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The Künneth Formula and Applications
Melissa Sugimoto, Natanael Alpay, and Mihaela Vajiac

Chapman University

Preliminary Definitions

Given a k-dimensional linear space X with a basis {e1, ..., ek},
and an m dimensional linear space Y with a basis {f1, ...fm}, the
tensor product X ⊗ Y = Z of the spaces X and Y is defined
as the set of all finite formal sums

p∑
v=1

xv × yv,

where xv ∈ X, yv ∈ Y .
A map f : X → Y is called a diffeomorphism if f is a home-
omorphism, and both f and f−1 are smooth.
A subsetM ⊂ Rn is called a smooth manifold of dimension
m if each x ∈M has a neighborhoodW∩M that is diffeomorphic
to an open subset U of the euclidean space Rm.
Let M be a manifold of dimension m. An open cover U = {Uα}
of M is called a good cover if all nonempty finite intersections
Uα0 ∩ ...∩Uαp are diffeomorphic to Rm. If M has a good cover U
which is finite, then we say that M has finite good cover, and
that M is of finite type.
A partition of unity on a manifold M is a collection of non-
negative C∞ functions {ρα}α∈I such that
• Every point has a neighborhood in which

∑
ρα is a finite sum.

•
∑

ρα = 1.
The q-th de Rham cohomology of Rn is the vector space

Hq(Rn) = {closed q-forms}/{exact q-forms}.
We define support of a continuous function f on a space X as:

Suppf = {p ∈ X | f (p) 6= 0}.
The complex resulting from taking only the C∞ functions with
compact support is called the de Rham complex with com-
pact support, and the q-th compactly supported cohomology
of Rn is denoted by Hq

c (Rn).
The Künneth Formula

Theorem 1. The cohomology of the product of two manifolds
M and F is the tensor product

H∗(M × F ) = H∗(M)⊗H∗(F ).
It follows that for every nonnegative integer n,

Hn(M × F ) =
⊕
p+q=n

Hp(M)⊗Hq(F )

The Leray-Hirsch Theorem

Lemma 2. LetE be a fiber bundle overM with fiber F . Suppose
M has a finite good cover. If there are global cohomology classes
e1, ..., er on E which when restricted to each fiber freely generate
the cohomology of the fiber, then H∗(E) is a free module over
H∗(M) with basis {e1, ..., er}. That is,

H∗(E) ' H∗(M)⊗ R{e1, ..., er} ' H∗(M)⊗H∗(F )

The Five Lemma

Lemma 3. Given a commutative diagram of Abelian groups
and group homomorphisms as in Figure 1 in which the rows are
exact, if the maps α, β, δ, and ε are isomorphisms, then γ is also
an isomorphism.

Outline

The q-th de Rham cohomology of Rn is the vector space defined by the closed q-forms over the exact q-forms. Furthermore, the
support of a continuous function f is the closure of the set on which f is nonzero. If we restrict the above definition of the de Rham
cohomology to functions with compact support, then the resulting cohomology is called the de Rham cohomology with compact
support, or the compact cohomology. The concept of cohomology can also be expanded to general manifolds through constructions
such as the Mayer-Vietoris Sequence.
The Künneth Formula in differential topology relates the cohomology of the product of two manifolds to the cohomologies of the
individual manifolds through the tensor product. In this project, we provide a proof of the Künneth Formula both for de Rham
cohomology and compact cohomology and then show several applications.

Figure 1:A commutative diagram to illustrate the Five Lemma

Proof of the Künneth Formula

The method proceeds by induction and assumes that the manifold
M has finite good cover, using the Mayer-Vietoris sequence and
the Five Lemma to guarantee an isomorphism between the desired
spaces.
• Let π and ρ represent the natural projections from M × F to
M and F respectively.
• From the projections we obtain a map on forms that takes the

tensor product of two forms ω ⊗ φ into π∗ω ∧ ρ∗φ.
• This induces a map

ψ : H∗(M)⊗H∗(F )→ H∗(M × F ).
• To conclude the proof, we need only show that ψ is an

isomorphism.
To this end, let U and V be open sets in M , and fix n, a nonneg-
ative integer.
• Then we use the Mayer-Vietoris sequence, which is exact, and

tensor every term with Hn−p(F ).
• This gives us an exact sequence, since the tensor product

preserves exactness, and then we may sum over all integers p,
again maintaining exactness.

Figure 2:The sequence obtained through calculation on the Mayer-Vietoris
sequence

• Applying ψ at each step, we obtain the commutative diagram
Figure 3
• A brief computation using the pullback functions to form a

partition of unity proves the commutativity of the diagram,
allowing us to apply the Five Lemma:

Proof (Continued)

Figure 3:The commutative diagram given by the direct sums of the tensor
product with the Mayer-Vietoris sequence

• If ψ is an isomorphism in the cases of U , V , and U ∩ V , then
it will also be true of U ∪ V by the Five Lemma.
• Because M has a finite good cover, if it is true of U ∪ V , it

will be true generally for M .

Applications and Examples

Figure 4:A representation of the torus in 3D space

The Cohomology of the Torus.
The torus, T , can be thought of as the product of two copies of
the sphere. That is, T = S1 × S1. By the Künneth Formula,

H∗(S1 × S1) = H∗(S1)⊗H∗(S1).
Using the Mayer-Vietoris sequence we obtain that
• H0(S1) = R
• H1(S1) = R
It follows that
• H0(T ) = H0(S1)⊗H0(S1) = R⊗ R = R2

• H1(T ) = (H0(S1)⊗H1(S1))⊕ (H1(S1)⊗H0(S1)) = R2

• H2(T ) = H1(S1)⊗H1(S1) = R2

We confirm that
H∗(T ) = R2,

as can be calculated through the Mayer-Vietoris sequence.

Applications (Continued)

The Cohomology of (Sk)n.
We define the k-dimensional unit sphere Sk as follows:

Sk := {(x1, ..., xk+1) ∈ Rk+1 | x2
1 + x2

2 + ... + x2
k+1 = 1}.

We can apply the Künneth Formula inductively to calculate the
cohomology of n-products of the k-sphere. To do so, we first need
the cohomology of the k-sphere.
Let Sk = U ∪V where U ∩V is diffeomorphic to Sk−1×R. Then,
through the Mayer-Vietoris sequence,

H∗(Sk) =
R in dimensions 0, k

0 otherwise.
By the Künneth Formula,

H∗(Sk × Sk) = H∗(Sk)⊗H∗(Sk),
and since the tensor product is associative,

H∗((Sk)n) =
n⊗
i=1

H∗(Sk).

The computation of the cohomology at any qth level follows sim-
ilarly to the computation of the torus.
Proof of the Leray-Hirsch Theorem.
In the case of the trivial fiber bundle E = M × F , the result
follows immediately by the Künneth Formula.
In the more general case, by the definition of a fiber bundle, and
since {e1, ..., er} restricted to F generate the cohomology of F ,
there exist fiber preserving isomorphisms corresponding to each
set of an open cover of M , {Uα}

φα : E |Uα→ Uα × F.
Then H∗(E | Uα) ' H∗(Uα × F ) = H∗(Uα)⊗H∗(F ).
Since M is of finite type, the result will hold for the union of all
Uα. Thus,

H∗(E) = H∗(M)⊗H∗(F ).

The Künneth Formula for Compact
Cohomology

Just as with the general de Rham cohomology, for any manifolds
M and F having finite good cover,

H∗c (M × F ) = H∗c (M)⊗H∗c (F ).
In the case thatM and F are orientable, this follows directly from
Poincaré Duality.
The more general case can be proven using the Mayer-Vietoris
sequence for compact support, by a similar argument to the proof
of Theorem 1.

Conclusion

The Künneth Formula relates the cohomology of a product to
the cohomology of the individual spaces via the tensor product,
providing a convenient tool by which to calculate the cohomologies
of otherwise difficult spaces.
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