Document Type

Article

Publication Date

2007

Abstract

The origin of the slow component (SC) of oxygen uptake kinetics, presenting during exercise above the ventilatory threshold (VT), remains unclear. Possible physiologic mechanisms include a progressive recruitment of type II muscle fibers. The purpose of this study was to examine alterations in muscle activity through electromyography (EMG) and mean power frequency (MPF) analysis during heavy cycling exercise. Eight trained cyclists (mean±S.E.; age=30±3 years, height=177±4 cm, weight=73.8±6.5 kg, VO2max=4.33±0.28lmin−1) completed transitions from 20 W to a workload equaling 50% of the difference between VT and VO2max. VO2 was monitored using a breath-by-breath measurement system, and EMG data were gathered from surface electrodes placed on the gastrocnemius lateralis and vastus lateralis oblique. Breath-by-breath data were time aligned, averaged, interpolated to 1-s intervals, and modeled with non-linear regression. Mean power frequency (MPF) and RMS EMG values were calculated for each minute during the exercise bout. Additionally, MPF was determined using both isolated EMG bursts and complete pedal revolutions. All subjects exhibited a VO2 SC (mean amplitude=0.98±0.16lmin−1), yet no significant differences were observed during the exercise bout in MPF or RMS EMG data (p>0.05) using either analysis technique. While it is possible that the sensitivity of EMG may be insufficient to identify changes in muscle activity theorized to affect the VO2 SC, the data indicated no relationship between MPF/EMG and the SC during heavy cycling.

Comments

This article was originally published in Journa of Physiological Anthropology, volume 26, issue 5, in 2007. DOI: 10.2114/jpa2.26.541

Peer Reviewed

1

Copyright

Japan Society of Physiological Anthropology

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.