1360, 2013.

[53] J.-C. Golaz, P. M. Caldwell, L. P. Van Roekel, M. R. Petersen, Q. Tang, J. D. Wolfe,
G. Abeshu, V. Anantharaj, X. S. Asay-Davis, D. C. Bader, et al., “The doe e3sm coupled
model version 1: Overview and evaluation at standard resolution,” Journal of Advances in
Modeling Earth Systems, vol. 11, no. 7, pp. 2089–2129, 2019.

[54] I. Held, H. Guo, A. Adcroft, J. Dunne, L. Horowitz, J. Krasting, E. Shevliakova,
M. Winton, M. Zhao, M. Bushuk, et al., “Structure and performance of gfdl’s cm4. 0
climate model,” Journal of Advances in Modeling Earth Systems, vol. 11, no. 11,
pp. 3691–3727, 2019.

[55] N. S. Team, Nemo ocean engine, Scientific Notes of Climate Modelling Center 27,
Zenodo.

[56] A. Wallcraft, H. Hurlburt, E. J. Metzger, E. Chassignet, J. Cummings, and
O. M. Smedstad, “Global ocean prediction using hycom,” in 2007 DoD High Performance
Computing Modernization Program Users Group Conference, 2007, pp. 259–262.

[57] M. A. Donelan, M. Curcic, S. S. Chen, and A. K. Magnusson, “Modeling waves and wind
stress,” Journal of Geophysical Research: Oceans, vol. 117, no. C11, 2012.

[58] J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill,
J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A. Grell, J. Michalakes,
S. Trahan, S. G. Benjamin, C. R. Alexander, G. J. Dimego, W. Wang, C. S. Schwartz,
G. S. Romine, Z. Liu, C. Snyder, F. Chen, M. J. Barlage, W. Yu, M. G., and Duda, “The
weather research and forecasting model: Overview, system efforts, and future directions,”
Bulletin of the American Meteorological Society, vol. 98, no. 8, pp. 1717–1737, 2017.

76

https://github.com/fchollet/keras

[59] E. Madenci and I. Guven, The finite element method and applications in engineering
using ANSYS®. Springer, 2015.

[60] L. Börgesson, “Abaqus,” in Developments in geotechnical engineering, vol. 79, Elsevier,
1996, pp. 565–570.

[61] Y. D. Murray et al., “Users manual for ls-dyna concrete material model 159,” United
States. Federal Highway Administration. Office of Research . . ., Tech. Rep., 2007.

[62] D. Komatitsch, J.-P. Vilotte, J. Tromp, J.-P. Ampuero, K. Bai, P. Basini, C. Blitz,
E. Bozdag, E. Casarotti, J. Charles, M. Chen, P. Galvez, D. Goddeke, V. Hjorleifsdottir,
J. Labarta, N. Le Goff, P. Le Loher, M. Lefebvre, Q. Liu, Y. Luo, A. Maggi, F. Magnoni,
R. Martin, R. Matzen, D. McRitchie, M. Meschede, P. Messmer, D. Michea,
S. Nadh Somala, T. Nissen-Meyer, D. Peter, M. Rietmann, E. de Andrade, B. Savage,
B. Schuberth, A. Sieminski, L. Strand, C. Tape, Z. Xie, and H. Zhu, Specfem3d cartesian
v2.0.2 [software], Computational Infrastructure for Geodynamics, 2012.

[63] F. Archambeau, N. Méchitoua, and M. Sakiz, “Code Saturne: A Finite Volume Code for
the computation of turbulent incompressible flows - Industrial Applications,”
International Journal on Finite Volumes, vol. 1, no. 1,
http://www.latp.univ–mrs.fr/IJFV/spip.php?article3, Feb. 2004.

[64] J. W. L. Paul F. Fischer and S. G. Kerkemeier, nek5000 Web page,
http://nek5000.mcs.anl.gov, 2008.

[65] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus,
“Charmm: A program for macromolecular energy, minimization, and dynamics
calculations,” Journal of Computational Chemistry, vol. 4, pp. 187–217, Sep. 2004.

[66] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam,
D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, “Nwchem: A
comprehensive and scalable open-source solution for large scale molecular simulations,”
Computer Physics Communications, vol. 181, no. 9, pp. 1477–1489, 2010.

[67] A. Ferrari, P. Sala, A. Fasso, and J. Ranft, “Fluka: A multi-particle transport code,” CERN
Yellow report, vol. 2005-10, Jan. 2005.

[68] G.-Q. Jiang, J. Xu, and J. Wei, “A deep learning algorithm of neural network for the
parameterization of typhoon-ocean feedback in typhoon forecast models,” Geophysical
Research Letters, vol. 45, no. 8, pp. 3706–3716, 2018. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2018GL077004.

[69] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance,” Journal of Fluid Mechanics, vol. 807,
pp. 155–166, 2016.

77

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2018GL077004

[70] H. R. Vega-Carrillo, V. M. Hernández-Dávila, E. Manzanares-Acuña, G. A. Mercado,
E. Gallego, A. Lorente, W. A. Perales-Muñoz, and J. A. Robles-Rodrı́guez, “Artificial
neural networks in neutron dosimetry,” Radiation Protection Dosimetry, vol. 118, no. 3,
pp. 251–259, Oct. 2005. eprint:
https://academic.oup.com/rpd/article-pdf/118/3/251/4543434/nci354.pdf.

[71] S. Rasp, M. S. Pritchard, and P. Gentine, “Deep learning to represent subgrid processes in
climate models,” Proceedings of the National Academy of Sciences, vol. 115, no. 39,
pp. 9684–9689, 2018.

[72] N. D. Brenowitz and C. S. Bretherton, “Prognostic validation of a neural network unified
physics parameterization,” Geophysical Research Letters, vol. 45, no. 12, pp. 6289–6298,
2018.

[73] Kaggle, 2018 kaggle ml & ds survey, 2018.

[74] Kaggle, 2019 state of data science and machine learning, 2019.

[75] M. Curcic, “A parallel fortran framework for neural networks and deep learning,” in ACM
SIGPLAN Fortran Forum, ACM, vol. 38, 2019, pp. 4–21.

[76] J. Bernal, “Neurbt: A program for computing neural networks for classification using
batch learning,” Feb. 2015.

[77] J. Bernal and J. Torres-Jimenez, “Sagrad: A program for neural network training with
simulated annealing and the conjugate gradient method,” Journal of research of the
National Institute of Standards and Technology, vol. 120, p. 113, Jun. 2015.

[78] P. Brierley, Fortran90 mlp backprop code, http://www.philbrierley.com/phil.html.

[79] S. Nissen, “Implementation of a fast artificial neural network library (fann),” Dec. 2003.

[80] D. Lary, M. Müller, and H. Mussa, “Using neural networks to describe tracer
correlations,” Atmospheric Chemistry and Physics, vol. 4, no. 1, pp. 143–146, 2004.

[81] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi, “Sherpa: Robust hyperparameter
optimization for machine learning,” Submitted to SoftwareX, 2020.

[82] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine
learning algorithms,” in Advances in neural information processing systems, 2012,
pp. 2951–2959.

[83] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms,” in Proceedings of the 12th Python in
science conference, Citeseer, 2013, pp. 13–20.

78

https://academic.oup.com/rpd/article-pdf/118/3/251/4543434/nci354.pdf

[84] D. J. Gagne, T. McCandless, B. Kosovic, A. DeCastro, R. Loft, S. E. Haupt, and B. Yang,
“Machine learning parameterization of the surface layer: Bridging the
observation-modeling gap,” AGUFM, vol. 2019, IN44A–04, 2019.

[85] D. J. Gagne, C.-C. Chen, and A. Gettelman, “Emulation of bin microphysical processes
with machine learning,” in 100th American Meteorological Society Annual Meeting,
AMS, 2020.

[86] N. D. Brenowitz, T. Beucler, M. Pritchard, and C. S. Bretherton, Interpreting and
stabilizing machine-learning parametrizations of convection, 2020. arXiv: 2003.06549
[physics.ao-ph].

[87] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[88] P. Baldi and P. Sadowski, “The dropout learning algorithm,” Artificial intelligence,
vol. 210, pp. 78–122, 2014.

[89] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[90] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler
der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[91] W. W. Grabowski, “Coupling cloud processes with the large-scale dynamics using the
cloud-resolving convection paramaterization (CRCP),” Journal of the Atmospheric
Sciences, vol. 58, no. 9, pp. 978–997, 2001.

[92] M. Khairoutdinov, D. Randall, and C. DeMott, “Simulations of the atmospheric general
circulation using a cloud-resolving model as a superparameterization of physical
processes,” Journal of the Atmospheric Sciences, vol. 62, no. 7, pp. 2136–2154, 2005.

[93] M. Khairoutdinov, C. DeMott, and D. Randall, “Evaluation of the simulated interannual
and subseasonal variability in an amip-style simulation using the csu multiscale modeling
framework,” Journal of Climate, vol. 21, no. 3, pp. 413–431, 2008.

[94] K. Thayer-Calder and D. A. Randall, “The role of convective moistening in the
madden–julian oscillation,” Journal of the Atmospheric Sciences, vol. 66, no. 11,
pp. 3297–3312, 2009.

[95] S. Rasp, “Online learning as a way to tackle instabilities and biases in neural network
parameterizations,” arXiv preprint arXiv:1907.01351, 2019.

79

https://arxiv.org/abs/2003.06549
https://arxiv.org/abs/2003.06549

[96] D. J. Gagne II, H. M. Christensen, A. C. Subramanian, and A. H. Monahan, “Machine
learning for stochastic parameterization: Generative adversarial networks in the lorenz ’96
model,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 3, e2019MS001896,
2020, e2019MS001896 10.1029/2019MS001896. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001896.

[97] M. S. Pritchard, C. S. Bretherton, and C. A. DeMott, “Restricting 32–128 km horizontal
scales hardly affects the mjo in the superparameterized community atmosphere model v.
3.0 but the number of cloud-resolving grid columns constrains vertical mixing,” Journal
of Advances in Modeling Earth Systems, vol. 6, no. 3, pp. 723–739, 2014.

[98] P. Gentine, M. Pritchard, S. Rasp, G. Reinaudi, and G. Yacalis, “Could machine learning
break the convection parameterization deadlock?” Geophysical Research Letters, vol. 45,
no. 11, pp. 5742–5751, 2018.

[99] MATLAB, version 9.2.0 (R2017b). Natick, Massachusetts: The MathWorks Inc., 2017.

[100] R Development Core Team, R: A language and environment for statistical computing,
ISBN 3-900051-07-0, R Foundation for Statistical Computing, Vienna, Austria, 2008.

[101] S. Cass, The 2016 top programming languages, 2016.

[102] The comprehensive r archive network, http://CRAN.R-project.org/.

[103] Mathworks file exchange, https://www.mathworks.com/matlabcentral/fileexchange/.

[104] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. F. Baldi, “Mining internet-scale
software repositories,” in Advances in neural information processing systems, 2008,
pp. 929–936.

[105] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining concepts from code
with probabilistic topic models,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, ACM, 2007, pp. 461–464.

[106] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of topic models when
mining software repositories,” Empirical Software Engineering, vol. 21, no. 5,
pp. 1843–1919, 2016.

[107] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the use of topic
models for software evolution,” in Source Code Analysis and Manipulation (SCAM), 2010
10th IEEE Working Conference on, IEEE, 2010, pp. 55–64.

[108] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory of aspects as
latent topics,” in ACM Sigplan Notices, ACM, vol. 43, 2008, pp. 543–562.

80

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001896

[109] A. Schofield and D. Mimno, “Comparing apples to apple: The effects of stemmers on
topic models,” Transactions of the Association for Computational Linguistics, vol. 4,
pp. 287–300, 2016.

[110] Cran - package mallet, https://cran.r-project.org/web/packages/mallet.

[111] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with topic modeling? and how to fix
it using search-based software engineering,” Information and Software Technology,
vol. 98, pp. 74–88, 2018.

[112] Zeromq package community, http://zero.mq.

[113] Nomad package, https://www.gerad.ca/nomad/Project/Home.html.

[114] A. Atchison, H. Anderson, C. Berardi, N. Best, C. Firmani, R. German, and E. Linstead,
“Poster: A topic analysis of the r programming language,” 2018.

[115] N. Caragea, A.-C. Alexandru, A. M. Dobre, et al., “R–a global sensation in data science,”
Revista Română de Statistică nr, p. 7, 2014.

[116] S. A. Culpepper and H. Aguinis, “R is for revolution: A cutting-edge, free, open source
statistical package,” Organizational Research Methods, vol. 14, no. 4, pp. 735–740, 2011.

[117] A. Decan, T. Mens, M. Claes, and P. Grosjean, “On the development and distribution of r
packages: An empirical analysis of the r ecosystem,” in Proceedings of the 2015 European
Conference on Software Architecture Workshops, ACM, 2015, p. 41.

[118] R. Bååth, “The state of naming conventions in r,” The R journal, vol. 4, no. 2, pp. 74–75,
2012.

[119] K. Hornik and F. Leisch, Vienna and R: Love, marriage and the future. na, 2002.

[120] K. Hornik, “Are there too many r packages?” Austrian Journal of Statistics, vol. 41, no. 1,
pp. 59–66, 2016.

[121] Mathworks discovery, https://www.mathworks.com/discovery/matlab-vs-r.html.

[122] P. Martins, P. Lopes, J. P. Fernandes, J. Saraiva, and J. M. P. Cardoso, “Program and
aspect metrics for matlab,” in Computational Science and Its Applications – ICCSA 2012,
B. Murgante, O. Gervasi, S. Misra, N. Nedjah, A. M. A. C. Rocha, D. Taniar, and
B. O. Apduhan, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 217–233,
isbn: 978-3-642-31128-4.

81

[123] E. Linstead, L. Hughes, C. Lopes, and P. Baldi, “Exploring java software vocabulary: A
search and mining perspective,” in Proceedings of the 2009 ICSE Workshop on
Search-Driven Development-Users, Infrastructure, Tools and Evaluation, IEEE Computer
Society, 2009, pp. 29–32.

[124] W. E. Zhang, Q. Sheng, E. Abebe, M. Ali Babar, and A. Zhou, “Mining source code
topics through topic model and words embedding,” Dec. 2016, pp. 664–676, isbn:
978-3-319-49585-9.

[125] M. Allamanis and C. Sutton, “Mining source code repositories at massive scale using
language modeling,” in 2013 10th Working Conference on Mining Software Repositories
(MSR), 2013, pp. 207–216.

[126] F. Perez, B. E. Granger, and J. D. Hunter, “Python: An ecosystem for scientific
computing,” Computing in Science Engineering, vol. 13, no. 2, pp. 13–21, Mar. 2011.

[127] S. Ugurel, R. Krovetz, and C. L. Giles, “What’s the code?: Automatic classification of
source code archives,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’02, Edmonton,
Alberta, Canada: ACM, 2002, pp. 632–638, isbn: 1-58113-567-X.

[128] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik, “Categorizing
software applications for maintenance,” in Proceedings of the 2011 27th IEEE
International Conference on Software Maintenance, ser. ICSM ’11, Washington, DC,
USA: IEEE Computer Society, 2011, pp. 343–352, isbn: 978-1-4577-0663-9.

[129] D. Binkley, D. Heinz, D. Lawrie, and J. Overfelt, “Understanding lda in source code
analysis,” in Proceedings of the 22nd International Conference on Program
Comprehension, ser. ICPC 2014, Hyderabad, India: Association for Computing
Machinery, 2014, pp. 26–36, isbn: 9781450328791.

82

	Applications of Machine Learning to Facilitate Software Engineering and Scientific Computing
	Recommended Citation

	Title Page
	Copyright Page
	ACKNOWLEDGEMENTS
	LIST OF PUBLICATIONS
	ABSTRACT
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	LIST OF ABBREVIATIONS
	1 | Introduction
	Machine Learning

	2 | Exploring the Efficacy of Transfer Learning in Mining Image-Based Software Artifacts
	Introduction
	Data
	Methods
	Results
	Related Works

	3 | A Fortran-Keras Deep Learning Bridge for Scientific Computing
	Introduction
	Fortran Projects
	The Python Anchor (Deep Learning)
	The Fortran Anchor (Scientific Computing)
	Features of FKB
	Case Study

	4 | An Information-Theoretic Analysis of Scientific Computing Software with Unsupervised Machine Learning
	Introduction
	Data
	Methods
	Results
	Related Works

	5 | Conclusion

	REFERENCES

