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TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART 1I:
A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS

M. ANDREW MOSHIER AND PETER JIPSEN

1. INTRODUCTION

The two main objectives of this paper are (a) to prove topgoligluality theorems for
semilattices and bounded lattices, and (b) to show thatapeldgical duality from (a)
provides a construction of canonical extensions of bourattides. The paper is first of
two parts. The main objective of the sequel is to establishaacterization of lattice
expansions, i.e., lattices with additional operationghimtopological setting built in this
paper.

Regarding objective (a), consider the following simple sjia:

Is there a subcategory ®bp that is dually equivalent that?

Here, Top is the category of topological spaces and continuous magd anis the
category of bounded lattices and lattice homomorphisms.

To date, the question has been answered positively eithepégializingLat or by
generalizingTop. The earliest examples are of the former sort.

Tarski [Tar29] (treated in English, e.g., in [BD74]) showtbdt every complete atomic
Boolean lattice is represented by a powerset. Taking sostertdal license, we can say
this result shows that the category of complete atomic Boolattices with complete lat-
tice homomorphisms is dually equivalent to the categoryistréte topological spaces.
Birkhoff [Bir37] showed that every finite distributive late is represented by the lower
sets of a finite partial order. Again, we can now say that th@s that the category of
finite distributive lattices is dually equivalent to the egory of finite7,, spaces and con-
tinuous maps. In the seminal papers, [Sto36, Sto37], Stenerglized Tarski and then
Birkhoff, showing that (a) the category of Boolean lattigesd lattice homomorphisms
is dually equivalent to the category of zero-dimensionegutar spaces and continuous
maps and then (b) the category of distributive lattices atticcé homomorphisms is dually
equivalent to the category spectral spaceandspectral mapsWe will describe spectral
spaces and spectral maps below. For now, notice that aleskthesults can be viewed as
specializingL at and obtaining a subcategory ©p. In the case of distributive lattices,
the topological category is not full because spectral mapsecial continuous maps.

As a conceptual bridge, Priestley [Pri70] showed that ithigtive lattices can also be
dually represented in a category of certain topologicatepaugmented with a partial
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2 M. ANDREW MOSHIER AND PETER JIPSEN

order. This is an example of the latter sort of result, napsetuality between lattices and
a subcategory of a generalizationTaip.

Urquhart [Urq78], Hartung [Har92] and Hartonas [HD97] deped similar dualities
for arbitrary bounded lattices. It is fair to say that thelyda in the spirit of Priestley dual-
ity for distributive lattices in that their dual objects arertain topological spaces equipped
with additional (partial order) structure. The dual mogshs are continuous maps that
suitably preserve the additional structure. This is in csttto the spirit of Stone duality,
in which the dual category is simply a subcategoryrop.

Urquhart’s construction equips the dual spaces with twbadarders in such a way that
Priestley duality is precisely the special case where thedwders agree. Hartung takes
a slightly different approach via the theory of concepti¢ad. His construction yields
two topological spaces and a binary relation between thegairA Priestley duality is a
special case. Whereas Urquhart and Hartung must appeal &xithva of choice to show
that their spaces are inhabited with enough points, Hastamaids this in his duality and
develops some interesting applications. His spaces at@mc&tone spaces equipped with
an auxiliary binary relation. So the sense in which thisdiel Priestley is clear.

Another approach to dualities for arbitrary lattices isagivan exposition in Chapters 1
and 4 of Gierzt al, [GHK'80]. There, the duality between inf complete semilatticed a
sup complete semilattices arising from adjoint pairs of snggspecialized to various cate-
gories of algebraic and arithmetic lattices (reviewed W¢l@ince algebraic and arithmetic
lattices are precisely the ideal completions of join settidas and lattices respectively, the
general duality specializes to categories of lattices.

We take a different path via purely topological consideragithat simplifies Hartonas’
duality by eliminating the need for an auxiliary binary t#&a. At the end of this path, we
find algebraic and arithmetic lattices characterized aslomical spaces. This establishes
an affirmative answer to our original question with no rideéhe dual category that is a
subcategory ofop simpliciter.

Like Stone, we find subcategories Bép (actually, of spectral spaces) that are dually
equivalent to the categories of arbitrary semilatticeswitit and arbitrary bounded lat-
tices. The results makes explicit the relation betweendtag’ duality and the duality via
arithmetic lattices.

Because the sequel paper applies topological duality tolgns of lattices with addi-
tional operations such as modal operators, residuals,tb&esense in which a map be-
tween lattices is “structure preserving” must be considerarefully. We consider here
meet semilattice homomorphisms (Halmos’ word for thegeeimimorphisms and lattice
homomorphisms. In addition, there is an obvious fun¢tey’ sending a lattice to its order
opposite. This allows us to consider order reversingriditone maps that send meets to
joins and so on.
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2. BACKGROUND AND DEFINITIONS

In this paper, lattices are always bounded; semilatticaayed have a unit. Also, we
designate semilattices as meet or join semilattices amwptd which order we intend.
Lattice and semilattice homomorphisms preserve boundsyrhpathy with this view, for
a collection of subsets of a universal $eto be “closed under finite intersections” includes
empty intersection, so th& belongs to the collection.

Since our main concern is an interplay between orderedtetesand topological struc-
tures, we can lay some ground rules at the start.

e Order-theoretic jargon and notation, when applied téyaspace, refer to the
specialization order (which we denote by when X is understood). For our
purpose, the simplest characterization of specializason C y if and only if
N°(z) C N°(y) whereN°(x) is the filter of open neighborhoods of For ex-
ample, forr € X, |z andTz denote the sets of elements, respectively, below or
equal tox and above or equal tein the specialization order. Evidentlyy is the
closure of the singletofiz}. Also, a set iglirectedif it has nonempty intersection
with T2 N Ty for any members:, y of the set. In general, we will reserve “square”
symbols for topological situations. For exampiel iy will mean the meet with
respect to specialization (if it exists).

e Topological jargon and notation, when applied to a partideg refer to the Scott
topology. Opens are upper séfsthat are inaccessible by directed joins:Zifis
directed,\/" D exists and/'D € U, thenD N U # 0.

For a partially ordered se, P? denotes the order opposite. This notation is used
mostly with respect to lattices. S& is again a lattice.

In a topological spac&, say that a poinéd € X isfiniteif Ta is open. The term agrees
with usage in lattice and domain theory, where an elemerfita dcpo (or complete lattice)
is called finite if and only iffa is open in the Scott topology. Finite points of a complete
lattice were first calledompactby Nachbin [Nac49] and that usage continues in order
theory today, but so does the term “finite.” ¢4 (X ) denote the collection of finite points
of X. We takeFin(X') to be ordered by restriction of the specialization ordeXarAgain,
if C'is a complete lattice, thefin(C') is to be understood relative to the Scott topology on
C.

A topological space is said to Is@berif the mapz — N°(x) is a bijection betweeX
and the collection of completely prime filters in the lattafeopens. Equivalently, a space
is sober if every closed irreducible set is of the foymfor a unique point: (recall a set
A isirreducibleif A C B U C for closed setd3, C impliesA C B or A C C). Sobriety
is a topological condition that ensures the spacgjisnd has some nice order-theoretic
behavior. We will use the following well-known fact about®wo spaces.
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Lemma 2.1. In a sober space, any directed sethas a supremurh|' D, which is in the
closure ofD. Moreover, any continuous function between sober spaesepres directed

suprema:f(||'D) = | |'f(D).

In our deliberations, we will construct canonical extensiof lattices and show that
they too are topologically representable.

A complete latticeC' is a completionof a lattice L if L is a sublattice ofC' (more
generally,L is embedded ). L is lattice denseén C if

Meetsc (Joinsa (L)) = C = Joinsc(Meetsc (L)),
where
Meetso(4) = {/\A'| A’ C A}

{\/A4"| &4 C 4y
FurthermoreL is lattice compacin C'ifforall U,V C L, if AU </, V then there
exist finiteUy C U,V C V for which A Uy < \/ V4.

Notice that lattice density and lattice compactnesqatéhe same as topological den-
sity and compactness with respect to the Scott topologygéntire extra qualifier. In most
work on canonical extension, these two properties areradeio simply as density and
compactness.

A completionC' is acanonical extension adf if L is lattice dense and lattice compact
in C. In Section 4, we give a proof of the following theorem, amigfiy due to Gehrke and
Harding [GHO1].

Joins¢(A)

Theorem 2.2 ((GHO1]). Every latticeL has a canonical extension, denotedll#y; unique
up to isomorphism, i.e. i€ is also a canonical extension df, then there is a lattice
isomorphism betweeh” andC' that keepd. fixed.

Our touchstone for topological duality is Stone’s représtion theorem for bounded
distributive lattices:

Theorem 2.3. The categonpL of distributive lattices and lattice homomorphisms is du-
ally equivalent to the categoi$pec of spectral spaces and spectral functions.

A spectral spacés a sober spac& in which the compact open sets form a basis that is
closed under finite intersections (in particuldr,s itself compact). Aspectral functioris
a continuousf for which f~! also preserves the way below relation on opens, wheise
way belowl” means that any open coveréfcontains a finite subcover éf. The way be-
low relation is denoted by < V. On spectral spaces, this is equivalent to requiring that
f~! preserves compact opens. Spectral functions (often in gemeral settings) are also
known aperfectfunctions. We prefer to avoid this terminology becauseqmifias an en-
tirely different meaning in lattice theory. Lettingd(X') denote the collection of compact
open subsets of, Stone’s Theorem establishes tkat extends to a contravariant equiva-
lence functor fromSpec to DL. The inverse equivalence functor is denotedspyc(L). It
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takes a distributive latticé to the space of its prime filters with topology generated lay th
sets{P € specL | a € P}fora € L.

For a spaceX, afilter in X is a filter in the usual order-theoretic sense: afsab that
(i) x € Fandz C y impliesy € F (ii) F is non-empty and (iii)x,y € F' implies there
existsz € F' so thatz C z,y. Note that this is1otthe same as the more familiar notion of
afilter on X, i.e., a filter of subsets df.

A set satisfying (i) is arupper setwith respect to specialization. In the topological
setting, such sets are said to $egturated Evidently, any open set is saturated and any
intersection of saturated sets is again saturated. MorgsupposeA is saturated and
x ¢ A. Then for eachy € A, we find an open séf, containingy but notz. The union
of all suchU, coversA and excludes:.. Thus, A is exactly the intersection of its open
neighborhoods.

We will be interested in special sorts of saturated sets:pemtrsaturated sets, open sets
and filters. In that light, we define

e K(X): the collection of compact saturated subsetXof
e O(X): the collection of open subsets &f, and
e F(X): the collection of filters ofX.

Intersections of these are denoted by concatenation, @¢gX) = O(X) N F(X). In
particular,OF, KO andKOF will be important. As already noted, spectral spaces are cha
acterized by havingtO(X) as a basis that is closed under finite intersection. On sgectr
spaces, spectral maps are those nfapX — Y for which f~* sendk0(Y) into KO(X).
We take each of these collections to be ordered by inclusion.

The following technical observation is useful.

Lemma 2.4. In a topological spaceX, let FY, ..., F}, be pairwise incomparable filters.
ThenF; U --- U F,, is compact if and only if each; is a principal filter.

Proof. Clearly, a principal filterfz is compact, so a finite union of principal filters is
compact.

Supposeft, ..., F,, are pairwise incomparable filters aig), is not principal. LetD
be the collection of open& such thatF,, \ U # 0. Forx € F,,, there is an element
y € F,, sothatr [Z y. So there is al/ for whichxz € U andy ¢ U. Forz € F; (i < m),
the filters are pairwise incomparable, so there is an element,, so thatz IZ y. Again
there is an opely separating: fromy. ThusD is an open cover af; U- - -U F},,. Suppose
U,V € D. Then there are elementse F,,, \ U andy € F,, \ V. Becausé,, is a filter,
there is also an elemente F,, below bothz andy. Hencez € F,, \ (U U V). SoD is
directed. By construction, ng € D coversF; U --- U Fy,. [l

In particular, the compact filters are principal, akdF(X) is in an order reversing
bijection withFin(X). For F' € KOF(X), we letmin F' denote the generator &f.

Theorem 2.5. For a topological spaceX, the following are equivalent:
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(1) X is spectral andF(X) forms a basis that is closed under finite intersection;

(2) X is spectral,OF(X) forms a basis X is a meet semilattice with respect to spe-
cialization andX has a least element;

(3) X is sober anckOF(X) forms a basis that is closed under finite intersection.

Proof. Suppose (3) holds, then the compact opens and the open §iipesately form
bases. Furthermore, K and H are compact opens, théti = F} U --- U F;,, for some
compact open filters; and likewiseH = G, U- - -UG,,. Since each sdf;NG; is compact
open, so i N H. Similarly X = (0 is a compact open filter. Sk is spectral and has a
least element. Sind€OF(X) is closed under finite intersectiofin(X) is itself a directed
subset ofX. By sobriety the supremum exists, which must be the greatestent ofX.
Forzg,z1 € X, considerB,, ,, = {a € Fin(X) | zo,x1 € Ta}. Because of (3), thisis a
directed set which has a supremum= | |'B,, ., If y € U, theny € Ta C U for some
a € By, 4. SOy T zp, 1. Now considery’, a lower bound ofcy andz;. Theny’ € U
implies thaty’ € Ta C U for some finitea. Buta € By, ,, SOy’ C .

Suppose (2) holds. The least elemenf¥ofnsures thak itself is a filter. Supposé’
andG are open filters. Theh' N G is open and is a filter becaugdéis a meet semilattice.
Suppose (1) holds. Spectral spaces are sober. Any compatkopqualsFy U- - -UFy,

for some open filterg’;. These can be chosen to be pairwise incomparableKC&g X )
forms a basis. Evidently, a finite intersection of compaatrofilters is compact open
becauseX is spectral. Separately, a finite intersection of open §ilisran open filter.
Hence (3) holds. |

We refer to a topological space satisfying these condittanSL space (abbreviating
“semilattice”).

3. '-SATURATION

Saturation can be relativized to any special class of opepsace of arbitrary opens.
In particular, any intersection of open filters is saturadad is either empty or is a filter.
Because of the greatest element, in&nspace an intersection of open filters is never
empty. Say that a set iB-saturatedif it is an intersection of open filters. We have just
noted thatF-saturated subsets of &L space are always filters. (In general spaces, the
only possibleF’-saturated non-filter i). We letFSat(X) denote the complete lattice of
F-saturated subsets &f ordered by inclusion, and define

fsat(A) := [ |{F € OF(X) | AC F}.

Thus arbitrary meets iFSat(X) are intersections, and joins are defined gyl :=
fsat((JA). In short, in any spacedsat is a closure operator in any space with a great-
est elementfsat produces a filter.

Lemma 3.1. If X is an SL space, theX is a complete lattice with respect to specializa-
tion. Moreover, for a compact set, fsat(A) is compact, hence is a principal filter, and
min fsat(4) =[] A.



A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS 7

Proof. The earlier proof thak is a meet semilattice generalizes to arbitrary meets. That
is, forA C X, letB% := {F € KOF(X) | A C F}, writing it as B}, for singletons. Each
F € By isprincipal, soB,4 := {min F' | F € B} isdirected. Hence := | || B4 exists.
Obviously,z is a lower bound ofd. If ' is another lower bound of, thenB,, C B 4. So
| |' B,/ C z. But sincekOF(X) is a basis of the topology; C | |'B,.

If Ais compact andd C F for an open filterF’, then by compactness there is some
G € KOF(X) forwhich A C G C F. Thusfsat(A) = (N B% = T[] 4. O

FSat(X) has a bit more concrete structure. In particular, supfibsea directed set of
open filters. Then the union is also an open filter. Hence thiisruis F-saturated. In other
words, inFSat(X) a directed join of open filters is simply a union.

We now consider what conditions on &L space are necessary and sufficient for
KOF(X) to form a lattice, not just a semilattice.

Theorem 3.2. For an SL space, the following are equivalent.

(1) OF(X) forms a sublattice ofSat(X);
(2) KOF(X) forms a sublattice ofSat(X);
(3) fsat(U) is again open for any opeli.

Proof. Suppose (1) holds. For compact open filtétsand GG, the join in FSat(X) is
fsat(F' U G). But F'U G is compact, hence by Lemma 3.1 sdsat(F' U G). Likewise,
fsat(0) is the least element &fsat(X') and is compact.

Suppose (2) holds. Consider an openiéeSinceX is a (complete) meet semilattide,
generates afilteF’. Thatis,x € F'if and only if for someyg, ..., ym € U, yoM- - My, E
x. Evidently, it suffices to show thdf is open, for ther?” = fsat(U). Forz € F, pick
Yo, - - -, Ym € U that meet below it. According to Lemma 3z%,= \/'B,,. ButU is open.
So we may choose an elementgfe By, N U in place ofy;. Now, Ta; is a compact open
filter, so (2) tells us thaat(Tag U - - - U Tam,) = 1(ag M- --May) C Fis a compact open
filter that containg:.

Suppose (3) holds. Then for any two open filtésst(F' U G) is open. It is a filter
because it is not empty. Likewisiat()) is open and non-empty. |

We refer to the spaces satisfying the conditions of the #ra@sBL spacesBL abbre-
viating “bounded lattice”).

The next task is to show that every semilattice and everigéaticcurs isomorphically
asKOF(X) for someSL space and somBL space, respectively. The basic construction
is the same in both cases, and establishesShandBL spaces are simply algebraic and
arithmetic lattices with their Scott topologies.

We know thatSLandBL spaces are complete lattices with respect to specializaiiot
in fact, they are more structured than that.

A complete lattice”' is said to bealgebraicif and only if it is isomorphic tddI(.J) for
some join semilatticd. Hereld|(.J) simply refers to the lattice of ideals df i.e., subsets
that are closed undgr and finite joins. Of course, there is nothing preventing asnfr
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thinking of IdI(.J) as being the lattice of filters of instead, but the tradition is to charac-
terize algebraicity in terms of ideals. The reader familigth classical universal algebra
will recall that algebraic lattices are precisely thoséidas that occur as congruence lat-
tices of algebraic structures (where the ‘ideal formulatie natural). A complete lattice
C'is said to bearithmeticif it is isomorphic toldl(L) for some latticeL. Again, this can
just as well be defined in terms of filters. Of course, theresaweral other useful internal
characterizations of algebraic and arithmetic latticetdils can be found in [GHKO3]),
but this characterization is easiest to use for our purposes

For a meet semilattic#/, let Filt(M) be the space of filters if/ with the Scott topol-
ogy. Since filters ofM correspond to ideals af/?, every algebraic lattice occurs as
Filt(M). This topology can be captured by a canonical basis. Naruely, € M, let

wo :={F €Filt(M) | a € F}.

Lemma 3.3. Let P be a partially ordered set. Then the open§f(P) are order isomor-
phic with the collection of lower sets &f.

Proof. SupposeD C P is a lower set. Definglp := {F € Filt(P) | DN F # 0}.
Clearly, Up is an upper set of filters. Moreover, B is a directed set of filters, then
UD € Up then for someF’ € D, F € Up. SoUp is Scott open.

Supposdl is a Scott open set of filters, defide := {a € P | Ta € U}. Sincel
is an upper set, this is a lower set. Because any ffités the directed union of principal
filters contained in itF' € U if and only if there exista € F' such that. € Dy,. Likewise,
for a lower setD, a € D if and only if fa € Up. So the construction®y andUp are
order preserving bijections. |

For a meet semilatticd/, let DL(M ) denote the free distributive lattice ovaf. That
is, DL(M) is concretely built as the collection of finite unions of wijpal lower sets in\/.
Join is union and meet is computed in general by extensidm of |b = [(a A b). The
mapa — |a is the semilattice embeddiny — DL(M).

Lemma 3.4. For a meet semilatticd/, Filt(A/) is homeomorphic tepec(DL(M)).

Proof. Afilter F'in M determines afilter basigla | a € F'} in DL(M), which evidently
generates a prime filter. A prime filtét C DL(M) determines a filtefa € M | |a € P}
in M. These are easily checked to be inverses of one another.alédsroutine, using
Lemma 3.3 to check that these two maps are continuous. O

In the case thak is a lattice Filt(L) has additional structure. We collect various useful
facts in the following.

Lemma 3.5. Let L be alattice. InFilt(L) the following hold.
(1) AnopenlUp is afilter if and only ifD is an ideal inL.
(2) Finite joins of compact open filters are given by joinslin That is,fsat(U |, U
Uyp) = U (qve) and similarly,fsat(()) = Uyoy.
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(3) The way below relation is given BYp < Upg if and only if for some finite
{ai,...,a,} C E, Disasubsetof);_, |a;.

Proof. For (1), suppos® is an ideal inL, anda € FNnDandb € GND. SoaVbe D,
andzVy € FNG. SoUp is afilter of filters. Conversely, suppo8sg, is a filter of filters,
anda,b € D. Thentla € Up and1b € Up. SotaNTb = T(aVd) € Up. Thatis,
aVbeD.

For (2),U, (avs) is anF-saturated set containifg, U U ;. If U; contains |, U U s,
then in particularg, b € I. Soa vV b € I. Evidently,U;oy; = {L}, which is the smallest
F-saturated set of filters.

The characterization ok in (3) is a standard fact about the Scott topology of an alge-
braic dcpo. |

Lemma 3.6. For a meet semilatticd/, Filt(M) is an SL space. For a latticg, Filt(L) is
a BL space.

Proof. For the first claim, becausfl} and M are the least and greatest elements, it re-
mains to check that the open filters form a basis. But thegefer a € M form a basis,
and these clearly are filters.

For a latticeL, it remains to check thdsat(llp) is open whenD is a lower set inL.
The open filters containint , are bijective with the ideals containindg. So let be the
smallest ideal containing. ThenlU; is evidently equal tdsat(Up). O

Putting all these facts together we obtain the following.

Theorem 3.7. Any meet semilattic&/ is isomorphic toKOF(Filt(M)). Any SL spaceX
is homeomorphic t&ilt(KOF(X)). These constructions restrict to lattices and BL spaces.

Proof. The map sending € M to ¢, := {f € Filt(M) | a € f} is the isomorphism.
Similarly, the map sending € X to 6, := {F € KOF(X) | « € F} is the homeomor-
phism. |

Notice that these results also tell us that 8iespaces are exactly the algebraic lattices
and theBL spaces are exactly the arithmetic lattices, both with ttogiologies.

4. CANONICAL EXTENSION
Theorem 4.1. For a BL spaceX, FSat(X) is a canonical extension &fOF(X).

Proof. One half of lattice density is almost trivial. Consider areofilter F = (J{Ta |
a € FNFin(X)}. From Lemma 3.1, this union is directed, so it is the joirF8at(X).
Hence any5 € FSat(X) takes the form

S = ({FeOorX)|SCF}

({UJ{ta | a € FNFin(X)} | F € OF(X)andS C F}

({\/{la | a € FNFin(X)} | F € OF(X)andS C F}.
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For the other half of density, considgre FSat(X). ThenS = ., F; for some family
of open filters{F;}. EachF; is a directed join, hence union, of compact open filters
{Tai;}jes. So

S = U ﬂ Tai,»y(i)

vellier Ji 1€l

fsat( U ﬂ Ta/i,'y(i))

VeIl eq Ji €T
\/ ﬂ Ta; (i)
VeIl er Ji i€]
c S

N

For lattice compactness, it suffices to show that wkéh}, is a downward directed
family of compact open filters anfl5;}; is an upward directed family of compact open
filters, if M, #; C U, G;, then for some andj, F; C G;. EachF; is a principal filter,
so leta; = min F;. Because the famil{ F;}; is downward directed, the set of these
generatora; }; is directed. By sobriety o, this directed set has a least upper bound,
sayz. Evidently,z € (), F;, and every open neighborhood ofincludes some:;. In
particular,| J; G, is such a neighborhood. So for some; € |J; G;. Hence for somg,

a; € Gj. O

Corallary 4.2. Every lattice has a canonical extension, unique up to isquinism.

Proof. FSat(Filt(L)) is a canonical extension &OF(Filt(L)) which is isomorphic td..
Suppose” is a canonical extension df, X is aBL space and: L — KOF(X) is a
lattice isomorphism.
Define mapg: OF(X) — Joinsc(L) andm: X — Meetsc(L) by
j(F) = \aelL|i(a)CF)

C

NaelL | zei(a)}
C

m(z)

Supposed C L. Theni(A) is open inX, andfsat(i(A)) is an open filter. Furthermore,
J(fsat(i(A))) = /- A. Likewise, the join ofi(A) exists inX, andm(| |- i(4)) = Ao A
becauseX is sober. So bothj andm are onto. Furthermoref’ C G if and only if
J(F) < j(G) andz C y if and only if m(z) > m(y) follow easily from the fact that
compact open filters form a basis &t

Also because of lattice compactnesshfr € F' if and only if m(x) < j(F).

Now we define two maps;: C' — FSat(X) andi,,: C' — FSat(X) by

ij(y) = [WFeOor(X) |y <j(F)}
im(7) = {rxeX |[m(r) <~}
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Clearly these are both monotonic ands onto because of the completenes€’'oBecause
m(z) <y < j(F)impliesz € F, we also have,,(v) C i;(v). By lattice density,

v=\V{m@) |z €in(y)}
C

and

6= A\Li(F) | i;(6) € F}.
C

Soi,, () C i;(9) impliesy < §. Putting these facts togethgy, andi; are actually equal
and are the desired isomorphism. O

5. MORPHISMS

Clearly, the next thing to do is to extend Theorem 3.7 to aitjuaf categories. We do
this first, by characterizing those (continuous) functibesveerSLspaces that correspond
to meet semilattice morphisms. Second, we cut this dowrttioéhomomorphisms.

Lemma5.1. For afunctionf: X — Y between SL spaces, the following are equivalent.
(1) f~! restricted toKOF(Y") co-restricts tokOF(X).
(2) fis spectral andf~! restricted toOF(Y") co-restricts toOF (X ).
(3) fis spectral andsat(f~!(B)) C f~(fsat(B)) forall B C Y.
(4) fis spectral andsat(f~1(U)) C f~(fsat(U)) for all opensU C Y.

Proof. Suppose (1). Then immediatefyis continuous. Alsd/ <« V holds if and only
if there is a compact opeR so thatU C K C V. But K is simply a finite union of
compact open filtergy U---U F,,,. Sof~1(U) C f~Y(F)U---U f1(F,) C f~1(V).
The middle set is a finite union of compact open filters. Thaeef is spectral. Suppose
F € OF(Y). ThenF is a directed union of compact open filters. So'(F) is a directed
union of compact open filters, hence is an open filter.

Suppose (2), and consid& C Y. Sincefsat(B) = (|{F € OF(X) | B C F} and
[71(F) € OF(X) forany F € OF(Y), f~!(fsat(B)) is an intersection of fewer open
filters thanfsat(f~*(B)).

Trivially, (3) implies (4).

Suppose (4). In particulasat(f~(Ta)) C f~*(Ta) becauséa is alreadyF'-saturated.
Obviously, f~1(ta) C fsat(f~!(Ta)). Becausef is spectral,f ~!(Ta) is compact open.
BecauseX is aBL spacefsat(f~*(Ta)) = f~!(Ta) is a compact open filter. O

Afunction f is calledF'-continuousf it satisfies the equivalent conditions of the lemma.
This leads to our first duality theorem.

Theorem 5.2. The category of semilattices and meet preserving functodsally equiv-
alent to the category of SL spaces afetontinuous functions. This cuts down to the full
subcategory of lattices and meet preserving functions el subcategory of BL spaces
and F'-continuous functions.
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Proof. Lemma 5.1 clearly indicates th&OF extends to a functor into the category of meet
semilattices via the restriction &OF(f) = f~! to compact open filters.

Likewise for h: L — M, Filt(h) = h~! sends filters to filters because pre-
serves meets. Moreover, for a compact open filigre KOF(Filt(L)), we haveF €
Filt(h)~'(pq) if and only if h(a) € F if and only if F € ;4. ThereforeFilt(h) is
F-continuous.

Evidently, the isomorphism and homeomorphism of TheorefmaBe natural in these
functors.

O

To cut this duality down to lattice homomorphisms, we rediadlt OF(X) is the BL
space dual t&in(X). So anF-continuous map fromF(X) to OF(Y") corresponds dually
to ajoin preserving map betwee®OF(Y") andKOF(X).

Lemma5.3. For an F-continuous mayf: X — Y between BL spaces, the following are
equivalent.

(1) f~! preserves finite joins of compact open filters.

(2) f~! preserves finite joins of open filters.

(3) f~! preserves all joins of open filters.

(4) f(fsat(U)) C fsat(f~*(U)) for any openy C Y.

Proof. Obviously, (3) implies (2) and (2) implies (1).
Suppose (4) holds. Then

f_l(\/Fi) = f_l(COfSGt(UFi))
= fsat(f_l(UFi))

fsat(U fHE))

\ 1 (F)

Finally, suppose (1) holds. Consider an ope Y andF € OF(X) so thatf~1(U) C
F'. Per Theorem 3.2,

fsat(U) = | J{T(a1M...Map) | a1,...,am € UNFin(X)}

Sincef~! preserves finite joins, we also haye! (fsat(U)) C F. O

Say that a spectral function is-stableif

f~ (fsat(U)) = fsat(f~'(U))

for any operlJ.

Theorem 5.4. The category of lattices and lattice homomorphisms is geduivalent to
the category of BL spaces atftistable functions.
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Proof. The evidently the dual equivalence of Theorem 5.2 cuts dovthis, so long as the
functorFilt cuts down. That is, we need to check tR#t(h) is F-stable wherh: L — M
is a lattice homomorphism. We already know iffiscontinuous.

Supposel and M are lattices and: L — M is a lattice homomorphism. Consider
two compact open filterg,, ¢, € KOF(Filt(L)). Evidently, Filt(h) ™' (¢a) = ©n(a)-
The joinp, Ll ¢, of these two inKOF(Filt(L)) is fsat(v, U vp) = @ave. And of course
Filt(h) ™' (¢avi) = n(a)yva(s) = Ph(a) L Cnv)- a

In a finite lattice,Filt(L) is isomorphic toL?, and since all upper sets Filt(L) are
open KOF(Filt(L)) is isomorphic tcFilt(L)?. Thatis, the natural isomorphism from finite
lattice L to KOF(Filt(L)) is rather trivial. For a non-trivial example, consider tagtite
consisting of two copies g6, 1] with 0’'s and1’s identified. We can write: for elements of
one copy and’ for the corresponding elements of the other copy. So therénar types
of filter:

(1) Tz —the principal filter generated by amyc L;
(2) 1z = T2\ {z} —the ‘round’ filter of elements strictly aboweby anyz € L\ {1}.
In the special case df, we make a distinction betwee and {0’ according to
which copy of{0, 1] is used.
Figure 1 illustrated. andFilt(L).

ol =1 &Y
e 10" ¢ 10

ro 159 ol
e 0 =0 L
L Filt(L)

FIGURE 1. A non-distributive lattice and its filters

In Filt(L) (specialization order being inclusion), we have three syqfdilters,

H, = {FeFi(l) |12 CF} [z#]1]
G. = {FEeFi(L) |tz C F}
g, = Ui, [#0

Clearly,F, C G, C H, when these exist. The filtefs, and§, are compact. The filters
§. andF, are open. So the filter§, constituteKOF(X). Figure 2 illustrate(Filt(L)),
KF(Filt(L)), OF(Filt(L)) andKOF(Filt(L)). In this example, every member BfFilt(L))
is saturated, hence the canonical extensioh isfisomorphic ta=(Filt(L)).
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9y Gy 9
F s F
H. H.
9 ! I9; ! 1%
ffé Fi : '-Jr%
Ho ‘  Ho "
g g, 5,
F(Filt(L)) KF(Filt(L)) or(Filt(L))
Sy
°
° o 91
.,

KoF(Filt(L))
FIGURE 2. Sets of filters irFilt(L)

6. CONCLUSION

We have established a dual equivalence betvestrand the category dL spaces and
F-stable maps, an easily described subcategorfopf In addition, in aBL spaceX,
the very natural construction of the complete latticefofaturated subsets produces the
canonical extension ®OF(X). Along the way, we also have established a dual equiva-
lence between the category of semilattice reducts of é&gtind the category &L spaces
and F’-continuous maps.

In the sequel paper, we extend the topological duality ftiickes to handle:-ary op-
erations that are join reversing or meet preserving in eagtnaent, or dually that are
meet reversing or join preserving in each argument. Suchatipas are called quasioper-
ators, and we consider several examples to illustrate thergkecase. Similar extensions
have been discussed by Hartonas, but our topological gualitthe underlying lattices
simplifies the description of morphisms in the dual category
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