The Effect of Δ9-tetrahydrocannabinol, Cannabidiol, Menthol and Propofol on 5-hydroxytryptamine Type 3 Receptors--A Computational Approach

Andreas C. Schilbach

Tatiana Prytkova
Chapman University, prytкова@chapman.edu

Keun-Hang Susan Yang
Chapman University, kyang@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Neurosciences Commons, and the Other Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
doi: 10.1186/1471-2202-16-S1-P290
The Effect of Δ9-tetrahydrocannabinol, Cannabidiol, Menthol and Propofol on 5-hydroxytryptamine Yype 3 Receptors--A Computational Approach

Comments
This article was originally published in BMC Neuroscience, volume 16, supplement 1, in 2015. DOI: 10.1186/1471-2202-16-S1-P290

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright
The authors

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/327
The effect of Δ9-tetrahydrocannabinol, cannabidiol, menthol and propofol on 5-hydroxytryptamine type 3 receptors—a computational approach

Andreas C Schilbach*, Tatiana Prytkova, Susan Keun-Hang Yang

From 24th Annual Computational Neuroscience Meeting: CNS*2015
Prague, Czech Republic. 18-23 July 2015

This study investigates the function of 5-HT type 3 (5-HT3) receptors using a computational approach. Antagonists of the 5-HT3 receptor are currently one of the most effective therapeutic agents in treatment of chemotherapy-induced nausea, vomiting, and irritable bowel syndrome. Several experimental studies have shown the effect of pharmacological agents such as 9-tetrahydrocannabinol (THC), the psychoactive component of Cannabis, Cannabidiol (CBD), a non-psychoactive ingredient of Cannabis plant, Menthol, Propofol, and etc. on the functional human 5-HT3 receptors expressed in Xenopus oocyte as well as rat nodose ganglion neurons [1,2]. 5-HT evoked currents recorded by a two-electrode clamp technique were inhibited by ligands in a concentration dependent manner. Simulations of allosteric inhibition were modeled using Vina docking techniques with the 5-HT3 structure (see Tables 1 and 2 for results). The 5-HT3 structure was found using homology sequence similarity techniques with the neuronal nicotinic acetylcholine receptor (nACh) and inhibitory neurotransmitter receptor for GABA(A). Results of studies with other members of the superfamily of ligand gated ion channels signified key residues involved in ligand binding sites within the transmembrane region of 5-HT3 [3]. Flexible and rigid docking simulations around key residues resulted in a number of low-energy (high affinity) configurations of ligand binding (Figure 2). The predicted residues TYR and THR may constitute a naturally occurring binding site for 5-HT3.

Table 1 Docking of Ligands on lower (THR361) binding sites of 5-HT3A

<table>
<thead>
<tr>
<th>Compound</th>
<th>(THR361 binding site)</th>
<th>Binding energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td></td>
<td>-4.5</td>
</tr>
<tr>
<td>Eucalyptol</td>
<td></td>
<td>-4.5</td>
</tr>
<tr>
<td>Menthol</td>
<td></td>
<td>-5.6</td>
</tr>
<tr>
<td>Propofol</td>
<td></td>
<td>-6.0</td>
</tr>
</tbody>
</table>

Conclusion

Experimental inhibition of 5-HT3 shows similar trend in computational binding energies to the lower binding site (THR 361). Docking calculations provide explanation of molecular basis of difference in inhibition by menthol like compounds. Similar binding energies for THC and CBD corresponds to their similar inhibition of membrane currents measured in experiment.

Published: 18 December 2015

References

* Correspondence: schil105@mail.chapman.edu

Schmid College of Science and Technology, Chapman University, Orange CA, 92866, USA

© 2015 Schilbach et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Table 2 Docking of Ligands on upper (TYR346) binding sites of 5-HT3A

<table>
<thead>
<tr>
<th>Compound</th>
<th>Rigid Docking - Binding energy (kcal/mol)</th>
<th>Flexible Docking - Binding energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ9-tetrahydrocannabinol (THC)</td>
<td>-7.0</td>
<td>-9.2</td>
</tr>
<tr>
<td>Cannabidiol (CBD)</td>
<td>-7.0</td>
<td>-8.8</td>
</tr>
</tbody>
</table>

Figure 2 Interaction diagrams of Propofol with lower binding site (THR361) of 5-HT3A

A. 2-D Ligand interaction diagram. Residues are annotated with their 3-letter amino acid code, and their position classification. Hydrophilic interactions: include the hydroxyl group with residue Asp266 and Met263 (Blue). Hydrophobic interactions: Ile (267, 356, 494), Ser357, Glu360, and Tyr 495 (Red)

B. 3-D depiction of interaction.

Figure 1 Experimental comparison [3] of the effects of compounds structurally related to menthol on the 5-HT3 receptors.