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The Stationary Phase Method for
Real Analytic Geometry

Domenico Napoletani ∗, and Daniele C. Struppa†

Abstract

We prove that the existence of isolated solutions of systems of

equations of analytical functions on compact real domains in R
p, is

equivalent to the convergence of the phase of a suitable complex phase

integral I(h) for h → ∞. As an application, we then use this result to

prove that the problem of establishing the irrationality of the value of

an analytic function F (x) at a point x0 can be rephrased in terms of

a similar phase convergence.

1 Introduction

Real algebraic geometry, has developed relatively late its own techniques

and ideas to mirror, in part, the extensive theoretical development of complex

algebraic geometry [2], thanks in particular to generalizations of great impact

such as the theory of Nash manifolds [12]. However, a general tool that

can encompass problems on a very large class of transcendental functions

is lacking, and in this paper we suggest that complex phase integrals and
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†Schmid College of Science and Technology, Chapman University, Orange, CA 92866.
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the stationary phase method could provide a powerful global approach for

the study of solutions of systems of real analytic equations. In particular,

the main result of this paper shows that the existence of isolated solutions

of a system of analytical equations F(x) = 0 over a compact B in R
p is

equivalent, under suitable conditions, to the existence of the limit of the

phase of a complex phase integral I(h) for h that goes to infinity.

We then approach another, apparently unrelated question: establishing

the irrationality of special numbers. As it is well known, this question, to-

gether with the more general question on the transcendence of numbers, has

a very long and rich history, see for example [7]. However, the abundance of

open problems in the field, especially about the irrationality of convergent

power series and special numbers [5, 6, 8], suggests the need for further ideas

specifically tailored to analytical functions. In Section 3 we propose that a

new viewpoint is possible, that transforms the problem of the irrationality

of F (x0), with F analytical, into the geometric problem of finding zeros of

a systems of equations on a four dimensional open, bounded domain. This

problem is then phrased in terms of the phase integral method developed

in Section 2 for geometric problems. Some of these results were announced,

without proofs, in [11].

2 Geometric Phase integrals

The main result of this section, Theorem 2.1, follows as an application and

specialization to real analytic geometry of the method of stationary phase

[13, 4, 3]. Applications of the stationary phase method for an analytic study

of convex geometry can be found already in [9] (for example Theorem 7.7.16

therein), here we focus on the more basic problem of establishing the exis-

tence of real solutions of systems of analytical equations. More particularly,

consider p real analytic functions F1, . . . , Fp defined on a compact set B ⊂ R
p,

and the vector function F(x) = [F1(x), ..., Fp(x)]. We can construct the asso-
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ciated function L(x) =
∑p

i=1 Fi(x)
2, which is such that L(x) = 0 if and only

if Fi(x) = 0 for all i. Moreover, it is immediate to see that every point such

that L(x) = 0 is also a critical point for L(x). The relations between critical

points of L(x) and solutions of the system of equations F(x) = 0 can be made

more compelling by building a suitable phase integral, whose asymptotic be-

havior depends on the existence of solutions to the system itself. Indeed the

following theorem holds:

Theorem 2.1. Let F(x) = [F1(x), ..., Fp(x)] be an analytical, vectorial func-

tion defined on a compact domain B ⊂ R
p, let L(x) =

∑p
i=1 Fi(x)

2 have only

isolated critical points in B, and let A be a closed interval in R that does not

contain the origin. Consider the integral

I(h) =

∫
A

∫
B
eihL(x)y

2

dxdy, y ∈ A ⊂ R, x ∈ B ⊂ R
p, (1)

and denote by φ(I(h)) the phase of I(h). Then the system F(x) = 0 has a

solution in B if and only if φ(I(h)), the complex phase of I(h), has a limit

for h going to infinity.

Proof. The integration in x in the integral in (1) can be written, for h → ∞,

with respect to the critical points of L(x) in B, using standard stationary

phase approximation methods [4, 13].

We can consider separately the critical points such that L(x) = 0, and

those for which L(x) �= 0, and we have:

lim
h→∞

I(h) =

∫
y∈A

∑
L(xi)=0

(
2π

h
)
p
2

1

yp(detH(xi))1/2
ei

π
4
σidy+

∫
y∈A

∑
L(xj)�=0

(
2π

h
)
p
2

1

yp(detH(xj))1/2
eihL(xj)y

2+iπ
4
σjdy

(2)

where H(x∗) denotes the Hessian matrix of L(x) evaluated at x∗, and σ∗
denotes the signature of H(x∗).
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We are assuming here that there is at least one critical point with Hessian

different from zero, but very similar arguments to those we present here

can be deduced without this restriction, at the cost of a more complicated

argument that depends on higher derivatives of L. Since the function L is

analytical, so is the system of equations whose solution defines its critical

points, and if we assume all such solutions are isolated, they are in finite

number over a compact set (see for example [10], page 180). We will now

simplify the representation of I(h), when h is large, by considering separately

the two summands in (2). We begin with the first summand, which we will

call I1(h):

lim
h→∞

I1(h) := lim
h→∞

∫
y∈A

∑
L(xi)=0

(
2π

h
)
p
2

1

yp(detH(xi))1/2
ei

π
4
σidy =

lim
h→∞

∑
L(xi)=0

(
2π

h
)
p
2

1

(detH(xi))1/2
ei

π
4
σiS

(3)

where S =
∫
A

1
yp
dy. Since the sum in the expression is a finite sum, and by

factoring out 1
hp/2 , one immediately sees that the phase of I1(h) is independent

of h and only depends on the critical points xi’s, or more exactly, on their

signatures σi.

Let us now analyze I2(h), namely the second summand in (2):

I2(h) :=

∫
y∈A

∑
L(xj)�=0

(
2π

h
)
p
2

1

yp(detH(xj))1/2
eihL(xj)y

2+iπ
4
σjdy (4)

We note first of all that each integral

∫
y∈A

(
2π

h
)
p
2

1

yp(detH(xj))1/2
eihL(xj)y

2+iπ
4
σjdy (5)
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can be written as

(
2π

h
)
p
2

1

(detH(xj))1/2
ei

π
4
σj

∫
y∈A

1

yp
eihL(xj)y

2

dy, (6)

and it is therefore a phase integral in y computed over an interval that does

not include the only critical point (y = 0). Such integral decreases at least

like O( 1
hL(xj)

), the leading contribution from the boundary points of A ([4],

page 52; [13], page 488). Therefore

lim
h→∞

I2(h) = lim
h→∞

(2π)
p
2

∑
L(xj)�=0

1

(detH(xj))1/2
ei

π
4
σjO(

1

hp/2+1L(xj)
). (7)

Recall we are in the generic case where there is at least one point xj with

detH(xj) �= 0, and that there are finitely many critical points, and therefore

also finitely many critical points for which L(xj) �= 0. This last observation

allows us to conclude that all the values L(xj) can be bounded away from 0,

and the entire sum above can be estimated as

lim
h→∞

I2(h) = O(
1

hp/2+1
). (8)

This is a negligible quantity with respect to I1(h) ∼ 1
hp/2 . We can conclude

that if L(x) = 0 for at least a specific xj, then the limit for h → ∞ of

I(h) = I1(h) + I2(h) has constant phase. If on the other hand there are no

values for which L(x) = 0, the phase will not converge: this is easy to see

when we have at least a critical point xj with L(xj) �= 0 and detH(xj) �= 0,

since in that case the term eihL(xj)y
2
in I2(h) will continue to change phase

as h goes to infinity.

Note that if the critical points such that L �= 0 have detH = 0, we

would need to look at higher order asymptotic terms, but, since the number

of critical points is finite, we could still look at the highest order, dominant

critical points, whose phase is dependent on eihL(xj)y
2
([13] page 483).
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Suppose instead that there are no critical points at all, then the integral

in (1) is dominated by the evaluation of some derived phase integral on the

boundary of A × B; more precisely, it is true that (adapted from [13], page

488):

I(h) ∼ − i

h

∫
∂(A×B)

GeihL(x)y
2

da (9)

where ∂(A× B) is the boundary of A × B, da is a suitable measure on the

boundary, and G is a multiplier function dependent on L(x)y2.

Now, A × B is an hypercube, and a recursive application of the result

in (9), to lower and lower dimensional boundaries of its hyperfaces, will

reduce the asymptotic evaluation of I(h) to a sum of suitable multiples of

evaluations of eihL(x)y
2
at the vertexes of the hypercube. None of these values

is independent of h, since we assumed there are no critical points of L on A×
B, and therefore L(x)y2 �= 0 everywhere. This implies that limh→∞ φ(I(h))

does not exist when there are no critical points on A× B.

Remark 2.2. Strictly speaking, the proof relied on considering the special

(but generic) setting with at least one of the critical points with Hessian

different from zero. While, as we pointed out, this restriction can be avoided,

it is important to note that such a setting is sufficient to prove our main result

in Section 3.

Because of its value in establishing the existence of solutions of systems

of real analytical equations, we will call the integrals in (1) geometric phase

integrals. Similarly, we will call L(x) the geometric Lagrangian associated to

F(x) = 0, in analogy to the Lagrangian functions used in defining path and

field integrals [1].
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3 An application to Irrationality Tests

We will now apply the general setting of Section 2 to a more complex case

that involves infinitely many critical points, but that is such that the relative

contributions of each critical point can be controlled.

Suppose we want to know whether F (x0) is irrational. The system of

equations

F (x)− α = 0, x ∈ [x0 − δ, x0 + δ]

x− x0 = 0, α ∈ F ([x0 − δ, x0 + δ])

sin
π

m
= sin

π

n
= 0, m, n ∈ (0, 1]

αm− n = 0

(10)

has a solution if and only if F (X0) is a rational number. We can adapt the

stationary phase integral analysis performed in Section 2 to be of relevance

in this case. We build to this purpose the geometric Lagrangian function:

L(x, α,m, n) = (F (x)− α)2 + (x− x0)
2 + sin2 π

m
+ sin2 π

n
+ (αm− n)2

(11)

Again, L(x, α,m, n) = 0 if and only if the previous system has a zero

solution, and we may ask whether the limit for h → ∞ of the phase of the

following integral has any relation to the rationality of F (x0):

IL(h) =

∫
y∈A

∫
ω∈Ωδ

eihL(ω)y
2

dωdy, 0 �∈ A (12)

where ω = (x, α,m, n) and we have denoted by Ωδ the cartesian product of

the domains allowed for each of the components of ω in (10).

The main complication, with respect to the similar setting in Section 2,

7



is the existence of infinitely many critical points, every time there is at least

one point such that L(ω) = 0. Indeed the critical points of L(ω) are solutions

of the system:

∂L

∂x
= 2(F (x)− α)

dF (x)

dx
+ 2(x− x0) = 0

∂L

∂α
= −2(F (x)− α) + 2(αm− n) = 0

∂L

∂m
= 2 sin

π

m
cos

π

m
(− π

m2
) + 2(αm− n)α = 0

∂L

∂n
= 2 sin

π

n
cos

π

n
(− π

n2
)− 2(αm− n) = 0.

(13)

We can see that if ω0 = (x0, α0,m0, n0) is a solution of L(ω0) = 0, then it

is also a critical point of L. However, also ωi = (x0, α0,mi, ni) will be a zero

and a critical point of L, where mi =
m0

i
and ni =

n0

i
, i any integer (this can

be seen by simple substitution in αm − n = 0, assuming α0m0 − n0 = 0).

Note that all critical points with L(ω) = 0 need to have x = x0 and α =

α0 = F (x0).

To overcome this proliferation of critical points, our argument will assume

that we work in the limit when the domain approaches zero in the variables

m,n. We will need also to control the decay of the determinant of the Hessian

in the asymptotic expression used to prove Theorem 2.1. Regarding the first

issue, we cut the domain of m and n as m ∈ [M, 1] and n ∈ [N, 1] with

0 < M,N < 1 and consider the compact domain

Ωδ(M,N) := [x0 − δ, x0 + δ]×F ([x0 − δ, x0 + δ])× [M, 1]× [N, 1]. (14)

The main conclusion of our analysis can be stated as a theorem:

Theorem 3.1. Let F (x) be an analytical function in the interval [x0−δ, x0+

δ], with δ sufficiently small, and assume F ′(x0) �= 0. Consider the following

8



phase integral, obtained by restricting IL(h) to the domain Ωδ(M,N):

IL(h,M,N) :=

∫
y∈A

∫
ω∈Ωδ(M,N)

eihL(ω)y
2

dωdy, 0 �∈ A, (15)

where L is defined in (11). Let φ(IL(h,M,N)) be the complex phase of

IL(h,M,N). Then F (x0) is a rational number if and only if the following

limit converges:

lim
M,N→0

lim
h→∞

φ(IL(h,M,N)). (16)

Proof. We start our proof with a simple analysis of the dimensionality, in x

and α, of the set of solutions of the first equation of the systems in (13), that

define the critical points. We will eventually prove that for δ small enough

all critical points in Ωδ are isolated. To achieve this goal, we note that, for

δ sufficiently small, we can control the norm of the function (F (x) − α) −
F ′(x)(x− x0), in Ωδ; indeed we have

|(F (x)− α)− F ′(x)(x− x0)| = |(F (x)− (F (x0) + ε1))− (F ′(x0) + ε2)(x− x0)| =
|(F (x)− F (x0))− F ′(x0)(x− x0)− ε1 − ε2(x− x0)| ≤
|(F (x)− F (x0))− F ′(x0)(x− x0)|+ |ε1|+ |ε2(x− x0)| ≤
|(F (x)− F (x0))− F ′(x0)(x− x0)|+ |ε1|+ |ε2δ| ≤
|ε3|+ |ε1|+ |ε2δ|

(17)

where we used the fact that the derivative of F (x) is well defined and con-

tinuous in a neighborhood of x0, and εt, t = 1, 2, 3, can be made as small

as necessary by choosing δ small enough. We can interpret this result by

saying that the vectors (F (x) − α, x − x0) and (1,−F ′(x)) are almost or-

thogonal for all (x, α) in Ωδ, whenever δ is sufficiently small. Now the equa-

tion 2(F (x) − α)dF (x)
dx

+ 2(x − x0) = 0 in (13) is equivalent to saying that

9



(F (x)−α, x−x0) and (F ′(x), 1) are orthogonal, for some choice of (x, α) in Ωδ.

Together with the previous calculations, this implies, for two dimensional vec-

tors, that (F ′(x), 1) and (1,−F ′(x)) should be almost parallel; however, for

the choice of (x, α) made above, these vectors are themselves orthogonal, and

we therefore conclude there is no solution of 2(F (x)−α)dF (x)
dx

+2(x−x0) = 0,

unless (F (x)−α, x−x0) = (0, 0), in which case x = x0 and α = F (x0). Note

that this argument depends on the assumption F ′(x0) �= 0 otherwise we

would not be able to infer α = F (x0) from x = x0, in the first equation of

(13).

We deduce moreover, from the whole set of equations in system (13), that

critical points with x = x0 and α = F (x0), if they exists, are bound to have

αm − n = 0, 2 sin π
m
cos π

m
(− π

m2 ) = 0, and 2 sin π
n
cos π

n
(− π

n2 ) = 0. Therefore

they are all isolated points, in finite number on all compacts Ωδ(M,N) and

they either satisfy sin π
m

= 0 and sin π
n
= 0 (and therefore L(ω) = 0), or they

are such that cos π
m

= 0 and/or cos π
n
= 0. Since critical points are isolated

and finitely many in Ωδ(M,N), for any 0 < M,N < 1, we are in the position

of applying Theorem 2.1 in the rest of our argument.

To conclude the proof of the theorem, we need the following estimate:

suppose α0 is rational and that m0, n0 are the largest values such that

L(x0, α0,m0, n0) = 0, then

detH(x0, α0,mi, ni) ∼ C
i8

m8
0

(18)

when i goes to infinity, and where mi =
m0

i
, ni =

n0

i
, i positive integer and

C is a positive number bigger than 1. Indeed, remembering that, for critical

points ωi = (x0, α0,mi, ni) with L(ωi) = 0, we have α0mi−ni = 0, sin π
mi

= 0,

sin π
ni

= 0 (and therefore cos π
ni

= 1, cos π
mi

= 1), we can write the Hessian

matrix of L(ω) evaluated at such critical points as:

10



H(ωi) =

⎛
⎜⎜⎜⎜⎝

2F ′(x0)
2 + 2 −2F ′(x0) 0 0

−2F ′(x0) 2 + 2m2
i 2α0mi −2mi

0 2α0mi 2 π2

m4
i
+ 2α2

0 −2α0

0 −2mi −2α0 2π2

n4
i
+ 2

⎞
⎟⎟⎟⎟⎠ . (19)

Using again the fact that, for these critical points, α0mi = ni, the evaluation

of the determinant gives:

detH(ωi) = (4F ′(x0)
2 + 4m4

i + 4)
(
4(

π2

m4
i

+ α2
0)(

π2

α4
0m

4
i

+ 1)− 4α2
0

)

+ 4(F ′(x0)
2 + 2)α2

0m
2
i (−

π2

α4
0m

4
i

− 1 + 8)− 16(F ′(x0)
2 + 1)m2

i (
π2

m4
i

+ α2
0).

(20)

By recalling mi =
m0

i
with i = 1, 2, 3..., if we let i → ∞ (i.e. mi → 0), the

leading term of the determinant will be:

detH(ω0) ∼ 16
π2

m4
i

π2

α4
0m

4
i

=
16π4

α0

i8

m8
0

(21)

which is exactly the estimate in (18), with C = 16π4

α0
. This being the

case, we can be assured that there is a iT such that for i > iT the Hes-

sian H(x0, α0,mi, ni) has nonzero (positive) determinant, and therefore the

quadratic asymptotic approximation used in Theorem 2.1 holds for all i > iT .

Also, note that, for i < iT any critical point such that H(x0, α0,mi, ni) =

0 will depend from h, in the asymptotic expansion, as 1
hj+2 for some integer

j > 0 that depends from the order of the zero, while all critical points with

H(x0, α0,mi, ni) �= 0 depend from h as 1
h2 ([13], page 480). This implies that

we can neglect critical points that have Hessian equal to zero, when h goes

to infinity, since the asymptotic relation in (18) assures us that there are

infinitely many dominant critical points with non-zero determinant of the

11



Hessian in Ωδ, and therefore at least one of them for M,N sufficiently small.

Therefore we have:

lim
M,N→0

lim
h→∞

φ(IL(h,M,N)) =

lim
M,N→0

lim
h→∞

∫
y∈A

∑
L(ωi)=0

detH(ωi)�=0
ωi∈Ωδ(M,N)

(
2π

h
)2

1

y4(detH(ωi))1/2
ei

π
4
σi (22)

where we have used the results from Theorem 2.1, the fact that p = 4, and

neglected already the (finitely many) critical point for which L(ω) �= 0, or

those for which L(ωi) = 0 and detH(ωi) = 0.

Consider now the partial sums:

θM,N :=
∑

L(ωi)=0
detH(ωi)�=0
ωi∈Ωδ(M,N)

(2π)2

(detH(ωi))1/2
ei

π
4
σi ;

(23)

then

lim
M,N→0

lim
h→∞

φ(IL(h,M,N)) = lim
M,N→0

lim
h→∞

φ
( ∫

y∈A

1

h2

1

y4
θM,Ndy)

)
=

lim
M,N→0

lim
h→∞

φ
( 1

h2
SθM,N

)
= lim

M,N→0
φ(θM,N)

(24)

where S =
∫
y∈A

1
y4
dy. Now, since detH(x0, α0,mi, ni) ∼ C i8

m8
0
, when i goes

to infinity, we can argue that the following series converges:

θ =
∑

L(ωi)=0
detH(ωi)�=0

ωi∈Ωδ

(2π)2

(detH(ωi))1/2
ei

π
4
σi .

(25)

Indeed, the convergence of the this series can be reduced to the conver-
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gence of its absolute value

∑
L(ωi)=0

detH(ωi)�=0
ωi∈Ωδ

(2π)2

(detH(ωi))1/2
(26)

and, by comparison with the convergent series
∑

i
1
i4
, we obtain

lim
i→∞

(2π)2

(detH(ωi))1/2
/ 1

i4
= lim

i→∞
(2π)2√

C(i8/m8
0)

1/2

/ 1

i4
= (2π)2m4

0/
√
C. (27)

Since the limit of the quotient above is nonzero, the series in (26) con-

verges, and θ in (25) is well defined. The convergence of the series defining

θ allows us one final limiting argument, i.e.,

lim
M,N→0

lim
h→∞

φ(IL(h,M,N)) = lim
M,N→0

φ(θM,N) = φ(θ). (28)

This last equality completes the proof of the Theorem.

Remark 3.2. The convergence of the series defining θ in (25) is intimately

related to the estimate in Eq. (18). The existence of this estimate depends on

the fact that we use the equations sin π
m

= 0, sin π
n
= 0, on a bounded domain,

to force the rationality of F (x0) (via the additional equation αm − n = 0).

Such convergence would not hold if rationality was enforced via the equations

sin πm = 0, sin πn = 0 on an unbounded domain. Note also that the phase

integral in (12) depends functionally on F (x), so that the local behavior of

F (x) for x ∼ x0 becomes relevant for the irrationality of F (x0).

Remark 3.3. Our choice of the particular dependence of the geometric La-

grangians from the variable y is not the only one that would establish the

results in Theorems 2.1 and 3.1, even though it is probably the simplest.

Alternatively, one could look at the geometric Lagrangian L(ω) exp(y) + y3

whose critical points are only those associated to L(ω) = 0, removing the

necessity of the careful estimate of the contribution of critical points with

13



L(ω) �= 0. However, this more complicated geometric Lagrangian leads al-

ways to degenerate critical points in the stationary phase asymptotic approx-

imation and therefore to a more intricate proof of the two theorems.

Ultimately, our approach suggests that analytical techniques and ideas

from the asymptotic and non-perturbative study of complex phase integrals

are relevant to problems of real analytic geometry, as well as to problems

about the irrationality of point-wise evaluation of analytical functions.
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