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Abstract
Empirical cross-hazard analysis and prediction of disaster vulnerability, resilience, and
risk requires a common metric of hazard strengths across hazard types. In this paper,
the authors propose an equivalent intensity scale for cross-hazard evaluation of hazard
strengths of events for entire durations at locations. The proposed scale is called the
Murphy Scale, after Professor Colleen Murphy. A systematic review and typology of
hazard strength metrics is presented to facilitate the delineation of the defining dimen-
sions of the proposed scale. An empirical methodology is introduced to derive equiv-
alent intensities of hazard events on a Murphy Scale. Using historical data on impacts
and hazard strength indicators of events from 2013 to 2017, the authors demonstrate
the utility of the proposed methodology for computing the equivalent intensities for
earthquakes and tropical cyclones. As part of a new area of research called hazard
equivalency, the proposed Murphy Scale paves the way toward creating multi-hazard
hazard maps. The proposed scale can also be leveraged to facilitate hazard commu-
nication regarding past and future local experiences of hazard events for enhancing
multi-hazard preparedness, mitigation, and emergency response.

K E Y W O R D S
global disaster research, hazard equivalency, hazard intensity, hazard strength, multi-hazard

1 INTRODUCTION

With growing amounts of historical data on hazard impacts,
empirical risk analysis has become increasingly important
in disaster risk reduction (see, e.g., Bakkensen et al., 2016;
Formetta & Feyen, 2019; Lin et al., 2017; H. Wang, 2020;
Wang & Sebastian, 2021a; Wang et al., 2021). An empirical
disaster risk analysis usually involves evaluation of expec-
tations of frequencies of hazard events with measures of
hazard strengths, exposed values of entities of interest, and
vulnerability of entities exposed to hazard events (Cutter,
1996; Wang & Sebastian, 2021a; Wang et al., 2021; Wisner
et al., 2004). A hazard event is a process (Wang et al.,
2021), confined in space and time, that may result in negative
consequences due to a set of hazard elements such as ground
movement (Wang et al., 2019), storm surge (Bass et al.,
2018), moisture deprivation (Zeff et al., 2020), wind gust

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
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(Lombardo & Ayyub, 2015), temperature extremization
(Shafiei Shiva et al., 2019), meteoroid airburst (Y. V. Wang,
2020), disease spread (Gatto et al., 2020), or radiation leak
(Wheatley et al., 2017). To reduce the negative consequences
of hazards, it is essential that professionals are able to man-
age past and future hazard events across hazard types within
their jurisdictions (Bodas et al., 2020). For such a purpose,
a multi-hazard approach is usually recommended to assess
preevent vulnerability and exposure to facilitate decision
making regarding emergency preparedness, response, recov-
ery, and mitigation (Ahmed & Kelman, 2018; Birkmann,
2013; Cutter, 1996; Cutter et al., 2000; Gautam, 2017;
McEntire, 2012; Morrow, 1999; Pelling, 2003; Ribot, 2014;
Rivera & Kapucu, 2015; Sutley et al., 2017; Tate, 2012;
Turner et al., 2003; Wisner et al., 2004). However, current
attempts with such a multi-hazard approach are limited
because they lack objective computational methodology for
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2 WANG AND SEBASTIAN

F I G U R E 1 Illustrative examples of community vulnerability to hazard events in terms of the expected casualty rate with respect to a spectrum of (A)
peak ground acceleration for earthquake and (B) peak sustained wind speed for tropical cyclone

comparative evaluation of hazard strengths across hazard
types. Each community faces a different portfolio of hazards.
Without fair benchmark measures of hazard strengths across
hazard types, analyses of vulnerability, resilience, and risk
for different communities are inevitably inaccurate within a
multi-hazard context. Such inaccurate analyses will lead to
unfair allocations of resources for disaster management and
may result in inequitable impacts when severe hazard events
do occur.

As an example, for computing risk as the expectation of
losses due to future hazard events, quantitative modelers have
recently proposed frameworks based on empirical predictive
modeling approaches to quantify vulnerability of communi-
ties to hazard events (e.g., Wang & Sebastian, 2021a; Wang
et al., 2019, 2020, 2021). For each individual hazard type,
as shown in Figure 1, vulnerability can be modeled with a
vulnerability curve representing a loss ratio, such as casualty
rate, as a function of a hazard strength indicator. Such a
hazard strength indicator can be peak ground acceleration
(PGA) for earthquake (Figure 1A) or peak sustained wind
speed (PSWS) for tropical cyclone (Figure 1B). However,
without a common scale to represent the hazard strength
indicator (on the horizontal axes of Figures 1A and B), it is
difficult to evaluate vulnerability of communities to hazard
events across hazard types.

To enable cross-hazard quantification and comparison of
disaster vulnerability, resilience, and risk with respect to the
entire durations of hazard events at locations, the authors pro-
pose an equivalent intensity scale—the Murphy Scale—and a
data-driven methodology to derive the equivalent intensities
of hazard events on the Murphy Scale. The proposed scale is
named after the Roger and Stephany Joslin Professor of Law
and Professor of Philosophy and Political Science Colleen
Murphy at the University of Illinois at Urbana–Champaign

(see Murphy, 2010, 2017, 2020a, 2020b; Murphy & Gardoni,
2006, 2008, 2010, 2011). The Murphy Scale is proposed to
refer to the locational-durational hazard strength scale for
multiple types of hazards. This definition will be explained in
Section 2.

There are four main sections in this article. We first review
the existing hazard strength scales with a proposal of typol-
ogy on hazard strength metrics based on four dimensions and
explain the definition of the proposed Murphy Scale. We then
introduce the data-driven methodology to derive the equiva-
lent intensities for hazard events on a Murphy Scale. Next, as
a demonstrative example, we implement a Bayesian binomial
regression approach with historical data on damages associ-
ated with 937 earthquakes and 320 tropical cyclones across
the world from 2013 to 2017 to derive a prototype version
of Murphy Scale for earthquake and tropical cyclone. Lastly,
we discuss potential applications of Murphy Scale, relation-
ship between a Murphy Scale and singular hazard strength
scales, future improvement of formulation of Murphy Scale,
and requirements for data collection for the development of
Murphy Scale.

2 HAZARD STRENGTH SCALES

In this article, we use the term hazard strength scale to refer
to a metric indicating the size or severity of a hazard event,
given an average exposed value and vulnerability of entities
of interest that may be affected by the hazard event. Such
a metric is usually called hazard magnitude or intensity
(Alexander, 2018; Blong, 2003). Apart from few works
(e.g., Kappes et al., 2012; Loat, 2010, Wang & Sebastian,
2021b), most of the existing hazard strength scales have
been developed for a specific type of hazard event such as an
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earthquake, tropical cyclone, drought, or nuclear accident.
We call such a hazard event a singular hazard event, even
though it may be associated with multiple hazard elements,
including, for example, ground shaking, building collapse,
liquefaction, and rockfall for an earthquake and wind gust,
storm surge, and riverine flood for a tropical cyclone. Accord-
ingly, we use the term singular hazard strength scale to refer
to the hazard strength scale for a singular hazard event.

Since there were limited scholarly efforts on generalization
of properties of hazard strength scales across hazard types,
we conducted a literature review and examined 69 existing
hazard strength scales for 21 singular hazard types as well as
for multiple hazards, as summarized in Table 1. Based on this
literature review, we suggested four dimensions for classifica-
tion of hazard strength scales. These four dimensions include
the spatial, temporal, applicational, and indicial dimensions.
We will elaborate on these four dimensions in the following
subsections. With the introduction of the four dimensions of
hazard strength scales, we will be able to delineate the defini-
tion of the proposed Murphy Scale.

2.1 Four dimensions of hazard strength
scales

Among the four suggested dimensions of hazard strength
scales, the spatial and temporal dimensions provide the defin-
ing criteria for classifying hazard strength scales. Meanwhile,
the other two dimensions, that is, the applicational and indi-
cial dimensions, are of practical significance when the corre-
sponding hazard strength scales are derived and presented, for
example, in communications to the public. All four dimen-
sions of hazard strength scales can also be used to categorize
hazard strength indicators of hazard events.

2.1.1 Spatial dimension

The spatial dimension describes whether a hazard strength
scale refers to the entire space occupied by the agent (for
meaning of agent, see, e.g., Lindell & Prater, 2003; McEn-
tire et al., 2002; Mileti & Peek, 2000; Quarantelli, 1984;
Rodríguez et al., 2007) of a hazard event or specific locations
at which entities of interest experience the hazard event. If a
scale is for the entire space of the agent, we call it an agential
scale, whereas a location-specific scale is called a locational
scale. For example, in the case of earthquakes, the magni-
tude scales such as the Richter magnitude (Richter, 1935) and
moment magnitude (Kanamori, 1977) correspond to a loga-
rithmic representation of the energy released by the source
of an earthquake event. Therefore, these earthquake magni-
tude scales are agential scales. Meanwhile, the earthquake
intensity scales such as the modified Mercalli intensity (Wald
et al., 2006; Wood & Neumann, 1931) and Shindo (Japan
Meteorological Agency, 2019) are locational scales, because
the earthquake intensity measures on these intensity scales
indicate the severity of earthquake ground shaking at specific

locations. Values on a locational scale across the entire spa-
tial range of a hazard event may be aggregated to derive a
single value for the purpose of an agential scale. As an exam-
ple, values of the enhanced Fujita scale (Potter, 2007) for a
tornado are determined locationally based on local observa-
tions of environmental damages. The maximum value on the
enhanced Fujita scale (Potter, 2007) for the tornado can then
be derived and assigned to the tornado event as a proxy on an
agential scale.

A locational scale is usually adopted to correspond to a
two-dimensional space. Within this two-dimensional space,
a locational scale may have different levels of resolution. It
may be associated with hazard strength measures at gauge
stations as point locations, at grid cells with a unit size, or
at administrative areas with different spatial sizes. Despite its
popular utility for two-dimensional hazard modeling, a loca-
tional scale may also be adopted to indicate the local severity
of a hazard event in a one-dimensional or three-dimensional
space or for a network with a fractal dimension.

2.1.2 Temporal dimension

The temporal dimension presents if a hazard strength scale
corresponds to the entire duration of a hazard event or spe-
cific moments at which the event is experienced by entities
of interest. A scale for the entire duration of a hazard event
is called a durational scale. Meanwhile, if a scale is for
moments, we call it a momental scale. A momental scale
is usually presented with a certain temporal resolution in
seconds, minutes, hours, days, weeks, months, or years.
For hazard types whose events are with short durations,
their corresponding hazard strength scales are usually dura-
tional. For example, the reviewed hazard strength scales of
short-duration hazard events such as earthquakes (Grünthal,
1998; Japan Meteorological Agency, 2019; Kanamori, 1977;
Katsumata, 1996; Liu et al., 2006; Rautian et al., 2007;
Richter, 1935; Serva et al., 2016; Wald et al., 2006; Wood
& Neumann, 1931), landslides (Arbanas & Arbanas, 2015;
Hungr, 2018; Singh et al., 2019; Tanyaş et al., 2018), ice
storms (spia-index.com, 2019), hailstorms (The Tornado
and Storm Research Organisation, 2021), and explosions
(Maienschein, 2002) are all durational scales (Table 1). In
addition, for some hazard events, such as tropical cyclones,
with possibly relatively long durations, both durational and
momental scales may be developed for different purposes
(Bell et al., 2000; Bloemendaal et al., 2021; Bureau of
Meteorology, 2019; Emanuel, 2005; Hebert et al., 2010;
National Disaster Management Authority, 2008; National
Hurricane Center & Central Pacific Hurricane Center, 2019;
Powell & Reinhold, 2007; Simpson & Saffir, 1974; Typhoon
Committee, 2018; World Meteorological Organization,
2016). For tropical cyclones, for example, the accumulated
cyclone energy index (Bell et al., 2000) is a durational scale
to refer to the level of total energy of a hurricane during
its lifespan. In the meantime, the Saffir–Simpson hurricane
wind scale (National Hurricane Center & Central Pacific
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TA B L E 1 Examples of hazard strength scales

Hazard Scale
Spatial
dimension

Temporal
dimension

Applicational
dimension

Indicial
dimension

Earthquake Richter magnitude (Richter, 1935) Agential Durational Numerical Processual

Surface wave magnitude (Liu et al., 2006) Agential Durational Numerical Processual

Japan Meteorological Agency magnitude (Katsumata,
1996)

Agential Durational Numerical Processual

Moment magnitude (Kanamori, 1977) Agential Durational Numerical Processual

Energy class scale (Rautian et al., 2007) Agential Durational Numerical Processual

Environmental seismic intensity scale (Serva et al., 2016) Locational Durational Ordinal Processual

European macroseismic scale (Grünthal, 1998) Locational Durational Ordinal Consequential

Modified Mercalli intensity scale (Wald et al., 2006; Wood
& Neumann, 1931)

Locational Durational Ordinal Consequential or
processual

Shindo (Japan Meteorological Agency, 2019) Locational Durational Ordinal Consequential

Tsunami Murty–Loomis magnitude scale (Murty & Loomis, 1980) Agential Durational Numerical Processual

Abe scale (Abe, 1979) Agential Durational Numerical Processual

Sieberg–Ambraseys intensity scale (Ambraseys, 1962) Locational Durational Ordinal Consequential and
processual

Imamura–Iida intensity scale (Shuto, 1993) Locational Durational Numerical Processual

Integrated tsunami intensity scale (Lekkas et al., 2013) Locational Durational Ordinal Consequential and
processual

Landslide Landslide magnitude (Arbanas & Arbanas, 2015) Agential Durational Numerical Processual

Earthquake-triggered landslide magnitude (Tanyaş et al.,
2018)

Agential Durational Numerical Processual

Landslide intensity (Hungr, 2018; Singh et al., 2019) Locational Durational Numerical Processual

Volcanic activity Dispersal index (Walker, 1973) Agential Durational Numerical Processual

Volcanic explosivity index (Newhall & Self, 1982) Agential Durational Ordinal Processual

Pyle magnitude (Pyle, 1995) Agential Durational Numerical Processual

Fedotov intensity scale (Fedotov, 1985) Agential Momental Ordinal Processual

Maritime wind Beaufort scale (Fry, 1967) Locational Momental Ordinal Processual

Sea wave Douglas sea and swell scale (Dunlop, 2008; Owens, 1982) Locational Momental Ordinal Processual

Tornado Fujita scale (Fujita, 1971) Locational Momental Numerical Processual

Enhanced Fujita scale (Potter, 2007) Locational Durational Ordinal Consequential

TORRO scale (Fujita, 1981; Meaden et al., 2007) Locational Momental Numerical Processual

Energy scale (Dotzek, 2009) Locational Momental Numerical Processual

Tropical cyclone Accumulated cyclone energy index (Bell et al., 2000) Agential Durational Numerical Processual

Power dissipation index (Emanuel, 2005) Agential Durational Numerical Processual

Hurricane disaster-potential scale (Simpson & Saffir, 1974) Agential Momental Ordinal Processual

Hurricane severity index (Hebert et al., 2010) Agential Momental Ordinal Processual

Integrated kinetic energy index (Powell & Reinhold, 2007) Agential Momental Numerical Processual

Saffir–Simpson hurricane wind scale (National Hurricane
Center & Central Pacific Hurricane Center, 2019)

Agential Momental Ordinal Processual

Typhoon scale (Typhoon Committee, 2018) Agential Momental Ordinal Processual

Indian cyclone scale (National Disaster Management
Authority, 2008)

Agential Momental Ordinal Processual

Southwest Indian ocean tropical cyclone scale (World
Meteorological Organization, 2016)

Agential Momental Ordinal Processual

Australian tropical cyclone severity scale (Bureau of
Meteorology, 2019)

Agential Momental Ordinal Processual

Tropical cyclone severity scale (Bloemendaal et al., 2021) Locational Durational Ordinal Processual

(Continues)
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TA B L E 1 (Continued)

Hazard Scale
Spatial
dimension

Temporal
dimension

Applicational
dimension

Indicial
dimension

Rainfall Rainfall intensity (Chow, 1962) Locational Momental Numerical Processual

Ice storm Sperry–Piltz ice accumulation index (spia-index.com,
2019)

Locational Durational Ordinal Processual

Hailstorm Hailstorm intensity scale (The Tornado and Storm
Research Organisation, 2021)

Locational Durational Ordinal Processual

Heatwave Heat index (Bureau of Meteorology, 2010; National
Weather Service, 2019a; Steadman, 1979)

Locational Momental Numerical Processual

Humidex (Government of Canada, 2019) Locational Momental Numerical Processual

Cold wave Wind-chill index (Bureau of Meteorology, 2010;
Government of Canada, 2017; Met Office, 2019;
National Weather Service, 2019b; Osczevski &
Bluestein, 2005)

Locational Momental Numerical Processual

Flood Flood magnitude (England et al., 2019; Jackson, 2013) Locational Momental Numerical Processual

Drought Drought magnitude (McKee et al., 1993) Locational Durational Numerical Processual

Standard precipitation index (McKee et al., 1993) Locational Momental Numerical Processual

Palmer drought severity index (Palmer, 1965) Locational Momental Numerical Processual

Crop moisture index (Palmer, 1968) Locational Momental Numerical Processual

Surface water supply index (Shafer & Dezman, 1982) Locational Momental Numerical Processual

Effective precipitation index (Byun & Wilhite, 1999) Locational Momental Numerical Processual

Soil moisture index (Hunt et al., 2009) Locational Momental Numerical Processual

Standardized runoff index (Shukla & Wood, 2008) Locational Momental Numerical Processual

Wildfire Fireline intensity (Chafer et al., 2004; Keeley, 2009; Rossi
et al., 2019)

Locational Durational Numerical Processual

Radiant heat flux (Rossi et al., 2010, 2019) Locational Durational Numerical Processual

Fire severity (Chafer et al., 2004; Keeley, 2009) Locational Durational Ordinal Consequential

Solar storm Geomagnetic storm scale (Space Weather Prediction
Center, 2011)

Agential Momental Ordinal Processual

Kp-index (Bartels et al., 1939) Locational Momental Numerical Processual

Solar radiation storm scale (Space Weather Prediction
Center, 2011)

Agential Durational Ordinal Processual

Solar flare intensity (Space Weather Prediction Center
2011, 2019)

Agential Durational Ordinal Processual

Explosion TNT equivalency (Maienschein, 2002) Agential Durational Numerical Processual

Radiation Radiation hazard scale (Askin et al., 2017; Centers for
Disease Control and Prevention, 2018)

Locational Momental Ordinal Processual

Nuclear accident Nuclear accident magnitude scale (Smythe, 2011) Agential Durational Numerical Processual

Infectious disease Pandemic severity index (Roos & Schnirring, 2007) Locational Momental Ordinal Consequential

Influenza transmissibility (Reed et al., 2013) Locational Momental Ordinal Consequential

Influenza clinical severity (Reed et al., 2013) Locational Momental Ordinal Consequential

Multiple hazards Swiss hazard intensity (Loat, 2010) Locational Durational Ordinal Processual

ARMONIA hazard intensity (Kappes et al., 2012) Locational Durational Ordinal Processual

Gardoni Scale (Wang & Sebastian, 2021b) Agential Durational Numerical Processual

Hurricane Center, 2019) is a momental scale that indicates
how intense an entire tropical cyclone is at a specific moment
in time. However, values of a momental scale for an event
can be aggregated to produce one unique value as a proxy
durational scale. Instead of using the durational scales listed
in Table 1 for tropical cyclones, for example, hurricane

researchers tend to use the peak value on the Saffir–Simpson
hurricane wind scale to categorize hurricane events (National
Hurricane Center & Central Pacific Hurricane Center,
2019).

Combining the types of hazard strength scales along the
spatial and temporal dimensions, we can identify four basic
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F I G U R E 2 Types of hazard strength scales according to
categorization along the spatial and temporal dimensions of hazard strength
scales. Only the Gardoni Scale (Wang & Sebastian, 2021b) and the
proposed Murphy Scale are plotted in this figure

types of hazard strength scales (see Figure 2). The first type
is the agential-durational scale; the second is the locational-
durational scale; the third is the agential-momental scale;
and the fourth is the locational-momental scale. The term
magnitude is usually used in hazard literature to refer to
a Type 1 agential-durational scale, except for few types of
hazard events including floods and droughts (England et al.,
2019; Jackson, 2013; McKee et al., 1993). In the mean-
time, the term intensity can be used for any of the other
three types of hazard strength scales, except for few scales,
such as the solar flare intensity (Space Weather Prediction
Center, 2011, 2019), that are agential-durational. Accord-
ingly, in this article, we suggest using the term magni-
tude to refer to a Type 1, or agential-durational, scale and
the term intensity for the other types of hazard strength
scales.

2.1.3 Applicational dimension

The applicational dimension indicates whether the values on
a hazard strength scale are expressed in real numbers poten-
tially for numerical applications or in ordinal categories for
hazard communication in general. If a scale may take on any
real number value within its range, we describe it as a numer-
ical scale. Values on a numerical scale are usually reported as
rounded to a certain decimal point. For example, the moment
magnitude (Kanamori, 1977) for an earthquake is a numerical
scale. In the meantime, a hazard strength scale displayed in
ordinal categories is considered an ordinal scale. Most of the
ordinal scales, for example, the Beaufort scale (Fry, 1967) for
maritime wind hazard events and the hailstorm intensity scale
(The Tornado and Storm Research Organisation, 2021) for
hailstorms, are qualitatively derived from a set of numerical
measures of hazard strengths. Meanwhile, some other ordinal
scales, such as the integrated tsunami intensity scale (Lekkas
et al., 2013) for tsunami, are partially or entirely based on
descriptions of observations.

Practically, a numerical hazard strength scale can be rela-
tively easily transformed into ordinal categories. Without suf-
ficient information on such transformation, however, it may
be difficult to convert an ordinal scale back into a numerical
one. Regarding a hazard strength scale, a numerical form may
be preferred for technical computation for analysis and pre-
diction of vulnerability, resilience, and risk with a high pre-
cision. Meanwhile, a hazard strength scale with an ordinal or
categorical appearance may be more user-friendly, when the
scale is adopted for hazard communication toward different
stakeholders, especially the public.

2.1.4 Indicial dimension

The indicial dimension displays if a hazard strength scale
is constructed as a function of indicators of the process of
a hazard event or indicators of the negative consequences
of the event. We call hazard strength indicators processual
indicators when they measure the process of the event from
its onset to dissipation while approaching and reaching the
entities of interest exposed to the event. In the meantime,
hazard strength indicators are called consequential indicators
if they indicate the adverse impact or negative consequences
observed during or after the hazard event. Accordingly, we
call a hazard strength scale a processual scale or conse-
quential scale if it is a function of processual indicators
or consequential indicators, respectively. For example, the
Fujita scale for tornadoes was initially developed as a proces-
sual scale based on the gust wind speed of a tornado (Fujita,
1971). However, the in situ processual measurements of gust
wind speed of tornadoes are difficult to obtain. Thus, an
enhanced Fujita scale was later proposed to use consequen-
tial indicators of postevent expert evaluations of damages to
estimate the intensity of a tornado (Potter, 2007). Although
consequential indicators may be adopted, we would recom-
mend using processual indicators for constructing a hazard
strength scale, because consequential indicators are likely to
be biased due to factors of exposed value and vulnerability of
entities of interest to the hazard event (Doswell et al., 2009).

For some hazard strength scales, a mixture of processual
and consequential indicators may be used. For example, the
integrated tsunami intensity scale is derived from one proces-
sual and five consequential indicators (Lekkas et al., 2013).
Some other hazard strength scales may be originally designed
to be based on consequential indicators but later developed
into processual scales. As an example, the modified Mer-
calli intensity scale was initially proposed as a consequen-
tial scale based on indicators of impact of ground shaking
(Wood & Neumann, 1931). Later, during their effort to cre-
ate ShakeMaps (Wald et al., 2006) for earthquake events, the
United States Geological Survey (USGS) developed a quan-
titative method to derive the modified Mercalli intensity scale
with processual indicators such as PGA and peak ground
velocity (PGV).
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2.2 Equivalent hazard strength scales

Despite the abundance of singular hazard strength scales,
few scholarly efforts have been dedicated to studying and
developing hazard strength scales that can be used across
hazard types. Recently, Wang and Sebastian proposed an
equivalent agential-durational hazard strength scale—the
Gardoni Scale (Wang & Sebastian, 2021b). However, the
Gardoni Scale is an agential scale for measuring the hazard
strength of the spatial and temporal entirety of a hazard event.
An agential scale is insufficient for detailed spatial analysis
for disaster risk studies because detailed spatial analysis for
disaster risk studies requires locational hazard strength met-
rics for computation. Regarding locational hazard strength
scales for multiple hazards, the existing scales such as the
Swiss hazard intensity (Loat, 2010) and ARMONIA hazard
intensity (Kappes et al., 2012) have their limitations due to
two reasons. First, no empirical evidence based on historical
data was used to support the development of these exist-
ing multi-hazard locational scales. For these multi-hazard
locational scales, the categories of event intensities across
different hazards were determined subjectively by the mod-
elers. Moreover, these existing multi-hazard locational scales
were designed as ordinal scales. Thus, they are not suitable
for technical computation with a high precision for analysis
of vulnerability, resilience, and risk.

2.3 Murphy Scale

To overcome the limitations of existing multi-hazard loca-
tional hazard strength scales, we propose in this article the
Murphy Scale to refer to the Type 2, or locational-durational,
hazard strength scale for multiple hazard types, as shown
in Figure 2. We further suggest using the term hazard
equivalency to refer to a new area of research to study and
model the equivalent relationships between hazard events
and hazard conditions across hazard types within a multi-
hazard context. Although a Murphy Scale is a locational
scale, it can be converted into an agential Gardoni Scale
through aggregation of values on the Murphy Scale across
the entire spatial range of a hazard event to derive a unique
value associated with the hazard event. The Murphy Scale is
also proposed as a numerical scale suitable for multi-hazard
hazard mapping and technical computation for analysis of
vulnerability, resilience, and risk. However, the Murphy
Scale can be easily converted into an ordinal form to appeal
to different stakeholders for hazard communication. Ideally,
a Murphy Scale is a processual scale corresponding to the
equivalent intensity as a function of indicators of the process
of a hazard event. When records of processual indicators are
difficult to obtain, consequential indicators may also be used
to support the development and computation of the Murphy
Scale. Since the proposed Murphy Scale is a locational
scale along the spatial dimension, different versions of the

scale can be developed to correspond to different spatial
resolutions.

3 GENERAL METHODOLOGY

To derive a Murphy Scale, we propose an empirical method-
ology with a machine learning approach. The equivalent
intensity on a Murphy Scale is modeled as a function of
locational-durational intensity indicators of a hazard event.
Meanwhile, we can calibrate the model parameters by asso-
ciating the equivalent intensity on a Murphy Scale with
historical data on adverse impacts of hazard events. In this
way, although drivers of damage due to hazard events may
differ with regards to different hazard types, the negative
consequences of hazard events provide a common metric to
indicate the intensities of hazard events (Hillier & Dixon,
2020; Hillier et al., 2015; Wang & Sebastian, 2021b).

The equivalent intensity on a Murphy Scale is defined as a
function of intensity indicators, as

EI : = qi
(
IIi,1, IIi,2,⋯, IIi,mi

)
, (1)

where EI is the equivalent intensity on the Murphy Scale, qi(⋅)
is the function for computing EI regarding the ith type of haz-
ard, IIi,j is the jth intensity indicator of the ith type of hazard,
and mi is the total number of intensity indicators for the ith
type of hazard. Table 2 lists examples from the literature of
locational processual intensity indicators that can potentially
be used for derivation of Murphy Scale. Here, the momental
indicators in Table 2 can be converted into durational indica-
tors to facilitate computation of EI on a Murphy Scale.

After reducing biases due to factors of exposed value and
hazard vulnerability, we can associate the equivalent intensity
on a Murphy Scale with the expectation of a consequence
metric indicating the level of adverse impacts of a hazard
event. We will discuss how to reduce such biases in Section 5.
The formula for the relationship between equivalent intensity
and the consequence metric is

EI = Ê
[
g
(
D1, D2, ⋯ , DNCM

)]
, (2)

where Ê[⋅] refers to the point estimate of the expectation,
g(⋅) is the function giving the consequence metric, Dh is the
hth measure of the adverse consequences, and NCM is the
total number of consequence measures. These consequence
measures may include casualties, mental or physical health
impact, loss of property and economic wellbeing, infras-
tructure disruption, loss of livelihood, loss of social capital,
and business interruption (Alexander, 2013; Boakye et al.,
2019; Lindell & Prater, 2003; Nocera & Gardoni, 2019; Wang
et al., 2016). The consequence measures are not consequen-
tial intensity indicators. They are only used to produce the
consequence metric to calibrate the model of equivalent haz-
ard intensity.
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TA B L E 2 Examples of potential locational processual intensity indicators for computing the equivalent intensity on a Murphy Scale

Hazard Intensity indicator

Earthquake Peak ground acceleration (Open Source Seismic Hazard Analysis, 2010)

Peak ground velocity (Open Source Seismic Hazard Analysis, 2010)

Peak ground displacement (Open Source Seismic Hazard Analysis, 2010)

Spectral acceleration (Open Source Seismic Hazard Analysis, 2010)

Tsunami Distance inland flooded by tsunami (Ambraseys, 1962)

Maximum tsunami wave height (Shuto, 1993)

Mean tsunami wave height (Shuto, 1993)

Local tsunami wave crest height above ground level at shoreline (Shuto, 1993)

Tsunami flow depth (Lekkas et al., 2013)

Landslide Landslide volume (Singh et al., 2019)

Landslide expected velocity (Singh et al., 2019)

Volcanic activity Sulfur dioxide concentration (Schmidt et al., 2015)

Ash cloud mass loading (Corradini et al., 2016)

Aerosol optical depth at 550 nm (Corradini et al., 2016)

Effective radius of ash cloud particles (Corradini et al., 2016)

Concentration of ash mass (Corradini et al., 2016)

Altitude of ash cloud (Corradini et al., 2016)

Ash cloud vertical thickness (Corradini et al., 2016)

Pyroclastic deposit volume (Pallister et al., 2019)

Strong wind 3-second gust wind speed (Lombardo, 2012)

10-minute average wind speed at 10 m above ground level (Royal Meteorological Society, 2018)

Sea wave Average wave height (Dunlop, 2008; Owens, 1982)

Tornado 3-second gust wind speed (Potter, 2007; Royal Meteorological Society, 2018)

Tropical cyclone Sustained wind speed (National Oceanic and Atmospheric Administration, 2020)

3-second gust wind speed (Royal Meteorological Society, 2018)

Rainfall (Mudd et al., 2017)

Rainfall Peak rainfall intensity (Brown, 2016)

Ice storm Maximum radial ice thickness (spia-index.com, 2019)

Peak wind velocity (spia-index.com, 2019)

Hailstorm Maximum hail diameter (The Tornado and Storm Research Organisation, 2021)

Peak wind velocity (The Tornado and Storm Research Organisation, 2021)

Heat wave Temperature (Bureau of Meteorology, 2010; National Weather Service, 2019a; Steadman, 1979)

Relative humidity (Bureau of Meteorology, 2010; National Weather Service, 2019a; Steadman, 1979)

Cold wave Temperature (Bureau of Meteorology, 2010; Government of Canada, 2017; Lombardo et al., 2014; Met Office, 2019; National
Weather Service, 2019b; Osczevski & Bluestein, 2005)

Wind speed (Bureau of Meteorology 2010; Government of Canada 2017; Lombardo et al., 2014; Met Office 2019; National Weather
Service 2019b; Osczevski & Bluestein, 2005)

Flood Maximum water depth (van de Lindt et al., 2020; Wang & Sebastian, 2021a)

Water surface elevation (Couasnon et al., 2018)

Drought Long-term precipitation (Mishra & Singh, 2010)

Temperature (Mishra & Singh, 2010)

Weekly moisture conditions (Mishra & Singh, 2010)

Snowpack (Mishra & Singh, 2010)

Streamflow (Mishra & Singh, 2010)

Reservoir storage (Mishra & Singh, 2010)

Vegetation dynamics (Mishra & Singh, 2010)

Soil water content (Mishra & Singh, 2010)

(Continues)
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TA B L E 2 (Continued)

Hazard Intensity indicator

Wildfire Heat yield (Chafer et al., 2004)

Available fuel (Chafer et al., 2004)

Rate of forwards fire spread (Chafer et al., 2004)

Time-averaged energy flux (Keeley, 2009)

Solar storm Maximum magnetic fluctuation (Bartels et al., 1939)

Peak flux of ions with energy greater than 10 MeV in 5 min (Space Weather Prediction Center, 2011)

Radiation Radiation dose (Askin et al., 2017; Centers for Disease Control and Prevention, 2018)

Once the consequence metric g is determined, we can
apply a supervised machine learning approach to establish a
model

g = qi
(
IIi,1, IIi,2,⋯, IIi,mi

, 𝜽i
)

(3)

where 𝜽i is the vector of model parameters for the ith type of
hazard. With historical data on adverse impacts and intensity
indicators, model of Equation (3) can be calibrated, and the
result is

EI = Ê[g(D1,D2,⋯,DNCM)] = q̂i(IIi,1, IIi,2,⋯, IIi,mi
, 𝜽̂i),

(4)
where q̂i(⋅) and 𝜽̂i are, respectively, the prediction of the cal-
ibrated model and the point estimate of model parameters.

4 EXAMPLE APPLICATION

To illustrate the proposed methodology, we applied a
Bayesian binomial regression approach (Wang et al., 2020)
using observed historical data on adverse impacts of earth-
quakes and tropical cyclones to develop a prototype version
of Murphy Scale for earthquake and tropical cyclone. The
derived equivalent intensity on the Murphy Scale can be inter-
preted as the expected probability of experiencing damage
due to a hazard event at a location. The demonstration of the
prototype example was achieved by using programing lan-
guage Python (Python Software Foundation, 2020).

4.1 Data

For the example application, we compiled two datasets
containing data points of damages due to earthquakes and
tropical cyclones, respectively, that occurred during a period
from 2013 to 2017 worldwide. We only kept data points
from 2013 to reduce the potential bias in data because
of a different protocol adopted by the Earthquake Impact
Database to record impacts of events before 2013 (see, e.g.,
Wang et al., 2020). For this study, the final earthquake and
tropical cyclone datasets contain 1063 and 575 data points,
respectively (Guha-Sapir et al., 2020; National Centers for

Environmental Information, 2018; National Oceanic and
Atmospheric Administration, 2020; Wang et al., 2020).
The spatial resolution of the two datasets is at the country
level. Therefore, each data point in the datasets refers to a
country that experienced an earthquake or tropical cyclone
event. The earthquake dataset was based on 937 earthquakes
with a moment magnitude (Kanamori, 1977) equal to or
larger than 5.0 (Guha-Sapir et al., 2020; National Centers
for Environmental Information, 2018; Wang et al., 2020).
Meanwhile, the tropical cyclone dataset was compiled from
data on 320 tropical cyclones with their eyes having passed
within 50 km from a populated continental region or island
(Guha-Sapir et al., 2020; National Oceanic and Atmospheric
Administration, 2020). For each hazard, there were more
data points than events because each event may have affected
more than one countries.

Considered damages include fatalities, injuries, and
economic losses caused by the hazard events and their asso-
ciated secondary hazard conditions. The secondary hazard
conditions for earthquake include rockfall, nonstructural
damage, and structural failure, except tsunami. Wind gust,
water surge, and inland flooding contributed to the damages
associated with tropical cyclone events. For each considered
hazard event, only one intensity indicator was adopted due to
limited availability of data. Damage data were collected from
online sources including the International Disaster Database
EM-DAT (Guha-Sapir et al., 2020) and the National Centers
for Environmental Information (NCEI) (National Centers
for Environmental Information, 2018). Economic losses
were converted to 2019 United States Dollars (USD) using
the consumer price index. Nonzero economic losses were
recorded only for events exceeding an economic loss of
1 million USD. The intensity indicator for earthquake is
the natural logarithm of on-land PGA in meters per squared
second (m/s2) within a country. The records of PGA were
computed based on the USGS ShakeMaps (US Geological
Survey, 2018; Wald et al., 2006) and shapefiles of country
boundaries (Global Administrative Areas, 2018; Wang et al.,
2020). For tropical cyclone, the intensity indicator is the
natural logarithm of PSWS in kilometers per hour (km/h)
within or close to a country. The purpose of the logarithmic
transformation of the PGA and PSWS was to convert the
range of values of these indicators from (0, ∞) to (−∞, ∞).
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F I G U R E 3 Distributions of percentage of data points with observed consequence metric equal to one with respect to (A) peak ground acceleration for
earthquake and (B) peak sustained wind speed for tropical cyclone

4.2 Method

4.2.1 Consequence metric

To fit the binomial regression method adopted in this study,
the observed consequence metric was designed to be binary
to have a value of either zero or one. The observed conse-
quence metric equals one when there were nonzero fatalities,
nonzero injuries, or nonzero economic losses associated with
a hazard event. The observed consequence metric equals zero
when the hazard event was recorded with zero fatalities, zero
injuries, and zero economic losses. The expectation of con-
sequence metric is, accordingly, an expected probability that
the consequence metric equals one. The formula for the con-
sequence metric is

g = 1 − 1{0} (D1) ⋅ 1{0} (D2) ⋅ 1{0} (D3) , (5)

where 1{0}(Dh) is the indicator function that equals one if
Dh = 0 and zero otherwise, D1 is the number of fatalities,
D2 is the number of injuries, D3 is the economic loss, and g
is the observed consequence metric. Among all earthquake
data points, there are 808 data points where the observed
consequence metric is equal to zero and 255 equal to one.
For tropical cyclone, there are 292 and 283 data points with
zero and nonzero observed consequence metrics, respec-
tively. Figure 3(A and B) show the distributions of percent-
age of data points with observed consequence metric being
one with respect to PGA for earthquakes and PSWS for trop-
ical cyclones. In both cases, the percentage monotonically
increases with the increase of the value of intensity indicator.

Such a positive correlation can be captured with a binomial
regression model.

4.2.2 Binomial regression model

Binomial regression is a supervised machine learning
approach that can be used to predict the expected probabil-
ity of a data point associated with one of two possible val-
ues. It is suitable for the purpose of the example application
for deriving the equivalent intensity on the Murphy Scale for
hazard events herein. The probability mass function (PMF)
for a binomial regression model can be written as

fA(g|𝛼) = 𝛼1{1}(g)(1 − 𝛼)1{0}(g), (6)

where 𝛼 ∈ (0, 1) is the mean function regarding the inten-
sity indicator and model parameters.

A common approach to establish a binomial regression
model is to adopt the cumulative distribution function (CDF)
of a standard logistic random variable as the mean function
(Cox, 1958; Wang et al., 2020). Such a regression approach
is also called a logistic regression. Its mean function is

𝜶 =
exp

(
𝛽 + 𝛾II

)
1 + exp

(
𝛽 + 𝛾II

) , (7)

where 𝜶 is the vector of the expected values of consequence
metric, II is the vector of observations of intensity indicator,
𝛽 is the coefficient of intercept, 𝛾 is the coefficient of II. Both
𝛽 and 𝛾 are model parameters as in 𝜽i in Equation (3).
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Since the numbers of observed zeroes and ones of the
consequence metric are not equal, a rare-event subsampling
approach was used (King & Zeng, 2001). Because there
are more zero data points than nonzero data points for both
earthquakes and tropical cyclones, for each hazard, we ran-
domly selected from the entire pool of zero data points the
same number of zero data points as the nonzero data points.
The selected zero data points were then used along with all
nonzero data points for model calibration.

4.2.3 Bayesian approach

To allow the parameters to be updated with new data that
will become available in the future, the authors adopted
a Bayesian approach to estimate the model parameters
(Andreini et al., 2016; Gardoni et al., 2002, 2007; Wang et al.,
2020). The general Bayesian updating rule is (Box & Tiao,
1992)

f ′′ (𝜽) = k L (𝜽) f ′ (𝜽) , (8)

where f ′′(𝜽) is the posterior probability density function
(PDF) of parameters 𝜽 given observations, f ′(𝜽) is the prior
PDF of 𝜽, L(𝜽) is the likelihood function of 𝜽, and

k =

[
∫ L (𝜽) f ′ (𝜽) d𝜽

]−1

(9)

is a normalizing constant. Because no prior knowledge about
model parameters was available at this stage, the prior PDF
of model parameters can be set as a constant.

Given the constant prior, the posterior PDF of the bino-
mial model with the standard logistic mean function is pro-
portional to its likelihood function

L (𝜽) =

n∏
w = 1

exp
(
X𝜽 gw

)
1 + exp (X𝜽)

. (10)

Let 𝜽 = (𝛽, 𝛾)T, and X be the data matrix including the
intercept and II. Accordingly, the posterior PDF of the model
parameters is

f ′′ (𝜽) = k
n∏

w = 1

exp
(
X𝜽 gw

)
1 + exp (X𝜽)

, (11)

where gw is the value of the observed consequence metric of
the wth data point and n is the total number of data points for
model calibration.

4.2.4 Importance sampling

To generate the posterior statistics of model parameters, we
implemented an importance sampling method by computing

the integrals of the general form (Andreini et al., 2016; Gar-
doni et al., 2002, 2007; Wang et al., 2020)

I = ∫ B (𝜽) d𝜽, (12)

where

B (𝜽) = u (𝜽) L (𝜽) f ′(𝜽) , (13)

is the Bayesian integrand. When u(𝜽) = 1, the normalizing
constant k in Equation (9) can be computed as the inverse of
the integral. If u(𝜽) = k𝜽, the integral equals to the posterior
mean vector 𝜽̃ of model parameters. When u(𝜽) = k𝜽𝜽T, the
integral, I = Ê(𝜽𝜽T), can be used to derive the covariance
matrix

𝚺̂𝚯 = Ê
(
𝜽𝜽

T
)
− 𝜽̃𝜽̃

T
. (14)

With an importance sampling density S(𝜽), the integral can
be written as

I = ∫
B (𝜽)
S (𝜽)

S (𝜽) d𝜽 (15)

and the sample mean of the integral is

Ê (I) =
1
N

N∑
z = 1

B
(
𝜽z
)

S
(
𝜽z
) , (16)

where N is the number of random samples of 𝜽 and 𝜽z is the
zth simulation of 𝜽. The sample size N is determined by a
metric denoted as MIS based on the coefficient of variation of
Ê(𝜽∕k), as

MIS = max

||||||||||

√∑N
z = 1

[
𝜽zL

(
𝜽z
)

f ′
(
𝜽z
)
∕ S

(
𝜽z
)]2

−
1

N

{∑N
z = 1

[
𝜽zL

(
𝜽z
)

f ′
(
𝜽z
)
∕ S

(
𝜽z
)]}2

∑N
z = 1

[
𝜽zL

(
𝜽z
)

f ′
(
𝜽z
)
∕ S

(
𝜽z
)]

||||||||||
,

(17)
where | ⋅ | refers to the vector of absolute values. To keep MIS

as small as around 10−4, we set N = 104.

4.3 Results

Using the proposed modeling and calibration methods, we
reached the statistics of parameters of the logistic binomial
regression models for earthquake and tropical cyclone. As
listed in Table 3, the 𝛽s and 𝛾s correspond to the parameters
in Equation (7). All estimates of parameters have a small
p-value, indicating high statistical significance. With the
estimated model parameters, we can establish the relation-
ships between the equivalent intensity on the derived Murphy
Scale and intensity indicators such as PGA for earthquake
and PSWS for tropical cyclone, as shown in Table 4. Such
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TA B L E 3 Statistics of parameters of binomial models for earthquake and tropical cyclone

Statistic Earthquake Tropical cyclone

𝛽 Estimate −0.6999 −8.4389

Standard error 0.1203 0.8545

p-Value 1.0518 × 10−8 2.5213 × 10−21

𝛾 Estimate 1.8035 1.9105

Standard error 0.1790 0.1932

p-Value 6.8942 × 10−22 2.2261 × 10−21

Correlation coefficient between 𝛽 and 𝛾 −0.5186 −0.9938

TA B L E 4 Equivalent intensities on the derived Murphy Scale and
their corresponding peak ground accelerations of earthquakes and peak
sustained wind speeds of tropical cyclones

Equivalent intensity
on the Murphy Scale

Peak ground
acceleration (m/s2)

Peak sustained
wind speed (km/h)

0.1 0.4359 26.2345

0.2 0.6835 40.1066

0.3 0.9215 53.1792

0.4 1.1774 67.0163

0.5 1.4742 82.8613

0.6 1.8459 102.4525

0.7 2.3583 129.1104

0.8 3.1798 171.1934

0.9 4.9851 261.7156

relationships are also visualized in Figure 4(B) as the solid
curve. In addition, Figures 4(A and C) display the empirical
distributions of data points with zero and nonzero damage,
respectively, with respect to intensity indicators. With these
computed relationships regarding the proposed Murphy
Scale, we can comparatively analyze locational-durational
hazard strengths between earthquakes and tropical cyclones.
From Table 4 and Figure 4, we can see that an equivalent
intensity of 0.4 on the Murphy Scale with a spatial resolution
at the country level is equivalent to an earthquake PGA of
about 1.2 m/s2 and a tropical cyclone PSWS of 67 km/h,
slightly above the boundary between the PSWSs of a tropical
depression and a tropical storm. On the other hand, a 0.9
equivalent intensity on the Murphy Scale corresponds to a
5 m/s2 PGA and a 262 km/h PSWS, a peak wind speed of a
Category 5 hurricane on the Saffir–Simpson hurricane wind
scale (National Hurricane Center & Central Pacific Hurricane
Center, 2019).

Because we adopted a random selection process for rare-
event subsampling (King & Zeng, 2001) for binomial regres-
sion and a Monte Carlo simulation (Metropolis & Ulam,
1949) during model calibration with the importance sampling
approach (Wang et al., 2020), different runs of the Python
codes used for this study would yield slightly different sets
of estimates of model parameters. To evaluate the extent to
which such uncertainties associated with these parametric

estimations would affect the performance of proposed mod-
els, we conducted 1000 iterations of subsampling twofold
cross-validations for both earthquake and tropical cyclone
data points. As shown by the 95% confidence intervals of
receiver operating characteristic curves (Fawcett, 2006) in
Figure 5, the effect of the uncertainties on the overall model
performance is small.

5 DISCUSSION

After the delineation of definition of Murphy Scale and
demonstration of its computational methodology, in this
section, we outline and discuss the potential applications of
Murphy Scale, its relationships with singular hazard strength
metrics, future research to improve its formulation, and the
data requirements for its computation.

5.1 Potential applications

The proposed Murphy Scale can be widely applied for
technical computation for analysis of hazard, resilience, and
risk across hazard types. First, the equivalent intensity on a
Murphy Scale can be used to represent intensity indicators
such as the ones on the horizontal axis in Figure 1 for
quantification of vulnerability and resilience with an empir-
ical predictive modeling approach. Then, instead of using
one event intensity metric for one hazard type only, hazard
modelers can create hazard maps based on the equivalent
intensity on a Murphy Scale to display the geographical
distribution of exceedance probability of hazard event inten-
sity at locations. The adoption of the Murphy Scale would
enable the integration of information on hazard event inten-
sity exceedance associated with different hazards into one
multi-hazard hazard map. Using a multi-hazard vulnerability
and resilience analysis and a multi-hazard hazard map with
the implementation of a Murphy Scale, we can significantly
simplify calculations of expected future losses due to hazards
while maintaining a high accuracy of these calculations to
facilitate decision making for hazard planning and man-
agement. In this manner, the adoption of a Murphy Scale
will benefit many risk-related industries such as agriculture,
banking, civil infrastructure, and homeland security (Buck &
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F I G U R E 4 Relationships between equivalent intensity on the derived Murphy Scale and intensity indicators of earthquakes and tropical cyclones. (A)
The distribution of data points with zero damage with respect to intensity indicators. (B) The expectation of probability of damage as the equivalent intensity
on the Murphy Scale as a function of earthquake peak ground acceleration or a function of tropical cyclone peak sustained wind speed. SSC5, SSC4, SSC3,
SSC2, and SSC1 refer to Saffir–Simpson hurricane wind scale (National Hurricane Center & Central Pacific Hurricane Center, 2019) Categories 5, 4, 3, 2, and
1, respectively; TS refers to tropical storm; and TD is short for tropical depression. (C) The distribution of data points with non-zero damage with respect to
intensity indicators

F I G U R E 5 Receiver operating characteristic curves (Fawcett, 2006) of logistic binomial regression models for (A) earthquake and (B) tropical cyclone,
based on 1000 iterations of subsampling twofold cross-validations

Summers, 2020; Dabbeek & Silva, 2020; Dilley et al., 2005;
Federal Emergency Management Agency, 2020; Kameshwar
& Padgett, 2014; Koks et al., 2019; Xu et al., 2019).

Whether with its values further transformed into ordinal
categories or in the original numerical form, the proposed

Murphy Scale can also be used to facilitate hazard communi-
cation. Traditional practices of hazard communication tend to
use singular hazard strength metrics for events of their corre-
sponding hazard types. However, these metrics usually adopt
incompatible categories and ranges to refer to the expected
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severities of hazard events of different hazard types, espe-
cially for locational purposes. For example, an earthquake
locational-durational intensity is measured between I and X
on the modified Mercalli intensity scale (Wald et al., 2006;
Wood & Neumann, 1931); a tornado locational-durational
intensity is recorded from 0 to 5 on the enhanced Fujita scale
(Potter, 2007); and a tropical cyclone locational-durational
intensity may be associated with a value between 0 and 6
on the tropical cyclone severity scale (Bloemendaal et al.,
2021). Albeit described with different units and categories,
these scales are usually used to evaluate the same type of
information on the expectation of loss given average exposed
value and vulnerability at a location. The proposed Murphy
Scale can be used to provide mathematical mappings between
these intensity scales for singular hazards. Moreover, when
simplicity is preferred especially in hazard communication,
professionals can adopt one single metric based on a fully
developed Murphy Scale to sufficiently convey, to different
stakeholders, information on locational-durational intensities
of hazard events across hazard types, instead of having to
resort to a myriad of intensity metrics for their correspond-
ing hazards.

5.2 Relationships with singular hazard
strength scales

Despite its potential applications, the Murphy Scale is not
intended to completely replace the existing singular hazard
strength scales. First, there is only one value on a Murphy
Scale corresponding to the intensity of one hazard event at
one location. Such a value does not reveal the rich infor-
mation that is usually conveyed by studying and modeling
singular hazard strength scales. For a comprehensive under-
standing of phenomena underlying the computation of the
equivalent intensity on a Murphy Scale, knowledge regarding
singular hazard strength scales will always play an important
role and the derivation of singular hazard strength scales
provides the foundation for formulation and computation of
a Murphy Scale. In addition, for some hazard events such as
tornadoes (Potter, 2007), for which processual intensity indi-
cators are difficult to obtain, the developed singular hazard
strength scales may be used to estimate the intensity indica-
tors or directly as one intensity indicator for computation of
equivalent intensity on a Murphy Scale.

5.3 Formulation for computation

The proposed Murphy Scale refers to the Type 2 equivalent
hazard strength scale, as shown in Figure 2. Its formulation
is not unique. There are unlimited numbers of mathematical
models that can be used to formulate a Murphy Scale. In this
article, for example, we only suggested one approach—the
Bayesian logistic binomial regression (Wang et al., 2020)—
to compute the equivalent intensity on a Murphy Scale. As a
result, the derived values of equivalent intensity are between

zero and one where each of the values corresponds to the
expected probability that an entity of interest at a location
will experience damage in terms of casualty or economic
loss given an average exposed value and vulnerability. Other
formulations of Murphy Scale may also be developed, result-
ing in different ranges and meanings of the values of equiv-
alent intensity. The manifestation of the meanings of a Mur-
phy Scale depends on the design of the consequence metric
described by Equation (2). The proposal and improvement of
such designs of the consequence metric require more com-
prehensive interdisciplinary research in the future.

In addition to the consequence metric of Murphy Scale,
intensity indicators of Murphy Scale may also need to be
systematically studied. As shown in Table 2, for example,
intensity indicators for earthquake that may be considered
for computation of Murphy Scale also include PGV, peak
ground displacement, and spectral accelerations at different
frequencies (Open Source Seismic Hazard Analysis, 2010).
In this article, we only used the natural logarithm of PGA
as the sole intensity indicator. Similarly, for tropical cyclone,
we only adopted the natural logarithm of PSWS as the sole
intensity indicator. However, the gust wind speed and rainfall
measures are also important in determining whether there are
consequences from an event and, thus, may also be included
as the intensity indicators for computation of Murphy Scale
(see, e.g., Mudd et al., 2017; Royal Meteorological Society,
2018). Whether the inclusion of other intensity indicators
may improve the computation of Murphy Scale is yet to be
explored. Along this line, future work needs to experiment
with data on intensity indicators and negative consequences
of hazard events to seek the most appropriate combination of
intensity indicators and functions of these intensity indicators
regarding the considered consequence metrics.

5.4 Data requirements

To support the proposed data-driven machine learning
methodology for computation of Murphy Scale, large vol-
umes of data on hazard consequences and intensity indicators
are needed. However, currently available historical records of
hazard events are usually poor in quality in terms of coarse
spatial and temporal resolutions as well as potential biases.
More scholarly efforts are, therefore, needed to reconstruct
historical records of hazard events with high spatial and tem-
poral resolutions (e.g., Earle et al., 2009; Forebes et al., 2010;
Mayo & Lin, 2019; Paprotny et al., 2018). In the mean-
time, since hazard consequences can be influenced by factors
of exposed value and local vulnerability, historical records of
hazard consequences may lead to bias in the estimation of
equivalent intensity on a Murphy Scale. To reduce this bias, a
large sample size is needed. In addition, samples of these haz-
ard event records need to be distributed as widely as possible
both spatially and temporally for each hazard type.

Simultaneously, due to spatial and temporal changes in
vulnerability, there is also a need to ensure that records of
events occurred in a same geographical region and temporal
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period to generate a complete picture of distribution of
equivalent intensities of hazard events on a Murphy Scale.
Given identical exposed values, for example, suppose that
data on earthquake and tropical cyclone records are collected
from communities with high and low vulnerability, respec-
tively. In such a case, the derived equivalent intensities on
the Murphy Scale for earthquake and for tropical cyclone
will, respectively, overestimate and underestimate the true
hazard intensity given average vulnerability. On another
occasion, suppose vulnerability decreases throughout time
for communities in a same region. When earthquake and
tropical cyclone records are based on the same communities
but pertain to events that occurred in the 20th and 21st cen-
turies, respectively, the equivalent intensity on the Murphy
Scale for earthquake will tend to indicate higher intensity
than the equivalent intensity on the Murphy Scale for tropical
cyclone. Once the quantitative models for Murphy Scale
are established, this type of bias of estimate from the true
intensity is difficult to detect without the knowledge regard-
ing how the Murphy Scale has been developed and data for
computation have been collected in the first place.

In addition, to ensure that a developed Murphy Scale can
be used for multiple hazards in a reliable manner, the spa-
tial resolution of data points for different hazards needs to
be kept identical. The reason for this is that consequences
and intensity indicators at different spatial resolutions may
convey inconsistent information on the meanings of Murphy
Scale. In this paper, for example, the spatial resolution of
data on consequences and intensity indicators is at the coun-
try level. The derived equivalent intensity on Murphy Scale
indicates the expected probability that a country experiences
damage due to a hazard event. This probability may be much
higher than the one for a county, a village, or a grid cell of
one arc minute, because data on consequences of entities with
locations at a lower spatial resolution are aggregated from the
entities with locations at a higher spatial resolution. There-
fore, to develop a model for the Murphy Scale consistent with
the one presented in this article for another hazard, say, river-
ine flood, the spatial resolution of data on consequences and
intensity indicators of riverine floods also needs to be at the
country level. When data of finer spatial resolution becomes
available, future work also needs to explore and compare the
effects of using different spatial resolutions for computation
of Murphy Scale.

6 CONCLUSION

To enable comparative evaluation of locational hazard
strengths of hazard events for cross-hazard analysis of vul-
nerability, resilience, and risk, we propose in this article the
Murphy Scale to measure the equivalent intensities of hazard
events experienced by local entities of interest. To delin-
eate the conceptual domain of the proposed Murphy Scale,
we reviewed existing hazard strength scales and created a
typology based on four dimensions, that is, spatial, temporal,
applicational, and indicial dimensions. This study contributes

to the science of disaster risk, as it presents a typology of
existing hazard strength scales and a novel empirical method
to compute equivalent hazard intensities across hazard types.
In addition, it initiates the scientific inquiries for general
development of knowledge in an emerging area of research,
called hazard equivalency, for comparative analyses of
hazards across hazard types.

Future work should focus on expanding current studies in
hazard equivalency by upgrading the typological system for
hazard strength scales and exploring other types of equiva-
lent hazard strength scales. Additional work is also needed
to improve studies in intensity indicators and consequence
metrics for establishing models to compute equivalent hazard
strengths on these scales. Moreover, to support data-driven
machine learning-based approaches to quantifying equiva-
lent hazard event intensities, more high-quality data on inten-
sity indicators and adverse impacts of hazard events need
to be collected. Accordingly, a variety of machine learning
and other computational methods may be attempted to opti-
mize the formulation and computation of equivalent hazard
strength scales such as the proposed Murphy Scale.
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