Document Type

Article

Publication Date

5-3-2017

Abstract

We give a generalization of the Beurling–Lax theorem both in the complex and quaternionic settings. We consider in the first case functions meromorphic in the right complex half-plane, and functions slice hypermeromorphic in the right quaternionic half-space in the second case. In both settings we also discuss a unified framework, which includes both the disk and the half-plane for the complex case and the open unit ball and the half-space in the quaternionic setting.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Linear Algebra and its Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Linear Algebra and its Applications, volume 530, in 2017. DOI: 10.1016/j.laa.2017.04.037

The Creative Commons license below applies only to this version of the article.

Peer Reviewed

1

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Available for download on Friday, May 03, 2019

Share

COinS