Document Type

Article

Publication Date

5-11-2016

Abstract

Background

During steady-state locomotion, symptomatic individuals with low back pain demonstrate reduced ability to modulate coordination between the trunk and the pelvis in the axial plane. It is unclear if this is also true during functional locomotor perturbations such as changing direction, or if this change in coordination adaptability persists between symptomatic episodes. The purpose of this study was to compare trunk-pelvis coordination during walking turns in healthy individuals and asymptomatic individuals with a history of low back pain.

Methods

Participants performed multiple ipsilateral turns. Axial plane inter-segmental coordination and stride-to-stride coordination variability were quantified using the vector coding technique. Frequency of coordination mode and amplitude of coordination variability was compared between groups using Wilcoxon signed-ranks tests and paired t-tests respectively.

Findings

During stance phase of the turn, there was no significant difference in either inter-segmental coordination or coordination variability between groups. Inter-segmental coordination between the trunk and the pelvis was predominantly inphase during this part of the turn. During swing phase, patterns of coordination were more diversified, and individuals with a history of low back pain had significantly greater trunk phase coordination than healthy controls. Coordination variability was the same in both groups.

Interpretation

Changes in trunk-pelvis coordination are evident between symptomatic episodes in individuals with a history of low back pain. However, previously demonstrated decreases in coordination variability were not found between symptomatic episodes in individuals with recurrent low back pain and therefore may represent a response to concurrent pain rather than a persistent change in motor control.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Clinical Biomechanics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be published in Clinical Biomechanics in 2016. DOI: 10.1016/j.clinbiomech.2016.05.011

The Creative Commons license below applies only to this version of the article.

Peer Reviewed

1

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Available for download on Thursday, May 11, 2017

Share

COinS