
Chapman University Digital Chapman University Digital 

Commons Commons 

Behavioral and Computational Economics (MS) 
Theses Dissertations and Theses 

Spring 5-2024 

Match Stability with a Costly and Flexible Number of Positions Match Stability with a Costly and Flexible Number of Positions 

James Gilmore 
Chapman University, jgilmore@chapman.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/

behavioral_and_computational_economics_theses 

 Part of the Economic Theory Commons 

Recommended Citation Recommended Citation 
Gilmore, J. (2024). Match stability with a costly and flexible number of positions [Master's thesis, 
Chapman University]. Chapman University Digital Commons. https://doi.org/10.36837/chapman.000597 

This Thesis is brought to you for free and open access by the Dissertations and Theses at Chapman University 
Digital Commons. It has been accepted for inclusion in Behavioral and Computational Economics (MS) Theses by 
an authorized administrator of Chapman University Digital Commons. For more information, please contact 
laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/behavioral_and_computational_economics_theses
https://digitalcommons.chapman.edu/behavioral_and_computational_economics_theses
https://digitalcommons.chapman.edu/etd
https://digitalcommons.chapman.edu/behavioral_and_computational_economics_theses?utm_source=digitalcommons.chapman.edu%2Fbehavioral_and_computational_economics_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/behavioral_and_computational_economics_theses?utm_source=digitalcommons.chapman.edu%2Fbehavioral_and_computational_economics_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/344?utm_source=digitalcommons.chapman.edu%2Fbehavioral_and_computational_economics_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.36837/chapman.000597
mailto:laughtin@chapman.edu


Match Stability with a Costly and Flexible Number of
Positions
A Thesis by

James Gilmore

Chapman University

Orange, CA

Argyros School of Business & Economics

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Behavioral and Computational Economics

May 2024

Committee in charge:

David Porter, Ph.D.,Committee Chair



The thesis of James Gilmore is approved

David Porter, Ph.D., Chair

May 2024



Match Stability with a Costly and Flexible Number of Positions

Copyright ©2024

by James Gilmore

III



ABSTRACT

Match Stability with a Costly and Flexible Number of Positions

by James Gilmore

One of the objectives of two-sided matching mechanisms is to pair two groups of agents

such that there is no incentive for pair deviation. The outcome of a match can significantly

impact participants. While much of the existing research in this field addresses the matching

with fixed quotas, this is not always applicable. We introduce the concept of slot stability,

recognizing the potential motivation for organizations to modify their quotas after the match.

We propose an algorithm designed to create stable and slot stable matches by employing

flexible, endogenous quotas to address this issue.
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1 Introduction

Economic research has played a pivotal role in shaping the development of market institu-
tions, with a particular emphasis on matching institutions. The conventional framework for
addressing the matching problem involves organizations offering a set number of positions
or quotas that need to be filled by applicants. Within this framework, each applicant can
be assigned to at most one position. Matching institutions have been meticulously crafted
to tackle these intricate challenges, aiming to provide a stable solution.

The concept of match stability was originally introduced by Gale and Shapley [1] in their
groundbreaking paper (hereafter, GS). They define a match as stable when there is no com-
pelling incentive for a pair of participants to switch their assignments. Additionally, GS
introduced the deferred acceptance algorithm [1], a widely employed method for achieving
stable matches between applicants and organizations. In this algorithm, applicants submit
rank order lists (ROLs) of organizations based on their preferences, while organizations sim-
ilarly rank applicants according to their preferences. The outcome of this algorithm results
in a stable match when ROLs truthfully reveal preferences.

The basic matching problem has evolved and extended to cases where preferences are more
complex. For example, the student-project allocation problem deals with matching students
to projects that can have overlapping lecturers while taking into account individual pref-
erences and class capacity constraints. In this environment, Abraham et al. [2] modify
the matching algorithm to ensure stability. Another example is in the National Resident
Matching Program, which assigns interns to different hospitals and specialties. At first, the
algorithm treated every individual’s preference as independent of any other individual’s pref-
erence and gave a stable matching in that environment. However, couples in the match may
have joint preferences because they want to be near each other. The deferred acceptance algo-
rithm does not consider this and can produce unstable outcomes. In this environment, Roth
and Peranson [3] proposed a new matching algorithm that incorporates couple preferences,
although it does not guarantee a stable match. Nonetheless, computational experiments
demonstrate that the algorithm’s outcomes closely approximate stability.

The matching literature currently defines stability under the assumption of fixed quotas.
Organizations state the maximum number of applicants they will accept before the match
begins. Rios et al. [4] examined the Chilean college admission system, where the maximum
number of slots can exceed the preset quota. Matches are based entirely on academic scores,
which can have ties. Therefore, quotas can be exceeded if there is a tie between the accepted
worst candidate and any other candidate who wants to join, in which case they must accept
all such candidates. However, this starts by posting a quota and then adjusting it in light of
scores. Limaye and Nasre [5] explore cases where all applicants must be accepted with costly
slots. They then minimize the total cost to get a stable match with minimal cost. However,
this does not address the incentive for the organization to accept these quotas. Here, there is
minimal cost, yet there may be some excellent candidates the organization would be willing
to accept at a higher cost.
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In the context of university admissions, educational institutions often grapple with a chal-
lenging dilemma. They frequently find themselves with a surplus of highly qualified appli-
cants, compelling them to consider increasing the number of admitted students beyond their
initial enrollment quotas. However, this decision is not taken lightly, as universities must
balance the advantages of admitting exceptional students and the practical constraints of
managing undergraduate enrollment while considering campus resource costs. To navigate
this complex scenario, universities have implemented wait lists for students who have not
yet received acceptance offers.

A similar dilemma arises when universities are in the process of recruiting new faculty
members. In this case, while the administration may provide a specific number of avail-
able positions, academic departments may argue for additional positions if confronted with
a pool of high-quality candidates. The ability to assess both the quality of applicants and the
associated costs of creating additional positions becomes pivotal in making these matching
decisions.

In this paper, we show that if we expand stability to include organizations offering a different
number of positions, the current algorithms are not necessarily stable. We show how a small
change to the deferred acceptance algorithm allows for endogenous numbers of slots by orga-
nizations while guaranteeing this expanded stability. In particular, we propose a matching
mechanism that allows ROLs to accommodate these trade-offs and ensure a stable match
that is also slot stable. By slot stable, we mean that every organization has no incentive to
deviate in their number of openings. We also show that our matching mechanism considers
organizations’ concerns in a wait list system and provides a solution to the endogenous quota
problem.

2 The Environment

Applicants are denoted as a, with indices i = 1, 2, ..., n, and organizations are denoted as
o, with indices j = 1, 2, ...,m. Each organization oj has a number of positions or slots to
fill. Each applicant can fill one slot with at most one organization, and the set of these
applicants admitted to oj is denoted as Aj. The amount of slots filled, sj, is the cardinality
of Aj. Let Vi(oj) denote applicant ai’s value if they are matched with oj. Let Zj(ai) denote
oj’s value if they are matched with ai. Both Vi and Zj are one-to-one functions. Every ai
and oj is individually rational and defined by refusing all matches such that Vi(∅) > Vi(oj)
or Zj(∅) > Zj(ai), i.e., applicants and organizations only rank those that improve their value
over remaining unmatched.

Organization oj has a non-decreasing convex total cost Cj(x) of filling x slots. Specifi-
cally Cj(x+ 1) ≥ Cj(x) and Cj(x+ 2)−Cj(x+ 1) ≥ Cj(x+ 1)−Cj(x). Denote MCj(x) to
be the marginal cost of filling slot number x defined by Cj(x)− Cj(x− 1). We also assume
every ai ranks the organizations based only on Vi, where ai prefers oj over ok if and only if
Vi(oj) > Vi(ok). Likewise, oj ranks the applicants based only on Zj, where oj prefers ai over
ak if and only if Zj(ai) > Zj(ak).
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The GS algorithm does not guarantee stability in this environment. Below is an exam-
ple illustrating the issue with the fixed quota assumption.

Suppose we have two organizations o1, o2, and three applicants a1, a2, a3. Both organi-
zations have the same values Zj and costs Cj, with Zj(a1) = 5, Zj(a2) = 4, Zj(a3) = 3,
and MCj(1) = 2, MCj(2) = 3.5. For the applicants their preferences are defined by
V1(o2) > V1(o1), V2(o2) > V2(o1), V3(o1) > V3(o2). The following tables list the partici-
pants in the columns, while the rows depict the cost, values, or ranking of the object listed
in the row.

o1 o2

a1 5 5

a2 4 4

a3 3 3

Organization Zj(ai)

o1 o2

Slot 1 2 2

Slot 2 3.5 3.5

Organization MCj(x)

o1 o2

a1 a1

a2 a2

a3 a3

Organization ROLs

a1 a2 a3

o2 o2 o1

o1 o1 o2

Applicant ROLs

Tables 1-4: Values, Costs and Lists

The applicant-proposing GS algorithm, when each organization has a fixed quota of 2 slots,
results in o1 being matched with a3 and o2 being matched with a1 and a2. This yields a stable
match, and neither organization has any incentive to want to change its quota. However,
if a2’s preference was V2(o1) > V2(o2), their ROL would now be o1, o2, and the applicant
proposing GS match would have o1 matched with a2 and a3 and o2 matched with a1. Notice
that with o1 having two slots filled, the value of a3 in slot 2 has a value of 3 but a marginal
cost of 3.5, resulting in a loss of .5. Because of this, o1 would prefer to leave the second slot
unfilled since MC1(s2) > Z1(a3). Here o1 set their quota too high.

Now, suppose organizations have the same costs and values as before, but the quotas are 1 for
each organization. Applicant preferences are the same as the first example: V1(o2) > V1(o1),
V2(o2) > V2(o1), V3(o1) > V3(o2). The GS match would have o1 and a2 matched and o2
matched with a1. This match is stable; however, o2 can do better. Here o2 would be willing
to open a slot for a2 and a2 prefers o2 over their current match, which would cause both to
be better off. Here, o2 set their quota too low.
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These examples demonstrate that another form of stability concerning organization quotas
should be addressed. First, if organization oj stands to gain by adding a slot for an ai
matched with some ou that would prefer to be matched with oj, it is slot unstable. Second,
if organization oj profits by eliminating a slot and terminating an ai in Aj, it is slot unstable.
Hence, we offer the following definition.

Definition: A match is said to be slot stable if and only if

(1) Zj(Aj)−Cj(sj) ≥ Zj(Aj∪ai)−Cj(sj+1) ∀ai /∈ Aj, ai ∈ Au, Vi(ou) < Vi(oj), ∀j ∈ 1, 2, ....,m

and

(2) Zj(Aj)− Cj(sj) ≥ Zj(Aj \ ai)− Cj(sj − 1) ∀ai ∈ Aj, ∀j ∈ 1, 2, ....,m

This can also be written in terms of marginal costs.

(1a) MCj(sj + 1) ≥ Zj(ai) ∀ai /∈ Aj, ai ∈ Au Vi(oj) > Vi(ou)

and

(2a) Zj(ai) ≥ MCj(sj) ∀ai ∈ Aj

3 Matching Mechanisms

This section assumes that applicants and organizations submit ROLs consistent with their
payoffs.1

3.1 Endogenous Number of Positions Applicant-Proposing Algo-
rithm (ENPAP)

3.1.1 Inputs

Applicants submit ROLs listing organizations from their most to least preferred that are
better than not being matched at all. For the organizations, we will need an adjustment
where organizations provide a cutoff list of rankings, henceforth called a ROCL. First, oj
lists their applicants in rank order best to least. The first cutoff, nj,1, is defined by the or-
dered list of top applicants Bj(nj,1) that would be acceptable within the nj,1 slots such that
|Bj(nj,1)| ≥ nj,1. This list is all of the applicants ranked above nj,1 in the submitted ROCL.

1Just like with GS matching, the non-proposing side may not be incentivized to reveal their true rankings.
Our mechanisms ensure that the match with truthful rankings will be stable.
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Next, all applicants below nj,1 and above nj,2 are the set of applicants an organization is
willing to accept if less than nj,2 of the Bj(nj,1) were accepted. Bj(nj,2) consists of all of
Bj(nj,1) and these new applicants. This is repeated until nj,n = 0.

Assuming that organizations reveal their preferences, what they should submit is clear.
For an applicant to be ranked above any cutoff, the organization must find the value for the
applicant to be higher than the cost of any slots in that cutoff. Therefore, Bj(nj,1) is also
the set of applicants such that Zj(ai) > MCj(nj,1). This is the top candidates such that the
lowest ranked applicant still covers the cost at the margin. Below nj,1 and above nj,2 would
be the applicants that cover the margin at the second cutoff but not the first one. Bj(nj,2)
is the set such that Zj(ai) > MCj(nj,2) which includes Bj(nj,1) and these new applicants.
This logic is repeated for all cutoffs up to nj,n = 0.

For example, using the valuations from our first example, each organization has the following
costs and applicant values: Zj(a1) = 5, Zj(a2) = 4, Zj(a3) = 3, MCj(1) = 2, MCj(2) = 3.5,
MCj(3) = 7. Creating the best possible list for o1 and o2 results in n1 = n2 = 2. This is
because the best outcome for both is to be matched with a1 and a2. Here both o1 and o2
would take both a1 and a2 if they had to pay the marginal cost in slot 2 to match with them.
So far we have [a1, a2, 2, ..., 1]. Next, we check for slot n-1, which in this case is 1. Both
organizations would accept all three candidates if they only had to pay the marginal cost of
slot 1. Therefore, the ROCL for o1 and o2 would be written as [a1, a2, 2, a3, 1].

3.1.2 Algorithm

Using the notation from the GS algorithm, all applicants propose to the organization at the
top of their ROL. Then, every oj looks at their lowest value applicant ak that proposed to
them and checks if ak is acceptable in slot sj by looking at oj’s ROCL. If ak ranks lower than
sj, oj rejects ak and oj is removed from ak’s ROL. All applicants are tentatively accepted if
ak ranks higher than sj. If there is an ak such that ak is unmatched and has any ok remaining
in their ROL, they propose to their top remaining organization, and so forth. To illustrate
this, we use the applicant valuations V1(o1) > V1(o2), V2(o1) > V2(o2), V3(o1) > V3(o2) and
the ROCL [a1, a2, 2, a3, 1] for both o1 and o2. First, each applicant proposes to their highest
valued, individually rational organization depicted below in table 5.

o1 o2

a1 ∅
a2 ∅
a3 ∅

Applicants first proposal

Looking at the ROCL of o1, [a1, a2,2,a3,1], we eliminate the lowest ranking applicant a3,
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and a1 and a2 are tentatively accepted. After being rejected by o1, a3 proposes to o2, who
accepts them since a3 was ranked if there is only one slot to fill for o2.

Theorem 1.1: ENPAP results in a stable match

Proof : Suppose the ENPAP match is unstable, then ∃ai, oj matched with ou, au such that
Vi(oj) > Vi(ou) and Zj(ai) > Zj(au). For ai and oj to not be matched with each other, either
ai never proposed to oj or oj rejected ai.

If ai never proposed to oj, one of two scenarios could have happened.

(ia) ai never put oj on their list. If oj is not on ai’s list, then Vi(∅) > Vi(oj). All ok ranked
by ai must satisfy Vi(∅) < Vi(ok). Therefore, regardless of whether ai is being matched with
no one or any ok in their ROL, Vi(oj) > Vi(ou) is false.

(ib) ai never proposed oj on their ROL. For this to happen, since ai applies to their highest
ranked organization to their lowest ranked organization, ai must have stopped when matched
with ou ranked higher than oj such that Vi(ou) > Vi(oj).

(ii) oj rejected ai. If Zj(ai) < Zj(∅), then the algorithm cannot make a match where
Zj(ai) > Zj(au). Since the algorithm only rejects the lowest ranked applicants, all other ap-
plicants tentatively accepted in the organization at the time must have ranked higher than
ai and MCj(s) > Zj(ai) where s in the number of tentatively accepted applicants. For oj
to still want ai compared to one of the applicants they were matched with, someone ranked
even lower than ai must have been accepted later. If au ranks first to s among Aj, it follows
that au must be ranked above at least one other ak that was tentatively accepted while ai was
rejected, meaning Zj(au) > Zj(ak) > Zj(ai). If au was tentatively accepted with s or higher
slots, then Zj(au) > MCj(s) > Zj(ai). This would mean that in either case, a blocking pair
does not exist as Zj(ai) > Zj(au) is false. Q.E.D.

Theorem 1.2: ENPAP results in a slot stable match

Proof : Assume ENPAP results in slot instability, then by definition ∃ak, oj such that

(1) Zj(Aj)− Cj(sj) < Zj(Aj ∪ ai)− Cj(sj + 1) and Vi(ou) < Vi(oj),

or

(2) Zj(Aj)− Cj(sj) < Zj(Aj \ ai)− Cj(sj − 1).

(1) If the first inequality is true, then ∃ai such that MC(sj + 1) < Zj(ai) that ranks worse
than all the other tentatively accepted applicants or ∃ai, au such that Zj(ai) > Zj(au) and
MCj(sj +1) < Zj(au). For the first case, if Vi(ou) < Vi(oj), then ai would have already been
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matched with oj as ai would have proposed to oj before ou and not be rejected. For the
second case, if Vi(ou) < Vi(oj), the match would have been unstable, which is not possible
from Theorem 1.1.

(2) If the second inequality is true, ∃ak, that is the lowest value ai ∈ Aj matched together
such that MCj(sj) > Zi(ak). However, the ENPAP algorithm rejects all ai that do not sat-
isfy MCj(sj) < Zj(ai). Since ak was not rejected by the algorithm, then MCj(sj) < Zj(ak)
must be true.

Since the algorithm cannot produce a match that satisfies either condition, the ENPAP
must give a slot stable match. Q.E.D.

Among the set of stable and slot stable matches, an applicant optimal match is the one
that assigns applicants to their highest ranking feasible organization.

Theorem 1.3: ENPAP results in an applicant optimal match

Proof : Using induction and Theorem 1.1, assume that the algorithm does not give an ap-
plicant optimal match. That would mean that there exists an applicant ai that could match
with a better organization that did not. Since this is applicant proposing, assume that no
applicant has yet been rejected by an organization that is achievable for them. This means
that no oj has rejected any ai where there exists a stable, slot stable match with ai matched
to oj. If ai was rejected for being unacceptable, it is unachievable. If ai was rejected in favor
of ak, then it is known that the applicant ak prefers the organization ou except for those that
already rejected them. By the inductive assumption, those organizations are unachievable
to ak. If we consider a hypothetical matching that matches ai to the ou and everyone else
to an achievable organization, ak would prefer the ou and vice versa, making it an unstable
match. Q.E.D.

3.2 Endogenous Number of Positions Organization-Proposing Al-
gorithm (ENPOP)

3.2.1 Inputs

We will be using the same inputs of the ROLs and ROCLs as the ENPAP algorithm described
in section 3.1.1.

3.2.2 Algorithm

Step 1: Each organization proposes to their top nj,1

Step 2: Each ai chooses their most preferred oj among those that proposed to ai. For all oj
not chosen by ai, ai is removed from their ROCL.
Step 3: Organizations then propose to the top applicants on their lists that satisfy the cutoff

7



criteria. Step 4: Repeat steps 2 and 3 until no applicant has multiple organizations propos-
ing to them.

To illustrate this we use the valuations from before with applicant values resulting V1(o2) >
V1(o1), V2(o2) > V2(o1), V3(o1) > V3(o2), and organization values for both organizations lead-
ing to their respective ROCLs being [a1, a2, 2, a3, 1]. First, each oj submits their optimal
organization list, shown below in table 6.

o1 o2

a1 a1

a2 a2

Organization Proposing First List

Since both a1 and a2 have been proposed to by both o1 and o2, they choose between them.
In this case both a1 and a2 choose o2. We then repeat the process where o2 submits the
same list, however, o1 submits a new optimal list [a3] since their preferred candidates a1 and
a2 are tentatively in o2’s list. This leads to the final match below in table 7.

o1 o2

a3 a1

∅ a2

Organization Proposing Match

Theorem 2.1: ENPOP results in a stable match
Proof : Assume that there is a blocking pair ai and oj. For this to happen, oj must have put
an applicant on their optimal list that is worse than ai, au, in order for Zj(ai) > Zj(au) to
be satisfied. By optimal list construction, this can only occur if ai is unavailable. This only
happens when Vi(ou) > Vi(oj) or Vi(∅) > Vi(oj) is satisfied. This violates Vi(oj) > Vi(ou)
therefore, ENPOP must result in a stable match. Q.E.D.

Theorem 2.2: ENPOP results in a slot stable match
Proof : For there to be slot instability, there ∃ai, oj such that either
(1) Zj(Aj)− Cj(sj) < Zj(Aj ∪ ai)− Cj(sj + 1) and Vi(ou) < Vi(oj), or
(2) Zj(Aj)− Cj(sj) < Zj(Aj \ ai)− Cj(sj − 1).

(1) If the first inequality is true, then ∃ai such that MC(sj + 1) < Zj(ai) that ranks worse
than all the other tentatively accepted applicants or an ∃ai, au such that Zj(ai) > Zj(au)
and MCj(sj + 1) < Zj(au). For the first case, if ai wanted to go to that oj more than their
current match ou, they would have been already matched as ai would be qualified to be put
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on oj’s optimal list and accept the offer. For the second case, if Vi(ou) < Vi(oj) the match
would have been unstable, which violates Theorem 2.1.
(2) If the second inequality is true, ∃ai, oj matched together such that MCj(sj) > Zj(ak)
However, for that applicant to have been put into oj’s optimal list with sj slots, oj must
have ranked before sj in their ROL meaning MCj(sj) < Zj(ak).

Since neither inequality can be true, ENPOP must give a slot stable match. Q.E.D

Theorem 2.3 ENPOP results in an organization optimal match
Proof : Using induction and Theorem 2.1, let’s assume that the algorithm does not give an
organization optimal match. That would mean that there exists an applicant ai that was
matched with an organization higher than their worst achievable organization. Since this
is organization proposing assume that no applicant has yet rejected an organization that is
achievable for him. This means that no ai has rejected any oj where there exists a stable,
slot stable match with ai matched to oj. If ai rejected an organization for being unaccept-
able, it’s unachievable. If ai rejected ou in favor of oj, we know that the organization oj has
the applicant in their optimal list except for those that already rejected them, and by the
inductive assumption, those applicants are unachievable to oj. If we consider a hypothetical
matching that matches ai to ou and everyone else to an achievable organization, ai would
prefer oj and oj would prefer ai over at least one other ak from oj’s more constrained optimal
list making it an unstable match which violates Theorem 2.1. Q.E.D

3.2.3 Wait list Comparison

The ENPOP algorithm closely resembles the wait list systems we see in places like graduate
school admissions. Initially, each applicant submits applications to all organizations based
on their ROL. Subsequently, each organization selects their top candidates, taking into con-
sideration the trade-off between marginal costs and the applicant’s preferences.

Following this, each applicant chooses the organization that provides them with the highest
value among those who have accepted them. The process then repeats itself, with each orga-
nization once again selecting their preferred candidates, who are likely to accept their offers.
In this context, the wait list comprises individuals whom the organization would consider if
more preferred applicants declined their offers to match with that organization.

Both the ENPOP algorithm and the current wait list system enable organizations to fill
vacancies left by applicants who choose another organization. However, in the wait list, sys-
tem stability can be compromised by both early acceptances and deadline related decisions.

Let’s examine the scenario of early acceptances. When an applicant, denoted as ai, ac-
cepts an early offer from organization oj, there are two possible scenarios to consider in
their ROL. First, if there is no organization ou ranked above oj in ai’s ROL, it reflects ai’s
alignment with the ENPOP framework, as they have secured their best match and have no
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incentive to deviate.

However, if such an organization ou exists in ai’s ROL, a potential exists for ou to extend an
offer to ai. However, if ai has already accepted oj’s offer, they may be unable to switch to
their preferred organization. This situation could lead to an unstable outcome.

Furthermore, we must consider the impact of deadline acceptances. Let’s consider two or-
ganizations, o1 and o2, both of which have sent acceptances to a1, a2, and placed a3 on their
respective wait lists. If both a1 and a2 delay their decisions until the last possible moment
to choose o1, there may not be enough time for o2 to send an acceptance offer to a3 from
the wait list, leaving insufficient time for a3 to decide. This dynamic introduces potential
instability not observed in the ENPOP or ENPAP frameworks.

3.3 Unique Set of Slot Stable Filled Slots

Next, we show that with costly slots, there is only one set of filled slots that result in a slot
stable match. This uniqueness property highlights the improbable nature of organizations
setting fixed quotas where each organization accepts the exact number of applicants needed
to have stability in this environment.

We transform the many-to-one match into a one-to-one match by using the applicant’s
ai ROLs and the organization’s oj ROCLs. For organization oj, they offer 1,2,..., nj slots.
Let oj,x denote oj’s xth slot. For all slots oj,x, their ROL is defined as the cutoff list Bj(x).
Thus, each slot an organization offers now has its own ROL, which is considered a ”different”
organization for the 1-1 match. For every applicant ai, we set their one-to-one ROLs such
that organization oj’s xth slot oj,x is ranked above organization ok’s yth slot ok,y if and only
if ai ranks oj above ok in their many-to-one ROL. In addition, organization oj’s x

th slot, oj,x,
is ranked above organization oj’s y

th slot, oj,y, by ai if and only if x > y.

Lemma 1: An ordered many-to-one match is stable and slot stable if and only if
the transformed one-to-one match is stable

Proof : Here, and ordered many-to-one match is one such that oj has their most preferred
applicant in Aj in slot one, their second most preferred in slot two, and so forth. For this to
be true, three properties must be true: if the corresponding one-to-one match is stable, then
the many-to-one match is stable; if the one-to-one match is stable, the many-to-one match is
slot stable; if the many-to-one match is stable and slot stable, the one-to-one match is stable.

First, we will show that if the many-to-one match is stable, then the transformed one-
to-one match will be stable. We prove this by contradiction. If the one-to-one match is
stable while the many-to-one match is unstable, there must exist an applicant ai matched
with organization ok and an applicant ak matched with organization oj such that ai prefers
oj to ok and oj prefers ai to ak in the many-to-one match. For the corresponding one-to-one
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stable match, ai must be matched with one of ok’s slots, ok,x, and ak must be matched with
one of oj’s slots, oj,y.

Since ai ranks oj,y above ok,x if ai has oj ranked above ok, then ai must prefer oj,y to ok,x.
Since oj,y shares the same ROL ordering as oj, that would mean that the one-to-one match
is unstable as ai would prefer oj,y and oj,y would prefer ai over ak.

Next, we will show that if the transformed one-to-one match is stable, then the many-
to-one match is slot stable. We will prove this by contradiction. Suppose the one-to-one
match is stable while the many-to-one match is slot unstable, then by definition there exists
applicant ai and organization oj such that

(1) MCj(sj + 1) < Zj(ai), ai /∈ Aj, ai ∈ Au, Vi(oj) > Vi(ou)

or

(2) Zj(ai) < MCj(sj), ai ∈ Aj

1) If the first inequality is true, then there exists an applicant ai such that MC(sj + 1) <
Zj(ai) and ranks below all the other tentatively accepted applicants or there exists appli-
cants ai, au such that Zj(ai) > Zj(au) and MCj(sj + 1) < Zj(au). For the first case, if
applicant ai prefers organization oj to ou, then ai must prefer ou,x over oj,y. From the slot
side, oj,sj+1 must have ai above not being filled if MCj(sj + 1) < Zj(au) as ai would be in
Bj(sj + 1) which defines oj,sj+1’s ROL. Therefore since oj,sj+1 and ai prefer being with each
other versus the original match, the one-to-one match must be unstable. For the second case,
if Vi(ou) < Vi(oj), then ai prefers oj,y over ou,x through construction of ai’s one-to-one ROL.
Since oj,y shares the same ROL as oj, oj,y must prefer ai over there current applicant au. Since
both oj,y and ai prefer each other over their current match, the one-to-one match is unstable.

2) If the second inequality is true, there exists an applicant ak that is the lowest value
ai ∈ Aj matched together such that MCj(sj) > Zi(ak). For this to be true, ak cannot be a
part of oj’s cutoff list Bj(sj). This would mean that slot oj,sj does not have ak in their ROL.
This would make the one-to-one match unstable as it is not individually rational due to oj,sj
preferring not being matched at all.

Lastly, we will show that if the many-to-one match is stable and slot stable, then the trans-
formed one-to-one match will be stable. We will prove this with contradiction. Suppose the
many-to-one match is stable and slot stable while the many-to-one match is unstable. Then
there must exist an applicant ai matched with slot ok,x and an applicant au matched with
slot oj,y such that ai prefers oj,y prefer each other over their current match. This can happen
either if j ̸= k or j = k.

If j ̸= k then ai must prefer organization oj over organization ok as ai ranks oj,y above
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ok,x if and only if ai has oj is ranked above ok. Since oj ranks applicants in the same order
as its slots, then oj must prefer ai over the applicant au who is in slot oj,y. Since oj prefers
ai over au and ai prefers oj over ok. Then the many-to-one match must be unstable.

For the case where j = k, that would mean that the many-to-one match is unordered
as a lower ranked applicant must be in a slot higher than the higher ranked applicant.

Therefore an ordered many-to-one match is stable and slot stable if and only if the cor-
responding one-to-one match is stable. Q.E.D.

Theorem 3: For any set of applicants and organizations, there is only one set of
filled slots that is both stable and slot stable

Proof : Lemma 1 shows that these constructed ROLs result in both stable and slot stable
outcomes as with our algorithm. For this and any one-to-one match with strict preferences,
Roth and Sotomayor [6] have shown that the set of unassigned agents (applicants and or-
ganizations) is the same for all stable matches. Therefore, the same slots must be matched
for a corresponding one-to-one match to be stable. Hence, since the set of matched slots
is always the same, and the many-to-one match is stable and slot stable, each organization
must have the same number of applicants for all stable, slot stable matches. Q.E.D.

4 Conclusion

We have successfully developed a new matching algorithm that incorporates the cost of sup-
plying slots to be assigned to applicants by building upon the principles of the original GS
algorithm. This new algorithm ensures stable outcomes by incorporating cutoff points in
ROLs to account for the cost of supplying slots. Additionally, given the nature of the envi-
ronment with costly slots, we have defined the requirement for our algorithm to be slot stable
and shown the improbability of this occurring endogenously in the current system. This new
concept requires organizations not to be incentivized to change their number of available
slots unilaterally. We have also shown that our algorithm is comparable to the current wait
list system used in college and graduate school admissions when looking at school concerns.
Yet, it removes the possibility of potentially preemptive behavior that can lead to unstable
matches.
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