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ABSTRACT 

Bias Reduction in Machine Learning Classifiers for  

Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images 

by Justin J. Gapper 

 

This dissertation is an evaluation of the generalization characteristics of machine learning 

classifiers as applied to the detection of coral reefs using remote sensing images. Three 

scientific studies have been conducted as part of this research: 1) Evaluation of Spatial 

Generalization Characteristics of a Robust Classifier as Applied to Coral Reef Habitats in 

Remote Islands of the Pacific Ocean 2) Coral Reef Change Detection in Remote Pacific 

Islands using Support Vector Machine Classifiers 3) A Generalized Machine Learning 

Classifier for Spatiotemporal Analysis of Coral Reefs in the Red Sea. The aim of this 

dissertation is to propose and evaluate a methodology for developing a robust machine 

learning classifier that can effectively be deployed to accurately detect coral reefs at scale. 

The hypothesis is that Landsat data can be used to train a classifier to detect coral reefs in 

remote sensing imagery and that this classifier can be trained to generalize across multiple 

sites. Another objective is to identify how well different classifiers perform under the 

generalized conditions and how unique the spectral signature of coral is as environmental 

conditions vary across observation sites. A methodology for validating the generalization 

performance of a classifier to unseen locations is proposed and implemented (Controlled 

Parameter Cross-Validation,). Analysis is performed using satellite imagery from nine 
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different locations with known coral reefs (six Pacific Ocean sites and three Red Sea sites). 

Ground truth observations for four of the Pacific Ocean sites and two of the Red Sea sites 

were used to validate the proposed methodology. Within the Pacific Ocean sites, the 

consolidated classifier (trained on data from all sites) yielded an accuracy of 75.5% (0.778 

AUC). Within the Red Sea sites, the consolidated classifier yielded an accuracy of 71.0% 

(0.7754 AUC). Finally, long-term change detection analysis is conducted for each of the 

sites evaluated. In total, over 16,700 km2 was analyzed for benthic cover type and cover 

change detection analysis. Within the Pacific Ocean sites, decreases in coral cover ranged 

from 25.3% reduction (Kingman Reef) to 42.7% reduction (Kiritimati Island). Within the 

Red Sea sites, decrease in coral cover ranged from 3.4% (Umluj) to 13.6% (Al Wajh).  
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1. Introduction 

1.1 Goals of this Research 

Previous research concerning the analysis of coral reefs using remote sensing data 

has been limited to in-situ analysis. That is, these studies have isolated specific reefs or a 

small area of interest (AOI) in order to perform benthic habitat cover detection using 

remote sensing data. These studies achieve a remarkable level of accuracy particularly if 

based on high resolution imagery. Often, these analyses can achieve upwards of 90% class 

prediction accuracy when compared to ground truth observation data [1]. The recent 

abundance of high-resolution satellite platforms enables these scientific studies and their 

results are quite promising with respect to analyzing the individual reefs they target for the 

time period in which remote sensing data from their platform of choice is available. 

However, there are two challenges faced by these studies. First, they rely upon high 

resolution remote sensing data and second, they are spatially limited in scope. 

Recent advances in technology have enabled high-resolution remote sensing 

imagery. While these satellites enable benthic habitat classification with a high degree of 

accuracy, they do not enable the historical archive necessary for long-term temporal change 

detection analysis. The Landsat missions, on the other hand, afford a rich archive of 

historical imagery. This data enables long-term change analysis, defined here as greater 

than 10-years. Yet, the Landsat platform is limited to medium resolution data both now 
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and historically. Even though the technology for much higher resolution sensors is 

available, Landsat has maintained a 30m x 30m pixel resolution. This was intentionally 

done in order to maintain parity with previous missions. As a result, the Landsat platform 

is the most common source of remote sensing data for change detection analysis of coral 

reefs as well as all other benthic and land cover types [1]. 

Secondly, previous research has been limited in scope spatially. An abundance of 

scientific studies are available which have isolated a specific reef or small AOI within 

which benthic cover type detection or change detection analysis is performed. These in-

situ analyses are, by definition, limited in scope. Studies conducted in this way often yield 

accuracies, measured by the percentage of pixel cover types matching ground truth 

observations, of 85% or greater. Yet, the isolation of a specific area for both training and 

analysis necessarily mean that these analyses are often overfit to that specific location. That 

is, the classifiers used to evaluate the reef are both trained and tested using data from the 

same location. As a result, these classifiers will not perform well if applied to a new 

location. This is because the training and testing methodology employed to create the 

models causes them to be significantly overfit to the local conditions represented in the 

respective AOI. In this way, in-situ analyses rely upon site-specific biases that prevent 

them from generalizing to new locations. These classifiers memorize the site-specific 

geomorphology, fauna, and other local conditions at the specific site. Therefore, while the 

classifiers serve the purpose as it pertains to the specific location under analysis, they will 

not generalize to new locations.  
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The goal of this research is to develop a robust machine learning classifier that can 

generalize spatially beyond the scope of previous in-situ type analyses. The proposed 

methodology includes using remote sensing data from multiple sites and the associated 

ground truth data in order to develop a robust classifier that can generalize beyond any 

single AOI. In order to measure the effectiveness of the generalized classifier, the 

Controlled Parameter Cross-Validation (CPCV) evaluation procedure is proposed. This 

methodology accounts for site-specific information that may bias the results of standard 

train/test split or cross-validation methods and provides a more accurate assessment of how 

well the classifier is generalizing to new data.  

1.2 2030 Agenda for Sustainable Development 

The 2030 Agenda for Sustainable Development was adopted by all United Nations 

(UN) Member States in 2015. This agenda seeks to build on the Millennium Development 

Goals and complete what they did not achieve. The agenda includes 17 Sustainable 

Development Goals (SDGs), 169 targets, and 232 indicators all aimed at establishing 

principles of sustainable development in national policies. The research proposed in this 

dissertation addresses two of these goals. In particular, SDG 13 concerning climate action 

and SDG 14 concerning life below water.  

The objective of SDG 13 is to take urgent action to combat climate change and its 

impacts. To achieve this, SDG 13 asserts five different targets. Table 1-1 shows each of 

these targets and the associated indicator(s). Goal 13.3 asserts, “Improve education, 

awareness-raising and human and institutional capacity on climate change mitigation, 

adaptation, impact reduction and early warning.” The research proposed in this dissertation 
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performs two functions to contribute to this goal. First, it informs countries on mitigation, 

adaptation, and impact reduction data from which curricula can be based. This contributes 

to the first indicator, “Number of countries that have integrated mitigation, adaptation, 

impact reduction and early warning into primary, secondary and tertiary curricula.” 

Curricula must be based on scientific study and results. This research provides a 

methodology for developing results with respect to coral reef extent as well as evaluation 

of results from the proposed methodology. The research proposed in this dissertation 

addresses the second indicator, “Number of countries that have communicated the 

strengthening of institutional, systemic and individual capacity-building to implement 

adaptation, mitigation and technology transfer, and development actions.” By informing 

countries, particularly those with significant coastal habitats, of their exposure to climate 

change this research enables those countries to more effectively strengthen capacity-

building to implement adaption and mitigation actions. In addition, this research 

contributes to the indicators behind target 13.B, “Promote mechanisms for raising capacity 

for effective climate change-related planning and management in least developed countries 

and small island developing States, including focusing on women, youth and local and 

marginalized communities” by informing small developing island states such as Kiribati 

of their exposure to climate-change. Kiribati is a small island country with significant 

populations on Kiritimati Island and Tabuaeran Island both of which are included in this 

research. Informing this small island developing State of their exposure to climate-change 

risk addressed the associate SDG indicator, “Number of least developed countries and 

small island developing States that are receiving specialized support, and amount of 

support, including finance, technology and capacity-building, for mechanisms for raising 
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capacities for effective climate change-related planning and management, including 

focusing on women, youth and local and marginalized communities” by directly informing 

at least one such island country. In addition to these direct implications of this research 

there are several indirect impacts. For example, this research can be used to inform target 

13.2, “Integrate climate change measures into national policies, strategies and planning” 

by informing policy makers of the specific, localized impact associated with their 

directives.  

Table 1-1: SDG 13 Targets and Indicators 

Targets Indicators 
13.1 Strengthen resilience and adaptive 
capacity to climate-related hazards and 
natural disasters in all countries 

13.1.1 Number of deaths, missing persons 
and persons affected by disaster per 
100,000 people 

13.1.2 Number of countries with national 
and local disaster risk reduction strategies 

13.1.3 Proportion of local governments 
that adopt and implement local disaster 
risk reduction strategies in line with 
national disaster risk reduction strategies 

13.2 Integrate climate change measures 
into national policies, strategies and 
planning 

13.2.1 Number of countries that have 
communicated the establishment or 
operationalization of an integrated 
policy/strategy/plan which increases their 
ability to adapt to the adverse impacts of 
climate change, and foster climate 
resilience and low greenhouse gas 
emissions development in a manner that 
does not threaten food production 
(including a national adaptation plan, 
nationally determined contribution, 
national communication, biennial update 
report or other) 
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Table 1-1 (cont.): SDG 13 Targets and Indicators 

Targets Indicators 
13.3 Improve education, awareness-
raising and human and institutional 
capacity on climate change mitigation, 
adaptation, impact reduction and early 
warning 

13.3.1 Number of countries that have 
integrated mitigation, adaptation, impact 
reduction and early warning into primary, 
secondary and tertiary curricula 

13.3.2 Number of countries that have 
communicated the strengthening of 
institutional, systemic and individual 
capacity-building to implement 
adaptation, mitigation and technology 
transfer, and development actions 

13.A Implement the commitment 
undertaken by developed-country parties 
to the United Nations Framework 
Convention on Climate Change to a goal 
of mobilizing jointly $100 billion 
annually by 2020 from all sources to 
address the needs of developing countries 
in the context of meaningful mitigation 
actions and transparency on 
implementation and fully operationalize 
the Green Climate Fund through its 
capitalization as soon as possible 

13.A.1 Mobilized amount of United States 
dollars per year starting in 2020 
accountable towards the $100 billion 
commitment 

13.B Promote mechanisms for raising 
capacity for effective climate change-
related planning and management in least 
developed countries and small island 
developing States, including focusing on 
women, youth and local and marginalized 
communities 

13.B.1 Number of least developed 
countries and small island developing 
States that are receiving specialized 
support, and amount of support, including 
finance, technology and capacity-building, 
for mechanisms for raising capacities for 
effective climate change-related planning 
and management, including focusing on 
women, youth and local and marginalized 
communities 

SDG 14 aims to conserve and sustainably use the oceans, seas, and marine 

resources for sustainable development. Table 1-2 shows each of the targets of SDG 14 and 

the associated indicator(s). Of the 10 SDG targets set to achieve this goal, at least three are 

directly related to the research presented in this dissertation. First, target 14.2 states, “By 

2020, sustainably manage and protect marine and coastal ecosystems to avoid significant 
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adverse impacts, including by strengthening their resilience, and take action for their 

restoration in order to achieve healthy and productive oceans.” This target is enabled by 

identifying coastal ecosystems most susceptible to adverse impacts thereby enabling local 

governments to take action and protect their valuable coastal resources. The indicator 

associated with this target is 14.2.1, “Proportion of national exclusive economic zones 

managed using ecosystem-based approaches” which can only be enabled by identifying the 

ecosystems impacted by said approaches. Furthermore, target 14.5 calls for, “By 2020, 

conserve at least 10 per cent of coastal and marine areas, consistent with national and 

international law and based on the best available scientific information.” The scientific 

information delivered in these studies directly impacts this target and informs the 

associated indicator, “Coverage of protected areas in relation to marine areas,” by 

identifying the extent of one of the key marine areas that is called to be protected. Finally, 

target 14.A indicates, “Increase scientific knowledge, develop research capacity and 

transfer marine technology, taking into account the Intergovernmental Oceanographic 

Commission Criteria and Guidelines on the Transfer of Marine Technology, in order to 

improve ocean health and to enhance the contribution of marine biodiversity to the 

development of developing countries, in particular small island developing States and least 

developed countries.” The methodology proposed in this research directly contributes to 

this target through increasing scientific knowledge and developing research capacity which 

improves ocean health and marine biodiversity to Kiribati and similar small island 

developing States. In addition to these direct influences, the research presented in this 

dissertation address multiple targets and indicators associated with SDG 14 indirectly. 
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These indirect implications as well as the direct consequences of this research aggregate to 

a significant total influence that is ambitions with far-reaching impact.  

Table 1-2: SDG 14 Targets and Indicators 

Targets Indicators 
14.1 By 2025, prevent and significantly 
reduce marine pollution of all kinds, in 
particular from land-based activities, 
including marine debris and nutrient 
pollution 

14.1.1 Index of coastal eutrophication and 
floating plastic debris density 

14.2 By 2020, sustainably manage and 
protect marine and coastal ecosystems to 
avoid significant adverse impacts, 
including by strengthening their 
resilience, and take action for their 
restoration in order to achieve healthy and 
productive oceans 

14.2.1 Proportion of national exclusive 
economic zones managed using 
ecosystem-based approaches 

14.3 Minimize and address the impacts of 
ocean acidification, including through 
enhanced scientific cooperation at all 
levels 

14.3.1 Average marine acidity (pH) 
measured at agreed suite of representative 
sampling stations 

14.4 By 2020, effectively regulate 
harvesting and end overfishing, illegal, 
unreported and unregulated fishing and 
destructive fishing practices and 
implement science-based management 
plans, in order to restore fish stocks in the 
shortest time feasible, at least to levels 
that can produce maximum sustainable 
yield as determined by their biological 
characteristics 

14.4.1 Proportion of fish stocks within 
biologically sustainable levels 

14.5 By 2020, conserve at least 10 per 
cent of coastal and marine areas, 
consistent with national and international 
law and based on the best available 
scientific information 

14.5.1 Coverage of protected areas in 
relation to marine areas 
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Table 2-2 (cont.): SDG 14 Targets and Indicators 

Targets Indicators 
14.6 By 2020, prohibit certain forms of 
fisheries subsidies which contribute to 
overcapacity and overfishing, eliminate 
subsidies that contribute to illegal, 
unreported and unregulated fishing and 
refrain from introducing new such 
subsidies, recognizing that appropriate 
and effective special and differential 
treatment for developing and least 
developed countries should be an integral 
part of the World Trade Organization 
fisheries subsidies negotiation 

14.6.1 By 2020, prohibit certain forms of 
fisheries subsidies which contribute to 
overcapacity and overfishing, eliminate 
subsidies that contribute to illegal, 
unreported and unregulated fishing and 
refrain from introducing new such 
subsidies, recognizing that appropriate 
and effective special and differential 
treatment for developing and least 
developed countries should be an integral 
part of the World Trade Organization 
fisheries subsidies negotiation 

14.7 By 2030, increase the economic 
benefits to Small Island developing States 
and least developed countries from the 
sustainable use of marine resources, 
including through sustainable 
management of fisheries, aquaculture and 
tourism 

14.7.1 Sustainable fisheries as a 
percentage of GDP in small island 
developing States, least developed 
countries and all countries 

14.A Increase scientific knowledge, 
develop research capacity and transfer 
marine technology, taking into account 
the Intergovernmental Oceanographic 
Commission Criteria and Guidelines on 
the Transfer of Marine Technology, in 
order to improve ocean health and to 
enhance the contribution of marine 
biodiversity to the development of 
developing countries, in particular small 
island developing States and least 
developed countries 

14.A.1 Proportion of total research budget 
allocated to research in the field of marine 
technology 

14.B Provide access for small-scale 
artisanal fishers to marine resources and 
markets 

14.B.1 Progress by countries in the degree 
of application of a 
legal/regulatory/policy/institutional 
framework which recognizes and protects 
access rights for small-scale fisheries 
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Table 2-2 (cont.): SDG 14 Targets and Indicators 

Targets Indicators 
14.C Enhance the conservation and 
sustainable use of oceans and their 
resources by implementing international 
law as reflected in UNCLOS, which 
provides the legal framework for the 
conservation and sustainable use of 
oceans and their resources, as recalled in 
paragraph 158 of The Future We Want 

14.C.1 Number of countries making 
progress in ratifying, accepting and 
implementing through legal, policy and 
institutional frameworks, ocean-related 
instruments that implement international 
law, as reflected in the United Nation 
Convention on the Law of the Sea, for the 
conservation and sustainable use of the 
oceans and their resources 

1.3 Paris Agreement 

The Paris Agreement was signed on April 22, 2016. The goal of this doctrine is to 

keep the increase in global average temperature to well below 2°C. Associated with this 

agreement are several articles stipulated in order to achieve the goal. First Article 8 states, 

“Parties recognize the importance of averting, minimizing and addressing loss and damage 

associated with the adverse effects of climate change, including extreme weather events 

and slow onset events, and the role of sustainable development in reducing the risk of loss 

and damage.” The deterioration of coral reefs as a result of temperature increases is a 

significant impact related to slow onset events. The research presented in this dissertation 

addresses this aspect of the article by informing the loss and damage to coral reefs related 

to temperature change. Second article 12 asserts, “Climate change education, training, 

public awareness, public participation and public access to information (Art 12) is also to 

be enhanced under the Agreement” and core to this is information regarding the impact of 

climate-change on coral reefs. Definitively measuring this impact significantly enhances 

the public awareness, public participation, and public access as it enables both the 

availability of data and the visibility into who and what is being impacted. The research 

methods proposed in this research directly contribute to this article of the Paris Agreement. 
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Finally, Article 14 of the Paris Agreement decrees, “A global stocktake, to take place in 

2023 and every 5 years thereafter, will assess collective progress toward meeting the 

purpose of the Agreement in a comprehensive and facilitative manner. Its outcomes will 

inform Parties in updating and enhancing their actions and support and enhancing 

international cooperation.” This is directly supported by the research proposed in this 

dissertation which performs a significant stock-take of Pacific Ocean and Red Sea coral as 

well as enables a global stock-take of coral reefs. 

1.4 Sendai Framework for Disaster Risk Reduction 

The Sendai Framework for Disaster Risk Reduction aims for: “The substantial 

reduction of disaster risk and losses in lives, livelihoods and health and in the economic, 

physical, social, cultural and environmental assets of persons, businesses, communities and 

countries.” To this end, the research presented in this dissertation addresses the 

environmental assets of persons, businesses, communities, and countries. Specifically, the 

primary resource of many countries is their marine environment and, in particular, the 

costal reefs marine environment. This ecosystem provides many communities with a local 

resource for income (tourism or otherwise) and sustenance (through fishing, research, or 

otherwise). Therefore, the health of this local resource is critical to the lives, livelihoods, 

and health of local communities economically, physically, socially, culturally, and 

environmentally. Particularly with respect to the Kiritimati Island and Tabuaeran Island 

communities as well as the small Red Sea villages which rely on the coral reefs for 

subsistence, the results of this research are imperative to inform policy and decision 

making. 
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1.5 World Economic Forum: The Global Risks Report 

The Global Risks Report is an annual evaluation by the World Economic Forum 

which looks at the foremost risks facing the world [2]. These risks range from weapons of 

mass destruction to terrorist attacks to financial crisis. There are several methods by which 

the World Economic Forum reports on these risks. One such methodology is a visualization 

called the Global Risks Landscape. This visualization plots each primary global risk on a 

scale by likelihood on the x-axis and impact on the y-axis. Therefore, global risks that are 

higher on the plot represent a larger impact while global risks that are to the right of the 

plot represent a larger likelihood. In 2019, all environmental risks were represented in the 

first quadrant as both most likely and most impactful, Figure 1-1.  
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Figure 1-1: World Economic Forum Global Risks Landscape.  

Furthermore, failure of climate-change mitigation and adaptation was both the second most 

likely risk and second highest impact risk. This risk represents the failure of governments 

and businesses to recognize and react to climate change resulting in catastrophic loss of 

biodiversity. Since 1970 species abundance is down by 60% and the loss of biodiversity is 

affecting health and socioeconomic development with implications for productivity and 

even regional security. 
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This dissertation directly addresses the failure of climate-change mitigation and 

adaptation risk outlined in the World Economic Forum Global Risks Report. Specifically, 

the research proposed identifies the impact that climate-change is having within coral reef 

ecosystems of both the Red Sea and Pacific Ocean. Coral reefs are the most biodiverse 

marine ecosystems and among the most biodiverse ecosystems in the world. Therefore, 

this environment is of utmost important when considering the threat of catastrophic loss of 

biodiversity. This research is an evaluation of the changing cover across a large extent of 

coral reef environments and therefore provides valuable information for the governments 

and businesses addressed in the Global Risks Report. Providing this insight provides data 

for these organizations to call attention to the need for climate-change mitigation and 

adaptation. Furthermore, this research is foundational to the global mapping and evaluation 

of coral reefs. Enabling a robust classifier that can generalize beyond site-specific 

deployment is the key to understanding and informing climate-change mitigation strategies 

on a global scale.  



15 

 

2. Water Column Correction/Depth 

Invariant Index 

2.1 Introduction 

Coral reefs are among the most complex and diverse marine ecosystems in the 

world [3]. However, these delicate ecosystems are under extreme threat due to numerous 

environmental and anthropogenic forces. Ocean acidification and mass bleaching events 

leading to large scale coral death is well documented [4] [5] [6] [7] [8] [9] [10] [11] [12]. 

Therefore, monitoring of these ecosystems is critical to inform policy and decision making 

for all agencies and at all levels. A comprehensive plan for evaluating the health of these 

delicate ecosystems is a complex endeavor that can only be achieved through the combined 

efforts of both detailed in-situ analyses and efficient, large scale analyses. Traditionally, 

reefs have been monitored using expensive and tedious underwater surveying techniques 

[13] [14] [15] [16] [17] [18] [19] [20] that, by definition, cannot cover large areas [21]. 

These traditional techniques have several drawbacks that restrict their use and the relevance 

of outcomes. These are (1) cost-related: detailed, continuous monitoring of coral reefs by 

field survey is expensive and substantial reef areas are located in developing countries with 

limited resources; (2) scale-related: reefs are highly heterogeneous systems [22] [23], 

therefore, even with sufficient resources, monitoring programs provide scattered 

information in time and space, with some areas being more intensively sampled than others 
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and less easily accessible areas being under-sampled; and (3) focus-related: most field 

monitoring programs are focused on the state variables describing some of the biological 

components of the reef system and are not linked explicitly to the identification of stressors 

or processes [4]. As such, satellite observations serve as a useful mean of timely and cost 

effective global monitoring and surveying of large and remote coral reef areas globally that 

could otherwise not be achieved [24] [25] [26]. The most common sensors suitable for 

subsurface, ocean floor cover identification are SPOT High-Resolution Visible (HRV), 

Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+), Operational Land Imager (OLI), IKONOS, Advanced Airborne 

Hyperspectral Imaging System (AAHIS), Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS), and Sentinel-2 [4] [27] [28] [29] [30] [31] [32] [33] [34]. In addition, it is 

noteworthy that there are many more satellites available that are capable of providing 

remote sensing data for coral reef analysis [25] [26] [35]. Visible spectrum is known to be 

useful in mapping of subsurface habitats [36] [37] [38]. This is owed to the fact that 

wavelengths (400nm-600nm) have ~15-3m penetration through clear waters, depending on 

turbidity and water quality [39]. However, this penetration depth is wavelength dependent 

as it increases with longer wavelengths [40]. As a result, the blue spectral bands (400nm) 

attenuate more slowly than red spectral bands (600nm) [1]. Moreover, underwater marine 

environment detection doesn’t only come with spatial and spectral limitations challenges, 

but also the confounding influence variable depth on bottom reflectance, and disturbances 

due to turbidity of the water column [41] [42] [43] [44]. These factors significantly 

influence the spectral reflectance of the seafloor, thereby causing identical bottom types to 

exhibit substantially different characteristics in remote sensing data [45] [46]. Therefore, 
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water column and atmospheric corrections are needed in order to accurately detect the 

existence of coral within a pixel [47] [48] [49]. 

In this study, we considered 29 different scenes with known benthic regions. We 

implemented a process which accounts for any interferences in the image (clouds, dropped 

pixels, etc), applied a water mask, corrected for atmospheric obstructions, then calculated 

each of the depth invariant indices across the image. To better understand the output, we 

plotted each of the depth invariant indices as an image and observed the differences 

between the plots. This analysis showed that depth invariant index can be applied to a 

variety of ocean scenes throughout the world, with limited variance in the resulting output 

parameters. Furthermore, the results from this analysis can be used as inputs to a 

classification algorithm in order to rapidly identify benthic zone cover types, enabling 

large-scale, multi-temporal change detection.  

2.2 Data Used 

Images from Landsat-8 OLI with 30m spatial resolution were used to conduct the 

survey. The visible bands were used due to their water column penetration properties with 

band 1 corresponding to 0.433-0.453µm, band 2 corresponding to 0.450-0.515µm, band 3 

corresponding to 0.525-0.600µm, and band 4 corresponding to 0.630-0.680µm. It is 

noteworthy that the previous visible bands have the spectral range that can help in 

identifying water-land interface. In addition, band 5, which represents near infrared (NIR), 

was used to identify areas of full wavelength absorption for water masking. Scenes were 

selected based on the existence of corals in benthic zones. Landsat 8 images were first 

filtered by cloud cover which was restricted to less than 10% for each scene. The remaining 
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images were then visually inspected to determine which were most appropriate, including 

factoring in the location of clouds and other disturbances in the locations of known corals. 

In total 29 different scenes were selected. A listing of each site and the associated Landsat 

scene Row-Path reference is provided in Table 2-1: 

Table 2-1: Selected Scenes for Study 

Row-Path Description Image 
Capture 

Date 

 Row-Path Description Image 
Capture 

Date 
013-055 Panama Coiba 

National Park 
2/13/2017  091-075 Australia Great 

Barrier Reef 
9/24/2016 

013-057 Colombia Malpelo 
Fauna and Flora 

Sanctuary 

4/2/2017  104-041 Japan Ogasawara 
Islands 

8/3/2016 

015-043 USA Everglades 
National Park 

11/2/2014  106-055 Palau Rock Islands 
Southern Lagoon 

3/13/2017 

016-053 Costa Rica Area de 
Conservación 
Guanacaste 

4/7/2017  114-066 Indonesia Komodo 
National Park 

3/29/2014 

016-056 Costa Rica Cocos 
Island National Park 

3/22/2017  114-080 Australia Ningaloo 
Coast 

2/17/2017 

018-047 Mexico Sian Ka’an 7/18/2014  115-078 Australia Shark 
Bay, Western 

Australia 

4/29/2017 

018-048 Belize Belize Barrier 
Reef Reserve System 

4/5/2017  116-054 Philippines 
Tubbataha Reefs 

Natural Park 

4/28/2014 

018-060 Ecuador Galápagos 
Islands 

3/4/2017  123-065 Indonesia Ujung 
Kulon National 

Park 

10/3/2013 

034-047 Mexico Archipiélago 
de Revillagigedo 

3/4/2017  126-046 Viet Nam Gulf of 
Tonkin 

10/8/2013 

038-039 Mexico Gulf of 
California 

5/19/2017  159-051 Yemen Socotra 
Archipelago 

5/3/2017 

069-063 Kiribati Phoenix 
Islands Protected 

Area 

12/11/2013  161-067 Seychelles Aldabra 
Atoll 

2/10/2017 

073-042 USA Hawaiian 
Archipelago 

3/2/2016  167-079 South Africa 
iSimangaliso 
Wetland Park 

6/28/2017 

083-074 France Lagoons of 
New Caledonia 

3/11/2017  170-047 Sudan Sanganeb 
Marine National 

Park and 
Dungonab Bay 

 

085-082 Australia Lord Howe 
Island Group 

4/5/2015  213-063 Brazil Brazilian 
Atlantic Islands 

 

087-069 Solomon Islands East 
Rennell 

5/10/2017     
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2.3 Methodology 

The overall layout of the processing approach applied to the 29 selected scenes is 

shown in Figure 2-1. This approach can be broken down into three major components: 

preprocessing the image (cloud, quality, and land/water masking), atmospheric correction, 

and water column correction. Scenes were selected to minimize the presence of clouds in 

the image. Pixels that still suffer cloud cover or other obstructions were then identified by 

leveraging the Landsat BQA band and masked accordingly. This is followed by creating a 

water mask by applying a threshold to the NIR band. This is carried out because the water 

body and corals have similar spectral reflectance, which may lead to misclassification in 

water/coral areas. A deep-water AOI was selected to be used in atmospheric correction via 

the dark-pixel subtraction method [37] [50] [51]. These adjustments were applied to each 

of the visible bands before the depth invariant indices were calculated. Analysis was 

conducted using the open source R programming language and environment for statistical 

computing [52].  
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Figure 2-1: Scene masking, atmospheric correction, and water column correction 

process flow. 

2.3.1 Cloud and Quality Mask 

The first step taken in preprocessing the selected images was to identify and mask 

cloud cover. Great care was taken to select scenes with minimal amount of cloud cover, 

but in many instances, no available image was completely clear of cloud cover. Masking 

of clouds was performed by leveraging the Landsat 8 Level 1 product quality band (BQA) 

[53]. This band includes values for each pixel that, when converted to binary, indicate any 

potential disturbances with respect to the pixel and a rough approximation of confidence 

that that condition exists [54]. Converting each observation in this band and thresholding 

provides a mask to account for some of these conditions. Bits 14 and 15 indicate the 

likelihood of cloud interference while bits 12 and 13 indicate the possibility of cirrus cloud 

interference. There are several possible ways in which bias from cloud obstruction can 
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contaminate an analysis. The obvious entry point is disrupting the reflectance of a pixel or 

group of pixels. In addition to directly influencing surface reflectance, cloud cover present 

in the deep-water AOI can alter the values used for atmospheric correction applied to the 

image through the dark-pixel subtraction method [55]. As a result, this initial step of 

masking cloud interference is a critical preprocessing step.  

2.3.2 Water Mask 

The study of DII related metrics across large scenes requires preprocessing that 

includes masking land as well as clouds. This step is imperative, as including land pixels 

will severely distort the DII parameters when calculated across the scene. The water mask 

was created by leveraging the Landsat 8 NIR sensor. This sensor measures light between 

0.851 and .0879 micrometers. Water absorbs light in these wavelengths, therefore, it is a 

good candidate for discerning water from land in any given scene [56]. As in the visible 

bands, the Landsat 8 NIR band (band 5) is at 30m resolution. A threshold was applied to 

the NIR band pixel values of each scene. The plots were then evaluated visually to 

determine the most appropriate cutoff for separation of land and water. A mask was then 

created for pixels determined to be water.  

2.3.3 Atmospheric Correction 

In the visual bands, 90% of the at sensor reflectance depends on atmospheric and 

water surface properties [57]. Therefore, atmospheric correction is first performed using 

the dark pixel subtraction method [58]. This method selects areas of the scene with water 

known to be deep enough for the visible bands to fully attenuate. Signal received from 
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these areas are comprised of atmospheric radiance and surface reflectance, thereby 

isolating the impact of these elements. Assuming the atmospheric and water surface 

conditions generalize to the rest of the scene (i.e. uniform throughout the area of interest), 

the mean deep-water radiance at sensor can be leveraged to correct for the effect of 

atmospheric and surface reflectance interferences [1] [59] [60]. Depths greater than 50m 

will assure that the visible wavelengths have fully attenuated [61]. In addition, two standard 

deviations are subtracted to account for possible sensor noise [62]. It is important to 

highlight the assumption that conditions are uniform across each scene. In addition, 

because of this assumption, the deep-water AOI selected should appear in the same scene 

that is being analyzed. This will minimize the possibility of unintended bias that may be 

introduced by leveraging a deep-water AOI of another image and that, to the greatest extent 

possible, the effect of full attenuation of the wavelengths is isolated. In preprocessing, the 

deep-water AOI was selected through visual inspection. In some instances, references to 

external sources were made to verify the appropriate depth.  

2.3.4 Water Column Correction 

As light penetrates water, the intensity decreases exponentially with increasing 

depth. The rate of attenuation is wavelength-dependent and has a severe effect on remotely 

sensed data of aquatic habitats [1]. Therefore, water column correction is appropriate for 

imagery with multiple water-penetrating spectral bands [51] [63]. Within these visible 

spectral bands, longer wavelength blue bands attenuate less rapidly than shorter-

wavelength red bands. Therefore, the spectral radiances recorded at sensor are dependent 

on both the subsurface strata reflectance and depth. The confounding influence of depth 



23 

can create significant distortions in the subsurface reflectance. Since most marine habitat-

mapping exercises are only concerned with mapping benthic features, it is advantageous to 

remove the influence of variable depth. The radiance at sensor in band i (𝐿) can be 

expressed as [1] [64] [65] [66]: 

𝐿 = 𝐿௦ + 𝑎 ∙ 𝑟 ∙ 𝑒ି௭ (1) 

Where the following are represented: 

𝐿௦: the mean deep-water radiance in band i 

𝑎: a constant for band i accounting for atmospheric effects and water surface 

reflection 

𝑟: the bottom reflectance 

𝑓: a geometric factor to account for path length through water (set to two for a two-

flow model) 

𝑘: the coefficient of attenuation of band i (to account for various interferences 

suspended in the water and scattering due to turbidity) [1] [66] 

𝑧: depth 

Applying natural logarithms and rearranging equation (1) generates an 

atmospherically corrected radiance for band i that varies linearly according to depth [1]:  

ln(𝐿 − 𝐿௦) = ln(𝑎 ∙ 𝑟) − 2𝑘𝑧 (2a) 
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Similarly, the equation can be applied to band j:  

ln(𝐿 − 𝐿௦) = ln൫𝑎 ∙ 𝑟൯ − 2𝑘𝑧 (2b) 

Equation (2a) can be rearranged to determine the bottom reflectance 𝑟:  

ln (𝑟) =
୪୬(ିೞ)ାଶ௭


 (3) 

Yet this equation presents us with three unknown variables. Namely, the constant, 

the coefficient of attenuation, and depth (𝑎, 𝑘, and 𝑧 respectively). However, by 

leveraging the ratio of attenuation coefficients between each pair of bands we can avoid 

calculating estimates of 𝑘 for each band [63] [64]. The ratio of attenuation between bands 

i and j can be determined using the following equation: 



ೕ
= 𝑎 + ඥ(𝑎ଶ + 1) (4) 

where 

𝑎 =
ఙିఙೕೕ

ଶఙೕ
 (5) 

and 𝜎is the variance of band i and 𝜎 is the covariance between bands i and j. 

Therefore, using these equations, the depth invariant index (DII) can be calculated for any 

given scene without any external references to additional data.  

𝐷𝐼𝐼 = ln(𝐿 − 𝐿௦) − 


ೕ
∙ ln൫𝐿 − 𝐿௦൯൨  
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2.4 Output Parameters 

We will now discuss in detail the output and related parameters that result from 

applying the above methodology to the 29 Landsat 8 scenes.  

2.4.1 Image Correction and Deep-Water AOI Parameters 

A section of each scene representing deep-water was selected for atmospheric 

correction using dark-pixel subtraction. The mean deep-water AOI for each scene is shown 

in Figure 2-2. The highest mean deep-water values for were observed in the Sea of Cortez, 

Mexico, and the Sudan Sanganeb Marine National Park areas (row-path 038-039 and 170-

047, respectively). These two scenes were unique in that they are located in large gulfs. As 

a result, they are both protected from the influence of currents and associated turbidity. In 

addition, the deepest water in these scenes is likely shallower than that of other scenes. 

Finally, both locations are in areas known to be somewhat arid environments with 

favorable conditions for reducing atmospheric interference.  
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Figure 2-2: Top: Comparison of mean deep-water radiance for Landsat 8 band 2, 

band 3, and band 4 for each of the 29 scenes selected for analysis. Bottom: 
Comparison of standard deviation of deep-water radiance.  

The standard deviation measures were consistent across many of the scenes. The 

Sea of Cortez, Mexico, showed the largest standard deviation which could also be a product 

of the location being in a large gulf. In addition, the Phoenix Islands in Kiribati and Ijung 

Kulon National Park in Indonesia (row-path 123-065) showed higher variance. This could 

be due to clouds in the selected area. Clouds were masked from the image and an attempt 

was made to avoid them when selecting the deep-water AOI in each scene.  
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2.4.2 Ratio of Attenuation 

The ratio of attenuation is calculated from variance and covariance of the bands. 

The variance and covariance were calculated based on the atmospherically corrected and 

masked water pixels only. Figure 2-3 and figure 2-4 display the resulting variance and 

covariance for each scene. Several scenes stand out as having very high variance in 

radiance. This is due to unique geographical characteristics of those regions. The 

Everglades National Park in Florida, USA, (row-path 015-043) is known for its expansive 

wetlands. This unique aquatic environment contains very shallow waters mixed with a high 

concentration of vegetation. Regions such as this will absorb wavelengths in the NIR 

spectrum and therefore are appropriately classified as water. Furthermore, by the very 

nature of the environment, its spectral radiance exhibits a high degree of variance as an 

abundance of very shallow cover is detected within the image. Similarly, Australia’s Shark 

Bay exhibits a high degree of variance likely due to the spectral radiance and ecology of 

very shallow waters. 

The covariance of band radiation reveals similar characteristics to the variance of 

the bands. That is, scenes with regions dominated by shallow waters such as the Everglades 

National Park in Florida, USA, and Shark Bay, Australia, have a high degree of variance 

in spectral radiance between the bands. This is an expected result as a larger variety of 

vegetation has evolved to live in these aquatic environments. 

With the variance and covariance known, we can calculate the constant used to 

account for atmospheric effects and water surface reflection (a) for each scene. This 

constant is estimated as the difference between the covariance of each band pair divided 
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by two times the covariance between the bands. The resulting value for the constant (a) for 

each scene is presented in Figure 2-5. The largest value for the constant (a) was derived 

from the image of Hawaiian Archipelago in the USA. This could be consistent with the 

geography of that specific scene which features mostly deep ocean with two reefs. The two 

reefs are the Maro Reef and smaller Raita Bank which both are at a unique depth in which 

visible wavelengths in the red band will fully attenuate but the blue band will not. 

Furthermore, the rest of the scene is very deep-water. Therefore, red light fully attenuates 

across nearly the entire image contributing a very low variance. Yet, the blue band has 

comparably higher variance since it is able to return light from the Maro Reef and Raita 

Bank. This difference combined with the generally deep characteristic of the rest of the 

image results in a high value for the constant (a).  
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Figure 2-3: Comparison of variance in radiance for each band. Certain scenes 

show more variance due to unique geographic characteristics.  

  
Figure 2-4: Comparison of covariance of spectral radiance between bands.  

  
Figure 2-5: Comparison of the atmospheric and surface reflection correction 

constant (a) for each scene and pair of bands.  
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Finally, the ratio of attenuation is very similar for all scenes with few exceptions. 

Most notable is the Hawaiian Archipelago which we discussed above. The larger values 

for the ratio of attenuation in other scenes are due to similar reasons. Specifically, each of 

these scenes have geographic features which reside beyond the threshold to which all the 

visible bands can penetrate. As a result, the DII results in three distinct regions. First that 

to which all visible bands can penetrate and return information to the sensor. Second, 

regions in which one of the bands fully attenuates. This results in only partial information 

being returned to the sensor. There are regions in which all visible bands fully attenuate 

and for these regions no useful information regarding the ocean floor can be returned. 

Figure 2-6 displays the Ratio of Attenuation for each of the scenes analyzed. 

  
Figure 2-6: Comparison of ration of attenuation for scene and pair of bands.  

2.5 Results and Discussion 

The calculated depth invariant indexes can be plotted for each scene (Figure 2-7 

through Figure 2-12) for visual inspection. Each scene can support three depth invariant 

indices corresponding with band 2/band 3, band 2/band 4, and band 3/band 4. These maps 

are a depth invariant view of the ocean floor characteristics. However, there are several 
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limitations to what can be viewed, and if light from one or both band pairs fully attenuate, 

the ocean floor cannot be analyzed. Light in the blue spectrum (0.452-0.512µm) can 

penetrate water the furthest while light with shorter wavelengths attenuate faster. It is 

estimated that the blue band will fully attenuate in water that is approximately 21.4m deep 

while light in the red spectrum (0.636-0.590µm) will fully attenuate in water that is 5.2m 

deep. The impact of this can be observed in several of the images in which the band 2 and 

band 3 DII shows variance in the ocean floor while the DII based on band 3 and band 4 do 

not. This is a result of band 3 and band 4 fully attenuating in water that is greater than 

16.8m deep. Water this deep absorbs both green and red wavelengths and therefore does 

not return useful information regarding the ocean floor. This threshold can clearly be seen 

in several of the images. Figure 2-7 includes a plot of each of the DIIs related to the Sea of 

Cortez, Mexico (row-path 038-039). This scene includes a series of shoals at varying 

depths extending out from the Baja California shore. The shallowest of these shoals ranges 

from 8m to 15m. At this depth red light fully attenuates, however, green light does not. As 

a result, a gradient corresponding with the depth at which red light fully attenuates can be 

observed in both the band 3-band 4 (green-red) and band 2-band 4 (blue-red) DII plots. 

However, this same gradient does not exist in the band 2-band 3 (blue-green) DII plot as 

the wavelengths do not fully attenuate and information regarding reflectance of the ocean 

floor is returned to the sensor. It is also worth noting that in the band 2-band 3 plot a certain 

mixture of index values are presented that appear unique compared to that of the DII plots 

using bands that have attenuated. Similarly, the image of the Gulf of Tonkin shows 

stratification in the band 3-band 4 DII image but not in the band 2-band 3 DII image. As in 

the image of the Sea of Cortez, this region is characterized by a long benthic zone that 
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extends out from the shore. The depth of this underwater feature ranges from less than 5m 

to approximately 20m. Therefore, while the band 2-band3 DII appropriately shows depth 

invariant information regarding the ocean floor, the band-3-band 4 image can only provide 

information regarding the areas for which light in the red wavelengths has not fully 

attenuated. This results in the stratification that can be observed in the band 3-band 4 image.  
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Figure 2-7: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 
013-055 Panama Coiba National Park, 013-057 Colombia Malpelo Fauna and 
Flora Sanctuary, 015-043 USA Everglades National Park, 016-053 Costa Rica 
Area de Conservación Guanacaste, 016-056 Costa Rica Cocos Island National 

Park.  
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Figure 2-8: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 

018-047 Mexico Sian Ka’an, 018-048 Belize Belize Barrier Reef Reserve System, 
018-060 Ecuador Galápagos Islands, 034-047 Mexico Archipiélago de 

Revillagigedo, 038-039 Mexico Sea of Cortez. 
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Figure 2-9: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 

069-063 Kiribati Phoenix Islands Protected Area, 073-042 USA 
Papahãnaumokuãkea, 083-074 France Lagoons of New Caledonia, 085-082 

Australia Lord Howe Islands, 087-069 Solomon Islands East Rennell. 
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Figure 2-10: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 

091-075 Australia Great Barrier Reef, 104-041 Japan Ogasawara Islands, 106-055 
Palau Rock Islands Southern Lagoon, 114-066 Indonesia Komodo National Park, 

114-080 Australia Ningaloo Coast. 
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Figure 2-11: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 

115-078 Australia Shark Bay, Western Australia, 116-054 Philippines Tubbataha 
Reefs Natural Park, 123-065 Indonesia Ujung Kulon National Park, 126-046 Viet 

Nam Gulf of Tonkin, 159-051 Yemen Socotra Archipelago.  
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Figure 2-12: Left to right: water masked scene, band 2/3 depth invariant index, 
band 2/4 depth invariant index, band 3/4 depth invariant index. Top to bottom: 
161-067 Seychelles Aldabra Atoll, 167-079 South Africa Simangaliso Wetland 
Park, 170-047 Sudan Sanganeb Marine National Park, 213-063 Brazil Brazilian 

Atlantic.  
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2.6 Conclusion 

This research presented the application of DII to a diverse collection of scenes on 

a global scale. The results show that DII can be applied to a variety of scenes and return 

information regarding subsurface ground cover in shallow benthic zones. We analyzed 

each factor that needed to be controlled to minimize inaccuracies and bias. This included 

masking of clouds, dropped, and fill pixels using the Landsat BQA band. Deploying DII 

across large scenes meant that we needed to apply calculations to all portions of the image 

containing water and therefore created a water-mask using the Landsat NIR band. We 

further preprocessed the images to adjust for atmospheric disturbances using the dark-pixel 

subtraction method. This was deployed by interactively selecting an area of the image 

known to be deep to represent our deep-water AOI. We then analyzed the results of our 

calculations. Specifically, we looked at the differences across scenes in the mean deep-

water radiance, deep-water radiance standard deviation, and final dark-pixel adjustment 

values. These steps concluded our preprocessing and we plotted the results for each scene 

including the deep-water AOI selected. We proceeded to calculate DII for each of the 

scenes. Deployment of DII at this scale has not been performed before. We computed and 

reviewed each of the contributing parameters including the radiance variance and 

covariance for each band, the atmospheric and water surface reflection correction constant 

(a), and the ratio of attenuation coefficients for each pair of bands. We analyzed 29 scenes 

comparing each of these parameters across each of the scenes and noted any large 

differences. Finally, we calculated the DII for each pair of bands and each scene and plotted 

the results as a map using the mask calculated during preprocessing. We then compared 

this to the preprocessed RBG plots using the visible bands and compared the results to 
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geological features known to exist. We looked deeper into some of the stratification that 

was observed and discussed the attenuation of visible wavelengths as they pass through 

water. Specifically, we noted stratification in the depth index which incorporated light 

within the red wavelength and that this same feature did not appear in the other indices. 

Furthermore, we were able to correlate the occurrence of the stratification with the 

approximate depth at each location in which the visible wavelengths for each respective 

band was fully attenuating. We identified three distinct regions within the DII information. 

First, regions for which information is returned to the sensor regarding the ocean floor by 

all three visible bands. Second, regions in which only one of the visible bands for a given 

index returns useful information to the sensor regarding the ocean floor. And, finally, the 

third region in which all the visible bands fully attenuate in the water and no useful 

information regarding the ocean floor is returned to the sensor  

A general global decline in coral abundance has been observed and attributed to many 

ecological and man-made factors [5] [6] [7] [8] [9] [10]. Additional study and testing will need to be 

conducted in order to validate the appropriateness of applying a subsurface cover detection 

algorithm to the DII corrected scenes for change detection. Preliminary evidence suggests the 

strong possibility of being able to differentiate major subsurface bottom types [67] [68] [69] [70] 

[71], however, the generalizability of these results across scenes will need to be ascertained. In 

addition, further research into the use of the Landsat dark-blue (band 1) and its attenuation 

properties should be investigated. 
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3. First Study: Evaluation of Spatial 

Generalization Characteristics of a 

Robust Classifier as Applied to 

Coral Reef Habitats in Remote 

Islands of the Pacific Ocean 
3.1 Introduction 

There have been a multitude of studies that leverage remote sensing data to evaluate 

reef health on an in-situ basis. These studies isolate a single location and provide in depth 

analysis of reef health for that site. Many of these studies are temporal, also called spectral 

signature generalization and expansion [72]. These studies provide invaluable insight into 

the impact of climate change and the resulting site-specific environmental transformation. 

While these studies consistently reiterate the spectral signature generalization properties as 

they relate to a single site temporally, they do not address the spatial generalization 

properties of the spectral signature. If the existing in-situ studies are considered temporal 

studies, the progression based on spatial generalization can be considered a longitudinal or 

spatial study. While temporal studies have been conducted to evaluate the generalization 

properties of remote sensing information across seasons and years, evaluation of the 

spectral signature generalization properties across various proximities will measure the 
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larger impact of disparate environmental conditions spatially in addition to variations in 

the spectral reflectance of coral ecosystems themselves. This longitudinal analysis will 

account for any location-based bias that previous in-situ analysis could not account for. 

Studying this bias and how well information contained within spectral reflectance 

generalizes spatially, in combination with the existing knowledge of how well spectral 

reflectance generalizes temporally, will significantly enhance our scientific understanding 

of detecting coral using remote sensing data. Furthermore, this knowledge will augment 

the existing research to enable temporal analysis on a larger scale than previous in-situ 

efforts. This research has been conducted with these far-reaching goals in mind. 

Specifically, we have focused on Landsat data since there is a rich anthology of historical 

scenes which can be analyzed. We have limited our usage of the existing Landsat bands 

only to those which have been available historically and not the coastal aerosol band which 

is only available on the most recent Landsat 8 mission. 

Coral environments are among the most diverse environments in the world and 

therefore the spectral radiance can have some degree of variation even within a single pixel 

as the coral species varies within the location. In addition, coral environments are often 

heterogeneous, exhibiting a complex mixture of bottom types within a single pixel. This 

poses further challenges with using remote sensing data to detect coral, are the diversity of 

coral species and cover within each pixel, and the resolution available from a given 

spectrometer. These factors weaken the ability of a classifier to accurately determine the 

existence of coral. This is because satellites equipped with lower resolution spectrometers 

will tend to capture more heterogeneity within each pixel, and in turn deliver more mixed 

information regarding spectral reflectance to the classifier.  
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In this study, we evaluate the spatial generalization principles of the spectral 

signature across sites and scenes when applied to the detection of coral reefs. We 

considered four different locations across three different Landsat 8 scenes in which coral 

reefs are known to exist. Our implementation accounts for obstructions in the image 

(clouds, shadows, dropped pixels, etc.), applies a water mask, corrects for atmospheric 

obstructions and sun glint, then calculates depth invariant indices across the image. Using 

the corrected depth invariant outputs of these preprocessing steps, we then applied linear 

discriminant analysis (LDA) to predict the presence of coral. After evaluating the accuracy 

of this in-situ analysis, we trained an LDA algorithm for application to coral cover type in 

another location within the same scene. Finally, we applied the linear discriminant analysis 

function to several sites in different Landsat scenes and analyzed the results. The 

methodology is a representation of the common data and applied science practice of 

splitting a dataset into training and testing sets. Many in-situ, temporal analyses perform 

train and test splits when creating a classifier as it is the most appropriate thing to do, 

however, there is an inherent bias between train and test samples of a single site simply 

due to the common environmental factors influencing the model input features. This bias 

is more pronounced when samples are close in proximity to each other. This results in a 

model that is trained and assessed using only localized observations from a single site and 

will not generalize well longitudinally. The reason is those observations do not adequately 

represent observations from other locations due to fluctuations in environmental conditions 

including water turbidity, the diversity of marine life, and the bottom cover type itself, as 

well as unique geomorphological features that may be specific to a single location. Training 

a model on a given site and then evaluating performance on another site will eliminate this 
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localized bias. As the distance between training and testing observations increases, the 

influence of environmental factors on both train and test data from that unique site is 

reduced or eliminated. The result is a novel model that is trained on the diversity of 

environments and conditions enabling the output to be more robust than in-situ analysis to 

location bias and therefore more scalable. 

In this scientific study the first section will discuss the materials and methods used 

in the study including a description of the data used and the geomorphology of each site as 

well as the steps taken to preprocess the satellite images. The Materials and Methods 

Section is followed by a review of the per site results as well as a quantitative assessment 

of the site-specific generalization performance and evaluation of a robust model 

constructed using consolidated information from all the sites. The Discussion Section of 

the study includes an examination of the spectral signature generalization properties as it 

pertains to coral reef detection, an appraisal of the benefits and challenges of the methods 

evaluated in the research as well as a proposal for future work in the area. The study closes 

with a discussion regarding conclusions and outcomes resulting from this research. 

3.2 Materials and Methods 

3.2.1 Remote Sensing Data 

Images from Landsat-8 OLI with 30m spatial resolution were used in the analysis. The 

visible bands were used due to their water column penetration properties, with band 2 

corresponding to 0.450-0.515µm (blue), band 3 corresponding to 0.525-0.600µm (green), 

and band 4 corresponding to 0.630-0.680µm (red). Band 5, which represents NIR, was 

used to identify areas of full wavelength absorption for water masking. For each location 
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of the analysis, Landsat 8 images produced within 6 months of the ground truth observation 

date were used. Scenes were restricted to no more than 10% cloud cover and the remaining 

images were then inspected to determine which were most appropriate, including factoring 

in the location of clouds and other disturbances in the observation areas. In total three 

different scenes were selected in the Pacific Ocean for our experiment as shown in Figure 

3-1. A listing of each site and the associated Landsat scene Row-Path reference is provided 

in Table 3-1. Additional detail regarding the sites and associated ground truth observation 

data can be found in Table 3-2. It is noteworthy that the first two sites are within the same 

path/row scene, hence the three scenes here are representing four sites. 

Table 3-1: Selected Scenes for Study 

Location 
(Figure 3-1) 

Path/ 
Row 

Location 
Image 

Capture Date 
Area of 

Interest Size 
1 065/056 Palmyra Atoll 5/27/2015 19x5-km 
2 065/056 Kinman Reef 5/27/2015 16x8-km 
3 060/073 Baker Island Atoll 8/20/2014 9x11-km 
4 059/074 Howland Island 1/18/2015 9x8-km 
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Figure 3-1 The location of the four sites (1) Palmyra Atoll (2) Kingman Reef (3) 

Baker Island Atoll (4) Howland Island 

Table 3-2: Selected Scenes for Study, Additional Information 

Location 
Number of 

Observations 

Distance from 
Training Site 

(Palmyra 
Atoll) 

Palmyra Atoll 82 - 
Kingman Reef 57 67.9-km 

Baker Island Atoll 26 1,720.0-km 
Howland Island 30 1,710.4-km 

3.2.2 Study Sites 

Palmyra Atoll 

Palmyra Atoll is a 20km long elliptical reef located at 5°52’N 162°6’W within the 

Northern Line Island chain. It contains elongated terraces that extend 3-5km off both the 

east and west ends of the atoll the depths of which range from 7-25m [73]. Benthic 
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environments in the backreef are generally characterized by high rugosity, continuous reefs 

consisting of >50% live coral, interspersed with large, dead, standing corals [74]. Benthic 

fore reef habitats are dominated by hard coral and crustose coralline algae, together 

comprising 48% of all surfaces [75]. Halimeda and turf algae dominate fore reef benthic 

algal assemblages [76]. The lagoon is heavily degraded, characterized by high turbidity, 

sedimentation, and a benthos dominated by sponges with very few corals observed [77]. 

Coral reefs are concentrated on the westward reef terrace with algae accumulation 

primarily along the reef crest and within the lagoon. Over 50% of the hard coral at the site 

is comprised of Montipora, Porites, Pocillopora, and Pavona genera [78]. The isolated area 

of interest containing the Palmyra atoll with masked land and cloud pixels is shown in 

Figure 3-1. 

Kingman Reef 

Kingman Reef is the northern-most reef in the Line Island chain located 68km 

northwest of the Palmyra Atoll at 6°23’N 162°25’W. The atoll is triangular, stretching 

18km east-west and 9km north-south [79] with shallow (<2m) reefs along the southern and 

northern sides that are connected by a deeper reef (>20m) along the western terrace. The 

atoll contains two small rubble islands near the eastern ends of the shallow reefs but lacks 

permanent emergent land. The lagoon is predominantly deep (> 30m) with large patch reefs 

that range from 50 to 200m in diameter and extend to within 2 to 10m of the surface. The 

lagoon side of the reef crest is comprised of a steeply sloped back reef habitat. The fore 

reef is consistent along the northern and southern coasts originating with a gradually 

slopped terrace extending 30 to 60m from the reef crest with a drop-off beginning at ~20m 
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deep [80]. The most commonly occurring hard coral genera within Kingman Reef are 

Porites, Pocillopora, Acropora, and Favia which comprise >50% of all hard coral cover at 

the location [78]. Figure 3-1 exhibits the Kingman Reef area of interest with masked cloud 

cover. In addition, a small portion of exposed rubble can be observed on the eastern portion 

of the northern reef crest. 

Baker Island Atoll 

Baker Island Atoll is an outlier island of the Phoenix Island Archipelago and classified 

as a low reef island. The shallow marine benthic habitats consist of fringing reef crests, 

shallow back reefs, steep fore reefs, spurs-and-grooves, and small reef terraces. The west, 

north, and south of the island consists of steep reef slopes that descend to great depths [81]. 

The easterly side of the island is characterized by spurs-and-grooves and oligotrophic 

waters off reef terraces [82]. However, the island’s proximity to the equator (0°12’N 

176°29’W) causes it to be influenced by both the westward-flowing Southern Equatorial 

Current at the surface and the strong eastward-flowing Equatorial Undercurrent, resulting 

in nutrient rich topographic upwelling on the western side of the island [83]. Acropora 

comprise >60% of coral observed at the location while Fungia and Pocillopora are also 

common genera [83]. Figure 3-1 includes a display of the Baker Island Atoll area of interest 

with land and cloud mask applied.  

Howland Island 

Howland Island is located at 0°48’N 176°37’W, just 66km northwest of Baker Island, 

however they fall in two different Landsat 8 scenes. As a result, they share many common 
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environmental features, but the two sites are captured in separate path-row images. Like 

Baker Island, Howland Island is also classified as a low reef island and considered an 

outlier island of the Phoenix Island Archipelago. The Island’s geomorphology consists of 

a narrow, shallow fringing reef and a steep slope that descends to great depths just off the 

coast. The western coast of the island is sandy and low while the waves and trade winds 

have caused the eastern side to be more abrupt and covered with coral rubble [84]. Given 

the island’s proximity to the equator, it also is impacted by topographic upwelling of rich 

nutrients as the Southern Equatorial Current and Equatorial Undercurrent encounter the 

abrupt west slope of the island [83]. However, the hard coral species that exist in the habitat 

are somewhat different from what can be observed at Baker Island. The most abundant 

genera are Pocillopora, Pavona, Porites, Montipora, and Fungia which is more similar to 

the representation found at Palmyra Atoll [83]. Figure 3-1 includes a presentation of the 

Howland Island area of interest isolated for study and processing with a land and cloud 

mask applied. 

3.3 Methodology 

The overall layout of the processing approach applied to the three selected scenes is 

shown in Figure 3-2. The approach can be broken down into six major components: 

preprocessing the image for land, water, and cloud masking, atmospheric and water column 

correction, LDA model training, LDA model application, model performance evaluation, 

and analysis of model generalization properties. These steps were repeated for each of the 

four sites within the three scenes. Scenes were selected to minimize the presence of clouds 

in the image. Pixels that still suffer cloud cover or other obstructions were then identified 
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and masked. This is followed by creating a water mask by applying a threshold to the NIR 

band. The reflectance cutoffs employed for each scene in this study ranged from 0.31 to 

0.325. The water body and corals have similar spectral reflectance, which may lead to 

misclassification in water/coral areas. A deep-water AOI was selected to be used in 

atmospheric correction via the dark-pixel subtraction method [37] [50] [51]. An LDA 

application was then implemented and trained on the Palmyra Atoll site data. LDA is a 

frequently applied algorithm in studies involving classification based on remote sensing 

data. The algorithm attempts to discriminate discrete classes using a linear combination of 

continuous independent variables. In this way the algorithm characterizes coral pixels 

based on a pooled covariance matrix of the pixel values and prior probabilities of the 

classification groups. A decision boundary between the classes is determined and 

observations are assigned to the class from which it has the smallest squared deviance [85] 

[86]. Accuracy of the algorithm was evaluated using leave one out cross-validation. The 

model trained using Palmyra Atoll site observations was then applied to Kingman Reef site 

data (also within Path/Row 065/056) and the resulting performance was evaluated. Finally, 

the same model was applied to sites in several different scenes namely Baker Island Atoll 

and Howland Island. The resulting model performance was measured, analyzed, and 

implemented using the open source R programming language and environment for 

statistical computing [52]. 
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Figure 3-2 Scene masking, atmospheric correction, and water column correction 

process flow. 

3.3.1 Cloud and Quality Mask 

The first step taken to preprocess the selected images was the identification and 

masking of pixels obscured by cloud cover and shadows. While scenes were selected to 

minimize the amount of cloud cover none of the images were completely devoid of clouds. 

Given the location of the sites, the Pacific Ocean near the equator, and the six-month 

window constraint, the probability that a satellite image would be taken on a cloud free day 

is small. Masking of clouds was performed by leveraging the Landsat 8 product quality 
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band [53] which provides a per pixel approximation of confidence that a given condition 

exists [54]. There are several possible ways in which bias from cloud obstruction can 

contaminate an analysis. The obvious entry point is disrupting the reflectance of a pixel or 

group of pixels. In addition to directly influencing surface reflectance, cloud cover present 

in the deep-water AOI can alter the values used for atmospheric correction applied to the 

image through the dark-pixel subtraction method [55]. As a result, this initial step of 

masking cloud interference is a critical preprocessing step. 

3.3.2 Water Mask 

The study of DII related metrics across large scenes requires preprocessing that 

includes masking land in addition to clouds and shadows. This step is imperative as 

including land pixels can distort the DII parameters when calculated across a scene. The 

water mask was created by leveraging the Landsat 8 NIR sensor. This sensor measures 

light between 0.851 and 0.0879 µm. Water absorbs light in these wavelengths, therefore, 

it is a good candidate for discerning water from land in any given scene [56]. As in the 

visible bands, the Landsat 8 NIR band (band 5) is at 30m resolution. A threshold was 

applied to the NIR band pixel values of each scene. The plots were then evaluated visually 

to determine the most appropriate cutoff for separation of land and water. A mask was 

created for pixels determined to be water based on this threshold value.  

3.3.3 Atmospheric Correction 

In the visual bands, 90% of the at sensor reflectance depends on atmospheric and water 

surface properties [57]. Therefore, atmospheric correction is first performed using the dark 
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pixel subtraction method [58]. This method selects areas of the scene with water known to 

be deep enough for the visible bands to fully attenuate. Signal received from these areas 

are comprised of atmospheric radiance and surface reflectance, thereby isolating the impact 

of these elements. Assuming the atmospheric and water surface conditions generalize to 

the rest of the scene (i.e. uniform throughout the area of interest), the mean deep-water 

radiance at sensor can be leveraged to correct for the effect of atmospheric and surface 

reflectance interferences [1] [59] [60]. Depths greater than 50m will assure that the visible 

wavelengths have fully attenuated [61]. In addition, two standard deviations are subtracted 

to account for possible sensor noise [62]. It is important to highlight the assumption that 

conditions are uniform across each scene. In addition, because of this assumption, the deep-

water AOI selected should appear in the same scene that is being analyzed. This will 

minimize the possibility of unintended bias that may be introduced by leveraging a deep-

water AOI of another image and that, to the greatest extent possible, the effect of full 

attenuation of the wavelengths for each scene is uniquely isolated.  

3.3.4 Water Column Correction 

As light penetrates water, the intensity decreases exponentially with increasing depth. 

The rate of attenuation is wavelength-dependent and has a severe effect on the remote 

sensing based detection of aquatic habitats [1]. Therefore, water column correction is 

appropriate for imagery with multiple water-penetrating spectral bands [51] [63]. Within 

these visible spectral bands, longer-wavelength blue bands attenuate less rapidly than 

shorter-wavelength red bands. Therefore, the spectral radiances recorded at sensor are 

dependent on both the subsurface strata reflectance and depth. The confounding influence 
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of depth can create significant distortions in the subsurface reflectance. Since most marine 

habitat-mapping exercises are only concerned with mapping benthic features, it is 

advantageous to remove the influence of variable depth [1] [63] [64] [65] [66]. 

3.4 Results 

Using the masked, corrected scenes, we developed a classifier to identify the existence 

of coral in a pixel. We applied the predictor to an alternate site within the same Landsat 

scene (Kingman Reef). Finally, we applied the predictor to multiple sites in different 

Landsat scenes (Baker Island Atoll and Howland Island).  

3.4.1 Generalization Performance by Site 

Palmyra Atoll 

The model was initially trained and applied to data from the Palmyra Atoll site of 

Landsat Path-Row scene 065/056. This site contained a total of 82 unique observation 

points. Of these, 66 were in unobscured pixels. For each valid observation point the 

corresponding pixel index values were extracted from the masked, atmospherically 

corrected, and water column corrected scene based on location. The extracted DII values 

were then matched to the ground truth class. The LDA model was trained on these 

observations.  

For each pixel, the posterior probability of that pixel belonging to the coral class was 

calculated. The resulting posterior probability for each pixel belonging to the coral class is 

shown in Figure 3-3. The resulting map of predicted values was analyzed and compared to 
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known geomorphology of the site for context validation. Figure 3-4 displays the final class 

predictions by pixel based on the trained model.  

  
Figure 3-3: Palmyra Atoll: Plot of the posterior probability for belonging to the 

coral class for each pixel in the Palmyra Atoll site. 

  
Figure 3-4: Palmyra Atoll predicted class membership based on posterior 

probabilities.  

Kingman Reef 

The first evaluation of how well a supervised classifier can generalize across 

multiple sites was evaluated by applying the model trained on the Palmyra site data to 

labeled data from another location within the same Landsat scene. This was done by 

predicting labeled data from the Kingman Reef using the algorithm trained on data from 

the Palmyra Atoll. The Kingman Reef is a small reef near Palmyra Atoll therefore the two 

locations reside within the same Landsat image. Sites within the same scene will have 
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similar atmospheric and water conditions, an assumption that previous in-situ studies have 

relied upon heavily. Water turbidity, in particular, is an important assumption as water 

column correction has yet to produce a proven method for correcting such interferences or 

even evaluating its impact on predicting subsurface benthic habitat bottom type.  

There were 57 bottom type observations available for the Kingman Reef site. Of 

these, 42 could be matched to valid pixels in the masked, atmospherically corrected, and 

water column corrected scene. The trained model correctly predicted 78.57% of the 

observations in the Kingman Reef site. This is evidence that the model built using water 

column corrected indexes generalizes well to sites within the same scene. The decrease in 

accuracy from Palmyra Atoll to Kingman Reef of less than 1% is strong evidence for the 

within scene homogeneity assumption relied on so heavily in previous in-situ studies. The 

strong performance is a reflection of the location-based environmental conditions that the 

two sites have in common. Specifically, because the two sites are within close proximity, 

they share similar atmospheric and geomorphological conditions. In addition, the marine 

species are likely to be more homogeneous compared to sites separated by a greater 

distance. Finally, water conditions at each site is likely to be similar but not identical. Site-

specific variation in water conditions can occur within a scene due to differences in how 

tides, currents, and other natural phenomena interact with site-specific geomorphological 

characteristics. The results indicated that the consolidated impact of all these factors 

amounts to less than 2% decrease in the accuracy of predicting bottom type between two 

sites within the same Landsat image. The resulting posterior probability that a given pixel 

belongs to the coral class are presented in Figure 3-5 and the overall class predictions are 

presented in Figure 3-6.  
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Figure 3-5: Kingman Reef: Plot of the posterior probability for belonging to the 

coral class for each pixel in the Kingman Reef site. 

  
Figure 3-6: Kingman Reef predicted class membership based on posterior 

probabilities. 

Baker Island Atoll 

The ability for the classifier to generalize to a different scene is an important result. 

The conditions between scenes can change significantly. In addition, the variation of 

marine life species represented in different sites can alter the observed DII pixel value. 
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Even more importantly, there are likely to be variances in how reefs naturally formed due 

to alterations in the site-specific geomorphology. Even with a uniform approach to 

atmospheric and water column correction, the environmental changes across scenes can be 

substantial.  

The ground truth data from the Baker Island Atoll location included 26 bottom type 

observations all of which were associated with a valid DII pixel value. The classifier trained 

on Palmyra Atoll data was able to correctly classify 69.23% of these observations. The 

decrease in accuracy can be attributed to changes in site-specific conditions between Baker 

Island Atoll and Palmyra Atoll. Differences in how currents and tides impact water 

turbidity as well as other environmental impacts reduce the ability for observations to 

appropriately represent other locations. Previous in-situ studies have relied on the 

assumption of uniform water conditions. This is because, while there may be significant 

obstruction of light due to matter floating in the water, it is not likely to be substantially 

different across a single scene. Therefore, because all observations are distorted by 

approximately the same amount, it only represents a uniform amount of noise across all 

pixels in a given scene. However, when data from one scene is used to evaluate a different 

scene, these changes in localized or image specific conditions become more pronounced. 

For example, changes in water conditions including turbidity can vary within a scene but 

is likely to be more similar between two sites within a scene compared to two sites located 

in separate images altogether. First, scenes in two separate images are likely to be separated 

by greater distance than those in the same scene. This gives rise to greater environmental 

fluctuation between sites that are separated by enough distance to be in two separate 

Landsat images. There are multiple similar reasons for this fluctuation in water conditions. 
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Namely, the impact of currents and tides can vary from site to site. The unique location of 

Baker Island Atoll relative to the equator compared to Palmyra Atoll and Kingman Reef 

expose it to more topographic upwelling of nutrient rich waters which in turn impact the 

type of coral at the site and hinder the generalization of the trained model. In addition, the 

images of two different scenes were captured on different times and dates that likely had 

varying weather and ocean conditions. The consolidated impact of variation on accuracy 

due to the limited observations and to generalizing beyond the in-situ image is now 

measured. For example, the total impact of site-specific environmental conditions between 

Palmyra Atoll and Baker Island Atoll represents an 11% decrease in accuracy between the 

two sites. The resulting per pixel posterior probabilities for the bottom type to be coral and 

the per pixel predicted class are presented in Figures 3-7 and 3-8 respectively. 
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Figure 3-7: Baker Island Atoll: Plot of the posterior probability for belonging to 

the coral class for each pixel in the Baker Island Atoll site.  
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Figure 3-8: Baker Island Atoll predicted class membership based on posterior 

probabilities.  

Howland Island 

Given the proximity and geomorphologic similarities between Howland Island and 

Baker Island, it can be assumed that the environmental conditions that exist within the two 

sites are similar relative to some of the other locations. Therefore, the accuracies produced 

when the Palmyra Atoll model was applied to each site are similar but not identical. This 

result is informative in isolating the impact on generalization due to environmental 

variation associated with location vs the impact on generalization due to the timing in 

which the Landsat image was captured. There were 30 observations of bottom type at the 

Howland Island site of which 28 could be assigned valid depth invariant pixel values. When 
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applied to the Howland Island site the model correctly predicted 71.43% of the 

observations.  

Figure 3-9 presents the per pixel posterior probability that the pixel contains coral. 

Because the two sites are not close enough to reside within the same Landsat scene, they 

do not get the benefit of uniform interference across the scenes. The result is accuracy 

scores that are comparable due to environmental and species similarities within the two 

sites but not identical. The consolidated effect of these variations in conditions between the 

Palmyra Atoll training data and Howland Island test site is an 8.87% decrease in accuracy 

of bottom type prediction between the two sites. Figure 3-10 presents the final class 

predictions for each pixel in the Howland Island area of interest.  



63 

  
Figure 3-9: Howland Island: Plot of the posterior probability for belonging to the 

coral class for each pixel in the Howland Island site.  
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Figure 3-10: Howland Island predicted class membership based on posterior 

probabilities.  

3.4.2 Quantitative Assessment of Site-Specific Generalization 

The algorithm correctly classified 80.30% of the observations within the Palmyra 

Atoll site and obtained a precision of 0.7800 and recall of 0.9512. Precision and recall are 

very common statistical measure for measuring type I and type II error rates. Precision is 
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a measure of Type I errors and commonly thought of as a measure of the exactness of an 

algorithm. Recall is a measure of Type II errors and is often through of as a measure of 

how completely the algorithm retrieves information. The harmonic mean of precision and 

recall is known as the F-measure. The results of the model application to the Palmyra Atoll 

site yielded an F-measure of 0.8571. Finally, specificity, which is an indication of the 

algorithm’s ability to differentiate between true negative observations, was 0.5600 when 

evaluated against the Palmyra Atoll truth data. 

When applied to the Kingman Reef site, the algorithm obtained similar performance 

to that observed in the Palmyra Atoll site. Specifically, the Kingman Reef application 

accurately classified 78.57% of the observations with precision and recall of 0.8276 and 

0.8571, respectively. This indicates that the model outperformed the original site in type I 

error when applied to the Kingman site but committed more type II errors as well. The 

model obtained a specificity of 0.6429 and an overall F-measure of 0.8421 both of which 

are similar results to those obtained from the Palmyra site. The similarity between the two 

sites can be attributed to their close proximity and commonality in environmental 

conditions.  

Evaluation of the model performance when applied to the Baker Island Atoll site 

revealed 69.23% of the ground truth observations can be correctly classified. Further 

evaluation of the algorithm results show that the algorithm yielded precision and recall of 

0.6522 and 1.0000, respectively. The F-measure for the application was 0.7895 which was 

similar to the measure produced in the evaluations of previous sites. Specificity equal to 

0.2727 was obtained. 
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The Howland Island application produced more type II errors than observed in other 

scenes and, as a result, had a low recall score of 0.5333. Specificity scored higher than the 

applications to other sites with a score of 0.9231 due to fewer type I errors. Due to the low 

type I error rate, precision was high at 0.8889. The F-measure was the lowest of all 

applications at 0.6667. These results are summarized in Table 3-3 followed by the detailed 

confusion matrices in table 3-4. 

Table 3-3: Assessment Metrics for Evaluation of Model Performance for Each 
Site and Consolidated Input. 

 Palmyra 
Atoll 

Kingman 
Reef 

Baker 
Island 
Atoll 

Howland 
Island 

Consolidated 
Sites 

Accuracy 80.30% 78.57% 69.23% 71.43% 74.07% 
Precision 0.7800 0.8276 0.6522 0.8889 0.7244 
Recall 0.9512 0.8571 1.0000 0.5333 0.9293 
Specificity 0.5600 0.6429 0.2727 0.9231 0.4444 
F-measure 0.8571 0.8421 0.7895 0.6667 0.8142 

 

Table 3-4: Confusion Matrices by Site and Consolidated Inputs. 

  Ground Truth Labels 
  Coral Not Coral 

P
re

d
ic

te
d

 C
la

ss
 

 Palmyra Atoll 
Coral 39 11 

Not Coral 2 14 
 Kingman Reef 

Coral 24 5 
Not Coral 4 9 

 Baker Island Atoll 
Coral 15 8 

Not Coral 0 3 
 Howland Island 

Coral 8 1 
Not Coral 7 12 

 Consolidated Sites 
Coral 92 35 

Not Coral 7 28 
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3.4.3 Robust Combined Model 

The accuracy for any given site is constrained by how well the observed values used 

to train an algorithm represent the general population, and how well the algorithm itself 

can correctly model the relationship between inputs and the target variable. One way to 

ensure that the observation data adequately represents the population is to increase the 

breadth of observations used to train the predictor. Having analyzed the variation in 

accuracy across the various sites, we retrained the model using observations from all four 

sites. The resulting model was evaluated using leave one out cross-validation (LOOCV) 

for the classification of 127 coral pixels and 35 non-coral pixels. Of the 127 coral 

predictions 92 were correct and 35 were incorrect. Of the 35 not-coral predictions, 28 were 

correct and 7 were incorrect which corresponds to an accuracy of 74.07%. The classifier 

yielded a precision of 0.7244 and recall of 0.9293 indicating good performance on type II 

errors and marginal performance against type I errors. The model yielded a specificity of 

0.4444 and the final F-measure was 0.8142.  

These results expose the novel finding that a model can be trained on data from 

multiple Landsat sites and yield robust predictions of coral. The associated confusion 

matrix can be found in table 3-4. The resulting model yielded strong results to data 

collected from multiple sites and multiple scenes. This is a demonstration of the robustness 

of Landsat data to generalize across scenes. However, the model did not obtain the same 

accuracy produced using data from a single scene or even the model applied to an alternate 

site within the same scene. This is due to the impact of variation in environmental 

conditions between scenes. Most notably, there are often significant differences in water 
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conditions and turbidity across various locations. However, the impact of these differences 

can be mitigated as the more sites are considered for training the model. In addition, there 

are variances in the marine species that exist across locations. These two factors confound 

the inputs for a predictive model and lead to lower accuracies. Previous research has relied 

on assumptions of homogeneity. Comparing the results of the Palmyra Atoll and Kingman 

Reef sites within the same scene confirms this assumption although with a slight drop in 

accuracy. Figure 3-11 identifies the receiver operating characteristic (ROC) curve resulting 

from the model developed using the consolidated site data. This is an important 

visualization used to identify performance as the power as a function of the type I error or 

recall (true positive rate) as a function of 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (false positive rate). The area 

under curve (AUC) is an important diagnostic for evaluating model performance related to 

the ROC curve. In this instance the value of the AUC was 0.7298. 
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Figure 3-11: ROC Curve indicating model performance of the algorithm when 

applied to the consolidated ground truth set (AUC = 0.7298) 

3.5 Discussion 

3.5.1 Spectral Signature Generalization Properties for Coral Reef 

Classification 

The ability for a supervised classifier to generalize across sites is a critical outcome 

of this research. Previous research has concerned analysis and classifiers strictly limited to 

in-situ sites. This research advances the field of subsurface identification by evaluating the 

ability for Landsat information to generalize across sites and scenes. We measured this by 

locating five different sites known to contain benthic areas with coral reefs. We then 

obtained corresponding ground truth labels for a sampling of coral and non-coral pixels for 

each location. A classifier was trained using linear discriminant analysis to predict the 
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presence of coral. This model yielded leave one out cross-validation accuracy of 80.30% 

in the training site and only a small decrease in accuracy when applied to a remote site 

within the same scene. The accuracy of the model when applied to the Kingman Reef site 

was 78.57% demonstrating that while conditions can change across a given scene the 

impact is minimal. This validates the classic assumption made by previous in-situ studies 

of homogeneity of conditions across a given Landsat scene. We then applied the model to 

several other sites. Baker Island Atoll yielded an accuracy of 69.23%, and Howland Island 

produced an accuracy of 71.43%. These lower accuracies are due to two primary reasons. 

First, variances in the types of coral and algae species that live in a given ecosystem create 

small variations in the signal that is received by the satellite. This diversity of life is related 

to each ecosystem’s adaptation to the surrounding geomorphic conditions. Changes in 

environmental conditions and related noise create disturbances that manipulate the signal 

received by the sensor. While atmospheric and light attenuation due to water column 

penetration can be corrected, the interference due to localized water turbidity cannot. This 

can account for a decrease in accuracy of predicting coral by more than 10% as shown in 

this study. The interference due to water turbidity is not uniform and some scenes are 

impacted more than others. Finally, a consolidated model was created using the strength of 

observations across all sites. Accuracy of 74.07% was calculated using leave one out cross-

validation. The resulting model demonstrated a robustness to some of the perturbations 

mentioned. 
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3.5.2 Methodology Benefits and Challenges 

The outcomes presented in this study enable a solution to reduce location-based 

bias of the spectral signature of coral reefs. This represents a strong advantage over 

previous in-situ studies which require localized observation data in order to detect coral 

reefs. The results presented in this study indicate that the spectral signature information of 

coral contained in one site can be leveraged to evaluate another, unobserved site with up 

to 71% accuracy. Furthermore, the results of this study indicate that a robust model can be 

created by leveraging the consolidated information from several sites and produce accurate 

predictions for coral of up to 74%. These results are a key component required for the 

progression from in-situ analysis to large scale spatial analysis of coral reefs.  

The primary challenge of the proposed method are the lower accuracy scores as 

compared to that of in-situ analysis. Previous in-situ analysis based on Landsat data 

generally obtain accuracies of up to 80% [1], as was obtained in the site-specific study of 

Palmyra Atoll here. The reduction in accuracy is an indication of variation in the 

geomorphology and ecology of the robust model. In-situ analyses incorporate this bias into 

the training of their predictors and therefore yield higher accuracies.  

3.6 Conclusion 

The ability for a supervised classifier to generalize across sites is a critical outcome of 

this research. Previous research has concerned analysis and classifiers strictly limited to in-

situ sites. This research advances the field of coral classification using remote sensing data 

by evaluating the ability for Landsat information to generalize across sites and scenes. This 
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outcome is part of a natural progression toward a global evaluation of coral health using 

satellite data both in the present and historically. Understanding the spectral generalization 

properties of coral enables more robust evaluation of many reefs which have not been 

studied before. Furthermore, this research provides a baseline accuracy for evaluating the 

presence of coral in locations for which observations are unavailable or have not been 

made. The classification accuracy of the model trained on a known site and applied to a 

new site is less than that of previous in-situ analysis because it does not incorporate the 

site-specific geomorphology and location-based bias. However, a model trained using data 

from multiple sites is more robust to these environmental variations and free of location 

specific bias. We measured the generalization criterion by locating four different sites 

known to contain benthic areas with coral reefs. We then obtained corresponding ground 

truth labels for a sampling of coral and non-coral pixels for each location. A classifier was 

trained using linear discriminant analysis to predict the presence of coral. This model 

yielded leave one out cross-validation accuracy of 80.30% in the training site and only a 

small decrease in accuracy when applied to a remote site within the same scene. The 

accuracy of the model when applied to the Kingman Reef site was 78.57% demonstrating 

that while conditions can change across a given scene the impact is minimal. This validates 

the classic assumption made by previous in-situ studies of homogeneity of conditions 

across a given Landsat scene. We then applied the model to several other sites. Baker Island 

Atoll yielded an accuracy of 69.23%, and Howland Island produced an accuracy of 

71.43%. These lower accuracies are due to two primary reasons. First, variances in the 

types of coral and algae species that live in a given ecosystem create small variations in the 

signal that is received by the satellite. This diversity of life is related to each ecosystems’ 
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adaptation to the surrounding geomorphic conditions. Even more, changes in 

environmental conditions and related noise create disturbances that manipulate the signal 

received by the sensor. While atmospheric and light attenuation due to water column 

penetration can be corrected, the interference due to localized water turbidity cannot. As 

seen in this study, this can account for a decrease in accuracy of coral prediction by more 

than 10%. Furthermore, the interference due to water turbidity is not uniform and some 

scenes are impacted more than others. Finally, a consolidated model was created using the 

strength of observations across all sites. Accuracy of 74.07% was calculated using leave 

one out cross-validation. The resulting model demonstrated a robustness to some of the 

perturbations mentioned.
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4. Second Study: Coral Reef Change 

Detection in Remote Pacific Islands 

using Support Vector Machine 

Classifiers 

4.1 Introduction 

Coral reefs are among the most critical ecosystems in the world due to the role that 

they play in maintaining biodiversity and sustaining the lifecycle of so many marine 

species. Unfortunately, many large-scale mass mortality events associated with coral 

bleaching have been documented. These bleaching events are driven by a variety of 

anthropogenic and environmental influences [4] [5] [6] [7] [8] [9] [10] [11] [12].  

A significant amount of previous research has been conducted to analyze coral reefs 

using remote sensing data [25] [26] [27] [28] [35]. These studies include leveraging 

multispectral sensors [29], hyperspectral sensors [30], and comparisons between the two 

[31]. In addition, studies have been conducted using satellites with a wide range of spatial 

resolutions from medium resolution Landsat based research [36] [61] to high-resolution 

Sentinel-2 based research [33] [34]. It has been shown that classifiers based on higher 

resolution platforms typically attain a greater degree of accuracy, often by more than 10%, 
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than lower resolution satellites [87]. This is due to the reduced within pixel mixing of 

benthic cover types when attempting to classify highly heterogeneous ecosystems such as 

coral reefs [88]. More recently, an object-based approach to coral cover detection has been 

explored [89] for geomorphological mapping and benthic community discrimination [90] 

[91] [92]. While the object-based approach is promising yielding accuracies greater than 

90%, they do rely upon high-resolution imagery. It has been shown that the pixel-based 

approach yields no significant difference from the object-based approach when applied to 

medium-resolution satellites such as Landsat [93] [94]. The recent advancements in 

satellite technology have allowed high-resolution imagery to be readily available from 

multiple platforms. However, while these platforms show great promise for analyzing the 

state of benthic habitats currently and in the recent past, they lack the history for a longer-

term perspective on change. Yet, the Landsat platform provides a rich inventory of 

historical images albeit at medium-scale resolution. What is more, the quality of the data 

provided by missions has been proven to be appropriate for temporal analysis [95] [96] 

[97] [98] [99] [100] [101] [102] [103] [104].  

Technological advancements in remote sensing satellites has produced an extensive 

archive of images which are being used increasingly for scientific research on surface cover 

and cover change detection. The foremost example of this large historical archive of remote 

sensing images used for scientific research is the Landsat program which has been in 

operation since 1972 [72]. Due to the rich history and open source nature of Landsat, this 

platform has been used in the majority of change detection analysis [4] to detect the decline 

of coral habitats through temporal analysis even over extended time periods of 18 years or 

more [105]. Researchers suggest that historic Landsat imagery is the best available data 
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source for studies of historic changes in environments [106]. However, the majority of 

Landsat images have no corresponding ground truth data on which a classifier can be 

trained to identify cover. Therefore, each of these studies have been conducted using the 

well-known and well-studied convention of training a supervised classifier on the Landsat 

imagery captured within the same time period as the ground truth observations were made 

then applying that classifier temporally to historical images [72]. This methodology is 

known as signature extension [97] [98], or signature generalization [95] [96] and since the 

1970’s studies have been conducted exploring the methodology as applied to Landsat data 

[97] [99] using both individual Landsat satellites [47] as well as extended analysis over 

multiple Landsat satellites [107]. The scope of these temporal cover change detection 

studies vary from seagrass and coral reefs to mangroves [108] to forest and crop land [109]. 

Many studies have been conducted to validate this approach. Specifically, it has been 

established that there is no statistical difference (p = 0.303) between changes in coral 

habitat areas as observed by the Coral Reef Evaluation and Monitoring Project (CREMP) 

and change detection analysis conducted using a combination of Landsat missions [105]. 

Additional validation studies demonstrated that change analysis conducted based on 

Landsat 5, Landsat 7, and Landsat 8 was accurate with an overall accuracy of 88.9% ± 

1.0% and a kappa-coefficient of 0.86 [109]. This study expands upon the previous limited 

scope analyses by applying a classifier to two new sites [110] [111] [112] [113] [114]. 

Therefore, in addition to training a classifier and performing change detection analysis for 

each of four previously unanalyzed sites (Palmyra Atoll, Kingman Reef, Howland Island, 

and Baker Island Atoll), this study leveraged a robust classifier longitudinally applied to 

two additional sites (Tabuaeran Island and Kiritimati Island) enabling them to be evaluated 
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for live coral coverage change detection as well. The validation of this methodology was 

conducted by isolating the ground truth observations of each location as test data (i.e. the 

target site). Ground truth data from the three neighboring sites (i.e. training sites) were used 

to train a classifier the performance of which was evaluated against the ground truth data 

of the target, test site. This procedure was repeated for each of the four locations for which 

ground truth data was available. A consolidated classifier was then trained using ground 

truth observations from all four sites and validated using cross-validation.  

The objectives of this study are: (1) to propose a new methodology for training a 

coral cover classifier, (2) evaluate the effectiveness of this classifier to generalize to new 

data, and (3) leverage the robust classifier to conduct coral cover change detection. To 

conduct the study, we selected four Remote Pacific Island reefs for which benthic cover 

ground truth observations were available and obtained the related Landsat images captured 

within six months of the observation dates for each location. The reefs analyzed in this 

research have not been the subject of previous remote sensing studies for widespread 

change detection analysis.  

Section Two of this dissertation begins with a discussion of the materials and 

methods used in the study. The section begins with a brief review of the data used followed 

by a per site description of the geomorphology and concludes with an explanation of the 

preprocessing steps taken to correct the remote sensing images. Following the Materials 

and Methods Section is an analysis of the per site performance evaluation of the algorithm 

and a quantitative assessment of the algorithm trained using the combined information 

from all sites with ground truth observations and applied longitudinally to the two new 
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locations. This is followed by the temporal change detection analysis for each site. The 

Discussion Section of this chapter includes an evaluation of the challenges and benefits of 

the methodology presented in the study as well as a proposal for future work on the subject. 

The chapter concludes with a discussion of the resulting outcomes and conclusions from 

this research. 

4.2 Materials and Methods 

4.2.1 Satellite Data Used 

Remote sensing data from Landsat-8 OLI and Landsat 7 ETM with 30m spatial 

resolution were used for this analysis. Landsat 7 was launched on April 15, 1999 and the 

subsequent Landsat 8 satellite was launched on February 11, 2013. Both Landsat 7 and 

Landsat 8 have a 16-day revisit cycle and capture scenes that are approximately 170km 

north-south by 183km east-west. Landsat 8 consist of nine spectral bands while Landsat 7 

consists of seven. Due to their water column penetration properties, the visible bands from 

each scene were used as inputs to calculate the DII on which the classifier was trained. On 

the Landsat 8 remote sensing platform, the visible bands used were Band 2 (0.45-0.51), 

Band 3 (0.53-0.59) and Band 4 (0.64-0.67). The coastal aerosol band was excluded from 

this analysis despite its water penetrating properties because there is no corresponding 

Landsat 7 band capturing light in the same wavelength range. The Landsat 7 visible bands 

used for this analysis were Band 1 (0.45-0.52), Band 2 (0.52-0.60), and Band 3 (0.63-0.69). 

The NIR band was also leveraged to identify areas of full wavelength absorption for water 

masking. Landsat 8 images captured within six months of the ground truth observation date 

were selected for all sites in which ground truth data was available [115] [116]. Table 4-1 
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provides detailed information regarding the accuracy of the data with respect to the ground 

truth observation periods and associated image capture dates. Landsat 7 images of the same 

sites captured at least 12 years before the Landsat 8 images were also obtained for temporal 

change analysis. All Landsat images obtained were categorized Tier 1 data products 

radiometrically calibrated and orthorectified using ground control points and digital 

elevation model (DEM) data to Level-1 Precision and Terrain (L1TP). The data were 

determined to have well-characterized radiometry within image-to-image tolerances of 

≤12m radial root mean square error (RMSE) [117] [118]. L1TP products are the highest 

quality Level-1 products produced by Landsat and considered suitable for pixel-level time 

series analysis [95] [96] [97] [98] [99] [100] [101] [102] [103] [104].  

Table 4-1: Image Capture Date and Ground Truth Observation Period for each 
Location. 

Site 
Ground Truth 

Observation Period 
Landsat 8 Image 

Capture Date 
Difference 

Palmyra Atoll 4/15/15 - 4/22/15 5/27/15 <2 months 

Kingman Reef 4/24/15 - 4/28/15 5/27/15 <2 months 

Baker Island Atoll 2/8/15 - 2/11/15 8/20/14 <6 months 

Howland Island 2/3/15 - 2/7/15 1/18/15 <1 months 

Two additional sites (Tabuaeran Island and Kiritimati Island) were also selected for 

longitudinal analysis using the classifier. These two additional sites are large and contain 

small amounts of human population. Tabuaeran Island has never been the subject of a coral 

classification and change detection analysis. Specific sites within the Kiritimati Island area 

of interest were recently studied for changes in reef structural complexity before and after 

a two year period [119], however, there has never been a large-scale mapping of the 

location using remote satellite imagery nor has a long-term (>10 years) analysis been 
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conducted at the site. All remote sensing images with no more than 10% cloud cover across 

the scene were reviewed. Each scene was visually inspected by a researcher to identify 

which was most appropriate for each site considering the location of disturbances including 

cloud cover and cloud shadows in the area of interest within the scene. Table 4-2 displays 

for each site the Landsat Path-Row, Landsat 8 OLI and Landsat 7 ETM scene capture data, 

area of interest total size, and total number of ground truth observations.  

Table 4-2: Satellite Data Summary. 

Site  
(Figure 4-1) 

Path/ 
Row Site Latitude-

Longitude 

Final State 
Scene 

Capture 
Date 

Initial State 
Scene 

Capture 
Date 

Area of 
Interest 

Size 

Number of 
Ground 
Truth 

Observations 
1 065/056 Palmyra Atoll 5°52′N 162°6′W 5/27/2015 1/4/2001 22×7-km 82 
2 065/056 Kingman Reef 6°23′N 162°25′W 5/27/2015 1/4/2001 19×11-km 57 
3 073/060 Baker Island Atoll 0°12′N 176°29′W 8/20/2014 1/15/2002 9×8-km 26 
4 074/059 Howland Island 0°48′N 176°37′W 1/18/2015 1/19/2001 5×5-km 30 
5 063/057 Tabuaeran Island 3°51′N 159°21′W 2/3/2014 8/31/2000 20×18-km * 
6 061/059 Kiritimati Island 1°40′N 158°30′W 12/22/2014 10/10/2002 47×42-km * 

4.2.2 Ground Truth Data Used for Training and Validation 

Ground truth observations were obtained from the National Oceanic and 

Atmospheric Administration (NOAA) as part of the National Coral Reef Monitoring 

Program (NCRMP) [115]. This effort identified 39 islands and atolls across the U.S. Pacific 

territories (including Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland 

Island) as part of a large scale, rapid ecological assessment (REA) of reef environments 

[120]. Within each reef location, a stratified random sampling of survey sites were selected 

to capture as wide a domain of the environment as possible based on reef zones (backreef, 

forereef, protected slope, and lagoon), depth zone (shallow, mid, and deep), and when 

applicable sector (i.e. section of coastline with broadly similar habitat, exposure, and and/or 

management status). The sampled site locations were selected prior to each survey mission 



81 

using geographic information system (GIS) substrate and strata maps maintained by 

NOAA Ecosystem Sciences Division (ESD). These substrate and strata maps were created 

using information from the National Centers for Coastal Ocean Science (NCCOS), reef 

zones and geomorphologic structures digitized from IKONOS satellite imagery and 

nautical charts, bathymetric data from the NOAA ESD-affiliated Pacific Islands Benthic 

Habitat Mapping Center, University of Hawai’i at Manoa, and prior knowledge gained 

from previous visits to the locations. Observation sites were preloaded into GPS units as 

waypoints for experienced [120] divers to survey. At each site, a 30m gray polyester 

transect line was laid across the substratum with markings at 7.5, 15, and 22.5m indicating 

each diver’s observation point and the edges of their survey plots. Divers estimated the 

percentage cover by type including hard coral and recorded the observations on a data 

collection sheet [121]. Validation of estimates were performed through photo-quadrat 

images capturing the benthic habitat at 1m intervals across the 30m transect of the 

observation site. The images were annotated using CoralNet [122] [123], a deep 

convolutional neural network computer vision tool, in order to produce a highly consistent 

evaluation of percent cover, frequency of occurrence, benthic community taxonomic 

composition and relative generic richness. It has been shown that even experienced divers 

tend to underestimate hard coral cover (by -3%), and encrusting algae (-2.3%) and 

overestimate fleshy macroalgae (6.5%) [124]. CoralNet can effectively identify coral cover 

in images with 89.7% accuracy (Cohen’s kappa) [123] and provides an unbiased evaluation 

of the benthic habitats across locations therefore the information captured via photo-

quadrat was relied on for training and validation purposes in this study. In total, 8,825 

images characterizing the benthic cover of 308 sites were captured and analyzed across the 
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four island locations [115]. Of the 308 sites, 162 could be clearly be assigned as the ground 

truth observation for benthic cover within a pixel of the 30m resolution Landsat data. 

4.2.3 Sites 

The six sites used for this study where chosen based on the locations of known coral 

reefs in the Pacific Ocean and relative proximity to each other. Palmyra Atoll and Kingman 

Reef are both located in the Northern Line Island chain with Kingman Reef only 69km 

northwest of Palmyra Atoll. Both locations can be observed within the same Landsat scene. 

Palmyra Atoll is characterized by elongated terraces that extend 3 to 5km to the east and 

west. The depths of these terraces range from 7 to 25m [73]. The northern-most reef in the 

Line Island chain is Kingman Reef. This triangular atoll extends 9km north to south and 

18km east to west [79]. A deeper reef (>20 m) extends along the western terrace and the 

southern and northern sections consist of shallow reefs (<2 m). The lagoon is mostly deep 

(>30m) and contains large patch reefs with a diameter of 50-200 m, 2-10m under the 

surface. Images of both Palmyra Atoll and Kingman Reef can be found in Figure 4-1. 

Howland Island and Baker Island Atoll are both low reef, outlier islands of the 

Phoenix Island Archipelago. Baker Island Atoll is characterized by steep reef slopes to the 

west, north, and south which drop to substantial depths [81]. To the east, the island consists 

of spur and groove geomorphic features and oligotrophic waters off reef terraces [82]. 

Howland Island is 66km northwest of Baker Island Atoll. Although closer in proximity to 

each other than Kingman Reef and Palmyra Atoll, these two locations reside within the 

extent of two separate Landsat scenes. Due to each islands’ proximity to the equator, they 

are subjected to the westward-flowing Southern Equatorial Current at the surface while the 
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strong eastward-flowing Equatorial Undercurrent flows below. The result is a nutrient rich 

topographic upwelling on the western sides of each island [83]. The waters around 

Howland Island descend to great depths just off the coast with a narrow, shallow fringing 

reef surrounding the island. The eastern side of the island is abrupt and covered with coral 

rubble due to erosion caused by waves and strong trade winds. The western portion of the 

island is low and sandy [84]. Images of these two islands can be found in Figure 4-1. 

Tabuaeran Island (also called Fanning Island) and Kiritimati Island (also called 

Christmas Island) are both raised coral atolls. Images of these two islands can be found in 

Figure 4-1. The land area of Tabuaeran Island covers less than 34km2 and has a population 

of approximately 2,000 [125]. The lagoon of Tabuaeran Island is shallow (<15 m) and 

spans an area of 110. There is a single deep pass to the west through which 95% of the 

lagoon/ocean water exchange occurs [126] as well as two shallow (<1 m) passes to the 

southeast and north [125]. This geomorphology results in clear water in the vicinity of the 

deep pass and turbid water at the north and south basins of the lagoon. As a result, much 

of the coral within the lagoon is located in deeper pools near the primary inlet [127] and 

are comprised of coral fauna that is unique from the surrounding reef. The eastern portion 

of the island is characterized by a broad shelf that extends seaward for several hundred 

meters [127]. Kiritimati Island’s land mass covers 363km2 making it the largest coral atoll 

in the world [128]. The lagoon is large covering 328km2. The eastern end of the lagoon is 

comprised of several hundred smaller landlocked lagoons [129]. The island population has 

been increasing and in 2015 it was reported that 6,447 inhabitants were living on the island 

[130]. A narrow reef flat runs around most of the island and sand plains occur to the 

northwest and southeast. Both Tabuaeran Island and Kiritimati Island encounter southeast 
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trade winds for much of the year resulting in a relatively arid environment and highly 

variable precipitation [127] [131].  

  
Figure 4-1: The relative location of each of the six sites (1) Palmyra Atoll, (2) 

Kingman Reef, (3) Baker Island Atoll, (4) Howland Island, (5) Tabuaeran Island, 
and (6) Kiritimati Island.  

4.3 Methodology 

Each location required preprocessing including application of cloud and land masks, 

atmospheric correction, and water column correction. First, both the Landsat 7 and Landsat 

8 image for each location was preprocessed for analysis. This included applying a water 

mask, cloud/fill pixel mask, and sun glint correction. The dark-pixel subtraction method 

was applied to correct for atmospheric contributions [37] [50] [51]. Finally, the 
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preprocessing steps concluded with a calculation of the per pixel DII for water column 

correction. Each of the four initial sites for which ground truth observations were available 

were subjected to these preprocessing steps. The resulting DII values were used as the 

inputs to train our machine learning classifiers the output of which was the probability that 

a pixel belonged to the coral class. 

𝑃(𝑃𝑖𝑥𝑒𝑙 | 𝐷𝐼𝐼௨, , 𝐷𝐼𝐼௨,ௗ , 𝐷𝐼𝐼,ௗ) 

The processing steps applied to Palmyra Atoll, Kingman Reef, Baker Island Atoll, and 

Howland Island are detailed in Figure 4-2. The processing steps applied to the additional 

two locations, Tabuaeran Island and Kiritimati Island are detailed in Figure 4-3. 

  
Figure 4-2: SVM classifier training and change analysis process flow for Palmyra 

Atoll, Kingman Reef, Baker Island Atoll, and Howland Island.  
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Figure 4-3: Robust SVM Classifier training and change analysis process flow for 

Tabuaeran Island and Kiritimati Island.  

4.3.1 Cloud Mask 

The initial preprocessing step included masking pixels obscured by clouds and their 

shadows. The Landsat images were selected from scenes with less than 10% cloud cover 

to minimize cloud and obstructions particularly in the coral reef areas of interest within 

each scene. However, given the locations of our sites and recency requirement to the time 

period of observation data, some amount of cloud cover was unavoidable. As a result, a 

cloud and pixel quality mask applied to both the initial state image and final state image of 

each scene. This was performed by leveraging the Landsat 7 and Landsat 8 BQA band [51] 

[53]. Furthermore, when conducting the change detection analysis step, both the initial 

state image mask and final state image mask were applied to both images of each scene. 

This important step was performed in order to isolate the change in coral population apart 

from the confounding effects of differences in quality between the two images.  
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4.3.2 Land Mask 

The next preprocessing step was to prepare a mask for land pixels. The Landsat 

NIR band captures light between 0.851 and 0.0879 µm. Light in the wavelength range does 

not penetrate water making it an ideal candidate for delineating water from land [54]. The 

mask was developed by applying a threshold to the NIR band pixel values. Plots were 

created for each area of interest and inspected to identify the most appropriate cutoff for 

the mask.  

4.3.3 Atmospheric Correction and Water Column Correction 

Atmospheric and water surface properties account for 90% of at sensor reflectance 

in the visual bands [56]. Therefore, atmospheric correction was performed to remove this 

interference via the dark pixel subtraction method [57]. An area of deep-water (>50 m) in 

which visible wavelengths have fully attenuated was selected from within each scene [58]. 

Under the assumption that the atmospheric and water surface conditions are uniform across 

the scene, the mean deep-water radiance at sensor was leveraged to correct for the effect 

of atmospheric and surface reflectance interferences [1] [58] [59] [60]. Due to the full 

attenuation of visible light, signal received from the deep-water area of interest is 

comprised of atmospheric radiance and surface reflectance. This allows the impact of these 

factors to be isolated for correction [55]. Two standard deviations are subtracted from mean 

radiance at sensor to account for possible sensor noise [62].  

The intensity of visible light decreases exponentially as it penetrates water. The 

attenuation rate is wavelength-dependent and severely impacts the study of ocean habitats 
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using remote sensing data [61]. Remote sensing imagery that contains several water-

penetrating (visible) bands can be leveraged for water column correction [51]. Shorter-

wavelength light will attenuate less rapidly than longer-wavelength light. As a result, at 

sensor the spectral radiances are comprised of both depth and the composition of the 

subsurface strata. This represents a confounding influence that can create a material shift 

in the subsurface reflectance. Therefore, it is advantageous to remove the influence of 

variable depth in the study of benthic features [1]. In this study, the well-known and broadly 

used water column correction method developed by Lyzenga [43] [63] [64] [65] [66] was 

applied to each image.  

4.3.4 SVM Site Application, Validation, and Change Analysis 

In the analysis of Palmyra Island Atoll, Kingman Reef, Howland Island Atoll, and 

Baker Island, the preprocessing steps were followed by training of a Support Vector 

Machine (SVM) classifier [132] against each of the Landsat 8 images and evaluation of 

results using ground truth data. Beginning with these four locations for which ground truth 

observation data was available, we trained an SVM classifier on the three Landsat 8 DII 

(DIIblue,green, DIIblue,red, DIIgreen,red) values to predict the observed pixel class. Tuning of the 

algorithm was performed using cross-validation. A radial basis function kernel 

outperformed other kernel methods and the optimal cost (regularization) and gamma 

(influence) parameters were determined for each site based on optimal accuracy and 

generalization criteria. Once the optimal hyperparameters for the SVM algorithm were 

obtained, the algorithm was applied to determine the posterior probability of each pixel 

within the Landsat 8 area of interest for each of the four locations. A map of the posterior 
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probability that each pixel contained coral was produced and the final class for each pixel 

was determined by thresholding the posterior probability at 50%. The SVM classifier was 

then applied to the applicable, preprocessed Landsat 7 scene for each location. Posterior 

probability and predicted class maps were then produced for each of the Landsat 7 scenes 

as well. A per pixel comparison of the predicted class was made for all pixels in each area 

of interest of each scene in order to determine the change in coral cover for the given time 

periods. 

The analysis of the four initial sites was followed by analysis of two more remote 

locations (Tabuaeran Island and Kiritimati Island). These unique locations were selected 

on the basis that they have never been the subjects of coral cover change detection analysis 

that maps the entire ecosystem using remote satellite imagery [119]. A SVM classifier was 

trained using the combined inputs (truth labels and DII values calculated from the 

corresponding Landsat 8 scene) from all four sites therefore enabling the resulting 

algorithm to more adeptly generalize beyond site-specific biases of previous in-situ 

analysis [133]. Validation of this approach was performed in two different ways. First, the 

accuracy of the model trained on the consolidated data was assessed through cross-

validation. While this methodology enabled an overview of the model performance it does 

not fully account for the location-based bias. Specifically, training the SVM algorithm on 

a sampling from all sites will incorporate some amount of site-based bias into the resulting 

mode. While this evaluation method represents an improvement to historical in-situ 

analysis, it is not a full analysis of the generalization properties of the classifier. Therefore, 

an additional evaluation procedure was deployed to test the ability of the classifier to 

generalize to each location independently. This second method of evaluation was 
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performed by iteratively selecting the ground truth observations from one of the four island 

locations to withhold as test cases. A model was then trained on the ground truth data from 

the remaining three sites. Finally, the resulting trained classifier was applied to predict the 

coral cover classification of the ground truth observations from the remaining location that 

was withheld from training as test data. The result of this CPCV method is a more accurate 

evaluation of the generalization properties of the machine learning algorithm when applied 

to new data. In this way, the CPCV process controls for much of the location-based bias of 

in-situ analysis and therefore is a more accurate assessment of the SVM classifier 

performance. Table 4-5 displays the results of the CPCV test procedure.  

Using the consolidated ground truth observations from all the available sites 

enabled a more diverse set of inputs to train the machine learning algorithm. As a result, 

the classifier produced was capable of generalizing more effectively to additional sites 

[133]. The algorithm was tuned using cross-validation and the optimal model selected for 

application to Tabuaeran Island and Kiritimati Island areas of interest. Landsat 8 scenes 

from 2014 and Landsat 7 scenes from 2000 and 2002 were obtained and preprocessed. The 

trained classifier was then applied to these sites longitudinally using the model trained 

across the consolidated truth data from Palmyra Atoll, Kingman Reef, Baker Island Atoll, 

and Howland Island. The per pixel posterior probability map was created and the final 

classification of each pixel determined using a 50% threshold. Change detection analysis 

was then conducted by comparing the initial and final classification of each pixel. 

Implementation and analysis were performed using the open source R programming 

language and environment for statistical computing [52]. 
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4.4 Results 

4.4.1 Classification Accuracy by Site 

The preprocessed DII values were used to train SVM models [86] [134] for each of 

Palmyra Island, Kingman Island, Baker Island Atoll, and Howland Island. In this manner, 

the DII values represent the features of the SVM model and the corresponding observed 

benthic cover type the response (e.g. live coral or not). The posterior probability for each 

pixel containing live coral cover was computed and a mapping of these posterior 

probabilities was developed for each location. A threshold was then applied to the 

probabilities in order to identify the most likely class and mapped for reference. Contextual 

validation was performed by comparing the resulting maps of predicted probabilities 

against the known geomorphology of each site. Finally, the trained SVM algorithm was 

applied to the initial state Landsat 7 image for each location and the same posterior 

probability and predicted class maps were generated. Table 4-3 summarizes the results of 

the accuracy assessment for each location and Table 4-4 provides the resulting confusion 

matrices for each location.  

The Palmyra Atoll site contained a total of 82 unique ground truth observations. 66 

of these observations were in unobscured pixels for which valid DII data could be precisely 

identified by pixel location matching the recorded GPS coordinates. The SVM model 

trained on this data correctly classified 87.9% of the ground truth observations within the 

area of interest. This model was further evaluated using precision and recall as common 

and well-known statistical measures for type I and type II errors. Precision measures the 

impact of type I error and therefore is an evaluation of the classifier’s ability to be exact. 



92 

Recall measures the impact of type II error and therefore is an evaluation of how 

completely the classifier retrieves information. The Palmyra Atoll model obtained a 

precision of 0.837 and recall of 1.000. Another common measure of the effectiveness of a 

classifier is the harmonic mean of precision and recall, known as the F-measure. The F-

measure of the SVM classifier trained and tuned against the Palmyra Atoll site data was 

0.911. Specificity is a measure of the classifier’s capacity for differentiating between true 

negative observation data. As applied to the Palmyra Atoll site, the SVM classifier obtained 

a specificity of 0.680. 

The Kingman Reef area of interest contained 57 ground truth observations for 

which 42 valid pixel values were unobscured. The classifier trained on this data yielded an 

overall accuracy of 85.7%. The resulting precision was measured at 0.824 and recall was 

measured at 1.000. This was an indicated that the model was committing type I errors but 

no type II errors. The model obtained an overall F-measure of 0.903 and specificity of 

0.571.  

There were 26 bottom type observations for the Baker Island Atoll site all of which 

had corresponding pixel values that were valid. The SVM model trained on this data 

obtained an accuracy of 69.2%. This lower accuracy is likely due to the inherent limitations 

of the observation data and mixing of bottom types within the pixels due to unique coral 

fauna and geomorphology. The model yielded a precision and recall of 0.706 and 0.800, 

respectively. The F-measure was calculated at 0.750 while specificity was observed at 

0.546.  
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The Howland Atoll site area of interest contained 30 observations for which 28 

valid pixels were obtained. The SVM model trained on this data yielded an accuracy of 

82.1%. The resulting precision and recall were measured to be 0.813 and 0.867, 

respectively which indicates that the model is robust to both type I and type II errors. 

Furthermore, the classifier yielded an F-measure of 0.839 and specificity of 0.769. 

Table 4-3: SVM Classifier Performance Assessment by Site. 

 
Palmyra 
Atoll 

Kingman 
Reef 

Baker Island 
Atoll 

Howland 
Island 

Accuracy 87.9% 85.7% 69.2% 82.1% 
Precision 0.837 0.824 0.706 0.813 
Recall 1.000 1.000 0.800 0.867 
Specificity 0.680 0.571 0.546 0.769 
F-measure 0.911 0.903 0.750 0.839 

 

Table 4-4: Confusion Matrices by Site and Consolidated Inputs. 

  Ground Truth Labels 
  Coral Not Coral 

P
re

d
ic

te
d

 C
la

ss
 

 Palmyra Atoll 
Coral 41 8 

Not Coral 0 17 
 Kingman Reef 

Coral 28 6 
Not Coral 0 8 

 Baker Island Atoll 
Coral 12 5 

Not Coral 3 6 
 Howland Island 

Coral 13 3 
Not Coral 2 10 

 Consolidated Sites 
Coral 91 32 

Not Coral 8 31 
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4.4.2 Consolidated Model Robust to Site-Specific Bias 

Once the classifier for each site was trained and deployed, a combined classifier 

was built using the consolidated information of all valid observation data from the four 

sites (Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island). Combining 

the inputs from all sites enabled the development of an algorithm more robust to site-

specific bias. The limitation or elimination of this bias allowed the resulting model to more 

effectively generalize to other sites for which the training sites were representative. 

Without the benefit of site-specific bias, the resulting accuracy is likely to suffer because 

the classifier no longer had the benefit of accounting for local conditions and 

geomorphology in training. However, the resulting algorithm did gain the benefit of being 

robust to these site-specific conditions and therefore could be applied to additional sites. 

When the SVM algorithm was applied to the consolidated observations of all sites it 

yielded an accuracy of 75.3%. The resulting precision was 0.740 and recall was 0.919. 

Specificity was measured to be 0.492 and the F-measure was 0.820. These figures are 

detailed in Table 4-5.  

As expected, the classifier did not obtain as high an accuracy when assessed using 

the CPCV method. As discussed in the Materials and Methods Section, this was a result of 

the further isolation and reduction of site-specific bias during the training of the algorithm. 

The CPCV method resulted in an accuracy of 78.8% when tested against the Palmyra Atoll 

ground truth data. This corresponds to a precision of 0.776, recall of 0.927, and specificity 

of 0.560. The F-measure was 0.844. The Kingman Reef site evaluated using the CPCV 

process obtained an accuracy of 81.0%, precision of 0.776, recall of 0.927, and specificity 
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of 0.560. The corresponding F-measure was calculated at 0.867. The Baker Island Atoll 

and Howland Island results from the CPCV method show a decrease in accuracy to 65.4% 

and 67.9%, respectively. This decrease is related to the distance between the majority of 

the ground truth observations (i.e. Palmyra Atoll and Kingman Reef). This geographic 

distance resulted in ground truth observations that do not represent the test site as well due 

to differences in marine species, environmental conditions, and geomorphology. Baker 

Island Atoll and Howland Island were disproportionately impacted by this due to 

disproportionate representation in the ground truth observations. Some stratified random 

sampling of the locations was performed during CPCV assessment to control for this 

disproportionate representation, however, data size constraints limited the extent to which 

sampling methods could be applied. The Baker Island Atoll assessment yielded a precision 

of 0.750, recall of 0.600, and specificity of 0.769. The Howland Island test produced a 

precision of 0.750, recall of 0.600, and specificity of 0.769. The CPCV procedure obtained 

an F-measure of 0.769 and 0.667 for Baker Island Atoll and Howland Island, respectively. 

The assessment of the SVM classifier trained on the consolidated ground truth observations 

from all sites yielded an accuracy of 75.3%. The corresponding precision was 0.740, recall 

was 0.919, and specificity was 0.492. The F-measure was calculated as 0.820. These 

figures are summarized in Table 4-5. Figure 4-4 contains the ROC curve for the classifier 

resulting from the model developed using the consolidated site data. This is a common 

visualization is used to evaluate the overall performance of a classifier. It plots the model’s 

recall (true positive rate) as a function of 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (false positive rate) [135]. An 

additional classifier diagnostic measure related to the ROC curve is the AUC. The AUC 
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resulting from the combined classifier was 0.778. Table 4-5 is a summary of the results 

from the CPCV procedure.  

Table 4-5: Controlled Parameter Cross-Validation (CPCV) procedure results by 
site. 

 
Palmyra 

Atoll 
Kingman 

Reef 
Baker 

Island Atoll 
Howland 

Island 
Consolidated 

Sites 
Accuracy 78.8% 81.0% 65.4% 67.9% 75.3% 
Precision 0.776 0.813 0.625 0.750 0.740 
Recall 0.927 0.929 1.000 0.600 0.919 
Specificity 0.560 0.571 0.182 0.769 0.492 
F-measure 0.844 0.867 0.769 0.667 0.820 

 

  
Figure 4-4: Performance evaluation of the combined classifier using ROC Curve 

and AUC (0.778).  
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4.5 Change Detection Analysis 

4.5.1 Palmyra Atoll 

The baseline image of the Palmyra Atoll site used for the change detection analysis 

in this study was captured in 2001 and contained 24,092 pixels identified as coral which 

corresponds to approximately 21.68km2. In 2015 the same location contained 16,410 coral 

pixels or approximately 14.77km2 of coral cover. This represents a 31.9% net decrease in 

coral coverage over the 14-year period. 9,850 (8.87km2) of the coral pixels in 2001 became 

algae by 2015. Furthermore, in 2001 52.8% of the area surveyed was identified as coral 

compared to 35.9% in 2015. A minor amount of area (4.8% of pixels) that was algae in the 

earlier image was determined to be coral in the second image. See figure 4-5 for the 

Palmyra Atoll posterior probability map for 2001 (top) and 2015 (bottom). Figure 4-6 maps 

the coral cover change when the 2001 initial state classification map is compared to the 

2015 final state classification map. Figure 4-7 maps the cover type classification change 

between the two images. Table 4-6 depicts the per class results of the temporal change 

detection analysis.  
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Figure 4-5: Posterior probability map for the Palmyra Atoll area of interest (top, 

2001 and bottom, 2015).  
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Figure 4-6: Predicted class map for the Palmyra Atoll area of interest (top, 2001 and 

bottom, 2015). 

  
Figure 4-7: Difference in predicted class membership map for the Palmyra Atoll 

area of interest for 2001 initial state compared to 2015 final state. 
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4.5.2 Kingman Reef 

The Kingman Reef site revealed some of the smallest declines in coral of the 

locations surveyed. The initial image of this location was captured in 2002. 33,294 coral 

pixels were identified as containing live coral cover in the initial class image which 

corresponds to approximately 29.96km2. The final status image was captured in 2015 and 

when analyzed revealed 24,860 pixels with live coral cover (22.37km2). This represents a 

25.3% net decrease during the 14-year period between the image capture dates. 85.1% of 

valid, shallow area the initial state image contained coral while 63.5% of the final image 

contained coral. Figure 4-8 represents the mapping of Kingman Reef posterior probabilities 

for each pixel belonging to the coral class both for 2001 (top) and 2015 (bottom). Figure 

4-9 maps the coral cover change when the 2001 initial state classification map is compared 

to the 2015 final state classification map. Figure 4-10 maps the cover type classification 

change between the two images. Table 4-6 is a summary of the results of the change 

detection analysis between the initial state image and final state image. 
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Figure 4-8: Posterior probability map for the Kingman Reef area of interest (top, 

2001 and bottom, 2015). 
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 Figure 4-9: Predicted class probability map for the Kingman Reef area of interest 
(top, 2001 and bottom, 2015). 
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Figure 4-10: Difference in predicted class membership map for the Kingman Reef 
area of interest for 2001 initial state compared to 2015 final state. 

4.5.3 Baker Island Atoll 

The second largest percentage decrease in coral between the initial and final state 

images was observed at the Baker Island Atoll site. The image of the scene used to identify 

the initial state of live coral cover at the site was obtained in 2002 and the final image was 

obtained in 2014 representing a 13-year observation period. Initially 465 pixels or 0.42km2 

were classified as coral compared to 280 or 0.25km2 in the final image. This corresponds 

to a 39.8% net decrease during the observed period. Furthermore, 22.0% of the shallow, 

valid pixels in the initial image were classified as coral compared to 13.3% in the final 

image. Figure 4-11 represents the mapping of posterior probabilities for each pixel 

belonging to the coral class for Baker Island Atoll beginning with 2002 (top) and the final 

class in 2014 (bottom). Figure 4-12 maps the coral cover change when the 2002 initial state 

classification map is compared to the 2014 final state classification map. Figure 4-13 maps 

the cover type classification change between the two images. Table 4-6 contains a summary 

of the change detection analysis for the Baker Island Atoll site.  
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Figure 4-11: Posterior probability map for the Baker Island Atoll area of interest 

(top, 2002 and bottom, 2014). 
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Figure 4-12: Predicted class map for the Baker Island Atoll area of interest (top, 
2002 and bottom, 2014). 
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Figure 4-13: Difference in predicted class membership map for the Palmyra Atoll 

area of interest for 2002 initial state compared to 2014 final state. 

4.5.4 Howland Island 

Howland Island was the smallest area of interest analyzed. During the 14-years 

between the initial state image and final state image this area incurred the smallest decrease 

in coral of all sites analyzed. The initial scene was capture by Landsat 7 in 2001 and was 

found to contain 252 coral pixels (0.23km2). The final state image was captured by Landsat 

8 in 2015 and contained 188 coral pixels (0.17km2). This represents a 25.4% decrease over 

the observed time period. 21.5% of the initial image was classified as coral cover while 

16.0% of the final image was classified as coral. Figure 4-14 displays the posterior 

probabilities for each pixel belonging to the coral class for 2001 (top) and 2015 (bottom). 

Figure 4-15 maps the coral cover change when the 2001 initial state classification map is 

compared to the 2015 final state classification map. Figure 4-16 maps the cover type 
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classification change between the two images. The results of the change detection analysis 

are detailed in Table 4-6. 

  
Figure 4-14: Posterior probability map for the Howland Island area of interest (top, 

2001 and bottom, 2015).  
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Figure 4-15: Predicted class map for the Howland Island area of interest (top, 2001 
and bottom, 2015).  



109 

 

  
Figure 4-16: Difference in predicted class membership map for the Howland 

Island area of interest for 2001 initial state compared to 2015 final state.  

4.5.5 Tabuaeran Island 

Tabuaeran Island represented the largest site evaluated for coral change detection. 

The initial image of this site was captured in 2000 and the final image was captured in 

2014. The 13-year observation period yielded a 35.2% reduction in coral coverage within 

the area of interest. The initial state image contained 5,089 coral pixels or 4.58km2. The 

final state image contained 3,298 coral pixels or 2.97km2. While the area of interest for this 

site was somewhat large (94,731 pixels) the actual coral coverage within the site was 

somewhat small. Within the initial image 5.4% of the area contained live coral cover while 

only 3.5% of the final image represented coral. The posterior probability maps for 2000 
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(top) and 2014 (bottom) are detailed in Figure 4-17. Figure 4-18 maps the coral cover 

change when the 2000 initial state classification map is compared to the 2014 final state 

classification map. Figure 4-19 maps the cover type classification change between the two 

images. The results of the temporal change detection analysis can be viewed in Table 4-6. 

  
Figure 4-17: Posterior probability map for the Tabuaeran Island area of interest 

(top, 2000 and bottom, 2014).  
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Figure 4-18: Predicted class map for the Tabuaeran Island area of interest (top, 
2000 and bottom, 2014).  
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Figure 4-19: Difference in predicted class membership map for the Tabuaeran 

Island area of interest for 2000 initial state compared to 2014 final state.  

4.5.6 Kiritimati Island 

The largest decrease in live coral cover between the initial observation date and 

final observation date was observed in the Kiritimati Island location. In this location there 

was a net decrease in coral cover of 42.7% between the initial state image captured in 2002 

and the final state image captured in 2014. The initial image contained 29,303 pixels with 

live coral cover (26.37km2) while the final image contained 16,804 pixels with live coral 

cover (15.12km2). Furthermore, coral covered 19.0% of the initial image and only 11.0% 

of the final image. This site was also the largest area of interest analyzed covering 153,408 

valid, shallow water pixels. The posterior probability mapping for Kiritimati Island for 

2002 (top) and 2014 (bottom) can be found in Figure 4-20. Figure 4-21 maps the coral 

cover change when the 2002 initial state classification map is compared to the 2014 final 
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state classification map. Figure 4-22 maps the cover type classification change between the 

two images. Table 4-6 contains the results of the change detection analysis for Kiritimati 

Island.  

  
Figure 4-20: Posterior probability map for the Kiritimati Island area of interest 

(top, 2002 and bottom, 2014).  
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Figure 4-21: Predicted class map for the Kiritimati Island area of interest (top, 
2002 and bottom, 2014).  
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Figure 4-22: Difference in predicted class membership map for the Kiritimati 

Island area of interest for 2002 initial state compared to 2014 final state.  

Table 4-6: Change Detection Analysis by Site. 

  
Initial Class 
(pixel count) 

Initial Class 
(𝑘𝑚ଶ) 

  Coral Not Coral Coral Not Coral 

F
in

al
 C

la
ss

 

 Palmyra Atoll Palmyra Atoll 
Coral 14,242 2,168 12.82 1.95 

Not Coral 9,850 19,395 8.87 17.46 
 Kingman Reef Kingman Reef 

Coral 23,642 1,218 21.28 1.10 
Not Coral 9,652 4,627 8.69 4.16 

 Baker Island Atoll Baker Island Atoll 
Coral 154 126 0.14 0.11 

Not Coral 311 1,520 0.28 1.37 
 Howland Island Howland Island 

Coral 94 94 0.08 0.08 
Not Coral 158 828 0.14 0.75 

 Tabuaeran Island Tabuaeran Island 
Coral 1,544 1,754 1.39 1.58 

Not Coral 3,545 87,888 3.19 79.10 
 Kiritimati Island Kiritimati Island 

Coral 13,290 3,514 11.96 3.16 
Not Coral 16,013 120,105 14.41 108.53 
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4.6 Discussion 

The methodology presented in this study revealed a significant decrease in live 

coral cover of multiple coral reef sites in the Pacific Ocean. This was shown using change 

detection analysis as applied to six different locations comparing an initial state image to a 

final state image with a 12 to 14-year timespan between the two. The methodology 

leveraged a robust SVM classifier to evaluate each site. The benefit of the SVM classifier 

over other classifiers such as LDA, QDA, and regression with regularization (ℓ1 and ℓ2 

penalty) is the ability for the algorithm to be trained even with limited data as well as the 

ability for the algorithm to efficiently generalize. These traits are a result of the model 

design. Specifically, the algorithm fits a maximal-margin hyperplane to separate the 

dependent feature classes. The exact placement of this hyperplane is based on the 

observations that are closest to the classifier decision boundary called the support vectors. 

The maximal-margin enables the trained model to efficiently generalize and the support 

vectors delineating the maximal-margin enables the model to be trained on a small amount 

of ground truth observations in a low dimensional feature space. As a result, the SVM 

model tends to generalize to new data more effectively than other classifiers. Table 4-7 

summarizes the classification accuracy of several alternative learning algorithms. 

The primary benefit of the approach proposed in this section as well as other 

sections of this dissertation is the ability for a machine learning classifier trained on ground 

truth observations in several locations to generalize to additional locations. This capability 

was demonstrated through the CPCV process which yielded up to 81% accuracy when 

tested against ground truth observations from a location that was withheld from the model 
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training set. This is due to the reduction in site-specific bias such as local geomorphology, 

environmental condition, and unique coral fauna enabled by training based on ground truth 

data from multiple sites. Specifically, training based on a wider domain of ground truth 

observations which span multiple locations allows for a broader array of locations to be 

effectively represented. The implications of this is an expanded breadth of coral cover 

classification beyond isolated in-situ analysis. This is a powerful tool that should be 

leveraged to reduce the cost of monitoring the health of our coral reefs while expanding 

the coverage of coral reef monitoring. The natural evolution of in-situ change detection 

analysis to change detection analysis at scale will rely on the concept of generalizing a 

robust classifier longitudinally and the CPCV assessment as asserted in this research.  

Table 4-7: Classification accuracy of select additional learning algorithms. 

 
Palmyra 

Atoll 
Kingman 

Reef 
Baker 

Island Atoll 
Howland 

Island 
Consolidated 

Sites 
LASSO Regression 67.7% 68.3% 56.0% 51.9% 64.6% 
Ridge Regression 67.7% 68.3% 56.0% 51.9% 64.6% 
Logistic Regression 78.5% 82.3% 61.5% 71.4% 72.7% 
QDA 76.9% 78.0% 61.5% 64.3% 73.3% 

The primary challenge of the proposed method is that, while the classifier can 

generalize more effectively, its overall accuracy is lower than in-situ models. In-situ 

analysis based on Landsat data generally obtain accuracies of up to 80% or higher [1]. The 

robust, consolidated model developed in this research did not achieve as high of an 

accuracy. This is a natural result when the location-based bias of in-situ analysis are 

stripped away. Rather, the model can generalize more appropriately to additional sites as a 

direct result of averting biases such as local geomorphology and ecology. In-situ analyses 

incorporate this bias into the training of their predictors, and therefore yield higher 

accuracies but cannot generalize to new locations.  
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An additional challenge of the proposed method is that it relies upon medium 

resolution Landsat data. While the Landsat missions have proven to be an excellent data 

source for long-term temporal change analysis [95] [96] [97] [98] [99] [100] [101] [102] 

[103] [104], the comparatively low resolution represents a challenge to accuracy benthic 

cover classification. The 30m resolution of the Landsat platform means that highly 

heterogeneous environments such as coral reefs are difficult to classify due to the degree 

of within pixel mixing. Alternative higher resolution satellite platforms such as Sentinel-2 

can be used to obtain benthic cover classification accuracies greater than studies based on 

Landsat images often showing as much as a 10% improvement [87]. In addition, new 

approaches based on high-resolution imagery show promising results. Most recently, 

research on object-based classification using high-resolution imagery from QuickBird and 

WorldView-2 have obtained classification accuracies over 90% [88]. However, it has been 

shown that these same methods deliver similar results to pixel based benthic cover 

classification when applied to medium resolution images such as those produced by the 

Landsat missions [93] [94]. Furthermore, the deployment of high-resolution remote 

sensing platforms is constrained by the progression of technological advances. As a result, 

these high-resolution platforms are more a recent development compared to the rich history 

provided by Landsat and any long-term (>10-years) evaluation of live coral cover change 

necessitates that the research be conducted using Landsat imagery. Similarly, the lack of a 

coastal aerosol band on missions prior to Landsat 8 is an unfortunate challenge given the 

water column penetrating properties of light in this channel.  
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4.7 Conclusion 

This study measured the decline in live coral cover of six Remote Pacific Island 

sites over the past 12 to 14 years. This was achieved by building a classifier for each of 

four locations (Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island), 

applying the classifier to the initial state image (captured between 2000 and 2002) and final 

state image (captured between 2014 and 2015), then conducting a per-pixel change 

detection analysis. The SVM algorithm as applied to these four sites achieved a 

classification accuracy as high as 87.9% (Palmyra Atoll site). When applied to Kingman 

Reef, Baker Island Atoll, and Howland Island the model achieved accuracies of 85.7%, 

69.23, and 82.1% respectively. The results of the change detection analysis revealed an 

overall decline of coral coverage in these sites by as much as 38.8%. Within the Palmyra 

Atoll area of interest, a decline in coral from 2001 to 2015 of 31.9% was observed. This 

represents a net decrease of 6.91 𝑘𝑚ଶ of coral. The Kingman Reef site and Howland Island 

sites incurred the least severe decline by percentage. However, these sites still incurred 

more than a 20% drop in coral cover. Within Kingman Reef a decline in coral cover of 

25.3% was observed or 7.59km2. Similarly, within the Howland Island site coral declined 

25.0% or 0.06km2. Coral coverage within the Baker Island Atoll area of interest declined 

by 39.8% or 0.17km2. Further analysis was conducted of two additional sites, Tabuaeran 

Island and Kiritimati Island. These sites were analyzed by developing an SVM classifier 

using the combined observation data from all four sites. Because this consolidated model 

was trained using information drawn from multiple sites, it is more robust to site-specific 

biases that in-situ models rely on. This methodology was validated using a CPCV process 

of training a model using the combined ground truth data from three sites and applying it 
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to the third. In this way, the CPCV assessment is an indication of how well the SVM 

classifier can generalize to data from new sites. The results of the CPCV assessment 

showed that the SVM classifier obtained an accuracy of 78.8% when tested against the 

Palmyra Atoll ground truth observations, 81.0% when tested against the Kingman Reef 

ground truth observations, 65.4% when tested against the Baker Island Atoll ground truth 

observations, and 67.9% when tested against the Howland Island ground truth 

observations. An SVM classifier was created using the consolidated ground truth data from 

all four sites and evaluated using cross-validation. The resulting algorithm correctly 

classified 75.3% across all ground truth observations across the four training sites. This 

consolidated classifier was then deployed to conduct a change detection analysis on the 

Tabuaeran Island and Kiritimati Island sites. The analysis revealed a 35.2% reduction in 

coral cover at Tabuaeran Island (1.61km2) when the 2000 initial state image was compared 

to the 2014 final state image. Kiritimati Island incurred the largest decrease in live coral 

coverage of all sites included in this study. In this location the analysis revealed a reduction 

in coral coverage of 11.25km2 or 42.7%. 
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5. Third Study: A Generalized 

Machine Learning Classifier for 

Spatiotemporal Analysis of Coral 

Reefs in the Red Sea 
5.1 Introduction 

Coral reefs comprise less than 0.2% of the oceans yet contain 35% of all known 

marine species [136]. This remarkable concentration of biodiversity makes coral reefs an 

exceptionally unique ecosystem. However, this ecosystem is in decline. The effect of 

global bleaching events on coral reefs as well as the impact of local stressors are well 

documented [5] [6] [7] [8] [9] [10] [11] [12] [110] [111] [112] [137] [138]. In 2015 the 

NOAA declared the third global bleaching event. As a result, coral bleaching has now 

become the main driver of coral reef degradation globally [113]. This has led some 

researchers to project the total loss of this critical environment [114] [139]. Therefore, 

identifying reefs that may be more resilient to the impact of climate change due to local 

geomorphology or unique coral species biodiversity is now a scientific imperative. 

Landsat is a commonly used remote sensing platform for change analysis of all 

types. The analysis of coral reefs is no exception. An abundance of studies that isolate a 

single location for change detection analysis [36] [61] [106] [107]. The framework of these 
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in-situ studies are common. First, an initial state and a final state image are selected for the 

location. Next, a classifier is trained on the final state image then applied to the initial state 

image. Finally, a per-pixel or similar [88] [90] [91] [92] change analysis is conducted. This 

well-established framework is effective for identifying changes in coral reefs for that 

isolated, in-situ location [43]. Yet, the cost of obtaining ground truth data on which to train 

a classifier limits the scope of this approach. That is, each change analysis study requires 

an associated set of ground truth observations on which the classifier can be trained. The 

alternative is to deploy an unsupervised learner, however accuracies of these methods are 

often inferior to supervised methods. In order to expand the in-situ change detection 

approach beyond the limited scope of individual locations, a new methodology to 

generalize the results longitudinally must be developed.  

This study leveraged a robust machine learning classifier trained using the 

combined information of two large areas of interest in order to conduct a change analysis 

of the coral cover in the Red Sea. The spatial and temporal extent undertaken by this study 

has never been accomplished before. This research builds upon the previous in-situ 

methodology to produce a classifier that is robust to location specific biases. While 

removing these localized biases reduces the performance within the training location, it 

enables the classifier to generalize more effectively to new locations. In this way, the 

generalized classifier is robust to overfitting site-specific conditions as is the case with an 

in-situ approach. In addition to expanding the boundaries of spatial constraints, this 

research aims to evaluate a longer time period than previous research. Very little research 

has been conducted to evaluate the change in coral reefs over an 18-year period using 

remote sensing data [105]. Furthermore, given the frequency and severity of coral 
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bleaching events over the time period, this research is a critical check point for identifying 

how coral reefs in the Red Sea are surviving under the threat of climate change.  

Section Two of this chapter is a discussion of the materials and methods used in 

this research. This includes a review of the data used as well as a description of the selected 

locations. The Materials and Methods Section is followed by Section Three which includes 

an evaluation of the per-site performance of the classifier and a quantitative assessment of 

the generalized classifier. The Results Section concludes with a review of the results from 

the change detection analysis for each site. Section Four includes a discussion and 

evaluation of the methodology undertaken in the research including benefits and challenges 

as well as a proposal for future work in the area. The study concludes with a review of the 

resulting outcomes and conclusions resulting from this research.  

5.2 Materials and Methods 

5.2.1 Study Area 

The first location evaluated in this study was the coastal region near the city of Gulf 

of Aqaba. This area of interest spans from approximately 35°20’E to 34°35’E and 27°30’N 

to 28°50’N, including Sanafir Island. This location is one of the northmost coral reefs in 

the world. The second location studied was a group of reefs immediately off the coast of 

Umluj from approximately 36°55’E to 37°20’E and 24°35’N to 25°20’N. Both locations 

are in a unique environment for coral reefs. First, the Red sea is encompassed by desert 

and therefore receives very little water from rivers. Due to this, there is little fluctuation in 

salinity, temperature, and water quality within the coral reefs of the Red Sea [140]. Figure 

5-1 identifies each of the three Red Sea AOIs and their relative location.  
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Figure 5-1: Relative location of the three locations under study (1) Gulf of Aqaba 

Location, (2) Umluj Location, (3) Al Wajh Location  

5.2.2 Data Used and Preprocessing Steps 

Images captured by Landsat 8 OLI and Landsat 7 ETM captured in 2018 and 2000, 

respectively were used to evaluate the locations of this study. Both Landsat missions have 

at least three visible bands with 30m spatial resolution. For this study, Landsat 8 band 2 

(0.450-0.515µm), band 3 (0.525-0.600µm), and band 4 (0.630-0.680µm) were used due to 

1 2 3 
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their water column penetrating properties. The coastal aerosol, band 1 was not used since 

there is no comparable band present in the Landsat 7 data. Landsat 7 band 2 (0.45-0.51 

µm), band 3 (0.53-0.59 µm) and band 4 (0.64-0.67 µm) were used to analyze the previous 

condition of each site. Each Landsat mission is on a 16-day revisit cycle. 2018 images were 

selected from all available Landsat scenes to minimize the amount of cloud cover and 

obscurities with particular care given to the specific area of interest within the scene. 

Similarly, the 2000 images were selected from all available Landsat 7 images after taking 

into account the location of cloud cover and other obscurities. For each of the sites, Table 

5-1 displays the Landsat Path-Row, Landsat 8 OLI and Landsat 7 ETM scene capture data, 

area of interest dimensions, and total number of ground truth observations.  

Table 5-1: Summary of Data Used. 

Site 
(Figure 5-1) 

Path/ 
Row 

Site 
Latitude-
Longitude 

Final 
Scene Date 

Baseline 
Scene Date 

AOI Dimensions 
Ground 
Truth 
Points 

1 174/041 
Gulf of 
Aqaba 

27°57′N 
34°50′E 

11/7/2018 3/18/2000 65.7×64.7-km 1,085 

2 172/043 Umluj 
25°00′N 
37°10′E 

12/11/2018 2/17/2000 55.3×28.4-km 196 

3 172/042 Al Wajh 
25°35′N 
36°48′E 

2/26/2018 6/24/2000 104.1×77.7-km - 

5.2.3 Preprocessing 

For each location a Landsat Tier 1 data product from 2000 and 2018 was obtained. 

All images underwent radiometric characterization and geometric correction as L1TP 

corrected data. The data were determined to have well-characterized radiometry within 

image-to-image tolerances of ≤12m radial RMSE [117] [118]. Clouds and other obscured 

pixels were masked from the images by leveraging the Landsat BQA band [53] [54]. A 

water mask was developed using the respective Landsat NIR bands. Light in the NIR 



126 

spectral range (0.851 and 0.0879-µm) does not penetrate water therefore this band was 

used to identify areas of full wavelength absorption and develop the water mask [56]. 

Atmospheric correction was performed by dark-pixel subtraction method followed by sun 

glint correction [57] [58] [1] [59] [60] [55] [62]. Water column correction was then applied 

by calculating the per pixel DII according to the method of Lyzenga [63] [64] [65] [66]. 

The method of Lyzenga leverages the ratio of attenuation coefficients between each pair 

of bands thereby avoiding the need to calculate estimates of 𝑘 for each band directly [63] 

[64]. The DII is calculated accordingly with the following equation as discussed in Chapter 

One: 

𝐷𝐼𝐼 = ln(𝐿 − 𝐿௦) − ቈ
𝑘

𝑘
∙ ln൫𝐿 − 𝐿௦൯ 

These DII values resulting from the preprocessing steps were then used as inputs for the 

machine learning classifier. 

5.2.4 Generalized Machine Learning Classifier 

The DII values resulting from the preprocessed images were first used to train a 

classifier for the Gulf of Aqaba site using data only from that location. In this way, the Gulf 

of Aqaba location served as a baseline to evaluate how well the algorithm is generalizing 

to additional sites. First, a stratified random sampling of the DII and observation data was 

performed to correct for class imbalance. A SVM algorithm was then applied to the 

sampled DII values derived from the Landsat 8 image of the Gulf of Aqaba location. 

Accuracy was evaluated using ground truth observations. The algorithm was tuned using 

cross-validation to obtain the optimal cost and gamma values taking into account both 
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accuracy and generalizability. A radial kernel function outperformed other kernel methods. 

Care was taken not to overfit the model to the Gulf of Aqaba site. Additional features were 

tried such as entropy, however, while the classification accuracy for this specific location 

went up, it was discovered that the additional features could not generalize to new data. 

Once the optimal hyperparameters were derived, the tuned SVM algorithm was evaluated 

based on six different measures: accuracy (percentage of ground truth observations 

correctly classified), precision (1 – user error), recall (producer error), specificity, F-

measure, and kappa-coefficient. Once the accuracy assessment was completed, the SVM 

model was applied to the DII values from the entire Landsat 7 and Landsat 8 scenes. A 

map of coral cover based on the posterior probability of each pixel was developed and 

applying a threshold to these probabilities derived a predicted class which also was 

mapped. Coral cover change detection analysis was then conducted for the Gulf of Aqaba 

site through a per-pixel comparison of the initial class derived from the Landsat 7 image 

and the final class derived from the Landsat 8 image.  

The algorithm developed using the DII and ground truth observations trained on 

the Gulf of Aqaba site was then deployed to the truth observations of the Umluj location. 

In this way, the research process resembles the well-known data science practice of train 

and test split and a true evaluation of the model robustness can be determined. The same 

assessment criteria used to evaluate the model as applied to the Gulf of Aqaba site was also 

used to evaluate the performance against the Umluj site. Once the model was evaluated, a 

per pixel map of the posterior probability that the pixel belonged to the coral class was 

created for Umluj. A threshold was applied to derive the per pixel predicted class and 

associated map. Using these data, a coral cover change analysis was conducted by 
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comparing the initial state classifications derived using the Landsat 7 data to the final state 

classifications derived using the Landsat 8 data on a per pixel basis.  

Following the model evaluation as applied to the Gulf of Aqaba location and Umluj 

location, a robust machine learning classifier was developed using the combined ground 

truth observations of both sites. This classifier was trained using the consolidated ground 

truth observations as the dependent variable and associated DII pixel values from both Gulf 

of Aqaba and Umluj as the independent variables. The resulting robust classifier was then 

applied to change detection analysis of the Al Wajh location by comparing the per pixel 

predicted class using the DII values derived from the Landsat 8 image to those of the 

Landsat 7 image.  

Using the consolidated information from both sites allowed the resulting classifier 

to more effectively generalize to new information from additional sites [133]. This result 

is due to the decrease in site-specific bias that results from training the algorithm on data 

that is more representative of the greater ecology and geomorphological conditions of the 

region. The result is an algorithm that is more representative of the region rather than the 

specific location-based bias that in-situ analyses rely upon. Training the SVM using data 

from data that is representative of the region rather than a specific reef enables larger scope 

analysis of coral reefs than has previously been conducted. Figure 5-2 outlines the 

processing steps for training the SVM classifier, validating the classifier generalization, 

and application of the robust classifier. Figure 5-3 outlines the processing steps taken to 

conduct the change detection analysis. Implementation and analysis were performed using 

the open source R programming language and environment for statistical computing [52]. 
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Figure 5-2: SVM Classifier training (Gulf of Aqaba), validation (Umluj), and 

application of the robust classifier (Al Wajh). 
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Figure 5-3: Temporal change detection analysis process flow. 

5.3 Results 

5.3.1 Classification Accuracy by Site 

The generalization of the SVM model was evaluated using six different metrics. 

First, the raw accuracy was calculated. This is simply the percentage of ground truth 

observations which were correctly classified. While this is an extremely common metric 

for accuracy evaluation, it is really only a superficial evaluation of model performance. In 

addition to accuracy, precision and recall were calculated. Precision and recall are 

statistical measures of performance with respect to type I (false positives) and type II errors 

(false negatives), respectively. Specifically, precision is a measure of the classifier’s ability 

to be exact while recall is a measure of how complete the results are. Precision is equal to 

(1 − 𝑢𝑠𝑒𝑟 𝑒𝑟𝑟𝑜𝑟) and recall is equivalent to (𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑒𝑟𝑟𝑜𝑟). Specificity, also called 
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the true negative rate, is another measure of accuracy which evaluates how many of the tur 

negatives are correctly identified. Another common measure of accuracy is the F-measure. 

The F-measure is the harmonic mean of precision and recall which is an effective tool for 

evaluating the balance between these two measures and overall accuracy of the model. 

Finally, the kappa-coefficient was measured as the ratio of correct classification with 

respect to baseline agreement. While this metric has been questioned particularly in 

scenarios in which there is significant class imbalance (as is the case with most coral cover 

detection analysis), this metric is still informative in conjunction with the previously stated 

metrics. As a result, the kappa-coefficient was also used in evaluation of how well the SVM 

machine learning algorithm generalized. Table 5-2 is a representation of the results from 

each of these calculations as applied to both the Gulf of Aqaba location data and Umluj 

location data. 

The first location evaluated, Gulf of Aqaba, contained 1,085 coral cover, ground 

truth observation points. A stratified random sampling of these observations was applied 

to reduce class imbalance and ensure a more robust classification of pixel coral cover. The 

sampled data contained a total of 404 observations 78.22% of which were correctly 

classified by the tuned SVM classifier. The algorithm also obtained a precision of 0.7664 

and recall of 0.8119. The F-measure was calculated at 0.7885 and specificity measured 

0.7525. The kappa-coefficient yielded by the model as applied to the Gulf of Aqaba 

location was 0.5644.  

Applying the algorithm trained and tuned on the Gulf of Aqaba location data to the 

truth observations from the Umluj location yielded an accuracy of 72.73%. This decrease 
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in accuracy is expected due to the loss of site-specific bias which in-situ analysis rely upon. 

Rather, resulting from the construct of building a robust algorithm, the principal goal of 

this research was to produce a machine learning classifier that could generalize beyond the 

scope of the limited in-situ analysis. Therefore, the decrease in accuracy is acceptable given 

the challenge of generalization to new datasets. As with the Gulf of Aqaba location, 

stratified random sampling was used to adjust for class imbalance in the Umluj 

observations. A total of 44 ground truth observations were selected. The model tuned on 

the Gulf of Aqaba data and applied to the Umluj truth data yielded a precision and recall 

of 0.7500 and 0.6818, respectively. In addition, the model yielded a specificity of 0.7727 

and recall of 0.6818. The resulting F-measure was 0.7143 showing a good balance between 

precision and recall. Lastly, the kappa-coefficient was calculated to be 0.4545. Table 5-2 

contains a summary of these figures for comparison. In addition, Table 5-3 identifies the 

confusion matrices for each site as well as the results from the robust model trained using 

the consolidated data from both locations.  

Table 5-2: SVM Classifier Performance Assessment by Site and Consolidated 
Model. 

 
Gulf of 
Aqaba 

Umluj 
Consolidated 
Model 

Accuracy 78.22% 72.73% 70.98% 
Precision 0.7664 0.7500 0.6992 
Recall 0.8119 0.6818 0.7366 
Specificity 0.7525 0.7727 0.6830 
F-measure 0.7885 0.7143 0.7174 
Kappa 0.5644 0.4545 0.4196 
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Table 5-3: Confusion Matrix by Site and the Consolidated Model. 

  Ground Truth Labels 
  Coral Not Coral 

P
re

d
ic

te
d

 C
la

ss
 

 Gulf of Aqaba 
Coral 164 50 

Not Coral 38 152 
 Umluj 

Coral 15 5 
Not Coral 7 17 

 Consolidated Model 
Coral 165 71 

Not Coral 59 153 

5.3.2 Consolidated Model Robust to Site-Specific Bias 

Once the generalization criteria between the Gulf of Aqaba and Umluj site was 

measured, a robust SVM algorithm was trained using the consolidated information from 

both sites. The input features for this model were the stratified random sample of per pixel 

DII values from both the Gulf of Aqaba and Umluj locations which were used to predict 

the associated ground truth cover type classifications. Combining the data from both 

locations results in an algorithm that is able to generalize more adequately to information 

from new locations. However, the ability for the classifier to generalize comes with a small 

decrease in accuracy. This decrease is because the algorithm is no longer allowed the 

benefit of using site-specific biases such as water turbidity, local geomorphology, and the 

marine fauna that live in the specific location. These site-specific biases are what many in-

situ analysis rely upon and, therefore, these models actually overfit to the data of a single 

location. As a result, while these classifiers perform well for the given location in which 

they are trained they cannot generalize to new data beyond the limited scope, in-situ study. 

The robust machine learning classifier is trained using inputs from multiple sites. As a 

result, the inputs are more representative of the benthic habitats of an entire region rather 
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than a single, exclusive reef within the region. Training the model using inputs that are 

representative of a larger area will enable the algorithm to more appropriately generalize 

to reefs throughout that region although at the cost of accuracy for any single reef within 

the area. The robust SVM classifier correctly classified 318 of the 448 ground truth pixels 

selected from the stratified random sampling of data from both the Gulf of Aqaba and 

Umluj locations. 70.98% of the pixels were correctly classified. The precision and recall 

of the model were 0.6992 and 0.7366, respectively. The model attained a specificity of 

0.6830 and an F-measure of 0.7174. The kappa-coefficient was calculated to 0.4196. The 

results of this assessment are included in Table 5-2 as well as the confusion matrix in Table 

5-3. The ROC of the consolidated model can be observed and compared to the performance 

of the model based on the Gulf of Aqaba location data in Figure 5-4. The resulting AUC 

of the consolidated model was 0.7754. 
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Figure 5-4: Performance evaluation of the robust, combined classifier using ROC 

Curve and AUC for the Gulf of Aqaba and consolidated model. 

5.3.3 Change Detection Analysis 

Gulf of Aqaba Location 

The initial Landsat 7 image of the Gulf of Aqaba location was captured on March 

18, 2000. This image was compared to a Landsat 8 image of the same location captured on 

November 7, 2018. The initial image contained 147,014 pixels identified as containing 

coral by the trained SVM classifier. In addition, 135,288 pixels were identified as algae, 

sand, and other benthic cover types. This corresponds to 132.31km2 of coral. The 2018, 

final state image contained 130,225 coral pixels and 152,077 non-coral pixels. This 

represents 117.20km2 of coral which is a reduction of 11.4% over the 18-year period. 

Furthermore, in the initial state image coral represented 52.1% of the shallow benthic 
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cover, however, in 2018 this was reduced to 46.1%. Figure 5-5 presents the posterior 

probability map for the initial, 2000 image (top) and final, 2018 image (bottom). Figure 5-

6 presents the associated predicted class map based on the trained SVM algorithm for 2000 

(top) and 2018 (bottom). Figure 5-7 is an image fusion, difference map between the initial 

per pixel predicted class membership and final predicted class membership. A summary of 

the results of the change detection analysis can be found in Table 5-4. 
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Figure 5-5: Posterior probability map for the Gulf of Aqaba area of interest (top, 

2000 and bottom, 2018). 
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Figure 5-6: Predicted class membership map for the Gulf of Aqaba area of interest 

(top, 2000 and bottom, 2018). 
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Figure 5-7: Change detection analysis between 2000 and 2018 of the Gulf of 
Aqaba area of interest. 

Umluj Location 

The Umluj location incurred a smaller decline in coral cover than the other location. 

The initial Landsat 7 image of the location was captured on February 17, 2000. This image 

was compared to the Landsat 8 image captured on December 11, 2018. The initial, baseline 

image contained 113,284 pixels (101.96km2) classified as coral using the trained SVM 

classifier. This was compared to the final image which contained 109,443 pixels 

(98.50km2) classified as coral. This represents a decrease in coral cover of 3.4% over the 

18-year period. In the initial state image 53.5% of the shallow water pixels were identified 

as containing coral compared to 51.7% of the final state image. A mapping of the Umluj 

location posterior probabilities for each pixel belonging to the coral class for both the 2000 

(left) and 2018 (right) images are displayed in Figure 5-8. Figure 5-9 is a map of the per 
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pixel predicted class for both the baseline image (left) and final state image (right). A per 

pixel difference map between the initial state classification and final state classification of 

each pixel is presented in Figure 5-10. A summary of the results of the change detection 

analysis can be found in Table 5-4. 

  
Figure 5-8: Posterior probability map for the Umluj area of interest (left, 2000 and 

right, 2018). 
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Figure 5-9: Predicted class membership map for the Umluj area of interest (left, 

2000 and right, 2018). 
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Figure 5-10: Change detection analysis between 2000 and 2018 of the Umluj area 
of interest. 

Al Wajh Location 

The Al Wajh location sustained a decrease in coral cover of 13.6%. The initial 

evaluation of Al Wajh using the Landsat image from 2000 revealed 294,501 pixels 

(265.05km2) identified as containing coral. The final state image captured 18 years later 

revealed 254,567 coral pixels (229.11km2). The 18-year change in this location represents 

a 13.6% decrease in coral coverage. Furthermore, 28.2% of the shallow benthic area in the 

2000 image contained coral compared to 24.4% of the 2018 image. A map of the initial 

state (left) and final state (right) posterior probabilities that each pixel contains coral can 
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be viewed in Figure 5-11. The resulting per pixel classification for 2000 (left) and 2018 

(right) is displayed in Figure 5-12. Figure 5-13 displays the per pixel difference between 

the initial state class and final state class for the Al Wajh location. A summary of the results 

of the change detection analysis can be found in Table 5-4. 

  
Figure 5-11: Posterior probability map for the Al Wajh area of interest (left, 2000 

and right, 2018). 
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Figure 5-12: Predicted class membership map for the Al Wajh area of interest 

(left, 2000 and right, 2018). 

  
Figure 5-13: Change detection analysis between 2000 and 2018 of the Al Wajh 

area of interest. 
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Table 5-4: Change Detection Analysis by Site. 

  
Initial Class  
(pixel count) 

Initial Class 
(km2) 

  Coral Not Coral Coral Not Coral 

F
in

al
 C

la
ss

 

 

 Gulf of Aqaba Gulf of Aqaba 
Coral 86,843 43,382 78.16 39.04 

Not Coral 60,171 91,906 54.15 82.72 
 Umluj Umluj 

Coral 93,299 16,144 83.97 14.53 
Not Coral 19,985 82,151 17.99 73.94 

 Al Wajh Al Wajh 
Coral 208,448 46,119 187.60 41.51 

Not Coral 86,053 702,610 77.45 632.35 

5.4 Discussion 

Identifying a methodology for developing a robust classifier that can generalize to 

new locations as applied to coral reefs in the Red Sea is the key outcome of this research. 

The methodology proposed here used remote sensing information (DII values) and ground 

truth observations from the Gulf of Aqaba in order to train a coral benthic cover classifier. 

The classification algorithm used was SVM with a radial basis kernel. That classifier was 

then deployed to predict benthic cover types in a new location within the Red Sea (Umluj) 

in order to evaluate the generalization properties. Validation of this procedure was done by 

assessing the results of the classifier against ground truth observations from the Umluj 

location. Finally, a robust classifier was trained using consolidated data from both the Gulf 

of Aqaba and Umluj. This robust classifier was validated using cross-validation techniques. 

The trained robust classifier was then applied to a third, unobserved location Al Wajh.  

A temporal coral cover change detection analysis was then conducted. Landsat 7 

images captured in 2000 were acquired of each of the three locations (Gulf of Aqaba, 

Umluj, and Al Wajh). These initial state images captured approximately 18 years prior to 
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the Landsat 8, final state images were used to identify the change in coral cover over time. 

The per pixel benthic habitat cover type for each of the three locations was determined 

using the trained SVM classifiers. The previously trained SVM classifiers were applied to 

the 2000 images for both the Gulf of Aqaba and Umluj locations. A per pixel comparison 

between the 2000, initial state image and the 2018, final state image was performed to 

identify the change in extent over the 18-year period. The consolidated, robust classifier 

was then applied to the 2000 image of the Al Wajh location and a per pixel change detection 

analysis conducted for that site as well.  

The benefits of the methodology presented in this study is the ability for the 

machine learning classifier to generalize to new locations. This capability was evaluated 

by deploying the classifier trained on the Gulf of Aqaba location against the ground truth 

observations of the Umluj location. The ability of a classifier trained using this 

methodology to generalize to larger areas enables broader analysis of coral reef extent. In 

this way, the analysis of coral reefs using remote sensing data can scale beyond the scope 

of previous in-situ analysis. In fact, the natural progression of in-situ analysis is to study 

larger areas spatially as well as temporally. The methodology proposed in this research 

enables the expansion of machine learning classifiers to generalize to larger extents with a 

limited increase in resources. Therefore, using a broader training set which adequately 

represents the coral reefs present in multiple locations enables the development of a 

classifier that can generalize beyond in-situ style analysis.  

The primary challenge of the proposed methodology is that the classifier trained on 

a diversity of coral reef locations will not achieve the same accuracy of in-situ models. 
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This is an expected result since the classifier is trained to represent multiple locations rather 

than the limited scope, single location of in-situ style analysis. This is because previous in-

situ analysis rely upon localized environmental conditions for increased accuracy. In-situ 

type classifiers account for site-specific geomorphology and local coral fauna in addition 

to the benthic cover type for classification. Therefore, these algorithms are actually relying 

on site-specific bias and therefore do not perform as well when these conditions change. 

However, the in-situ style classifiers do perform exceptionally well within the specific 

location that they are trained. As a result, the primary challenge to the generalized training 

method evaluated in this research is an increase in robustness and overall accuracy across 

all locations evaluated at the expense of accuracy for each individual location if they had 

been subjected to an in-situ style analysis.  

5.5 Conclusion 

This study performed temporal change detection analysis across three Red Sea 

locations over an 18-year period. First, a classifier was trained on a single location, the 

Gulf of Aqaba. This classifier achieved a raw accuracy as measured by the percentage of 

correctly classified pixels compared to the ground truth observations, of 78.22%. This 

trained classifier was then applied to predict coral cover in a second location, Umluj, in 

order to evaluate the generalization properties of the algorithm. 72.73% of the pixels within 

this new location were correctly classified compared to ground truth observations of this 

second location. The ground truth observations from both of these locations was then 

consolidated and a new, robust classifier developed and applied to a third site, Gulf of 

Aqaba. A change detection analysis was then performed. Landsat 7 images from 2000 were 
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acquired for each of the three locations. The machine learning classifiers were then applied 

to these earlier imaged to determine the per pixel benthic type. Classification maps for each 

of the locations and for each location were developed and a per pixel change detection 

analysis for the 18-year period was conducted. The results of this analysis showed a 

decrease in coral cover at the Gulf of Aqaba location of 117.20km2 (11.4%), a decrease in 

coral at the Umluj location of 3.46km2 (3.4%), and a decrease in coral at the Al Wajh 

location of 35.94km2 (13.6%).  



149 

 

6. Conclusion 

This research proposes a novel methodology for developing a generalized machine 

learning classifier that can evaluate coral cover in multiple locations. Previous research in 

the area has focused on in-situ style analysis that are inherently limited in scope. 

Furthermore, these in-situ analyses tend to suffer from site-specific bias that results in high 

accuracy for the specific location under study but poor generalized performance. The 

deployment process proposed in this research expands the scope of previous work to 

evaluate larger extents of marine habitat. The validity of the proposed methodology was 

evaluated in three studies.  

The first scientific study evaluated the generalized performance across four Remote 

Pacific Island locations. In this study, an LDA classifier was trained on a single location, 

Palmyra Atoll. The performance of the model was evaluated against ground truth 

observations and a classification accuracy of 80.3% was obtained. This trained algorithm 

was then deployed to three additional sites in order to evaluate the model’s capacity to 

generalize to new data. The generalized accuracy was measured using several metrics 

including accuracy (percentage of ground truth observations correctly classified), 

precision, recall, specificity, and F-measure. When applied to Kingman Reef, Baker Island 

Atoll, and Howland Island the classifier obtained an accuracy of 78.6%, 69.2%, and 71.4%, 

respectively.  
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The second scientific study built on the previous study in three major ways: 1) 

additional machine learning classifiers were evaluated 2) two additional sites were 

evaluated 3) temporal change detection analysis was conducted for each location. First, the 

more advanced machine learning classifiers evaluated included logistic regression, 

regularization methods (ℓ1 and ℓ2 penalty), QDA, and SVM. The SVM classifier with a 

radial kernel function outperformed the others. The maximal margin hyperplane approach 

was found to both handle the data size of the study and the goal of producing a generalized 

classifier well. In-situ style analysis of each of these sites conducted with the SVM 

classifier produced accuracies of 87.9%, 85.7%, 69.2% and 82.1% for Palmyra Atoll, 

Kingman Reef, Baker Island Atoll, and Howland Island respectively. In order to evaluate 

the generalization of the SVM classifier a variant to the traditional cross-validation 

technique was proposed. Under this alternative, CPCV process, rather than randomly 

selecting observations for each of the folds as in traditional cross-validation, the folds are 

selected by a common parameter (ie location). In this way, three islands were used to train 

a classifier for a fourth island. This process was repeated for each of the islands to develop 

an evaluation of generalized performance free from site-specific bias. The CPCV 

procedure yielded an accuracy of 78.8% for Palmyra Atoll, 81.0% for Kingman Reef, 

65.4% for Baker Island Atoll, and 67.9% for Howland Island. Following this, a classifier 

was trained on the consolidated observations from all four locations which yielded an 

accuracy of 75.3%. This robust classifier trained on the combined information from each 

of the initial four sites was then deployed to evaluate the coral extent in two additional 

sites, Tabuaeran Island and Kiritimati Island. A temporal change detection analysis was 

then conducted for each of the six sites. Images captured 12 to 14-years prior to the final 
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state image of each location were used to evaluate the initial extent of coral. The machine 

learning classifiers developed for each location were applied to the initial state image for 

each of the four initial sites (Palmyra Atoll, Kingman Reef, Baker Island Atoll, and 

Howland Island) and the robust classifier was applied to the final two sites (Tabuaeran 

Island and Kiritimati Island). A per pixel change detection analysis was then performed for 

each of the six locations by comparing the benthic cover in the initial image to that of the 

final image. The result of this analysis showed a decrease in coral of 31.9% (6.91km2) at 

the Palmyra Atoll location, 25.3% (7.59km2) at the Kingman Reef location, 40.5% 

(0.17km2) at the Baker Island Atoll location, 26.1% (0.06km2) at the Howland Island 

location, 35.2% (1.61km2) at the Tabuaeran Island location, and 42.7% (11.25km2) at the 

Kiritimati Island location.  

The third scientific study included in this dissertation evaluated the performance of 

the proposed methodology for training a robust machine learning classifier using three Red 

Sea locations. This study first trained a classifier using ground truth observations and 

Landsat 8 satellite imagery of the Gulf of Aqaba. The performance of this classifier was 

evaluated using accuracy (percentage of ground truth observations correctly classified), 

precision, recall, specificity, F-measure, and Kappa-coefficient. As in the previous study, 

an SVM classifier using a radial basis function was used. When applied to the Gulf of 

Aqaba ground truth observations, 78.2% of all observations were correctly classified. The 

generalized accuracy of this machine learning algorithm was then evaluated by applying 

the trained model to ground truth observations of a second site, the Umluj location. 72.7% 

of the ground truth observations of this site were correctly classified using the machine 

learning algorithm trained using data from the Gulf of Aqaba location. A robust classifier 
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was then developed using the consolidated ground truth information from both the Gulf of 

Aqaba and Umluj location. This classifier correctly classified 71.0% of all observations 

across both locations. Landsat 7 imaged captured in 2000 were then acquired as initial state 

observations for temporal change detection analysis. The classifiers were deployed to 

produce a benthic cover type map which was compared to the 2018 benthic cover type map 

for each location. A per pixel change detection analysis was conducted. The results of this 

analysis showed a reduction in coral cover of 11.4% (15.11km2) within the Gulf of Aqaba 

location, 3.4% (3.46km2) within the Umluj location, and 13.6% (35.94km2) within the Al 

Wajh location.  

This research proposes a methodology for developing a robust machine learning 

classifier which can generalize spatially and temporally for the evaluation of coral cover. 

Future research is needed to evaluate the extent to which the proposed methodology can 

generalize. In particular, an analysis of how distance impacts generalization of the classifier 

is needed. Furthermore, how well a classifier can generalize to reefs in different oceans 

needs to be explored. In addition, a similar analysis to this exploring other ecosystems such 

as mangroves and seagrass should be investigated. Finally, on January 6, 2009 the Pacific 

Remote Islands Marine National Monument was established by the United States of 

America [141]. This is the largest fully protected marine area in the world and encompasses 

Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island. A further analysis 

comparing these reefs before and after this event can identify the environmental impact of 

this governmental policy and inform future policy decisions. 
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In conclusion, this research successfully achieved its goal of finding a rigorous, 

reliable, scientific, and mathematically sound methodology for developing a machine 

learning classifier which reduces site-specific bias and applying this process to 

spatiotemporal analysis of coral reefs using remote sensing imagery.  
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