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The Poincaré Duality Theorem and its Applications
Natanael Alpay, Melissa Sugimoto, and Mihaela Vajiac

Chapman University

What is a Vector Space

A vector space is a set V , with addition and multiplication
such that the following holds for all u, v, w ∈ V and a, b ∈ F :
Commutative, Associative, Additive identity, Additive inverse,
Multiplicative identity, and the Distribution laws
A linear map from V to W is a function T : V → W with the
following properties for all u, v ∈ V and λ ∈ F :

T (u + v) = Tu + Tv, T (λv) = λT (v)
An isomorphism is an invertible linear map
L(V,W) is the set of all linear maps from V to W .
A linear functional on V is a linear map from V to F , that is
element of L(V, F ).
A dual space of V , denoted by V ∗, is the vector space of all
linear functionals on V .

The Five Lemma

A sequence of maps d0, d1, . . . dn, is an exact sequence if
Im(dk−1) = Ker(dk)

A short exact sequence is of the form:

0 −→ A
f1−→ B

f2−→ C
0−→

A long exact sequence is of f0, f1, . . . fn, has the from

. . .
f0−→ A0

f1−→ A1
f2−→ A2 −→ . . .

The five lemma Given a commutative diagram of Abelian
groups and group homomorphisms as in Figure 1 below, in which
the rows are exact sequence, if the maps α, β, δ, and ε are
isomorphism, then γ is also an isomorphism.

Figure 1:A commutative diagram to show the Five Lemma

Smooth Manifold

A diffeomorphism is a map f : X → Y such that f is a
homeomorphism, and both f and f−1 are smooth(differentiable).
A smooth manifold of dimension m is a subset M ⊂ Rn

such that for each x ∈M , x has a neighborhood W ∩M that is
diffeomorphic to an open subset U of the euclidean space Rm.
A basis (b1, . . . , bn) determines some orientation as basis
(b′1, . . . , b′n) if: b′i = ∑

j ai,jbi, det(ai,j) > 0.
A oriented smooth manifold consists of a manifold M and
a choice of orientation for each tangent TMx.
A good cover is an open cover U = {Uα} of a manifold M of
dimension m. M where all nonempty finite intersections
Uα0 ∩ ... ∩ Uαp are diffeomorphic to Rm.
A finite good cover is a good cover U of M which is finite.
Equivalently M is of finite type.

Outline

In this talk I will explain the duality between the deRham cohomology of a manifold M and the compactly supported cohomology
on the same space. This phenomenon is entitled “Poincaré duality” and it describes a general occurrence in differential topology, a
duality between spaces of closed, exact differentiable forms on a manifold and their compactly supported counterparts. In order to
define and prove this duality I will start with the simple definition of the dual space of a vector space, with the definition of a positive
definite inner product on a vector space, then define the concept of a manifold. I will continue with the definition of differential forms
on a differentiable manifold and their corresponding spaces necessary to this analysis. I will then introduce the concepts of a good
cover of a manifold, manifolds of finite type, and orientation, all necessary concepts towards the goal of defining and proving Poincaré
duality. I will finish with the proof of the Poincaré duality in the case of M orientable and admits a finite good cover, with examples.

Figure 2:A smooth manifold

Poincaré duality for deRham cohomology

Lemma 5.6 The two Mayer-Vietoris sequences ... and ...,
may be paired togther to form a sign-commutative diagram
Theorem. For an oriented manifold M there is a paring∫

: Hq(M)⊗Hn−q
c (M)→ R,

given by the integral of the wedge product of two forms.
Then the Poincaré duality asserts that this paring is
nondegenerate whenever M is orientable and has a finite
good cover; equivalently

Hq(M) ' (Hn−q
c (M))∗

Proof idea. The proof is a proof by induction as follows:

• Let M be a manifold M =
l⋃

k=1
Uk.

• Induction basis: By lemma 5.6 we have U1 ∪ U2.
• Induction Hypothesis: Assume (U1 ∪ · · · ∪ Uk).
• Induction Step: (U1 ∪ . . . Uk) ∪ Uk+1

• We have
H∗(U1 ∪ · · · ∪ Uk) ∪H∗(Uk+1) =⇒ H∗+1((U1 . . . Uk) ∩ Uk+1)

=⇒ H∗+1((U1 . . . Uk) ∩ Uk+1)
• Then by the induction step and the Five Lemma: we get

H∗+1(U1 . . . Uk+1)

Other forms of the Poincaré duality

The theorem can be extended to any orientable manifold by the
Mayer-Vietoris theorem, as follows:
Theorem. If M is an orientable manifold of dimension n,
whose cohomology is not necessarily finite dimension, then

Hq(M) ' (Hn−q
c (M))∗

for any integer q.
Proof idea. The finitness assumption on the good cover is
not necessary, then by closer of analysis of topology of a
manifold can be extended by the Mayer-Vietoris theorema.
Remark. One should note that the the reverse implication
that te following is not always true:

Hq
c (M) ' (Hn−q(M))∗

The Euclidian space Rn

Example.By the Five Lemma if Poincaré duality holds for
U, V , and U ∩ V , then it holds for U ∪ V . By induction on
the cardinality of a good cover. Considering M
diffeomorphic to Rn, and from the Poincaré lemmas

H∗(Rn) =
R in dimension 0

0 elsewhere
, H∗c (Rn) =

R in dimension n
0 elsewhere

The Poincaré duality follows.

The Sphere space Sn

Let Sn are the point (x1, . . . , xn+1) ∈ Rn+1, such that
x1

1 + · · · + x2
n+1 = 1

Example. Let Sn = U ∪ V where U ∩ V is diffeomorphic to
Sn−1 × R. Then, through the Mayer-Vietoris sequence,

H∗(Sn) =
R in dimensions 0, n

0 otherwise.
Which can be written as:

H0(Sn) = R
Hn(Sn) = R
Hk(Sn) = 0, k 6= 0, n

Hence we have by the Poincaré dual we know
Hq(sn) ' (Hn−q(Sn))∗. For q = 0 we have Hn(Sn) = R. For
q = n, H0(Sn) ' R. And since R = R∗, we obtain,
Hn
c (Sn) = R.

Poincaré duals of a point in Rn

Since Hn(Rn) = 0, the closed Poincaré dual is µp is trivial, and
can be represented by any closed n−form on Rn, but the
compact Poincaré dual is the nontrivial class in Hn

c (Rn)
represented by a bump from with total integral 1.

Möbius strip

Counter example. One may suspect that for cohomology
with we compact support would have: H∗c (E) ' H∗−nc (M).
However this is not generally true; the open Möbius strip
which is a vector bundle over S1, is a counter example. The
compact cohomology of the Möbius strip is identically 0; but
S1 does not match that, hence the Poincaré duality will not
hold.

Figure 3:Möbius strip

Example. But if E and M are finite orientable manifolds,
and thus the equation would hold using the Poincaré duality
(P.D):
H∗c (E) ' (Hm+n−∗(E))∗ By applying the P.D thoerm on E

' (Hm+n−∗(M))∗ By deRham cohomology homopoy
' H∗−nc (M) By P.D on M

Conclusion

Poincaré duality describes a general occurrence in differential
topology, a duality between spaces of closed, exact differentiable
forms on a manifold and their compactly supported counterparts.

Hq(M) ' (H (n−q)
c (M))

The duality between the deRham cohomology of a manifold M
and the compactly supported cohomology on the same space.
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