Document Type

Article

Publication Date

2010

Abstract

Background: Human Cytomegalovirus (HCMV) has been implicated in the acceleration of vascular disease and chronic allograft rejection. Recently, the virus has been associated with glioblastoma and other tumors. We have previously shown that the HCMV-encoded chemokine receptor pUS28 mediates smooth muscle cell (SMC) and macrophage motility and this activity has been implicated in the acceleration of vascular disease. pUS28 induced SMC migration involves the activation of the protein tyrosine kinases (PTKs) Src and Focal adhesion kinase as well as the small GTPase RhoA. The PTK Pyk2 has been shown to play a role in cellular migration and formation of cancer, especially glioblastoma. The role of Pyk2 in pUS28 signaling and migration are unknown.

Methods: In the current study, we examined the involvement of the PTK Pyk2 in pUS28-induced cellular motility. We utilized in vitro migration of SMC to determine the requirements for Pyk2 in pUS28 pro-migratory signaling. We performed biochemical analysis of Pyk2 signaling in response to pUS28 activation to determine the mechanisms involved in pUS28 migration. We performed mass spectrometric analysis of Pyk2 complexes to identify novel Pyk2 binding partners.

Results: Expression of a mutant form of Pyk2 lacking the autophosphorylation site (Tyr-402) blocks pUS28-mediated SMC migration in response to CCL5, while the kinase-inactive Pyk2 mutant failed to elicit the same negative effect on migration. pUS28 stimulation with CCL5 results in ligand-dependent and calcium-dependent phosphorylation of Pyk2 Tyr-402 and induced the formation of an active Pyk2 kinase complex containing several novel Pyk2 binding proteins. Expression of the autophosphorylation null mutant Pyk2 F402Y did not abrogate the formation of an active Pyk2 kinase complex, but instead prevented pUS28-mediated activation of RhoA. Additionally, pUS28 activated RhoA via Pyk2 in the U373 glioblastoma cells. Interestingly, the Pyk2 kinase complex in U373 contained several proteins known to participate in glioma tumorigenesis.

Conclusions: These findings represent the first demonstration that pUS28 signals through Pyk2 and that this PTK participates in pUS28-mediated cellular motility via activation of RhoA. Furthermore, these results provide a potential mechanistic link between HCMV-pUS28 and glioblastoma cell activation.

Comments

This article was originally published in Herpesviridae, volume 1, issue 2, in 2010. DOI: 10.1186/2042-4280-1-2

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.