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Abstract

Estimating Auction Equilibria using Individual Evolutionary Learning

by Kevin James

I develop the Generalized Evolutionary Nash Equilibrium Estimator (GENEE) li-

brary 1. The tool is designed to provide a generic computational library for running

genetic algorithms and individual evolutionary learning in economic decision-making

environments. Most importantly, I have adapted the library to estimate equilibria

bidding functions in auctions. I show it produces highly accurate estimates across a

large class of auction environments with known solutions. I then apply GENEE to

estimate the equilibria of two additional auctions with no known solutions: first-price

sealed-bid common value auctions with multiple signals, and simultaneous first-price

auctions with subadditive values.

1The library is available for download at https://github.com/kajames2/biddingga
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Chapter 1

Introduction

Auctions are heavily studied, by both economists, and more recently, computer sci-

entists. This is because they relied upon to aid the allocation of resources in the most

efficient manner, whether it be a knick-knack on eBay, Ad space on Google, or elec-

tromagnetic spectrum from the FCC. However, there are still many open questions

without any theoretical solutions.

Consider this simple auction: the first-price sealed-bid. In it, every bidder pri-

vately submits a bid for the item, and the one who bids the highest gets it for that

price. How should someone bid in such an auction? If we assume all the bidders

have the same properties (risk aversion, valuation of the item, etc), the solution is

well-known [33]. However, once we allow for some eminently reasonable heterogene-

ity among the bidders, much of auction theory falls apart, and only special cases are

known with certainty. The rest have no known solution, only having some proofs of

general properties and constraints on how one should bid.

Once we expand our search to other auctions, things are even bleaker. There is

very little known beyond the simplest case for a common value auction, where the

item has an identical value to all bidders, but each bidder has a different estimate

for that underlying value. And whenever there are multiple items, there are no exact

theoretical predictions except for very special conditions. This matters, because often,

poorly understood auctions are still viewed as the best mechanism for selling a good,

and so we observe scenarios where auctions with significant financial stakes have had

unexpected results.

New Zealand fell into precisely such a trap in 1990 [28]. The government was

looking to sell mostly identical licenses for spectrum, and not knowing how much
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to charge for them, decided to hold an auction. The consulting firm suggested a

simultaneous second-price sealed-bid auction. They placed all the spectrum licenses

up for sale simultaneously, and had everyone submit a private bid on as many licenses

as they wanted. Afterwards, the highest bidder wins the license and pays the second-

highest bidder’s price. While this auction type is well understood in the case of a

single item, this simultaneous design is not. The government projected they would

raise $250 million in revenue, but ultimately only received $36 million. For one item,

the highest bid was $100k, and the second highest—the price for which the highest

bidder had to pay—was $6. For another license, the highest bid $7 million, and the

second highest was just $5000. Because the bids were posted to the public after the

auction, the government was publicly humiliated for only collecting about 15% of

the projected revenue. They then switched to a first-price sealed-bid auction, which

worked better, but had other challenges.

So understandably, if the real-world is demanding these more complicated auc-

tions, we would prefer to gain as much insight into how they work and how bidders

will operate them prior to actually putting them into practice. Outside the limited

theory available, laboratory experiments are the primary tool to analyze these com-

plex auctions. Indeed, they have proven themselves invaluable in aiding development

of the FCC’s 1994 spectrum auction [25]. However, while much cheaper than the

real auctions, experiments still require significant time and resources, and given the

sheer number of possible permutations of both auction designs and environmental

parameters, prior information that can guide the research agenda is highly sought

after. Computational modeling can provide this, but no generalized tool exists.

There are several routes that show promise towards providing insights into nash

equilbrium auction bidding behavior1, and I ultimately decided to use Individual

Evolutionary Learning (IEL). IEL was first introduced by Arifovic and Ledyard in

2003 [3]. It is an multi-agent extension of the more common Genetic Algorithm

(GA). Genetic Algorithms have been shown to have good convergence properties in

economics, even in environments where naive best-response algorithms diverge and

the equilibrium is unstable [2]. They have also been shown to be effective with

finding global optima even in large decision spaces [32]. In 2017, French [16] created

a proof-of-concept program that used an IEL to successfully find the equilibrium

bidding strategy in a specific auction domain. Although it was limited to linear profit

1I compare some of these techniques in more detail in chapter 3
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functions and not designed around performance, it had several critical innovations

that can serve as the foundation of a more generalized tool.

The goal then, is to create a computation library that applies Individual Evolution-

ary Learning to estimate the equilibrium bid function in a wider variety of auctions

and settings that have previously been achievable. Within an auction, the library

should support asymmetries between players in the form of risk aversion, subjective

probabilities, value draw distributions, and budgetary constraints. For auction types,

the program should match the theoretical solutions to the symmetric forms for the

first-price, second-price, all-pay, and single-signal common value auctions. Further-

more, it should provide clear and consistent results for unsolved auctions, including

multiple-signal common value auctions and simultaneous sealed-bid auctions. The

GENEE library satisfies these requirements.

The library has multiple potential uses. The primary use—and focus of the

dissertation—is to make predictions of human behavior in complex auctions. A direct

byproduct of this is that the library will also yield estimates for the efficiency of an

auction, the profits of each bidder, and the revenue raised for the auctioneer. This

can aid auction designers in evaluating mechanisms in different environments and in

the creation of experimental testbeds that stress the design.

A second use of the library is in the evaluation of human learning in laboratory ex-

periments. Arifovic and Ledyard have successfully leveraged Individual Evolutionary

Learning to estimate convergence to equilibria in complex laboratory experiments [4].

In addition, they have found that for large decision spaces with many variables, IEL

outperforms other learning models [5]. There have been recent experiments that have

subjects submit full bidding functions, rather than just a single bid given a randomly

drawn value [11], [23]. These align with the inputs of the GENEE library, allowing

it to provide both predictions and post-experiment analysis on how subjects learn

relative to the IEL.

A third use of the library is to estimate econometric structural models from data.

Because the model is tolerant to significant asymmetries, one can use observed bidding

data in repeated auctions, such as Google AdSense auctions, and estimate underlying

features of participants—like risk aversion—by determining which parameters result

in equilibrium behavior nearest to the observed data.

A final usage for the GENEE library is to help bidders taking part in an auction. A

bidder can encode their assumptions for competing bidders and their own preferences,

3



and the program will output the equilibrium behavior. Bidders and even ascribe off-

equilibrium behavior to competitors and calculate their optimal bidding strategy in

response to such play. This level of flexibility gives the program value that cannot be

found in any other tool.

The dissertation is organized in the following manner. Chapter 2 describes the

evolutionary model library. Individual Evolutionary Learning models have a niche

in economics research, and no generalized library exists. While a basic version

is relatively simple, there are numerous optimizations and extensions that can be

added to increase performance and convergence. I compile these features into a high-

performance, flexible library. This not only provides a base for auction bidding model,

but also contributes to the field by lowering the programming burden of future models.

Chapter 3 details the core of the GENEE auction model. It covers the numeri-

cal library that performs the necessary statistics, as well as how bidding strategies

are represented and evaluated. Beginning with the representation used in French, I

create a new design leveraging domain knowledge to improve convergence speed and

precision. The library also takes a more general approach than prior attempts when

evaluating auctions. This allows it to work on a much larger set of auctions than

previously achievable. Taken together, my model increases performance—and thus

practically achievable precision—by several orders of magnitude and turns a proof of

concept into a practical application. After detailing the core model, I then analyze

its output for auctions with known solutions.

Chapter 4 extends the library to work with 2-item auctions. It is then used to

evaluate simultaneous first-price auctions with subadditive values. This environment

lacks a theoretical solution, as New Zealand learned after switching to it when the

simultaneous second-price auction failed.

Chapter 5 applies the model to a common value auction with signals. The common

value auction is most frequently used to model the purchase of mineral rights. In it,

it is assumed that all participants have the same value for an object up for auction,

but each participant only has an independently drawn, noisy estimate for this shared

value. While this specific model is well understood, there is no known theoretical

solution for the extension where participants can purchase additional noisy signal

draws for the common value. By adding some additional numerical algorithms, my

model can estimate the core part of the bidding strategy in this auction. The results

of the model are compared against experimentally observed data.
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Chapter 2

Individual Evolutionary Learning

(IEL) Library

Most learning models are relatively domain-agnostic, capable of being used across

a variety of problems, albeit with varying performance characteristics. Individual

Evolutionary Learning (IEL) and Genetic Algorithms (GAs)—upon which IEL is

built—are no different. But, while there are commercial and open-source GA libraries,

they are not very amenable to extending to IEL, and all previous implementations of

IEL have been one-off algorithms, specific to the environment being modeled. Because

of this, I implemented a high-performance, generalized library for a GA and the IEL

extension. The purpose of this section is to detail the library as it is the core learning

algorithm upon which GENEE is built.

2.1 Genetic Algorithms

GAs are a learning technique originally developed to mimic biological evolution [18].

In a GA, there is a set of strategies, called a population. Each strategy is a potential

solution to the problem being solved. For example, if the problem is to find the x

that maximizes some function f(x), then a strategy could be a single real number, or

anything that could be converted into a real number, such as a binary array. Each

iteration, the strategies in the population are evaluated, modified, and culled, akin

to population dynamics in nature where random mutations among members of a

population are removed or promoted in future generations based upon their fitness

(performance) in the environment. In a static environment, the best strategy in the

5



population will eventually converge to the global optimum1 [31].

Both genetic algorithms and the related evolutionary algorithms have mostly

found use as a general optimization technique. Although not considered the most

efficient, they rely on very little domain knowledge and can find good results in large

strategy spaces [32]. This makes them a common choice for non-linear global op-

timization when more specialized techniques cannot be used. Figure 2.1 shows the

general flow for my implementation of the algorithm. My implementation is based on

Eiben and Smith’s [13]. It conforms with what is found in Arifovic [2], but with one

stage being formalized and generalized. The next sections detail the implementation.

2.1.1 Representation

Strategies in genetic algorithms can take any form, but some are better suited to

certain domains than others. Genetic Algorithms only require that the strategy can

be mutated and evaluated. The most common representations are binary arrays,

real-values, and orderings (e.g. [1,4,2,3], signifying an order of events). While my im-

plementation has hooks for any type of representation, only the binary representation

has been implemented, as that is the only one needed for this research. Figure 2.2

2.1.2 Parent Selection

Each iteration of the algorithm requires parents to be selected. Parents are paired

up, and a pair of children are created based off the parents. The number of par-

ents selected is therefore equal to the number of children creates, which is a hyper-

parameter, often set to the same size as the initial population. Strategies are selected

to be parents stochastically, with probability dependent on the fitness of each strategy

in relation to the fitnesses the other strategies in the population. There are many

popular selection techniques. They are covered in detail in a few sections.

2.1.3 Crossover

After a pair of parents have been selected, the child creation algorithm is run. The

first step is to create two new strategies that contain features from each parent. For

binary array strategies, I keep to the most common technique, one-point crossover.

1In practice, reaching the optimal may require an impractical number of iterations. Like other
stochastic algorithms, GAs are often ran multiple times, and the best result is used.
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Figure 2.1: Genetic Algorithm Flow Chart

Initialize Population

Select Parents

Crossover Parents

Mutate Children

Survival Selection

Output Best

Pool into Population

Repeat N times

First, the population is initialized. Each iteration, parents are selected, paired up, and an
algorithm creates child strategies with characteristics from both parents (Crossover) as well as
some random component (Mutation). Then, these created children are pooled back in with
the population, and the Survival stage culls the pooled population so that only there are only
as many strategies as there were at the beginning of the iteration. Either one or both of the
selection stages (Parent Selection and Survival Selection) will favor strategies with higher fitness
in the environment. This iterative process is repeated for some number of iterations.
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Figure 2.2: Sample Binary Population

Genotypes Phenotypes
(Encoded Strategies) (Realized Strategies)

S1 1100000...01001111 [-10.48, 2.99, -7.19, -4.06]
S2 1110010...00101100 [11.30, -4.78, -7.50, -12.99]
S3 1111100...01010011 → [-14.97, -16.78, 14.5, 18.00]
S4 1001111...11111010 [-15.39, 14.14, -16.68, -8.82]
S5 0001110...00101001 [13.30, 18.83, -19.75, -13.39]

First, the population is initialized. Each iteration, parents are selected, paired up, and an
algorithm creates child strategies with characteristics from both parents as well as some random
component. Then, these created children are pooled together with the population, and the
Survival stage culls the pooled population so that only there are only as many strategies as
there were at the beginning of the iteration. This iterative process is repeated for some number
of periods.

Figure 2.3: Illustration of One-Point Crossover

110000 0...01001111 → 110000 0...00101100
111001 0...00101100 → 111001 0...01001111

First, an index is selected at random. Two children are created by taking the bits of the first
(second) parent from beginning to the selected index, and then the bits of the second (first)
parent for the remainder.

Let each parent strategy, p1 and p2 be n bits in length, and let pji be the jth bit in

the strategy. In one-point crossover, an index k is chosen at random between 1 and

n, and the two children, c1 and c2 are defined by:

ci1 =

pi1 if i <= k

pi2 if i > k

ci2 =

pi2 if i <= k

pi1 if i > k

(2.1)

This cuts each parent into two pieces and swaps the second part, as seen in Figure

2.3.
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Figure 2.4: Illustration of Bit Mutation

1100000...00101100 → 1100100...00101101
1110010...01001111 → 0110010...01001111

Indices are selected at random, each with a probability pmut of being selected. Those bits are
flipped to created altered children.

2.1.4 Mutation

After the children are created via crossover, they are each mutated. For binary

representation, mutation occurs by iterating through each bit, and flipping the bit

(0→1, or 1→0) with probability equal to the mutation rate, pmut. The mutation rate

must be tuned so that small changes of only a single bit can occur, as well as larger

mutations requiring multiple bit flips. This also must be changed based upon the

number of bits in the array. To simplify the parameter, I implement mutation by

drawing from a Poisson distribution with mean, µmut, and then flipping that many

bits at random in the strategy. This is equivalent to the iterative approach for large

bit lengths, but requires fewer computations and is an easier parameter to interpret

and set.

2.1.5 Survival

After the children have been generated, the original population and the children are

pooled together. A selection process similar to Parent Selection occurs to bring the

population back down in size to that of the original population, as seen in Figure 2.5.

Just like with Parent Selection, some strategies may be chosen more than once. The

next section covers the different selection operators implemented during the Parent

Selection and Survival stages.

2.1.6 Selection Operators

Roulette Selection

Roulette selection assigns a weight, w to each strategy s. The weight is determined

by the weight function,

ws = W (fs,f) (2.2)

9



Figure 2.5: Illustration of Survival

Pooled Strategies Fitnesses
S1 [-10.48, 2.99, -7.19, -4.06] 100
S2 [11.30, -4.78, -7.50, -12.99] 57
S3 [-14.97, -16.78, 14.5, 18.00] 123
C1 [-15.39, 14.14, -16.68, -8.82] 145
C2 [13.30, 18.83, -19.75, -13.39] 63

Surviving Strategies: C1, C1, S1

During Survival, the children are added to the rest of the population. In this case, the 2
generated children are added in with the original 3 strategies. Of these, a number equal to the
original population size are chosen. While this selection typically favors higher fitness strategies,
it does not just pick the highest. Also note that a strategy can be selected multiple times.

where fs is the fitness of the strategy, and f is the vector of all fitnesses in the

population. Given the weights, a virtual roulette wheel is constructed with each

strategy occupying an arc in proportion to its weight. The strategies are then selected

by spinning the wheel N times and taking the strategies landed on. This is the same

as selecting weighted random numbers with weights:

P (s) =
ws∑
sws

(2.3)

There are several commonly used weight functions. I will describe them in turn.

� Simple Roulette

Here, the weight is simply equal to the fitness of the strategy:

W (fs, ~f) = Fs (2.4)

which reduces the probability of selection to:

P (s) =
Fs∑
s Fs

(2.5)

While this is straightforward, it suffers two deficiencies. The first is that it

breaks with negative fitnesses, as they would be assigned an unfeasible negative

probability of being chosen. This is easily handled by shifting fitness values as

described in the next method. The other problem is harder to fix. The selective

pressure is weak near the optimal unless the gradient around the optimal is
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large. The fitness of nearby solutions are often within a percent of the optimal,

and as such are only weakly disfavored in the selection process. This limits

exploitation and slows convergence to the optimal.

� Zeroed Roulette

This is a simple variant of the simple roulette method, where:

W (fs,f) = fs −min(f) (2.6)

Shifting by the minimum fitness observed immediately resolves the issue of

negative fitnesses in the simple roulette scheme. Additionally, it can help in-

crease the selective pressure by increasing the relative differences in weights

(e.g. transforming fitnesses of [100,101,102] to [0,1,2]). Note, this method al-

ways eliminates the lowest performing strategy from future pools.

� Ranked Exponential Roulette

Both this and Ranked Weighted Roulette make use of ranking. Ranking entails

assigning the strategy with the lowest fitness a rank of 0, 2nd lowest a rank

of 1, and so forth, with the highest fitness strategy receiving a rank of ns − 1.

Ties are handled by assigning the average rank to those that tied. Using ranks

creates separation in selection probability even when the fitness differences are

small.

In exponential roulette, the weights are then assigned as follows:

W (fs,f) = 1− e−rs (2.7)

where rs is the rank of the strategy.

� Ranked Weighted Roulette2

This has a hyper-parameter, α, that tunes how selective the mechanism is. If

the number of strategies is given by n, weights are defined as:

W (fs,f) = (1− α)
1

n
+ α

2rs
n(n− 1)

, 0 ≤ α ≤ 1 (2.8)

When α = 0, the weights are equal for all strategies. Meanwhile, at α = 1,

the weights are linear with rank (normalized by the sum of all ranks). Being

2This is algebraically equivalent to Linear Ranked Selection from Baker 1985[6]
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able to tune how selective the mechanism is makes this very versatile and used

frequently.

Tournament Selection

Tournament selection operates by choosing a tournament size, m, and then running a

tournament for each strategy selection. In each tournament, m strategies are chosen,

with equal probability, and the highest fitness strategy from the the subset is selected

in Thunderdome fashion.

If the tournament size is one, the tournament reduces to just random selection.

Increasing the tournament size exerts stronger selective pressure, and in the limit,

will only select the strongest strategy in the population.

Usually, choosing the tournament subset is done with replacement, but it is in-

structive to consider the case without replacement and m = 2. Here, the probability

of a strategy being ultimately chosen is given by:

P (selected) = P (chosen)P (winning|chosen)

=

(
1− n− 1

n

n− 2

n− 1

)
rs

n− 1

=
2rs

n(n− 1)

(2.9)

This is the same as the Ranked Weighted Roulette with α = 1. And so we can see

that Ranked Weighted Roulette can be interpreted as running a Tournament with

m = 2 without replacement with probability α, and selecting a strategy at random

(a tournament with m = 1) with probability 1−α. And so, for large population sizes

where the distinction between drawing with or without replacement can be safely

ignored, we see that Ranked Weighted Roulette is just Tournament selection where

the tournament size hyper-parameter is generalized to be a continuous variable and

constrained to be no greater than two.

This is a result not found anywhere in the literature and hints at a unifying

selection mechanism that allows m to be any continuous number greater than one. I

do not know of a specific need for continuous values when m > 2, but it is a curious

oversight in the literature, so I propose two possible generalizations:

� Mixing Tournament Selection

This is the straightforward way to generalize tournament sizes into continuous

12



space. For a given m, let mi be the integer part of m (the floor), and mf be the

fractional component. Then, for each iteration of Tournament selection, run a

tournament of size mi+1 with probability3 mf , and a tournament of size mi with

probability 1−mf . For large population sizes, this reduces to Ranked Weighted

Roulette for 0 <= m <= 1, and normal tournament selection whenever mf = 0.

� Poisson Tournament Selection

This borrows from binary mutation. Consider the simple transform mo = m−1.

Now, we can consider a selection operator where a strategy is chosen at random

with equal probability, and then an average of mo other strategies are chosen to

compete in the tournament. One way to do this would be to iterate through all

strategies and choose them to compete with probability mo/n, with n being the

size of the population. However, it would be more efficient (and equivalent in

the limit of large n) to instead draw the number of competing strategies from

a Poisson distribution.

This selection operator exerts the same pressure on average at the Mixing Tour-

nament Selection, it is not the same for any m. It will have more instances of

strategies being selected off smaller tournaments and also more strategies being

selected off larger tournaments. So in some sense, it may allow for a bit more

exploration and exploitation than typically occurs in standard Tournament se-

lection.

Age Selection

With Age Selection, the age of each strategy is incremented at the end of iteration of

the GA. Newly created children strategies are assigned an initial age of zero. Selection

is as simple as selecting the N newest strategies, regardless of fitness. I do not utilize

this, but it is important to mention because many in the literature implicitly do.

Best Selection

This applies the strongest selective pressure of any method. The strategies are sorted

by fitness, and the N with the highest fitness are selected. In practice, this tips the

3To reduce computation and prevent adding stochasticity on top of an already stochastic process,
it seems reasonable to use a deterministic process for the number of draws in each tournament, by
having bn ∗mfc number of tournaments of size m+ 1 and n− bn ∗mfc of size m.
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scale too far towards exploitation. It will find an optimum in few iterations, but it is

more likely to be a local optimum.

Elitism

Elitism can be used in conjunction with another selection method. When N strate-

gies are to be selected, elitism says to pick some number Ne < N of them using Best

Selection, and then pick the remaining N −Ne using another selection scheme. This

guarantees that the strategies with the highest fitness make it into the next popu-

lation. It turns out that this feature is required to prove a genetic algorithm will

converge to the optimum [31].

2.1.7 Survival vs. Election operator vs. Elitism Only

The survival stage is a relatively new stage in GAs and not universally used. Origi-

nally, the entire population would be replaced by the new children strategies. Then,

Elitism was shown to be necessary for convergence, and so the children replaced all

but the select elites from the original population.

Arifovic introduced the concept of an Election operator. In it, after two children

were generated from the two parents, a Best Selection operator was used to pick

the best two of the four (two children + two parents), thereby only keeping children

that were superior to their parents. This is a fairly strong selection operator, whose

strength depends on the parent selection operator chosen.

Survival encompasses these previous extensions and formalizes it into a new stage.

By just using Age Selection in survival and setting the number of children equal to

the population size, the stage has no effect and the algorithm reduces to the canonical

form. Adding Elitism to the Age Selection gives the most common algorithm, and

using some other selection criteria like Tournament or Roulette will give something

capturing the essence of the Election operator by not keeping a child strategy unless

it is shown to be better.

2.1.8 Choosing Selection Operators

There is no clear consensus on which selection operators to use when. There is always

a trade-off between convergence speed and not getting stuck in a local optimum. In

practice, Weighted Ranked Roulette and Tournament selection have tended to be
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Figure 2.6: Example GA Library Usage

// Ca lcu la te the squared e r r o r from s i n (x ) .
// Returns negat ive o f e r r o r s i n c e the GA maximizes the f i t n e s s func t i on .
f l o a t S ineEr ro rF i tne s s ( vector<f l o a t> c o e f f s ) {

f l o a t s q r e r r = 0 ;
f o r ( f l o a t x = −3; x < 3 ; x += 0 .01 ) {

f l o a t e s t = 0 ;
f o r ( i n t i = 0 ; i < c o e f f s . s i z e ( ) ; ++i ) {

e s t += c o e f f s [ i ] * pow(x , i ) ;
}
s q r e r r += pow( e s t − s i n ( x ) , 2 ) ;

}
r e turn −s q r e r r ;

}

i n t main ( ) {
// Create a binary GA whose phenotype i s 4 f l o a t s between −20 and 20 .
auto ga = BinaryGA({4 , FloatEncoding {−20, 20}} , S i n eEr ro rF i tne s s ) ;
ga . RunRound ( 1 00 ) ;
// Extract the phenotype o f the best s t r a t e gy and pr in t out the va lue s .
auto c o e f f s = ga . GetBestStrategy ( ) . phenotype ;
f o r ( f l o a t c : c o e f f s ) {

cout << c << ” , ” ;
}
cout << endl ;
r e turn 0 ;

}

Sample C++ code implementing a GA for finding a cubic fit of the sine function between x=-3
and 3.

the most popular methods, and elitism is almost always employed during survival.

Based on guidelines from the literature, I set the default Parent selector to be a

Weighted Ranked Roulette with α = 0.4, and the Survival selector to be the same

with 5-strategy elitism. For binary strategies, the default mutation rate, µmut, is set

to 2.

2.1.9 Example Library Usage

Figure 2.6 provides sample code for using the genetic algorithm library on the con-

trived example of finding the cubic polynomial that best fits a sine wave between

x=-3 and x=3. The most important line of code is the creation of the GA:

// Create a binary GA whose phenotype i s 4 f l o a t s between −20 and 20 .
auto ga = BinaryGA({4 , FloatEncoding {−20, 20}} , S i n eEr ro rF i tne s s ) ;

Here the GA is created with a binary genotype representation, and a phenotype

representation of a vector of 4 floats, each in the set [−20, 20]. The population size,

bit precision, genotype-to-phenotype conversion method, and all selection, mutation,
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Figure 2.7: Sample Evolution

(a) 10 iterations (b) 50 iterations

(c) 100 iterations (d) Fitness values
Sample genetic algorithm evolution over 100 iterations towards fitting a sine wave. A canonical
GA is a maximizer, so the fitness is the negative of the squared error. Because an elitism
operator is used by default, the fitness of the best strategy in the population never decreases
across iterations.

crossover methods are provided default values. The fitness function is set via an input

parameter, and must be able to accept a vector of four floats and output a fitness

value. Figure 2.7 shows a sample set of results for the problem and how it successfully

finds a good fit by the end of the horizon.

2.2 Individual Evolutionary Learning

Individual Evolutionary Learning is an extension to genetic algorithms to enable

multi-agent competition. It has been argued that GAs were not originally designed

for function optimization [20], and are in many ways weak at doing so. Instead,

they are better-suited to adapting to a shifting environment or fitness function. IEL

leverages this fact, by having several GAs compete with one another and react to the

actions of their competitors. After introducing IELs in 2003, Arifovic and Ledyard

showed the algorithm to be more accurate and likely to converge [5] in large state

spaces than other learning algorithms like Reinforcement Learning [14] or Experience
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Weighted average [8].

2.2.1 Strategy Play and Foregone Utility

Figure 2.8 shows the process of IEL compared to a standard GA. Upon initialization,

each player (population) selects a strategy at random to play for the first round

(iteration). Once everyone has submitted a strategy, they can each evolve as normal,

by using a their foregone utility as a fitness function. The foregone utility is calculated

by holding all other players’ chosen strategies constant, and replacing their own played

strategy with the strategy in the population being evaluated. One way to think of the

algorithm is that each GA represents an actual player in a game. Each iteration, they

each must play a strategy. The population within each GA represents other possible

strategies in the player’s mind. Each iteration, the players update their beliefs based

on how well the strategies in their mind would have performed had they chosen to

play any one of them instead.

Figure 2.9 shows the structure of the algorithm, with several GAs that are cou-

pled by the IEL environment. Computationally, standard GAs are created, and then

wrapped in a data structure that allows them to submit strategies to the IEL envi-

ronment and have a unique player ID. An IEL object runs the algorithm. Figure 3.2

in chapter 3 provides example code on how to set up these relationships.

2.2.2 Additions & Optimizations

The library has some additions not found in other IEL models. Some are speed

optimizations, and some give it extra flexibility for certain problem domains.

Fitness caching

In both GAs and IEL, the fitness function is traditionally the most computationally

expensive step—often by multiple orders of magnitude. In a single GA, the fitness

function is often constant. When it is, the GA automatically saves the fitness with

each strategy, and reuses the value in subsequent periods.

Each iteration of the GA has the original population which survived the last

iteration, and newly created children. With this fitness caching, fitness only has to

be calculated for the children. The most common case is for the number of created
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Figure 2.8: Individual Evolutionary Learning Flow Chart

Initialize Populations

All Choose
Random

Select Parents

Crossover Parents

Mutate Children

Survival Selection*

All Choose
Representative

Output Best

For each population

Pool into Population

Synchronize

Repeat N times

The process is largely the same as for the single GA in Figure 2.1. The two main differences are
that there is a stage for each population to choose a strategy for play each iteration, and that
now multiple populations are updating rather than only one. Note that in the base version,
all populations update, then all populations choose a new strategy for play. The selection
method for choosing a strategy for play is typically very strong, with the default set to a size-4
tournament.
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Figure 2.9: Individual Evolutionary Learning Hierarchy

IEL Economic Environment

GA #1 GA #2 . . . GA #M

Submit
strategy

Component
foregone utility

calculator

The IEL acts to connect otherwise independent genetic algorithms. It drives the algorithm
by requesting the GAs submit strategies for play, and sending them an individualized fitness
function they can use to evaluate their strategies holding all other players’ strategies constant.
Otherwise, the GAs act independently, allowing for different settings (selection methods, muta-
tion rates, etc.) as well as entirely different strategy spaces and representations. For example,
one GA could represent a buyer, while another represents a seller, each with entirely different
strategy spaces.

children to equal the size of the population, in which this case fitness caching reduces

the number of fitness calculations in half.

Phenotype caching

Converting from a binary genotype to the representation can also require some com-

putational time and can be cached with the strategy once it has been calculated. The

benefit to this is that it can be used in both static fitness environments and ones where

the fitness function changes each iteration. This means in IELs, the phenotypes of

the previous population can be reused.

Because of phenotype caching, it is important that in an IEL, the phenotype

contains all calculations that can be performed independently of what other GAs

have chosen as strategies. In some cases with only light coupling between GAs, the

vast majority of the calculations can be pulled out of the fitness calculation and into

the genotype-to-phenotype conversion, yielding similar savings to fitness caching.

Count storage

Another important optimization is to realize that many strategies end up being copies

of one another. By the end of a GA or IEL, on the order of half of the strategies

in a population are not unique. To exploit this duplication, rather than storing an
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array of the strategies, the unique strategies are paired with the frequency in the

population. Selection strategies are tasked with returning a new frequency list. This

allows for phenotype calculations and fitness calculations to be only performed once

per unique strategy.

While it is possible to do an additional optimization where once children are

created, they are each compared to the existing population to see if there already

exists an identical strategy, in practice this can be computationally expensive, and

is frequently not worth it. Because of this, there is some inefficiency where there are

multiple instances of the same strategy in the population due to these serendipitous

copies.

Batching

The last two features are additional features, rather than optimizations. One potential

problem in an IEL is that the updating is reliant on the strategies chosen by each sub-

GA. If a GA submits a poor strategy, the other GAs will adapt accordingly, leading to

setbacks in the convergence. In practice, having GAs only submit their best strategies

largely eliminates this. However, as a precaution, the algorithm allows for batching.

With batching, each GA submits N strategies. These are paired up into N groups of

strategy pairings, and the fitness of a strategy becomes the mean across the N . This

sampling allows strategies to be evaluated on how well it performs against the pool

of strategies the other GAs have, rather than just their best performing.

This process of batching is completely equivalent to only selecting one strategy per

iteration, keeping a running total of the fitness, and only updating each population

once every N iterations.

Sequential Updating

In some environments players take turns, rather than moving simultaneously. The

IEL library allows for each GA to be assigned a priority. All GAs with the same

priority update, and then submit new strategies.

Consider a scenario where there are buyers and sellers. Sellers each set a price, and

buyers then choose how much purchase. In this, all buyers can be assigned an identical

higher priority, and buyers assigned identical lower priority. Each IEL iteration, the

sellers will update based on what the sellers and buyers chose the previous iteration,

and submit new prices. The buyer then update based on these newly submitted seller
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strategies and the submitted buyer strategies the previous iteration.

Taken as a whole, the GA and IEL base of the library provides a relatively simple

coding interface, high performance, and a wide array of features, many not found

in any other implementation. This lets it serve as a strong core to the rest of the

GENEE library, and also allows others to use it when implementing their own GAs

and IELs.
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Chapter 3

Auction Individual Evolutionary

Learning

The rest of the Generalized Evolutionary Nash Equilibrium Estimator library can now

be developed using the Individual Evolutionary Learning component of the library

as a base. There are two main ways of modeling auctions: Bayesian Incomplete

Information, and Complete Information. While GENEE can be shown to work in

the Complete Information environments, the focus will be on Bayesian Incomplete

Information environments.

Suppose a bidder walks into the room where an auction for an item is being held

and sees all the competing bidders. In a Bayesian Incomplete Information model,

he knows how much he values the item at, and estimates a distribution of the value

for each competing bidder. Furthermore, even though he knows his true value for

the item being auctioned, he also estimates a distribution for his own value—this

is the distribution the other bidders are assumed to ascribe to him. Given this, and

assuming all bidders hold the same assumed distributions, an equilibrium bid function

can be found for each bidder. The bid function, bi(v) for player i prescribes how much

should be bid for each possible value draw, v.

To find the optimal bid function, consider a first-price sealed-bid auction. Let Xi

be the distribution of bidder i’s value. Given the bid function bi(v), let Bi ∼ bi(Xi).

Given this and our previous assumptions, we can write the expected profit of player
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i as:

E(π(bi(v)) =

∫ v

v

(v − bi(v))Prob(win|b(v))fXi
(v)dv

=

∫ v

v

(v − bi(v))
∏
j 6=i

[Prob(bj < bi(v))] fXi
(v)dv

=

∫ v

v

(v − bi(v))
∏
j 6=i

[
FBj

(bi(v))
]
fXi

(v)dv

(3.1)

where it is assumed v ∈ [v, v], fXi
(v) is the probability density function Xi, and FBj

,

is the cumulative density function of Bj.

Each bidder then has an objective to maximize this expected profit:

max
bi(v)

∫ v

v

(v − bi(v))
∏
j 6=i

[
FBj

(bi(v))
]
f(v)dv (3.2)

Doing a simultaneous maximization leads to the equilibrium bid functions. Crucially,

this is often not analytically tractable. It has been solved when value draws are

symmetric between bidders [33], [24] for both risk neutral bidders as well as some

risk averse bidders with some assumption. For asymmetric bidder, is has been solved

when all values are drawn uniformly with the same lower support, or when the values

are drawn uniformly with asymmetric value shifts [22]. Similar limitations exist in

other auction types.

3.1 Previous Work

There has been some research into using computers to solve for the equilibrium bid

functions. The greatest success has been by reducing the problem to a system of

ODEs, and then employing various methods to solve them. Li and Riley [27] cre-

ated a program BidComp to do this. And while it has high precision, it also carries

significant assumptions, including: the auction must be first-price sealed-bid, value

distributions must have the same support, and the value distributions must be or-

derable via stochastic dominance. It also has some inaccuracies at the endpoints of

the function. Hubbard [19] surveys the literature of these systems of ODE solutions

and describes the most modern techniques for solving them, but they all face similar

constraints and assumptions that make the difficult to generalize to new auction types

and more generalized utility functions and subjective probability functions.
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There have also been a few attempts to solve for the bid functions using GAs and

IEL. Andreoni and Miller [1], used a GA to solve symmetric first price auctions. They

assumed the bid function to be linear (which is the case), and task the GA to find

the slope. To evaluate the fitness, they used Monte Carlo simulations. While it was

reasonably successful, it is limited to a very narrow set of problems.

Chernomaz generalized Andreoni and Miller by using an IEL, which allowed for

asymmetric bidders [9]. He also generalized to allow quadratic functions. However,

this is still a very strong constraint on the functional form, and he found that even al-

lowing for quadratic functional forms led to inaccuracies when the underlying solution

was actually linear.

French [16] generalized further by allowing for piecewise linear bid functions. With

enough segments, the program was able to capably estimate non-linear bid functions.

Additionally, French evaluated the expected profit equation analytically, rather than

using Monte Carlo simulations. This was done by leveraging the linearity of the bid

functions, the uniform distributions of values, and risk neutrality. While a piecewise

linear function can be used to describe any continuous function form, the analytical

evaluation of the expected profit equation only works in the more simple cases.

3.2 Calculating Expected Profit

French’s method of directly calculating the expected profit integral can be generalized

to non-linear values and utility functions, as well as to other auction types, at the

cost of requiring numerical integration rather than analytically. Additionally, an

array of distribution and order statistic calculations are required. This can be quite

computationally intense for some auctions, although many of the calculations must

only be performed once per IEL iteration since the submitted strategies are held

constant. The benefit is that it is a deterministic result and has high precision. The

downside is the additional programming required to implement.

Meanwhile, Chernomaz and Andreoni used Monte Carlo simulations to estimate

the expected profit. The benefit to this method is that this is computationally

straightforward. For example, a second price auction can be evaluated by simula-

tion. To do so, draw a value for each bidder from their respective value distributions,

lookup their corresponding bids according to their submitted bid functions. The bids

are sorted and the highest bidder receives the item and pays the second highest bid.
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This is much simpler than calculating the expected profit integral directly, where

each bidder must calculate the distribution of the highest order statistic of the n− 1

other bidders based on the bid functions submitted this iteration (to determine the

probability of each bid winning), as well as the conditional expected highest statistic

(to determine the expected price of the item upon winning).

The downside to Monte Carlo simulations is getting the necessary precision. First,

consider a first-price auction with 10 identical bidders drawing values from the stan-

dard uniform. Given that a bidder’s value is drawn to be 0.1, the odds that all other

bidders have a lower value—and thus the bidder is expected to win–is 10−9. And so,

to get an accurate estimate of whether b(0.1)=0.09 or b(0.1)=0.08 is superior would

require millions of draws.

Similarly, suppose all bidders are bidding at the equilibrium. One bidder starts

to shade by ε over a small value range ∆v. Now, every time they win within ∆v,

the bidder makes an extra ε in profit upon winning, but has some small additional

probability of losing, which ultimately outweighs the added profit the rest of the time.

To accurately measure this with Monte Carlo simulations also requires on average

ε−1v−(n−1) samples for a set of draws where the bidder loses due to underbidding.

These problems with Monte Carlo simulations do not have large impacts in either

Chernomaz or Andreoni and Miller in part because they both constrain the bidding

functions to simple forms like linear, so a mistake in one area of the bidding function

also applies to all other areas of the bidding function. A below-optimal slope means

the bid function too low at all values, not just on some small subset of values. But

such a luxury does not exist with more flexible representations like a piecewise linear

bid function.

While it is perhaps possible to ameliorate some of this imprecision with Monte

Carlo simulations by utilizing more advanced techniques such as importance sam-

pling, I decided to just use the direct evaluation approach. However, as is detailed

in section 3.3.3, the regions with low win probability are still difficult to solve for

accurately without additional techniques.

3.3 Representation

A single strategy in the IEL represents a candidate bid function. Suppose we represent

such a function by n floats, each being a sample from the function equally spaced
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Figure 3.1: Example Piecewise Representation

(a) Unsorted (b) Sorted
Two possible representations of a 9 samples forming an 8-segment bid function.

across the value range. If we do a first-order interpolation, this yields a linear piecewise

function with n− 1 segments. This can be seen in Figure 3.1. This is representation

used by French, and in GENEE.1

All bid functions begin as a binary genotype, are converted from an implicitly

assumed gray code, and then turned into an array representing the y-samples of

the bid function.2 Once converted into y-samples, there is an optional final step.

Because bid functions should typically monotically non-decreasing, the y-samples

can be sorted. Figure 3.1 shows both the unsorted and sorted representation with

the same underlying y-samples.

Sorting eliminates all non-monotonic functions from the search space. While it is

apparent that the equilibrium strategy is a member of the reduced search space, it

is not apparent a priori that limiting search to this space is beneficial. For example,

without sorting, the effects of mutation are localized around the sample mutated.

But if the samples are sorted, such a mutation can result in a shift of the entire of

the bid function. Such effects may be deleterious to the search process.3

To test whether sorting leads to better results, as well as configure other param-

1A simple cubic spline was investigated, but ultimately rejected because it does not enforce a
monoticity constraint even when the samples are monotically non-decreasing, a common feature of
bid functions. There exists other cubic interpolations that do enforce monoticity, and they remain
a worthwhile branch for future research.

2The y-samples as well as all the statistical calculations are stored as Eigen library [17] Arrays
to simplify the syntax.

3There are other possible representations, such as a truncation representation, where any time
the y-sample decreases, it is truncated to be equal to the previous value instead. In practice, this
representation shows very low performance.
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Figure 3.2: Example GENEE Library Usage

i n t n b idde r s = 2 ;
// Have each bidder draw va lue s from a standard uniform .
vector<Dis t r ibut i on> v a l u e d i s t s ( un i f o rm d i s t r i bu t i on <>(0, 1 ) ,

un i f o rm d i s t r i bu t i on <>(0, 1 ) ) ;

// Must c on f i gu r e the i nd i v i dua l GAs x−y ranges
// Can a l s o s e t custom va lues f o r parameters l i k e populat ion s i z e .
vector<BidFunctionGAConfiguration> c on f i g s ( n b idde r s ) ;
f o r ( i n t i = 0 ; i < n b idde r s ; ++i ) {

c on f i g s [ i ] . va lue range = { lower ( v a l u e d i s t s [ i ] ) , upper ( v a l u e d i s t s [ i ] ) } ;
c o n f i g s [ i ] . b id range = {0 , upper ( v a l u e d i s t s ) } ;

}

// Create the auct ion , i nd i v i dua l GAs, and the IEL d r i v e r .
F i r s tP r i c e auct ion ( v a l u e d i s t s ) ;
auto gas = MakeGAs<Fi r s tPr i c e , Scatter >( c o n f i g s ) ;
auto d r i v e r = MakeIELDriver<Fi r s tPr i c e , Scatter >(gas , auct ion ) ;

d r i v e r . RunRound (1000 ) ;
// Output the most common s t r a t e g i e s and f i t n e s s e s .
f o r ( const auto& ga : gas ) {

cout << ga . GetBestStrategy ( ) . phenotype << endl ;
cout << ga . GetBestStrategy ( ) . f i t n e s s << endl ;

}

Sample C++ code running a first-price auction with 2 bidders drawing values from the standard
uniform. There is much more boilerplate code than in the single GA, but, modifying the
boilerplate for other auctions and player asymmetries is comparatively simple.

eters, the first-price sealed-bid auction is used as a baseline. The equilibrium bid

functions are well known, and they are well understood to not be a strictly dom-

inant strategy. This will lead to fluctuations from the equilibrium, allowing for a

fair comparison on which model parameterizations lead to the great accuracy and

precision.

3.3.1 Sample Code

Figure 3.2 shows an implementation of a First-Price auction with 2 bidders. Each

bidder can be assigned a different value distribution (in the example there are each

just given a standard uniform). Afterwards, the GA configurations are set for each

bidder. Here, settings such as population size, survival selection method, mutation

rate, etc. can be set on a per GA basis.

Next, the auction is created by passing in the value distributions. Additional

optional arguments include utility functions and subjective probability functions. Fi-

nally, the individual GAs and the IEL driver are created. Once all that boilerplate
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is complete, the driver can run for a set number of rounds and the each GA can

output their bid functions and estimated expected profit. Additionally, the auction

can be queried for common auction metrics such as the expected value realized by

each bidder and the auctioneer’s expected revenue from each bidder.

3.3.2 Accuracy Metrics

French and Chernomaz both measured the accuracy of the estimated bid functions

by using a continuous version of Root Mean Squared Error, D1, and Mean Signed

Error, D2. They are given by the following equations:

D1 =
1

(v − v)

√∫ v

v

(b(v)− b̂(v))2dv

D2 =
1

(v − v)

∫ v

v

(b(v)− b̂(v))dv

(3.3)

Together, D1 will inform how close GENEE’s result is to the theoretical equilib-

rium, and D2 indicates whether there is any directional bias.

3.3.3 Initial Results

For initial testing, I ran a symmetric two-player first-price sealed-bid auction with

draws from the standard uniform. For this, the equilibrium bid function is just

b(v) = 0.5v. Each GA was configured to have 1000 strategies, and the bid functions

is composed of 100 segments. Figure 3.3 shows the results for when the y-samples are

not sorted during phenotype conversion, and Figure 3.4 shows the results when they

are sorted.

Based on the graphs of D1 and D2, the sorted representation converges within

about 200 iterations, while the unsorted appears to still not be done even after the full

1000 iterations. Because the equilibrium for the first-price auction is not a dominant

strategy, the bidding functions fluctuate around the theoretical equilibrium. This

makes it valuable to average bidding functions submitted by each player over the last

100 iterations. When performed, D1 drops further in the sorted representation (from

about 0.07 to about 0.02). The increased accuracy can also be seen visually when

comparing parts (c) and (d) in Figure 3.4.

Another open question is which selection mechanism is appropriate when sub-
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Figure 3.3: Raw Representation 2-Player

(a) 10 iterations (b) 100 iterations

(c) 1000 iterations (d) Mean of Final 100

(e) Mean D1 (10 runs) (f) Mean D2 (10 runs)
Parts (a)-(c) highlight the evolution of the 2 bidders’ submitted bid functions across one run
of 1000 iterations using unsorted representation. The theoretical equilibrium is displayed as
the thick blue line. Part (d) takes the bid functions each bidder submitted over the last 100
iterations and averages them. Because there are often fluctuations about the equilibrium,
taking the mean of the submitted bid functions over the last 100 iterations provides the best
fit. Parts (e) and (f) show the progression of D1 and D2 averaged over 10 runs. D1 does not
appear to have fully converged by the end of the 1000 iterations.
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Figure 3.4: Sorted Representation 2-Player

(a) 10 iterations (b) 100 iterations

(c) 1000 iterations (d) Mean of Final 100

(e) Mean D1 (10 runs) (f) Mean D2 (10 runs)
Parts (a)-(c) highlight the evolution across one run of 1000 iterations using sorted represen-
tation. Part (d) takes the bid functions each bidder submitted over the last 100 iterations
and averages them, yielding the best fit. Parts (e) and (f) show the progression of D1 and
D2 averaged over 10 runs. Both D1 and D2 appear to converge within about 200 iterations,
yielding both a quicker convergence and higher precision than the unsorted representation.
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Table 3.1: Accuracy by Submission Method

4-Tournament Best Mode
D1 0.00175 0.00138 0.00246
D2 0.00017 -0.00019 -0.00028

Mean across 10 runs of the mean of the last 100 iterations.

mitting a strategy into the auction each iteration. Intuitively, we can expect that

it is optimal to usually submit a high-fitness strategy. Submitting a low-performing

strategy results in the other bidders adapting to the anomalous submission, setting

back convergence. However, one reason GAs perform well is because they are not

simply best-responders [2]. In fact, best response algorithms are notorious for get-

ting stuck in cycles and never reaching an equilibrium. To test which submission

technique is best, three methods are compared: a tournament selection with size 4,

simply selecting the best strategy, and finally selecting the mode in the population.

Table 3.1 provides estimates to the performance of each. Each method was av-

eraged over 10 runs. In each run, the bid function over the last 100 iterations was

averaged over, and D1 and D2 were calculated. Based on the results, simply sub-

mitting the best strategy yields the most accurate results, implying that the error

caused by submitting poor strategies outweighs any costs of being nearer to naively

best-responding. This is likely because even submitting the best strategy within the

population is not the same as best responding, since the true best response is unlikely

to be a member of the population.

Limitations

Now suppose a new bidder is added whose value distribution is drawn from a normal

distribution X ∼ N (0.7, 0.22). Similar to before, Figure 3.5 shows the end average

convergence. Theory states that bids should be higher than when all three draw from

the standard uniform bU(v) = 2
3
v. This is because one bidder now has a higher value

on average, and so the other bidders are facing more difficult competition and up

their bids accordingly. This in turn makes the new bidder also bid above the base

function.

Although the general behavior is reasonable, there are serious flaws in the result

for the normally distributed bidder. At high values, the bid function increases well

above the highest possible competing bid, which results in paying more without any
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Figure 3.5: Asymmetric Auction Convergence

Averaged over the last 100 iterations. Unlike the uniform distributions, the normal distribution
has an infinite support. GENEE automatically truncates between the 0.000001 quantile and
the 0.999999 quantile. Much of the bid function is over a range of values with only a fraction
of a percent chance of being realized, leading to inaccuracies.

increase in win probability. Equally distressing, on the very low end of the value

range, the bidder bids above value. What can account for this?

It turns out the expected profit is changed very little by these mistakes. There

is only a 0.1% chance of the bidder drawing a value below 0.1, and less than a 1%

chance of winning with such values. And so bidding too much changes the expected

profit by less than 0.001%. A similar argument can be made on the upper end of the

distribution. Compared to getting ε better results near the center of the distribution,

the tails represent rounding errors. Given a set of strategies, the likelihood that both

the tails and center are improved is unlikely, and so the ones with the center are

favored as long as the tails ends are not too egregiously wrong.

Even though it makes sense to not care about low probability events, we still

expect the IEL to be able to solve such problems. It turns out that with some small

modifications, it is possible to correct these tail-end values.

3.3.4 Independent Segment Representation

To resolve tail-end inaccuracies, consider the optimization problem faced by bidders

again:

max
bi

∫ v

v

(v − bi(v))
∏
j 6=i

[
FBj

(bi(v))
]
f(v)dv
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Figure 3.6: Example Composite Bid Function

Sample composite strategy representation with two components. Note that before, in Figure
3.1 there was 9-samples to generate the 8 segments. Now, 10 are required. This is because
each component should be able to independently vary the samples, and the entire domain needs
to be integrated over, so there is a duplicate sample at v = 0.5. They should independently
converge to the same if the bid function is continuous.

The integral can be split over m equally spaced segments:

max
bi

m∑
k=1

[∫ v+kL

v+(k−1)L
(v − bi(v))

∏
j 6=i

[
FBj

(bi(v))
]
f(v)dv

]
(3.4)

The maximization can then be swapped with the summation:

m∑
k=1

[
max
bi,k

∫ v+kL

v+(k−1)L
(v − bi,k(v))

∏
j 6=i

[
FBj

(bi,k(v))
]
f(v)dv

]
(3.5)

In this form, we now have the bid function split overm segments, b1(v), b2(v), ..., bm(v),

each maximizing profit over a value range. This makes intuitive sense because once a

value is realized, the bid should maximize profit for that value independently of the

maximization over other value ranges. That means the bid function can be found

via many independently optimizing GAs acting together. 3.6 shows how such a bid

strategy might look. In this case, there are two GAs, one optimizing the bid function

over the first half of the value range, and the other optimizing the other half. Each

can sort the bids just as was done in the case with a single GA.

The benefit to doing this is that regions of the value domain with low probability
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Figure 3.7: Individual Evolutionary Learning Hierarchy

IEL Economic Environment

GA #1
Join Components

GA #2 . . . GA #M

Component GAs

Submit
joint

strategy

Component
foregone utility

calculator

This is much the same as in 2.9, but with an additional layer for the component GAs. When a
strategy is submitted, each of the component GAs submit up to the composite GA, which joins
them together into a continuous bid function. It then submits the single strategy to the IEL.
The IEL environment now needs to create a fitness function that can evaluate over subsets of
the domain so that the component GAs can calculate their fitness independently.

can be evaluated and optimized independently from the rest of the bid function, so

that the profit differentials are not swamped by those in regions with higher likelihood

and expected profit.

The component GAs operate just as the individual GAs operated with only a

single component. Now, there is an added compositor that joins the components

together. Figure 3.7 details the process. The key is that the compositor needs to join

the component bid functions together into a single one. While it can leave things

discontinuous as seen in Figure 3.6, it is better to stitch them together by taking

the mean y-sample when there are two y-samples at the same value (v = 0.5 in the

figure). Additionally, just as before, the compositor may sort all of them knowing

that the final bid function should be monotically non-decreasing. Similar to the

single-component case, sorting does increase convergence accuracy and speed.

Beyond splitting the bid function into regions with more comparable expected

profits within each, it also dramatically reduces the search space. Rather than search-

ing in the domain
[
b, b
]n

, there are m components, with each searching in a reduced

space of approximately
[
b, b
] n

m . This allows it to converge significantly faster, with

smaller populations.

While this would seem to imply more component GAs are always better, in prac-

34



Figure 3.8: Composite GA Effects on Asymmetric Auction Convergence

(a) 1 component (b) 2 components

(c) 5 components (d) 10 components
With 5 components, most of the inaccuracies are eliminated, and with 10, there is only a hint
remaining at the upper extrema.

Figure 3.9: Composite-Strategy Accuracy Matrix

(a) D1 (b) D2
Each cell represent a population size-component count pairing. In each scenario, 10 runs were
performed, with D1 and D2 being calculated off the average bid function submitted over the
last 100 iterations. Lighter colors denote closer to 0, which is better. There is a clear detriment
from having either too many components/strategies, or too few, and a basin is apparent.
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tice this is not the case. As the number of component GAs increase and the search

space diminishes, the component GAs get to be too good, turning into little more

than best responders. This leads to cycling and inaccuracies. So, there is a “sweet

spot” for the number of components and the number of strategies. Figure 3.9 shows

the accuracy for the 2-bidder symmetric first-price auction over a variety of combi-

nations. In practice, it appears having more than 10 components will result in poor

convergence.

However, it is not as simple as just picking the combination that has the lowest

error in Figure 3.9. Figure 3.8 displays the effects of components on the asymmetric

auction accuracy, which was the original motivation for the compositing. Here it is

apparent that having additional components does help ameliorate tail-end inaccura-

cies. Therefore, the choice of number of components depends on the scenario. Luckily,

even if imperfect, using 5-10 components with between 50-100 strategies per popula-

tion proves to be very good in the practice. If higher precision proves necessary, then

a simple search can be performed.

3.4 All Pay & Second Price Auction

We now expand our auctions to consider the all-pay sealed-bid auction, where the

highest bidder receives the item, but all bidders must pay the bid they submitted,

and the second-price auction, where the highest bidder receives the item but only

pays the bid of the second-highest bidder. The all-pay is a trivial transform from

the first-price auction, where the bid is now subtracted from expected profit in all

cases, rather than being conditioned on winning. The second-price auction, although

easier to solve theoretically (b(v) = v), is actually more complicated to implement

computationally.

Suppose we have n draws from the same distribution X. If the draws are sorted

from lowest to greatest, the kth lowest draw, the kth order statistic, is denoted X(k).
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Its cdf is given by:

FX(k)(y) = Prob(at least k draws < y)

=
n∑
i=k

Prob(exactly i draws < y)

=
n∑
i=k

(
n

i

)
[F (y)]i [1− F (y)]n−i

(3.6)

To evaluate the expected profit in the second-price auction, a bidder needs to know the

expected price conditional on winning with a bid. As an intermediary step, the highest

order statistic of the opponents’ bids is required. However, because the distribution

of bids by each bidder is dependent on both the bidder’s value distribution and the

submitted bid function, both of which can be asymmetric across bidders, the order

statistic needs to be calculated for non-identical distributions. Although cumbersome,

this can be calculated.

Let Cn
k be the set of all combinations of k selections among n unique objects.

Let c∈Cn
k be one such combination. Define ci to be a binary indicator for whether

object i is selected in the combination c. It will be 1 if the object is selected in the

combination, and 0 otherwise. Then, for n distributions, X1, X2, ...Xn, cdf of the kth

order statistic X(k) is given by:

FX(k)(y) = Prob(at least k draws < y)

=
n∑
i=k

Prob(exactly i draws < y)

=
n∑
i=k

∑
c∈Cn

i

n∏
j=1

cjF (y) + (1− cj) [1− F (y)]

(3.7)

Given the distribution of the highest competing bid X
(n−1)
−i , a bidder can then

calculate the expected second highest bid conditional on them winning with bid y:

E(x|x < y) =

∫ y
v
xf

X
(n−1)
−i

(x)dx∫ y
v
f
X

(n−1)
−i

(x)dx
(3.8)

With this, the second-price auction can be evaluated.
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Table 3.2: Estimated Attributes for Common Auctions

Bidder Surplus Revenue Efficiency
FPA 0.3336 0.3329 99.99%
SPA 0.3333 0.3333 100.0%
APA 0.3318 0.3347 99.98%

(a) 2 Bidders

Bidder Surplus Revenue Efficiency
FPA 0.1671 0.6662 99.99%
SPA 0.1666 0.6667 100.0%
APA 0.1596 0.6734 99.96%

(b) 5 Bidders
Estimated auction attributes across 10 runs.

3.5 Results

The three auction types—first-price (FPA), second-price (SPA), and all-pay (APA),

were evaluated for environments with known solutions. Each was run with either 2 or

5 bidders, with each bidder drawing values symmetrically from a standard uniform.

The convergence can be seen in Figure 3.10.

In addition to the bid functions, GENEE can also output the bidders’ profits,

their realized values, and the auctioneer’s expected revenue. The estimate for these

auction attributes are shown in Table 3.2. They comport with the revenue equivalence

theorem [30], which states that changing the auction type will not yield different

revenues when bidders are symmetric and the auction mechanism is efficient.

3.6 Conclusions

Building off of French’s work and the IEL library, the GENEE library has been shown

to provide highly accurate estimates to auctions with known solutions. The predicted

revenues and efficiencies also comport with theory.

Unlike previous attempts however, the GENEE library can handle multi kinds of

auctions such as the second-price and all-pay auctions, and can provide estimates for

more exotic environments, with non-linear utility functions and subjective probability

functions, as well as asymmetric value distributions with differing supports. The

flexibility extends past even this, enabling auctions with multiple items and bidders

with completely different representations.
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Figure 3.10: Convergence for Common Auctions

(a) 2-Bidder FPA (b) 5-Bidder FPA

(c) 2-Bidder SPA (d) 5-Bidder SPA

(e) 2-Bidder APA (f) 5-Bidder APA
2 Bidders 5 Bidders

FPA 0.00130 0.00197
SPA 0.00204 0.00184
APA 0.00193 0.00558

2 Bidders 5 Bidders
FPA -0.00017 -0.00048
SPA 0.00002 0.00002
APA 0.00087 0.00040

(g) Mean D1 (10 runs) (h) Mean D2 (10 runs)
These scenarios were all run with the same parameterization: 5 component GAs, 80 strategies
in each population, 100 segments for the bid function (20 segments in each component), and
1000 iterations. The plots are for a sample of a single run, with the functions averaged over the
last 100 iterations. All the results show strong performance and precision, with the 5-bidder
all-pay auction being the weakest, relatively.
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The remaining chapters detail two applications: simultaneous multi-unit auctions,

and common value auctions with multiple signals. Each detail additional extensions

required to the model, and showcase the ability of the GENEE library to handle a

large domain of auction environments.
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Chapter 4

Simultaneous First Price Auctions

Consider two items, A and B. The items are to be sold simultaneously in separate

first-price sealed-bid auctions. The simplest case is when the item values, vA and vB,

are drawn independently from one another, and the value received is the sum of the

values of the items won. In such a case, the two auction can be treated independently,

and they each reduce to the single item case.

But, often times the items are somehow coupled with one another. In this chapter,

I focus on finding bid function equilibria when the items have non-complementary

values. In this scenario, the bidder receives vA in value for winning item A, vB for

winning item B, and g(vA, vB) ≤ vA + vB when both items are won.

There has been considerable research into these auctions. Feldman et al. [15]

proved that when values are non-complementary the efficiency of simultaneous first-

price auctions is at least 50%, and the efficiency of second-price auctions is at least

25%. Unfortunately, Cai and Papadimitriou [7] were able to prove that finding a Nash

equilbrium bid function in first and second price simultaneous auctions is NP-hard.

Even worse, they were able to prove even finding an ε-approximate equilibrium is

NP-hard in the case of second-price auctions1. While still unproven, it is strongly

suspected that first-price auctions suffer the same restriction.

Cai and Papadimitriou aptly summed up the hopelessness of finding the equi-

librium bid strategies by writing, “even recognizing a Bayesian Nash equilibrium is

intractable.”

1An ε-approximate equilibrium is one that is provably within some distance epsilon of the true
equilibrium
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Figure 4.1: Component GAs in Simultaneous Auctions

Component GA

bB(vA, vB)

bA(vA, vB)

A strategy for a component GA is a region in vA×vB space, and contains the same region in
both item bid functions. This is required because the expected profit of bid function A in a
value region depends on the bid function of B over that same region, and vice versa.

4.1 Extending GENEE

While the problem does quickly become intractable as the number of items being sold

increases, it is still manageable with only 2 items. To implement it, GENEE must be

extended beyond 1-dimensional functions.

4.1.1 Strategy Representation

For the 2-item auction, each bidder has two bid functions, one for item A, and the

other for item B. Furthermore, each of the bids depend on both values drawn. Let

the bidder i’s bid function be given by bA(vA, vB), and bB(vA, vb). To represent these,

a strategy is two, 2-dimensional grids bid samples that are interpolated by bilinear

interpolation.

In the single item auction, a 99-segment bid strategy required 100 points. Here,

a 99-by-99 segment grid requires 10,000 points. And, because there are two bid

functions per strategy, there are ultimately 20,000 points in such a strategy. Fortu-

nately, convergence can be aided by creating component GAs, just as was done in

the single-item case. Figure 4.1 displays how the each component GA is akin to a

piece of a quilt, and the compositor must stitch the components together into a pair

of patchworks (one for each item). Just as in the single-item auctions, the compositor

takes the mean of any overlaps, which is just two in most cases, but at the interior

intersections there are four component GAs overlapping at a single point.
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Figure 4.2: Relevent Areas of Bid PDF

Given some bA and bB , the probability of each of the 4 scenarios (win both, win A only, win B
only, win none), is calculated to be the volume of each of the four areas. When facing multiple
competing bidders, a bit more math is involved.

An additional wrinkle compared to the single item environment is sorting the

bid function. While s bid function for A should never decrease as the value of A

increases, it may decrease when the value of B increases. The equivalent is true for

the bid function of B. This means that for each bid function, we may sort the samples

in only 1 dimension, and not the other.

4.1.2 Expected Profit Calculations

The expected profit calculations, while computationally cumbersome, are not espe-

cially more complicated conceptually than the single-item case. Given player i’s bid

functions, let bAi (vA, vB) and bBi (vA, vB), let Bi represent the joint distribution of the

bids. Given this, its cdf is defined as:

FBi
(x, y) = P (bAi < x, bBi < y) (4.1)

Figure 4.2 connects the areas of the bid distribution pdf to the probability of

different auction outcomes given a set of bids. The probability of winning both items,

P (A ∩ B), can be determined by finding the probability of beating all competing
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bidders on both items. This is calculated by:

P (A ∩B) =
∏
j 6=i

FBj
(bAi , b

B
i ) (4.2)

Meanwhile, the probability of winning only item A is the probability of outbidding all

bidders on A, but not winning B, , P (A∩B). It can be calculated with the following:

P (A ∩B) = (P (A ∩B) + P (A ∩B))− P (A ∩B)

= P (A)− P (A ∩B)

=
∏
j 6=i

FBj
(bAi ,∞)−

∏
j 6=i

FBj
(bAi , b

B
i )

(4.3)

The probability of only winning item B can be calculated similarly to only winning

item A. Winning no item is just 1 subtracted by the other three probabilities. With

all these probabilities, the expected profit can now be calculated2:

E(π(bAi , b
B
i ) =

∫ ∞
−∞

∫ ∞
−∞

(
g(vA, vB)− bAi − bBi

)
P (A ∩B)+

(vA − bAi ) [P (A)− P (A ∩B)] +

(vB − bBi ) [P (B)− P (A ∩B)] f(vA, vB)dvAdvB

(4.4)

4.1.3 Accuracy Measurement

The final step is to extend the accuracy measurements, D1 and D2 to handle 2-

dimensional bid functions. In this case it is a simple matter of replacing the sin-

gle integral with a double integral. Additionally, each bid function, bA(vA, vB) and

bB(vA, vB), will be measured independently.

Dj
1 =

1

(vA − vA)(vB − vB)

√∫ vA

vA

∫ vB

vB
(bj(vA, vB)− b̂j(vA, vB))2dvAdvB

Dj
2 =

1

(vA − vA)(vB − vB)

∫ vA

vA

∫ vB

vB
(bj(vA, vB)− b̂j(vA, vB))dvAdvB

(4.5)

2Note that the bids are both functions of the values, but the notation was suppressed for clarity.
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Figure 4.3: Accuracy for Additive Values

(a) D1 (b) D2

D1 shows two features. First, even after 5000 iterations, there the bidders have not fully
converged. Second, the results are very accurate. In fact, with D1 reaching 0.00088 in the last
iteration, it is about twice as accurate as the results in the single-item environment were with
averaging the bid function over the last 100 iterations after it had converged.

4.2 Results

Recall that it is assumed bidders receive the value for the item if only 1 item is one,

but receive g(vA, vB) if both items are won. Three different non-complementary value

functions were explored:

g(vA, vB) = vA + vB

g(vA, vB) = 0

g(vA, vB) = max(vA, vB)

(4.6)

The additive valuation serves as a baseline and will be addressed first.

4.2.1 Additive Values

When g(vA, vB) = vA+vB, the items are independent of one another, and so we should

expect each bid function to be the same as single-item auctions, with no dependence

on the other item’s value. Figure 4.4 shows the evolution of a 4-bidder auction over

5000 iterations, and 4.3 shows the accuracy measurements. The results prove to be

highly accurate, if computationally expensive3.

3Executing this 2-item auction requires about 100 times as much computational time as the
single-item auctions.
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Figure 4.4: Convergence for Additive Values

(a)

(b)

(c)

One bidder’s functions in a 4-person environment, with each drawing values from the standard
uniform. Displays are after (a) 50 iterations, (b) 500 iterations, and (c) 5000 iterations. After
50 iterations, the patchwork nature of the bid function is evident, as well as the discriminatory
nature of only sorting in the A direction for bAi (vA, vB and vice versa for bid on B. By the
end, the patchwork is unidentifiable, and the system has evolved to have each bid function be
independent of the drawn value for the other item.
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4.2.2 Dating Game

Now suppose g(vA, vB) = 0. This means that if a bidder wins one item, they receive

it’s value, but if they win both, they receive nothing. Such a function is admitted

contrived, but a plausible scenario is that of dating. Expending resources in the

pursuit of multiple lovers can be conducted, but in this model, being successful with

both ultimately leads to rejection by both.

Intuitively, we would expect the bidder to focus on item with the higher value

draw, and bid low enough to not win the other item, perhaps even going as far as

bidding nothing on it. A naive approximation would be:

bAi (vA, vB) =


∏n−1

i=1

[
i+1
i+2
P (i)

]
vA if vA > vB

0 if vA ≤ vB
(4.7)

Which just says to only bid when the value for item A exceeds that of item B, and

when bidding, bid a average of the single-item equilibria weighted by the probability

of that many other bidders choosing to bid on item A. With symmetric uniform draws

and 4 bidders, this works out to be:

bAi (vA, vB|vA > vB) =
101

160
vA ≈ 0.63v (4.8)

This is just a first-order naive approximation. The actual solution remains an open

question in the literature. Figure 4.5 shows what GENEE converges to in the 4-

bidder scenario. It finds that the bidders do bid on both items sometimes, as long as

they believe there is a significant probability of losing the item they value more. In

fact, it is observable that conditioned on the value of item A, the bid on A is strictly

non-increasing with value for B. This is means that as their value for B increases, and

thus they bid more on item B, the probability of winning B increases, and in turn

the expected profit from winning item A decreases, finally leading to a decrease in

the bid on item A.

The maximum bid is 0.67, slightly higher than the naive estimate, which is ex-

pected given that bidders sometimes bid on both item, leading a higher expected

number of competitors.
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Figure 4.5: 4-Bidder Dating Game

A particularly notable result is the discontinuity around vA = vB = 1. Currently, GENEE does
not support discontinuities. The best it can do is drop from 1 to 0 across a single segment,
which looks similar. With this simulation having 60-by-60 segments, the quickest it could switch
between items is over a ∆v = 1

60 ≈ 0.01667.
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Figure 4.6: 4-Bidder with Perfect Substitues

Note that this lacks the discontinuity found in the Dating Game and is instead smooth over
the domain. Also, the maximum bid is about 0.68, slightly higher than the Dating Game, but
much closer to it than the additive values maximum of 0.75.

4.2.3 Perfect Substitutes

Finally, suppose g(vA, vB) = max(vA, vB). In this case, the items are perfect substi-

tutes, and the bidder only receives value equal to the most valuable item. This is

perhaps the best approximation of some of the bidders in the New Zealand Spectrum

auction. Many only need on spectrum license, and so winning multiple wastes money.

Once again, there is no theory on how to bid in such an environment, but it should

lie somewhere between the additive values and dating game behavior.

Figure 4.6 shows the result from GENEE. Indeed, it does appear to fall between

the two more extreme value functions.

4.2.4 Estimated Auction Attributes

While the bid behavior in different scenarios is interesting in and of itself, of greater

interest are estimates for the auction properties such as efficiency and auctioneer rev-

enue. From the model, revenue, profit, and realized value can be directed extracted.

By running Monte Carlo simulations to determine the expected maximum attainable

value, efficiency can be calculated.
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Table 4.1: Estimated Auction Characteristics

(a) Efficiency

# Bidders Dating Substitutes Additive
2 0.97 0.98 1.00
3 0.96 0.97 1.00
4 0.97 0.98 1.00
5 0.98 0.98 1.00
6 0.98 0.99 1.00

(b) Revenue fraction

# Bidders Dating Substitutes Additive
2 0.11 0.28 0.50
3 0.45 0.53 0.67
4 0.61 0.66 0.75
5 0.73 0.73 0.80
6 0.76 0.78 0.83

(a) The efficiency of the mechanism across the different value parameterizations changes very
little actually confirms that the mechanism is perhaps a good choice for subadditive values. (b)
The fraction of the surplus the auctioneer receives through bids strongly depends on the revenue,
and interacts with the parameterization. As the number of bidders approach the number of
items, the auctioneer can expect very little revenue depending on how subadditive values are.

Table 4.1 gives estimates to the efficiency for the three parameterizations discussed

while varying the number of bidders from 2 to 6. It also shows what fraction of the

realized value is collected by the auctioneer from bids.

From these, it is apparent that very little efficiency is lost in any of the 2-item

environments, but the loss is non-zero. The loss occurs in the subadditive parame-

terizations during situations such as when the buyer with the highest value on A has

an even higher value on B, but not the highest, and so underbids on A, and loses it

to someone with a lower value for it, but no value for B.

Auctioneer revenue suffers greatly as the number of bidders approach the number

of items, becoming even lower as valuations for the pair decrease. This might provide

some insight into the revenue shortcomings of the New Zealand spectrum auctions.

A lack of bidders resulted in lower and perhaps fewer bids to avoid accidentally over-

purchasing.
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4.3 Conclusions

Extending GENEE to support 2-dimensional bid functions empowers it to tackle

auctions with scant theoretical predictions. It was able to provide point estimates to

the auction performance where none was previously available, and could only have

been estimated through experiment data.

This also provides a base that can be built on to examine not just simultaneous

second-price auctions, but also auctions with complementary values and the submis-

sion of combinatorial bids (a bid which demands either both items or none).
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Chapter 5

Common Value Auction with

Multiple Signals

Consider an auction to lease a gold mine. The gold mine has the same value, v, to all

bidders, but each bidder has a different signal, s, as to the mine’s value. How should

they bid? First, suppose each signal is unbiased, such that E(v|s) = s. Additionally,

assume all bidders simply submit their expected value as their bid. It turns out that

even though each bid is an unbiased estimate, the highest estimate among them is

biased upwards. Because of this, the winner of the auction will on average overpay

for the lease. This phenomena is known as the Winner’s Curse, and is prevalent in

practice. To avoid it, bidders must recognize that E(v|s = smax) < E(v|s), and adjust

their estimate of, v, downwards by accounting for this fact that winning implies their

estimate was highest.

5.1 Single-Signal Scenario

To give the scenario concreteness, suppose the true value, v, is drawn uniformly in

[500,9500]. Each bidder receives a single signal, s, of the true value with an added

error ε drawn uniformly in [-500,500]. The goal is to find the equilibrium bidding

strategy as a function of the signal, bi(s).

Wilson first solved for the bid function [34], and Milgrom and Weber [29] as well as

Levin et al. [26] developed it further. Before turning to more complicated variants, it

will be instructive to use GENEE to reproduce the theoretical predictions and ensure

it works in this auction environment.
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The expected profit of a bidder is given by:

E(π(bi(s))) =

∫ 9500

500

∫ 500

−500
(v − bi(v + ε))

∏
j 6=i

Bj(bi(v + ε))fV (v)fε(ε)dεdv (5.1)

While this integral can be evaluated easily enough, it cannot be split up in the signal

space, a requirement for running GENEE with component GAs. To remedy this, the

integral is rewritten as follows:

E(π(bi(s))) =

∫ 9500

500

∫ 500

−500
(v − bi(v + ε))

∏
j 6=i

Bj(bi(v + ε))fV (v)fε(ε)dεdv

=

∫ 9500

500

∫ 10000

0

(v − bi(s))
∏
j 6=i

Bj(bi(s))f(v, s)dsdv

=

∫ 10000

0

∫ s+500

s−500
(v − bi(s))

∏
j 6=i

Bj(bi(s))f(v, s)dsdv

(5.2)

This integral has the signal, s, only vary through the outer integral, and allows for a

region of the bid function to be evaluated independently of other regions. Also note

that while this requires double integration, the bid function is only 1-dimensional, so

while some of the procedures developed in chapter 4 are useful, the process is more

akin to that seen in chapter 3.

Figure 5.1 shows the GENEE output for the single-signal scenario with 4 bidders.

The algorithm successfully models all regions except the lower endpoint. This is

solved by avoiding it. For the remainder of the chapter, the model will focus on

solving the center region of the bid distribution. This has been done elsewhere in the

literature [21], and allows for a much simpler model. In the center signal region, the

relative bid, (ri(s) = bi − s), reduces to a constant, since the actual value conveys no

special information.

It is important to note that this reduction only holds because of our assumption

of operating sufficiently far from the endpoints. At the endpoints, some bidders may

receive signals outside the value range, allowing for a more precise estimate of the

value. Bidders with signals near the value endpoints must adjust their bids to account

for the possibility of competing bidders receiving these more informative signals. This

then propagates to bidders further from the endpoints who react to these changes in

bidding. This is visible in Figure 5.1 (b), where the signal region s > 1000, in which

the true value cannot be at the endpoint, exponentially decays towards discounting
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Figure 5.1: Convergence for Single-Signal Scenario

Bidder B1 B2 B3 B4
D1 8.47 8.64 36.94 18.18
D2 -1.82 -2.86 -11.04 -5.61

(a) Bid function (b) Relative Bid
(a) The convergence is strong, with the exception of the region where s <= v, where some
significant deviations occur for a subset of bidders, in this case bidders B3 (Green), and B4
(Red). (b) Looking at the relative bid functions, (ri(s) = bi−s), it is apparent that the relative
bid function is constant over about 75% of the signal domain, only deviating near the endpoints.
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Figure 5.2: Sample Signals

Each sample provides an upper and lower estimate of the true value. Conditional on the signals,
the true value is uniformly distributed within the constrained domain range.

the observed signal by a fixed amount of 500. Note that this fixed discount region not

only avoids the Winner’s Curse in expectation, but actually reduces its possibility of

occurring to zero.

With this admittedly strict assumption of operating near the center of the signal

domain, the bid function reduces to a single relative bid value, ri, and the expected

profit equation can be reduced to the following:

E(π(ri)) =

∫ 500

−500
(0− (ri + ε))

∏
i 6=j

FBj
(ri + ε)f(ε)dε

=

∫ 500

−500
(0− (ri + ε))

∏
i 6=j

(ri + ε)− rj + 500

1000
f(ε)dε

(5.3)

Notice that because the signal value does not affect the relative bid, the expected profit

is reduced to only integrating over the domain of possible errors, and the true value

can be normalized to zero. This simplified version is easy to solve for by modifying

GENEE to support estimating point bids.

5.2 Multiple Signal Scenario

Now suppose a more realistic environment where bidders must pay for signals, rather

than being endowed with them exogenously. Prior to observing any signals, a bidder

must decide how many signals to purchase between 1 and 5. Each signal is still drawn

with an error uniformly distributed in [−500, 500].

As established in Cox and Haynes [10], the sufficient statistics for multiple draws

from a uniform are the minimum and maximum draws, and draws between the mini-

mum and maximum provide no additional information. Figure 5.2 shows an example

of a bidder receiving three signals. The signals only set the bounds for the true

value, and the true value is still uniformly distributed within the constrained range.
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Therefore, the unbiased estimate for the value given the signals is the midpoint,

m = (smax + smin)/2, of the max and min draws. The range the true value can take

can be determined from both m, and the precision of the draws, p = (smax − smin),

with a higher precision translating to a smaller possible range of values the true value

can take.

In the general case, bids are a function of both the precision and midpoint, bi(m, p).

However, from the assumption previously stated that we are far from either endpoint,

the relative bid function, ri(m, p) = bi(m, p)−m, does not depend on the midpoint,

reducing to just ri(p). Given this, we can write the expected profit equation as follows

(normalizing the midpoint to 0):

E(π(ri(p))) =

∫ 1000

0

∫ 500

−500
(0− (r(p) +m))

∏
j 6=i

FBj
(r(p) +m)f(m, p)dmdp (5.4)

The joint pdf of the midpoint and precision, f(m, p), can be calculated from the

joint order statistic of the min and max draws. Figure 5.3 (a) gives the marginal

distribution of the precision as a function of the number of signals purchased, and

Figure 5.3 (b) and (c) show the joint pdf for signal draws of 3 and 5. As stated earlier,

conditional on a precision or range, the midpoint is uniform.

5.3 Model Results

With the expected profit equation defined and the joint distributions known for given

number of signals, the relative bid functions, ri(p) can be estimated for m bidders,

conditional on the number of signals purchased by each bidder, Si. Given m = 4

bidders, there are 70 unique signal scenarios (all bidders have 1 signal each, 3 have 1

and the last has 3 signals, etc.).

Figure 5.4 shows the results of two representative signal scenarios. In no scenario

does a bidder submit a bid that has the potential of experiencing the Winner’s Curse

and yielding negative profit. Instead, bids always track with the lowest possible

true value at low precisions, with bid shading occurring as precision increases. The

magnitude of this bid shading decreases as the number of signal draws competing

bidders purchased increases.

After running GENEE for all 70 signal scenarios, the value of signals can be

estimated. In each signal scenario, the profit of each bidder is estimated. If increasing

56



Figure 5.3: Precision-Midpoint Distributions

(a) Precision Marginal

(b) 3 signals (c) 5 signals
(a) With only 1 signal, the precision will always be zero. Otherwise, the precision follows a beta
distribution, β(n− 1, 2), where n is the number of signals. (b-c)The joint distribution has the
midpoint normalized about 0. All midpoints are equally likely conditional on the precision, but
without conditioning, midpoints nearer to the true value are more likely.
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Figure 5.4: Model Bidding

(a) Scenario 1234 (b) Scenario 2345
Conditional on a precision, the triangle denotes the possible midpoints relative to the true
value. Adding ri(p) to this distribution of possible midpoints at that precision provides the
distribution of bids relative to the true value. This is indicated in the graphs via shading. Any
shading above the zero line indicates a possibility of falling victim to the Winner’s Curse.
Note that in (a) Bidder 1, who only has 1 signal, is shown as a bullet in the bottom left-hand
corner. Because this bidder only has one signal, precision will always be 0. In all scenarios,
conditional on a precision, bidders with more signals bid less than those with fewer. However,
it is important to remember that those with more signals have a higher expected precision, so
they are more often operating on the right-hand side of the graph, where bids are higher on
average.
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the signals purchased by 1—while holding all other bidder signal purchases constant—

increases the expected profit of the bidder by more than the cost of the signal, the

bidder would prefer to have purchased an additional bid. The reverse is true when

determining whether the bidder would have preferred to have purchased fewer signals.

If no bidder would have preferred to change from the purchased number of signals,

then that signal scenario is an equilibrium.

Figure 5.5 shows each bidder’s preference in all 70 scenarios for three levels of

signal costs, 3, 5, and 10. Each price has a single pure-strategy Nash equilibrium:

� Signal cost 3: 3 bidders purchase 3 signals, 1 purchases 4 signals.

� Signal cost 5: 3 bidders purchase 3 signals, 1 purchases 2 signals.

� Signal cost 10: all 4 bidders purchase 2 signals.

5.4 Experiment

An experiment was performed to evaluate people’s behavior in the environment. Each

auction had 4 bidders, values and signals were drawn in accordance to the model

denominated in cents. Therefore, the minimum value in an auction was $5.00, and

the maximum possible value was $95.00. Signals were within $5.00 of the true value

in either direction. The cost of a signal was set to 10 cents.

5.4.1 Procedure

A full description of the procedure can be found in Deck et al. [12]. Briefly, each

session had 12 subjects. Subjects competed in 30 auctions and were paid their cu-

mulative earnings. Subjects were given an endowment of $25.00. Auction losses and

the costs of purchased signals were deducted from the endowment. Subjects received

a $7.00 participation payment in addition to their earnings, which averaged $12.131.

At the start of each auction, subjects were randomly and anonymously placed in

groups of 4. First, each bidder simultaneously decides how many signals to purchase.

Next, each bidder was informed of the information contained in their own signals and

the number of signals acquired by the other 3 bidders in the auction (but not the

1Note that purchasing the minimum 1 signal each auction and otherwise not participating nets
$22.00 in earnings.
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Figure 5.5: Profitability of Signal Purchasing

(a) Signal cost: 3

(b) Signal cost: 5

(c) Signal cost: 10
Profitability of signals for 3 different signal costs. Each one has a pure Nash equilibrium, two
of which are asymmetric.
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Figure 5.6: Subject Bidding

(a) Winners’ bids (b) Losers’ bids
(a) Plots the relative bid of the winning bidder in each auction with their realized precision.
The equilibrium bidding strategy with all bidders having 2 signals is graphed for comparison.

Table 5.1: Realized profit of Winners

Signals 1 2 3 4 5
Frequency 213 42 91 47 27

Avg. Profit -278.2 -162.6 -133.7 -120.1 -144.7
The average winner fell prey to the Winner’s Curse and lost substantial sums. Interestingly,
due to their propensity towards overbidding, the value of signals is substantially higher than
the model suggested.

realization of those signals). Then the actual auction occurred. Finally, the auction

results were displayed to everyone as was the true value of the asset to enhance

transparency.

5.4.2 Results

The auctions were filtered to those with true values between 1000 and 9000. Figure

5.6 shows how subjects bid in the auction. Both eventual winners and losers risked

falling prey to the Winner’s Curse a majority of the time. On rare occasions, bidders

even placed bids above the maximum possible value based given their signals, even

though the experiment’s interface provided the allowable range of the true value given

signals.

Table 5.1 displays the average profits of the winners in each auction (Losers just

61



Figure 5.7: Signal Purchasing

The average number of signals bought remains relatively constant over the horizon, with an
average of about 1.7 signals purchased per bidder per auction.

incur the cost of the signals purchased). The Winner’s Curse proved to be ever-

present, in line with previous experiments.

Conditional on winning, signals increased expected profit significantly more than

was predicted in the model. However, this does not mean we would expect subjects

to purchase more signals than originally predicted. To see why, consider a rational

bidder in this auction, armed with Table 5.1 and Figure 5.6. Given that the winning

bid is usually above the true value, the expected probability of winning at a price

below the true value is rather low, leading the rational bidder who does not overbid to

“lose” most of the time. Given such a situation, signal purchasing is largely a waste

of money for such a bidder.

Bidders who do win may or may not benefit from signal purchasing. Clearly, con-

ditional on winning, signals help stem the bleeding. However, purchasing additional

signals could lead to lower overall profit if it increases the likelihood of winning. Ulti-

mately, Figure 5.7 shows the average number of signals purchased each auction, and

the average remains steady across time at about 1.7 signals per bidder, per auction,

not far in aggregate from the Nash equilibrium of 2 signals per bidder.

5.5 Conclusions

The GENEE library proved invaluable in evaluating such a complex environment.

Not only was it able to provide estimates to the equilibrium bid functions, but it was

also able to estimate the values of signal purchasing, leading to the solving of the
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meta-equilibrium of signal purchasing.

A clear next step is to relax the assumption that the true value is far from the end-

points. Handling this more general case allows for more precise estimates of the value

of signals, and for more observations from the experiment to be analyzed. However,

it remains to be seen whether the expected profit can be calculated quickly enough

to be practical, or if the functions can converge reliably at the lower endpoint.
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Chapter 6

Conclusions

I have created a computational program that provides significant value to the field

of mechanism design. It contributes a generalized implementation for both genetic

algorithms and individual evolutionary learning that can be reused for other applica-

tions. More importantly, it provides a robust library of tools to evaluate many forms

of auctions, both common and more exotic.

Furthermore, it allows for more complex bidder behavior, with asymmetric value

draws, non-linear utility functions and subjective probability functions allowable.

This alone opens the doors to computational investigations of auction domains that

were previously impossible to explore in any systematic way.

Because the computational evaluation of equilibrium bid functions has remained

largely unexplored beyond that of simple asymmetries in first-price auctions, the

avenues for future research is vast. The most obvious routes would be to apply it to

more parameterizations, such as superadditive values in the simultaneous first-price

auction environment. Another route is to extend GENEE to work with more auction

mechanisms, such as randomized auctions, where the auctioneer chooses a mechanism

(first-price, second-price, all-pay, etc.) at random after bids are submitted. Another

possible auction extension would be the simultaneous second-price sealed bid auction,

or to allow combinatorial bids in all the simultaneous auctions.

Besides extensions, there are also many potential routes to improve the underlying

library. Auction processing speed can likely be improved by shifting some calculation

to the GPU, and special case algorithms may exist that can improve evaluation of

certain auctions. But beyond just speed enhancements, some options I passed on, such

as cubic interpolation and Monte Carlo evaluation of the expected profit function, are
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still worth being investigated. An even more dramatic change would be to replace

the Individual Evolutionary Learning backend with an alternative such as adversarial

neural networks. Such changes would have dramatic effects on convergence speed

and accuracy, possibly for the better. A final possible change would be to add hooks

for the library into higher-level programming languages such as Python to increase

accessibility to other researchers.

Even without these potential extensions and improvements, the tool stands on its

own, having already provided unique results that no alternative method can currently

generate, including the simultaneous first-price auction and the common value auction

with asymmetric signals. The fact the same algorithm can estimate the Nash equilib-

rium bid functions in these vastly different scenarios is a testament to its flexibility,

and bodes well for its continued use in the field.
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