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 14 
Abstract: A new town is strategically built within a short period compared to naturally developed cities. It is 15 
considered as an appropriate study area for analyzing the urban climate problems such as Surface Urban Heat 16 
Islands (SUHIs) that is differently generated according to urban planning and development. In this study, we 17 
suggest comprehensive method for determining and comparing changes in surface UHI distribution during 1989–18 
2048 in two new towns with different urban planning. First, a substantial increase in built-up areas was observed 19 
from 1989 (< 5%) to 2018 (> 40%) in both new towns. However, SUHI phenomenon increasing patterns were 20 
different of about 12.25% depending on urban planning and urban morphology. Results also showed the 21 
importance of vertical and horizontal structures which can have a great influence on SUHI intensity and 22 
accordingly, the difference in SUHI distribution between two new towns was confirmed. Moreover, without 23 
effective mitigation, the built-up area in both new towns are estimated to increase to approximately 60%, and the 24 
SUHI intensity in most areas to increase by 4 °C in 2048. In addition, the spread and intensification of the SUHI 25 
phenomenon are predicted to be greater due to the characteristics of the building structure and the active urban 26 
expansion. Thus, these results combined with architectural assessment models can improve the understanding of 27 
thermal environmental impacts of urbanization and provide directions for sustainable urban development and 28 
renovation. 29 

 30 
 Keywords: Urban heat island, Land use land cover change, CA-Markov model, Remote sensing, Urban planning 31 
  32 
 (9671 words) 33 

 34 
1. Introduction 35 
 36 

Global population growth and urban expansion primarily cause land use and land cover (LULC) changes and 37 
increases in built-up area. In 2018, approximately 55.3% of the world’s population resided in cities, among which 38 
60% will reside in cities with approximately 0.5 million inhabitants by 2030 (UN, 2018). Rapidly increasing 39 
economic development accelerates these changes, particularly in fast-growing urban areas, hindering sustainable 40 
development (Liping et al., 2018). LULC changes induced by human activities lead to different local climates 41 
than in surrounding areas. This effect, termed as urban heat island (UHI), occurs worldwide (Eliasson, 2000; Lee 42 
et al., 2020). UHIs primarily occur due to increased solar radiation absorption and trapping in new surface 43 
materials of various infrastructure (Grimmond, 2007; Santamouris, 2013). The magnitude and extent of UHIs are 44 
highly positively correlated with urban area and population size in cities; thus, UHIs are significantly affected by 45 
urban expansion (Tran et al., 2006). UHIs can be divided into two types: meteorological UHI, an increase in local 46 
air temperature, and surface urban heat island (SUHI), an increase in urban skin temperature. SUHI is particularly 47 
evident in spatial variations of upwelling thermal radiance caused by LULC changes and is commonly influenced 48 
by the surrounding sub-urban environment (Clinton & Gong, 2013; Voogt & Oke, 2003). Hence, accurate analysis 49 
of LULC changes and mapping of ongoing land changes are crucial to understanding its effects on urban climate 50 
and can support policymakers in environmental management (Cetin, 2019). 51 

A new town, also called planned city, is built in a short period within a pre-determined boundary for specific 52 
purposes. Since the mid-to-late twentieth century, new towns have been constructed worldwide, contributing to 53 
population growth and inflation in large cities (Wakeman, 2016). A planned city is a fertile ground for Micro-54 
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climate research, offering the opportunity to formulate urban planning strategies to solve problems like UHIs 55 
(Qaid et al., 2016). Environmental conditions such as ecological balance and thermal comfort have become 56 
important factors for choosing the cities to live in (Cetin, 2019). Comparing and evaluating different planned 57 
urbanization could provide a rich source of knowledge on the effects of the urban environment changes on the 58 
long-term temperature trends in the urban area (Cetin, 2015). However, few studies have compared the UHI 59 
phenomenon between new towns having different urban planning. Carrying out comparative studies on climate 60 
effects of urbanization under different urban planning conditions is particularly difficult because of different urban 61 
environments, economic situations, and climates, as well as inconsistent data.  62 

Since 1990, 16 new towns have been repopulated or built in sub-urban areas in South Korea to manage 63 
population, transportation, and environmental concerns in several large cities. Urban planning in the first-64 
generation new towns, providing indiscriminate housing, was not systematic and resulted in negative impacts, 65 
such as unplanned urban expansion, environmental degradation, and low greenspace ratio in housing complexes. 66 
The second-generation new towns were developed through systematic and environmentally friendly urban 67 
planning, such as low-density urbanization and expansion of green areas. However, in both cases, an increase in 68 
SUHI is estimated because of a rapid infrastructural development and vegetation loss. Moreover, the SUHI 69 
phenomenon may intensify with further urban expansion.  70 

Herein, expansion and intensification of SUHI due to new towns development were empirically analyzed using 71 
satellite data in two new towns with different urban plannin in South Korea. The SUHI intensity of each new town 72 
is the difference between the temperatures of built-up and surrounding areas within the boundary (Guha et al., 73 
2018; Lee et al., 2020; Oke et al., 2017; Zhou et al., 2013). A Markov chain model, combined with the cellular 74 
automata method, determined the SUHI distribution with LULC changes in the two new towns. Notably, urban 75 
planning influenced the change patterns in the expansion and intensification of UHIs, despite urban expansion. 76 
Furthermore, the future SUHI intensities in new towns may significantly increase with changes in structural 77 
characteristics owing to renovation and additional urban expansion. 78 

 79 
2. Datasets and methods  80 
 81 
2.1  Study Area 82 
 83 

The study areas are Bundang and Pangyo new towns in South Korea. In the case of South Korea, 16 new towns 84 
have been in the repopulation phase or under construction in suburban areas since the 1990s to solve the problem 85 
of population, transportation, and environment concentrated in several large cities (Fig. 1).  86 

The purpose of the first-generation new town was to supply housing indiscriminately, and urban planning was 87 
not systematic. As a result, negative problems such as unplanned urban expansion and damage to the natural 88 
environment, low greenspace ratio in the housing complex occurred. In the case of the second-generation new 89 
town, urban spaces were created based on systematic and environmental-friendly urban planning such as low-90 
density urbanization and expansion of parks and green areas. Information on the two new cities was examined 91 
through related literature and information provided by the site (https://eiass.go.kr/) (Table 1). Compared to 92 
Bundang new town, Pangyo new town has a lower planned population and building density, lower floor space 93 
ratio and higher greenspace ratio. In addition, the ratio of non-apartment housing sites among the housing 94 
complexes to be developed is 36.4%, which is three times higher than that of Bundang new town. Therefore, it is 95 
expected that the spread of the SUHI phenomenon and the degree of increase in magnitude according to each new 96 
town development will be different by different urban characteristics and morphology. Although the total areas 97 
of the two new towns are different, the impact of urban planning can be confirmed through the difference in the 98 
rate of change. 99 
 100 
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 101 

Fig. 1. Map of study area showing geographical location of two new towns with Landsat OLI image 102 
acquired on May 09, 2018. 103 

Table 1  104 

Development plan features for each new town. 105 

Division (unit) Bundang new town Pangyo new town 

Generation of the new town 1st generation 2nd generation 

Development period '89 ~ '96  '03 ~ '17 

Development area (km2) 19.64 8.9 

Number of total household 
(thousands) 97.6 29.3 

Number of apartment household 
(thousands) 10.6 (10.8%) 10.7 (36.4%) 

Number of non-apartment household 
(thousands) 87.0 (89.2%) 18.6 (63.6%) 

Population density (number / ha) 199 98 

Average greenspace ratio (%) 12~25 25~35 

Average floor space ratio (%) 184 161 

Transportation infrastructure Vehicle-oriented  Public transportation-oriented 

 106 
2.2 Data acquisitions and pre-processing 107 

 108 
We used three Landsat images taken in May with image quality of 9 and cloud cover less than 2% to minimize 109 

the seasonal influence and cloud cover of each period: 1989, 2000, 2018 (Table 2). Two Landsat 5 Thematic 110 
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Mapper (TM), and one Landsat 8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) images obtained 111 
from United States Geological Survey-Center for Earth Resources Observation and Science (USGS-EROS) 112 
(httl://earthexplorer.usgs.gov/). The specifications of the images are given in Table 2. Images were used for LULC 113 
classification and SUHI calculation and each period can show the change trends before and after the new town 114 
development. 115 

The remotely sensed data is an indirect measurement requiring consideration of the interfering atmosphere and 116 
the surface radiative properties that affect the emission and reflection of radiation of within the spectral 117 
wavelengths detected by the sensor (Voogt & Oke, 2003). Atmospheric correction using Dark Object Subtraction 118 
(DOS) method and radiometric correction as preprocessing using Semi-Automatic Classification (SCP) plugin in 119 
QGIS 3.14 were applied to the images. Atmospheric scattering and absorption make imaging system record a non-120 
zero digital number (DN) value for dark objects and DOS method subtracted continuous non-zero DN vale, DN 121 
haze from the whole band assuming that some objects were under comprehensive shadow must have zero 122 
reflectance (Nazeer et al., 2014). 123 

Table 2 124 

Characteristics of collected images. 125 

Study Period Sensor Acquisition Date Resolution Cloud Cover Path / Row 

1989 Landsat 5 TM 18 May 1989 30m 0.00% 115 / 34 

2000 Landsat 5 TM + 07 May 2000 30m 0.00% 116 / 34 

2018 Landsat 8 OLI 09 May 2018 30m 1.22% 116 / 34 

 126 

 127 
2.3 Land use land cover classification (LULC) 128 
 129 
2.3.1 Maximum Likelihood Classifier algorithm 130 

We used supervised classification technique with Maximum Likelihood Classifier (MLC) algorithm to generate 131 
LULC maps of each year using SCP plugin in QGIS 3.14. The MLC based supervised classification approach was 132 
comprehensively used and considered as a proven technique in many previous studies for urban LULC 133 
classification where spatial conglomeration of pixels so high (Saha et al., 2020; Sun et al., 2013; Wang et al., 134 
2021). MLC algorithm is based on the probability density distribution functions (likelihood) including all training 135 
inputs for each land cover class and proven to be more accurate, robust algorithm because it does not overvalue 136 
the class values during the computational process. In addition, there are some advantages of the MLC algorithm, 137 
(1) auto-allocation of pixels to the unclassified regions based on the surrounding values, (2) variance and 138 
covariance values of the class signatures are considered within the class distribution (Erbek & Taberner, 2004), 139 
etc.  140 

The Landsat images of 1989, 2000, 2018 were classified into six LULC classes, (ⅰ) built-up areas, covering the 141 
buildings and concrete areas, (ⅱ) forest, covering coniferous forest and broadleaf forest, (ⅲ) grass, covering 142 
natural grass and artificial grass, (ⅳ) open spaces, covering natural bare areas and artificial bare areas, (ⅴ) 143 
agricultural areas, covering paddy field, dry field, etc, (ⅵ) water bodies, covering ponds, lakes, wetlands. 144 

 145 
2.3.2 Accuracy assessment 146 

Assessment of classification accuracy is necessity for classification data to detect changes and was carried out 147 
on the resulting classified imagery through error matrix and kappa index that allows differentiating between 148 
ground-truth and predicted classification (Lee et al., 2020). High resolution Google Earth data and aerial 149 
photograph provided by National Geographic Information Institute (NGII) of South Korea were used to ascertain 150 
ground-truth regions for evaluation of classification accuracy (http://map.ngii.go.kr/). Google Earth’s high-151 
resolution data have been used as reference data in many classification studies and national standardized land 152 
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cover map and NGII has provided high-resolution aerial photograph taken since 1945, it can be used for accuracy 153 
assessment as well (Lee et al., 2020; Saha et al., 2020). Kappa coefficient was estimated using equation (1): 154 
 155 

  

  
 

(1) 

Where i is the class number, n is the total number of points, nii is the number of pixels of actual data class i, 156 
that were classified as a class i, Ci is the overall number of classified pixels belonging to class i and Gi is the 157 
overall number of actual data belonging to class i. 50 samples points per class for each new town except water 158 
class has been selected automatically by QGIS 3.14. It is recommended that a minimum of 50 samples for each 159 
land cover class in the error matrix be collected for the accuracy assessment to avoid risk of a biased sample 160 
(Congalton, 1991). 161 

 162 
2.4 LST estimation 163 

 164 
Land surface temperature (LST) estimation using ArcMap 10.5 consists of the transformation of digital 165 

numbers (DN) to radiances (Lλ), the measurement of radiance brightness-temperatures (TB) and the adjustment 166 
of emissivity to extract surface temperature from brightness maps (Avdan & Jovanovska, 2016). LST were 167 
obtained using thermal band from Landsat ETM+ (B6) and Landsat OLI/TIRS (B10) because of suggestions of 168 
USGS of not using TIRS band 11 due to its higher calibration uncertainty.  169 

Every object in earth radiates its thermal electromagnetic radiation after its temperature is above absolute zero 170 
(K) and the signal obtained by the thermal sensors could be transformed to radiances (Lλ) using equation (2): 171 

 172 

  (2) 
 173 

Where Lλ = spectral radiance (W/(m2*sr*μm)); ML = radiance multiplicative scaling factor for the band; AL = 174 
radiance additive scaling factor for the band; and Qcal = level 1 pixel value in DN and the metadata of the Landsat 175 
images provide their values. After the DN are converted to radiance, radiance values were converted into 176 
brightness temperature TB using equation (3): 177 

 178 
  (3) 
 179 

Where TB = At-satellite brightness temperature; K1 and K2 stand for the band-specific thermal conversion 180 
constants from the metadata and for obtaining the temperature in Celsius, the radiant temperature is revised by 181 
adding the absolute zero (Avdan & Jovanovska, 2016). The last step of estimating the LST is to rectify brightness 182 
temperature by Land Surface Emissivity (LSE, ε) correction using equation (4) (Artis & Carnahan, 1982): 183 

 184 

 
 

(4) 

Where λ is wavelength of emitted radiance (≒ 10.895μm); ρ = h × (c/σ), where h is Planck’s constant (6.626 185 

× 10-34Js, c is the velocity of light (2.998 × 10^8m/s), and σ is the Boltzmann constant (1.38 × 10-23J/K); ε is 186 
the emissivity (Avdan & Jovanovska, 2016; Weng et al., 2004).  187 
 Obtained values of TB were referenced as a black body, which is different from properties of real objects on 188 
the Earth’s surface, and it would be different with real LST (Shen et al., 2016). The magnitude of the LST range 189 
across a city could be extremely huge and it depends on LULC states constructed within the city and LSE which 190 
is essential for estimating the LST has strong land use/land cover dependence (Mallick et al., 2012; Rhadi et al., 191 
2013). The determination of the LSE is calculated conditionally as proposed by Sobrino et al (2004) using equation 192 



6 
 

(5) and the emissivity value is represented with the formula for each condition based on Normal Difference 193 
Vegetation Index (NDVI) range (Wang et al., 2015) (Table 3): 194 

 195 
  (5) 

Table 3 196 

NDVI ranges and corresponding formula for calculating emissivity value. 197 

NDVI range Emissivity value 

NDVI < NDVIS  

NDVIS ≤ NDVI ≤ NDVIV  

NDVI > NDVIV 0.99 

 198 

Visible Red (λ-0.6μm) and Near-Infrared, NIR (λ-0.8μm) bands were used for calculating NDVI using equation 199 

(6). NDVI values range from +1.0 to -1.0 and is correlated with physical properties of the vegetation canopy and 200 
fractional vegetation cover. Where 𝜀𝜀v and 𝜀𝜀𝜀𝜀 are the vegetation and soil emissivity individually and C𝜆𝜆 is the 201 
surface roughness (C𝜆𝜆 = 0 for homogeneous and flat surface) taken as a constant value of 0.005 (Sobrino & 202 
Raissouni, 2000). When the NDVI is less than NDVIS (=0.2), it is classified as bare soil and the emissivity value 203 
is acquired from the reflectance values in the red region (ρR) (Seketekin & Bonafoni, 2020). For NDVI values 204 
between 0.2 and 0.5 are considered as mixtures of soil and vegetation surface and equation (10) is used for 205 

extracting emissivity values. Where ελv is emissivity value of vegetation in this range (≒ 0.9863μm) and ελs is 206 

emissivity value of soil in this range (≒ 0.9668μm) (Yu et al., 2014). When the NDVI value is larger than NDVIv 207 

(=0.5), it is considered as vegetation surface and the value of 0.99 is assigned (Avdan & Jovanovska, 2016). In 208 
addition, NDVI value were used for calculating the proportion of the vegetation (Pv) related with emissivity (ε) 209 
using equation (7) (Carlson & Ripley, 1997; Tucker, 1979). A method for calculating Pv is suggests using the 210 
NDVI values for vegetation soil to apply in global conditions (Sobrino et al., 2004). 211 

 212 

  (6) 

 213 

 
 

(7) 

2.5 Prediction analysis 214 
 215 
2.5.1 Urban expansion prediction 216 

We used integrated Cellular Automata (CA) – Markov Chain Model (MCM) for prediction of 2028, 2038, 2048 217 
urban expansion scenario of two new towns. CA-Markov chain model is hybrid and robust algorithm in spatial 218 
and temporal dynamic modelling of LULC changes that includes the deterministic modelling framework, spatially 219 
specific methodology with stochastically based temporal structure (Kamusoko et al., 2009; Keshtkar & Voigt, 220 
2016). 221 

MCM is a tool to evaluate adjustments in land use among cycles by a sequence of values that depend on present 222 
state (Aaviksoo, 1995). MCM defines the LULC change from one time to another to predict future change and 223 
equation (8) explains the calculation of the prediction of land use change (Kumar et al., 2014): 224 

 225 
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  (8) 
 226 
Where S(t) is the system state at time of t, S (t+1) is the system state at time of t+1; Pij is the transition 227 

probability matrix in a state which is established using equation (9): 228 
 229 

 

(0 ≤ Pij ≤ 1) 

(9) 

P is the Markov probability matrix, and Pij represents the probability of converting from current state i to 230 
another state j in prediction time; PN is the state probability of any time. Low transition pixel will have a low 231 
probability value near (0) and high transition pixel have high probability value near (1). The 2000 LULC map of 232 
the study area was used as the base (t1) and 2018 LULC map was used as the later (t2) to obtain the transition 233 
probability matrix in this study 234 

CA is a dynamic procedure model that is used for the land use cover change (Hamad et al., 2018). CA has 235 
capability to change its state according to a rule that each cell with their own characteristics can stand for parcels 236 
of land and self-growth interactions as they are dynamic and reduplicate (Brown et al., 2004). Hence, the CA-237 
MCM which integrate the theories of Markov with CA, is about the time series and space for the improvements 238 
for forecasting and can attain better simulation for temporal and spatial patterns of land use changes (Sang et al., 239 
2011).  240 

Multi-Criteria Evaluation (MCE) was used to decide which LULC classes are appropriate for changing from 241 
original state to another. MCE combines driving factors for urban growth and fuzzy systems analysis to construct 242 
transition suitability maps which show the probability of a pixel to change to another land cover class or be 243 
unchanged. (Myint & Wang, 2006). Physical planning and transportation infrastructure for the new town planning 244 
is important for large-scale development to create housing sites within a short period of time. Transportation is 245 
especially believed to accelerate and guide urban expansion via the improvement of accessibility (Anas et al., 246 
1998; Hu & Lo, 2007; Kasraian et al., 2019). In addition, Slope is an uncontrollable environmental factor that 247 
affects urban growth; construction of buildings and development of cities on steep-slope terrain has been 248 
problematic or impossible (Kechebour, 2015). Hence, distance to main road, slope, and distance to existed urban 249 
area were used in estimating transition suitability maps in this study. The maps of road, Digital Elevation Model 250 
(DEM) were obtained from National Spatial Data in Infrastructure Portal (NSDIP) (http://data.nsdi.go.kr/). Fuzzy 251 
membership functions were used to standardize suitability maps into 0-1, where 0 represents inappropriate 252 
locations and 1 represents suitable locations for urbanization. The future assignment to LULC class for each cell 253 
was based on how much the cell is appropriate for LULC class and how close the cell is to neighboring cells of 254 
the same class and contiguity filter of 5×5 pixels was used to identify the effect of neighboring pixels on the 255 
central pixel. 256 

 257 
2.5.2 Mapping and prediction of SUHI distribution 258 

The UHI phenomenon results from the anthropogenic modification of natural landscapes in the city boundary 259 
layer and as the urban area increases, the UHI intensity also increases (Oke, 2002). In addition, LST and SUHI 260 
effects are especially relative to the surrounding ex-urban environment (Clinton & Gong, 2013). To reflect this 261 
trend, I defined the SUHI intensity of each new town as the difference between temperatures of an urban area and 262 
suburban areas (LULC excluding built-up area) within the boundary (Guha et al., 2018; Lee et al., 2020; Zhou et 263 
al., 2013). Based on this concept, the SUHI intensity distribution maps for each new town and each period were 264 
constructed using two techniques: (1) to calculate SUHI intensity variation using equation (10): 265 

 266 

 SUHI intensity distribution = Ts – (T mean + 0.5×δ) surrounding area (10) 

 267 
Where Ts is LST (℃) distribution of new town, T mean and δ are the mean and standard deviation of LST in 268 

non-urban areas of the new town. By subtracting the average temperature of non-urban areas from the temperature 269 
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of the whole city, it is possible to confirm the actual SUH effect due to urban expansion rather than temporary 270 
LST value. In addition, I have excluded the water bodies while calculating SUHI intensity because it can change 271 
the LST irregularly (Lee et al., 2020). (2) to classify SUHI intensity variation into six appropriate ranges: (ⅰ) values 272 
≤ 0℃, (ⅱ) 0℃ < values ≤ 2℃, (ⅲ) 2℃ < values ≤ 4℃, (ⅳ) 4℃ < values ≤ 6℃, (ⅴ) 6℃ < values ≤ 8℃, (ⅵ) 8℃ 273 
< values. In this way, it is possible to compare the difference in distribution and intensity of the SUHI phenomenon 274 
according to the change in LULC for each new town at each time. In addition, classes are divided according to 275 
the value range, so that future SUHI intensity distribution could be predicted using CA-Markov analysis. Indices 276 
positively and negatively correlated with LST were used to develop in calculating transition suitability maps for 277 
predicting SUHI distribution. Normalized Difference Built-up Index (NDBI) suggested by Zha et al. (2003) was 278 
used as index strongly correlated with LST. NDBI is the most used and commonly accepted method for the 279 
identification of built-up areas and showed a high surface temperature correlation in previous studies (Saha et al., 280 
2020; Tariq & Shu, 2020). The NDBI is calculated using equation (11): 281 

 282 

 
 

(11) 

 283 
Built-up areas are sensitive under 1.55-1.75 wavelength range in the Short-Wave Infrared (SWIR) band, 284 

whereas shows lower sensitivity under 0.79-0.90 wavelength range in NIR band (Bhatti & Tripathi, 2014). The 285 
NDBI values range from -1 to +1 and the values near to +1 normally represent highly dense built-up areas. NDVI 286 
was used as index weakly correlated with LST. NDVI is the most common index for vegetation detection and 287 
showed a strong negative correlation with LST in previous studies (Sun et al., 2015; Tariq & Shu, 2020; Weng et 288 
al., 2004). Fuzzy membership functions were also used to standardize factor maps into 0-1, where 0 represents 289 
low SUHI potential and 1 stand for high SUHI potential. 290 
  291 
3. Results 292 
 293 
3.1 LULC changes according to new towns development 294 

 295 
In the accuracy assessment of the three LULC classifications, the kappa coefficient in LULC classification 296 

areas for all the three years were greater than 0.8, verifying that these classifications were significant predictors 297 
of future LULC and SUHI distribution.  298 

LULC analysis show that the extent and proportion of LULC types varied across the years and I could observe 299 
the significant transformations between 1989 and 2018. The accumulation of built-up areas in the two new towns 300 
have been drastically extended during each development period (Fig. 2b and Fig. 3b). However, it was observed 301 
that forest and agricultural areas had significantly declined. In 1989, most of LULCs of Bundang new town and 302 
Pangyo new town were forest and agricultural areas, accounting for almost 13.90 km2 (85%), and built-up areas 303 
were less than 5%. After that, the highest built-up growth was taken place in Bundang new town between 1989 304 
and 2000 when the development of Bundang new town had already ended. The built-up areas increased from 1.47 305 
km2 (4.39%) to 14.09 km2 (42.13%), however, agricultural areas drastically decreased from 13.90 km2 (41.55%) 306 
to 2.99 km2 (8.93%) and forest also considerably decreased from 44.19% to 33.88%. In addition, open spaces 307 
increased from 0.46% to 5.68%, which occurred due to the development of the new town or was confirmed as an 308 
area under development at the time (Fig. 2a). In the case of Pangyo new town, relatively little change occurred 309 
because the new town development planning was not yet established. In the case of built-up areas, the proportion 310 
was increased from 3.23% to 16.73%, which was confirmed by the construction of the main road within the 311 
boundary and the unplanned and fragmented development (Fig. 3a). It also appears to have increased the 312 
percentage of open spaces in this process.  313 

In the case of 2018, when the development of Pangyo new town was completed, the proportion of built-up areas 314 
of Pangyo new town increased dramatically from 16.73% to 40.81%. Forest decreased from 46.36% to 40.84% 315 
and remaining agricultural areas decreased to 1.96%, resulting in almost all urbanization. In the case of Bundang 316 
new town, the increase in built-up areas between 2000 and 2018 was relatively small, but agricultural areas 317 
decreased to 1.71%, which also became almost urbanized. Open spaces of both new towns that existed in 2000 318 
were mostly urbanized in 2018. In the case of grass, the overall area was similar, and the ratio of grass is higher 319 
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in Pangyo new town as in the development plan. However, due to the limitation of resolution, grass existing inside 320 
the built-up areas could not be classified. Therefore, the actual ratio between the two new towns will be more 321 
different. In the case of water, there was no significant change in area between 1989-2018, but fluctuations due to 322 
spectroscopic differences were observed. 323 
 324 
3.2 SUHI distribution changes according to new towns development 325 

 326 
The accumulation of higher SUHI intensity areas in the two new towns have been extended according to urban 327 

area growth (Fig. 2d and Fig. 3d). In 1989, there were no areas in both Bundang and Pangyo new towns with a 328 
SUHI intensity of six or higher. Most of the areas with evident SUHI phenomenon were agricultural areas and 329 
partially urbanized areas. LST is vulnerable to vegetation mass, and in Korea, may is an early growing season in 330 
agricultural areas that contain less vegetation mass compared to the surrounding forest (Raymond et al., 1994). 331 
This difference in vegetation mass led to a high temperature distribution in agricultural areas in both new towns. 332 
In 2000, the area with SUHI phenomenon increased by approximately 30% after the development of Bundang 333 
new town. The areas with SUHI occurrence in the range of 2–4 ℃ significantly increased from 3.4 km2 (10.18%) 334 
to 10.82 km2 (32.34%), and those with more than 4 °C, which were few in 1989, increased to approximately 3.03 335 
km2 (9%) of the total area. Most of the areas with SUHI in the range 0-2 ℃ appeared to be areas where high 336 
buildings such as apartment housing complexes away from the main road are located. The areas with higher than 337 
2 ℃ SUHI intensity had increased overall and most of the areas with SUHI in the range 2–4 ℃ appeared on the 338 
main road and its surrounding areas, in non-apartment housing complexes. Areas with more than 4°C were mostly 339 
found in non-apartment housing complexes, industrial complexes, and large scale residential and commercial 340 
complex site under construction. 341 

In the case of Pangyo new town, the areas with the SUHI phenomenon increased by approximately 6.5%, and 342 
most of these were distributed across the built main road and surrounding areas. The areas with SUHI occurrence 343 
in the range 2-4 ℃ increased from 1.77 km2 (10.06%) to 3.23 km2 (18.33%) and appeared in the constructed main 344 
roads and the surrounding areas. The areas with more than 4 °C were less than 0.324 km2 (2%) (Fig. 3c). 345 

In 2018, For Bundang new town, the areas with SUHI in the range 0- 2 ℃ had slightly decreased and 2-4 ℃ 346 
intensity appeared in most of the apartment complexes. The areas with SUHI in the range 4–6 ℃ increased from 347 
2.76 km2 (8.25%) to 3.69 km2 (11.03%) and most of these areas appeared in non-apartment complexes. The areas 348 
with more than 6 ℃ increased to approximately 2% of the entire new town and these areas appeared in non-349 
apartment complexes or commercial areas. This implied that the increase in building density and building 350 
renovation through additional development may be the main causes of the intensified SUHI phenomenon in 351 
existing cities (Fig. 3c). In the case of large scale residential and commercial complex sites, after completion, the 352 
structure changed to the same structure as the apartment complex, and the overall SUHI intensity decreased 353 
significantly. 354 

In the case of Pangyo new town, the areas experiencing the SUHI phenomenon increased by approximately 17% 355 
after the new town development is over. The areas with SUHI occurrence in the range 2–4 ℃ increased from 3.23 356 
km2 (18.33%) to 4.68 km2 (26.58%) and most of these areas appeared in apartment complexes like Bundang new 357 
town. The areas with SUHI in the range 4–6 ℃ significantly increased from 0.32 km2 (1.81%) to 2.51 km2 358 
(14.23%). This is because the proportion of non-apartment housing complexes in the development plan is higher 359 
than that of Bundang new town. However, few areas were found that had temperatures greater than 6 °C, and none 360 
exceeded 8 °C. 361 
 362 
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 363 

Fig. 2 SUHI distribution according to LULC changes from 1989 to 2048 in Bundang new town. a. Areas of 364 
LULC in Bundang new town from 1989 to 2048. b. LULC maps of Bundang new town from 1989 to 2048. c. 365 
Areas of SUHI distribution in Bundang new town from 1989 to 2048. d. SUHI distribution maps of Bundang 366 

new town from 1989 to 2048. 367 
 368 
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 369 

Fig. 3 SUHI distribution according to LULC changes from 1989 to 2048 in Pangyo new town. a. Areas of 370 
LULC in Pangyo new town from 1989 to 2048. b. LULC maps of Pangyo new town from 1989 to 2048. c. 371 

Areas of SUHI distribution in Pangyo new town from 1989 to 2048. d. SUHI distribution maps of Pangyo new 372 
town from 1989 to 2048. 373 

 374 
3.3 The relationship between SUHI intensity and urban morphology 375 

 376 
Based on the data obtained from National Geographic Information Platform from Ministry of Land, 377 

Infrastructure and Transport (MOLIT-NGIP) (http://map.ngii.go.kr/), average building coverage ratio in Bundang 378 
new town (27.5%) is higher than Pangyo new town (22.5%) in 2018. Also, the maximum value of the number of 379 
buildings per ha was 60 in Bundang new town, which was significantly higher than that value of Pangyo new 380 
town, 29. The height of buildings also showed that Bundang new town was high overall, and the max value was 381 
133.5m. On the other hand, in the case of Pangyo new town, there were no buildings with a height of 110m or 382 
higher. 383 

According to Oke et al. (2017), the facet surface temperature in daytime in urban system is typically ranked as 384 
follows: T roof > T walls > T floor > T surrounding area. In addition, in canyons formed in the city through high-rise 385 
buildings, overshadowing areas are formed to induce surface coolness. When vegetation is present, surface 386 
cooling becomes stronger due to more shades and transpire. Therefore, if the canyon and roof facets are combined 387 
into a single surface temperature for the system, in areas with high vertical building characteristics such as the 388 
building height, the SUHI intensity will be lower than other built-up areas. On the other hand, areas with high 389 
horizontal building characteristics such as the building coverage ratio or number of buildings, the SUHI intensity 390 
will be also high.  391 

Looking at the SUHI intensity distribution of both new towns in 2018, the SUHI intensity in the non-apartment 392 
complex consisting of buildings below 4 floors was higher comparing to the apartment complex according to the 393 
relationship between the LST and the building structure. This is the reason why the area with SUHI in the range 394 
of 4–6 °C increased high in Pangyo new town which the overall height of the buildings is lower than Bundang 395 
new town. However, even in the same building complex type, the overall intensity was higher in the Bundang 396 
new town, and the areas with SUHI intensity exceeding 6 °C also appeared much more (Fig. 4; Fig. 5). In addition, 397 
the SUHI intensity of the apartment complex was also found to be higher overall in the Bundang new town. This 398 

http://map.ngii.go.kr/
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is because of the horizontal morphologies such as building coverage ratio and building density of Bundang new 399 
town are higher than that of Pangyo new town.  400 

 401 
 402 

 403 

Fig. 4 Site of residential development in Bundang new town (a) high-rise apartment complex, (b) low-rise non-404 
apartment complex 1, (c) low-rise non-apartment complex 2, (d) classified SUHI distribution in high-rise 405 

apartment complex, (e) classified SUHI distribution in low-rise non-apartment complex 1, (f) classified SUHI 406 
distribution in low-rise non-apartment complex 2, (g) SUHI distribution in high-rise apartment complex, (h) 407 

SUHI distribution in low-rise non-apartment complex 1, (i) SUHI distribution in low-rise non-apartment 408 
complex 2. 409 

 410 
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 411 

Fig. 5 Site of residential development in Pangyo new town (a) low-rise non-apartment complex, (b) complex 412 
buildings, (c) high-rise apartment complex, (d) classified SUHI distribution in low-rise non-apartment complex, 413 

(e) classified SUHI distribution in complex buildings, (f) classified SUHI distribution in high-rise apartment 414 
complex, (d) SUHI distribution in low-rise non-apartment complex, (e) SUHI distribution in complex buildings, 415 

(f) SUHI distribution in high-rise apartment complex. 416 
 417 
3.4 Predicted LULC for 2028, 2038 and 2048 418 

 419 
The cellular automata (CA)-Markov chain model (MCM) analysis predicted that the proportion of built-up 420 

areas would increase by approximately 10% from 16.44 km2 (49.16%) to 19.78 km2 (59.12%) between 2018 and 421 
2048 in Bundang new town (Fig. 2a). Moreover, it predicted decreases in forest areas from 11.91 km2 (35.61%) 422 
to 10.0 km2 (29.9%) and the grass cover from 4.27 km2 (12.76%) to 3.57 km2 (10.69%). As a new town 423 
development in the past primarily occurred through transformation of agricultural areas to built-up areas, it was 424 
not predicted that a significant urban expansion would occur through deforestation. In addition, most of the 425 
buildings in the housing complex of Bundang new town were completed in 1990, over 25 years ago. Therefore, 426 
renovations are planned for most of these old apartment complexes to improve the poor residential environment 427 
and meet the latest urban housing requirements. Hence, most urban expansion was predicted to occur through 428 
renovation within the existing built-up areas and partial transformation of the forest surrounding the new town.  429 

In the case of Pangyo new town, the proportion of urban expansion between 2018 and 2048 was predicted to 430 
be higher than that of Bundang new town. According to the CA-MCM prediction, built-up areas would increase 431 
by approximately 18.42% from 7.19 km2 (40.81%) to 10.44 km2 (59.23%), the forest areas would decrease from 432 
7.20 km2 (40.84%) to 5.68 km2 (32.25%), and the grass cover including golf courses would decrease from 2.70 433 
km2 (15.34%) to 1.40 km2 (7.92%) (Fig. 3a). The primary trend observed in the predicted urban expansion was 434 
those non-urban areas, such as forest and grass, surrounding the main road were transformed into built-up areas. 435 
In contrast with Bundang new town, Pangyo new town is public-transportation-oriented. During the past new 436 
town development, the areas surrounding the main road that existed outside the city were underdeveloped. 437 
However, if urban expansion occurs in the future, it would be evident primarily in areas with good road proximity. 438 
In addition, urban expansion due to the completion of development in the open spaces that were under 439 
development in 2018, and further development within the city was also predicted. In terms of agricultural area 440 
and water, both new towns were predicted to remain almost unchanged from 2018, with little fluctuation. 441 
 442 
3.5 Predicted SUHI distribution for 2028, 2038, and 2048 443 

 444 
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The model predicted the increase in area and intensity of the SUHI phenomenon in both new town and unlike 445 
LULC prediction, a remarkable change was predicted.  446 

In Bundang new town, the area where the SUHI phenomenon occurs will increase by about 5% between 2018 447 
and 2048. For SUHI intensity distribution, the areas with SUHI 4℃ or less will decrease from 17.12 km2 (51.16%) 448 
to 11.44 km2 (34.21%). At the same time, the areas with more than SUHI 4℃ was projected to rise from 4.25 km2 449 
(12.73%) to 10.68 km2 (34.71%) at the cost of lower SUHI intensity areas. It is predicted that SUHI intensity will 450 
expand and increase centering on the existing residential area, which is judged to reflect the trend of renovation 451 
and additional building construction that partially occurred between 2000 and 2018. In addition, the areas with 452 
more than SUHI 6 ℃ will increase from 0.56 km2 (1.7%) to 2.77 km2 (8.28%) and it has been observed that the 453 
higher the LST, the higher the frequency of heat waves at regional scales (Fig. 2c) (Yeh et al., 2018). In the future, 454 
additional thermal environmental policies and energy policies are needed for areas where SUHI intensity is 455 
expected to increase extremely.  456 

In the case of Pangyo new town, the areas where the SUHI phenomenon will occur were predicted to increase 457 
by 20%. The affected areas are like those that were predicted to change from forests existing around main road to 458 
built-up areas. For SUHI intensity distribution, the area with SUHI 4℃ or less will decrease from 7.75 km2 459 
(43.97%) to 5.08 km2 (28.83%). The areas with more than SUHI 4 ℃ was projected to rise from 2.53 km2 (14.34%) 460 
to 8.7 km2 (49.36%) and most areas were in the range 4-6 ℃ (49%) (Fig. 3c). It can be predicted that as with the 461 
Bundang new town, the building density and building coverage ratio are expected to increase through vertical and 462 
horizontal renovation and additional construction. 463 

 464 
4. Discussion 465 
 466 

This study is the first attempt to simulate and compare the pattern of SUHI occurrence according to new towns 467 
development using remote sensing and GIS technology. This discussion focuses on the principal two contributions 468 
of the proposed research in comparison with previous studies. Afterwards, the limitations are discussed. 469 

The main contribution of our study is that the different patterns of changes in land use land cover and SUHI 470 
phenomenon depending on urban planning were visually and quantitatively shown for the study sites excluding 471 
external influences. To provide some examples, Tran et al. (2006) and Clinton & Gong (2013) do comparative 472 
analysis of SUHI phenomenon between cities under different environment or urban situation. Tran et al. (2006) 473 
examines the spatial patterns of SUHIs for Asian mega cities based on the season and relationship with surface 474 
properties. Clinton & Gong (2013) estimate the magnitude of SUHI for urban areas between latitudes 71 and – 55 475 
for the year 2010 using MODIS datasets. The results of these studies were successful in demonstrating the 476 
contribution of urbanization to the SUHI effect as well as investigating the differences in SUHI between urban 477 
and surrounding areas. However, applying these methods could not provide insight into the effect of different 478 
urban development types or urban planning on UHI phenomenon. In addition, in terms of comparing the UHI 479 
phenomenon between cities, there were some limitations which may lower the reliability of comparison. They all 480 
used satellite images constructed at different times and the magnitude of SUHI depends on whether a single image 481 
or composite over a period is used (Oke et al., 2017).  482 

In comparison with these previous studies, this research provides a significant contribution by quantifying the 483 
influence of the urban planning involved in the UHI phenomenon based on a scientific approach in condition 484 
which external influences are controlled. The developed LULC maps showed significant changes in LULC before 485 
and after the development of both new towns from 1989 to 2018. The primary driver for the development of both 486 
the new towns was the transformation of agricultural areas to built-up areas. Moreover, the increase in built-up 487 
areas evidently intensified the SUHI phenomenon of an entire new town. However, the areas where the SUHI 488 
phenomenon additionally occurred or the SUHI intensity increased, were different according to the urban plan 489 
and morphology.  490 

In the previous surface temperature study in Changwon City in South Korea using remote sensing data and 491 
surface measurement, the average temperature of the low-rise housing complex was up to 8 °C higher than that 492 
of the high-rise apartment depending on the time (Song & Park, 2017). Three-dimensional urban planning and 493 
design considering the effects of both shadow and wind at the same time are required to improve the thermal 494 
environment of the housing complex. First, check the weather conditions of each urban area, such as average wind 495 
speed, wind direction, and relative humidity, rather than a collective urban plan. Next, establish an individual city 496 
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plan that is in harmony with the weather condition considering the current parcel division, urban structural 497 
condition, and overall building capacity of the city. In the case of building layout, the wind corridor formed by 498 
the parallel type layouts is usually beneficial to air flow, creating a good wind environment at pedestrian level 499 
(Jiang et al., 2020; Moonen et al., 2011). Also, according to urban planning of each new town, the average 500 
greenspace ratio of Pangyo new town had twice that of Bundang new town, which also influenced SUHI intensity. 501 
Building a green space is widely suggested strategy to reduce UHI phenomenon. In this way, planting vegetation 502 
along the street can contribute to a significant reduction in radiation temperatures rather than planting the same 503 
amount of vegetation in a specified green space (Bochenek & Klemm, 2021). 504 

Our research also improves on the predictive models previously developed to study and predict usually LULC 505 
patterns. Unlike previous studies, Cellular Automata Markov Chain model was used for prediction of LULC 506 
changes and SUHI distribution changes accordingly in study areas. In many previous studies, the LULC change 507 
was simply predicted using the CA-MCM model, but overlooked the environmental impact caused by LULC 508 
change (Hamad et al., 2018; Kumar et al., 2014; Wang et al., 2021). Saha et al. (2020) and Tariq and Shu (2020) 509 
tried to examine the LST change according to the LULC change. However, it did not predict the change of the 510 
LST distribution according to the predicted future LULC, and as in previous studies, indirect prediction was 511 
performed by simply constructing a regression equation using the spectral index. In addition, the LST value may 512 
vary depending on the radiative and aerodynamic properties of the satellite image and it is difficult to confirm the 513 
relative temperature increase in the built-up areas according to urban growth using LST distribution (Oke et al., 514 
2017). In this study, the predicted results based on variations between 2000 and 2018 also showed a possible 515 
future pattern of further urban expansion and similar changes in SUHI distribution and intensity in both new towns. 516 
Changes in the building complex type of future urban areas or horizontal morphology such as urban density and 517 
coverage ratio can be inferred from the predicted SUHI intensity trends. Previous studies confirmed a direct linear 518 
relationship between building density and UHI intensity and predicted an increase in urban temperature due to 519 
urban expansion and densification (Argüeso et al., 2014; Cao et al., 2018; Li et al., 2020; Straka & Sodoudi, 2019). 520 
Our results also showed the increase and expansion of SUHI intensity according to urban expansion, which is 521 
consistent with the previous studies. 522 

In addition, through prediction analysis, the importance of building renovation and structural characteristics in 523 
urban-level thermal environment changes was also suggested. When renovating old buildings in the future, 524 
sustainable renovation methods such as increasing the insulation of facades with new surfaces are required to 525 
minimize changes in the thermal environment. Height of buildings also need to be considered reducing solar 526 
irradiation by shading effects (Loibl et al., 2021).  527 

 528 
5. Conclusion 529 
 530 

This study suggested a comprehensive approach combining LULC classification, LST analysis and CA-MCM 531 
using LANDSAT data for analysis of the current status and future changes of the SUHI phenomenon. Results 532 
from this research provide an effective methodology for examine changes in SUHI intensity according to urban 533 
planning and morphology. It is easy to apply for practitioners and the necessary data for application are available 534 
without complex acquisition procedures as open access datasets. Therefore, the proposed novel method may be 535 
applied to both existing and newly built cities to predict future SUHI distribution according to urban planning.  536 

Furthermore, the methods and findings constructed through this research can be helpful to policy makers, urban 537 
planners, researchers, and communities by providing a scientific source for thermally sustainable urban planning 538 
and morphology. Especially, it was possible to confirm the difference in SUHI intensity and distribution according 539 
to the construction of housing complexes with different vertical and horizontal morphology and density. Without 540 
effective mitigation, the built-up area in both new towns are estimated to increase to approximately 60%, and the 541 
SUHI intensity in most areas to increase up to 4 °C by 2048. Urban areas with the higher the horizontal 542 
morphology such as building density and building coverage ratio show higher the SUHI intensity. When the 543 
overall height of buildings was lowered for low-density development, SUHI intensity could be increased due to 544 
the reduced shading effects. Based on this findings, differential thermal environment management strategies can 545 
be analyzed and constructed according to the type of housing complex. 546 

While the presented study provides useful methods and information regarding the current and future status of 547 
the UHI phenomenon, it still faces some limitations. This study did not consider a few parameters influencing 548 
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typical urbanization, including socio-economics factors. Although planned urban expansion has less complicated 549 
in terms of physical and legal aspects, typical urban expansion is significantly influenced by the factors such as 550 
the complexity of the terrain, degree of socio-economic development, urban regulations, etc (Wang et al., 2021). 551 
Therefore, it is necessary to consider additional urban expansion factors when applying this methodology to a 552 
region other than new towns. In addition, a model that explains the complex behavior of UHI using a combination 553 
of building renovation and especially vertical structural characteristics is still necessary. 554 

In the future, employing the Computational Fluid Dynamic (CFD) model will explain the difference of UHI 555 
patterns based on structural characteristics changed by urban planning and building renovation in building scale. 556 
Surface temperature measurement will be required to the verification and calibration of the CFD model. The data 557 
can be employed for evaluating the methodology used in this study. In addition, the difference in Physiological 558 
Equivalent Temperature (PET) by the building morphology could be identified. 559 

 560 

Data availability 561 

Satellite images from 1989 to 2018 used in this study are freely available at httl://earthexplorer.usgs.gov/. Other 562 

datasets are available upon request from K. Lee (leedake@korea.ac.kr). 563 
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