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TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I:
A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS

M. ANDREW MOSHIER AND PETER JIPSEN

1. INTRODUCTION

The two main objectives of this paper are (a) to prove topological duality theorems for

semilattices and bounded lattices, and (b) to show that the topological duality from (a)

provides a construction of canonical extensions of boundedlattices. The paper is first of

two parts. The main objective of the sequel is to establish a characterization of lattice

expansions, i.e., lattices with additional operations, inthe topological setting built in this

paper.

Regarding objective (a), consider the following simple question:

Is there a subcategory ofTop that is dually equivalent toLat?

Here,Top is the category of topological spaces and continuous maps and Lat is the

category of bounded lattices and lattice homomorphisms.

To date, the question has been answered positively either byspecializingLat or by

generalizingTop. The earliest examples are of the former sort.

Tarski [Tar29] (treated in English, e.g., in [BD74]) showedthat every complete atomic

Boolean lattice is represented by a powerset. Taking some historical license, we can say

this result shows that the category of complete atomic Boolean lattices with complete lat-

tice homomorphisms is dually equivalent to the category of discrete topological spaces.

Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower

sets of a finite partial order. Again, we can now say that this shows that the category of

finite distributive lattices is dually equivalent to the category of finiteT0 spaces and con-

tinuous maps. In the seminal papers, [Sto36, Sto37], Stone generalized Tarski and then

Birkhoff, showing that (a) the category of Boolean latticesand lattice homomorphisms

is dually equivalent to the category of zero-dimensional, regular spaces and continuous

maps and then (b) the category of distributive lattices and lattice homomorphisms is dually

equivalent to the category ofspectral spacesandspectral maps. We will describe spectral

spaces and spectral maps below. For now, notice that all of these results can be viewed as

specializingLat and obtaining a subcategory ofTop. In the case of distributive lattices,

the topological category is not full because spectral maps are special continuous maps.

As a conceptual bridge, Priestley [Pri70] showed that distributive lattices can also be

dually represented in a category of certain topological spaces augmented with a partial

Date: March 2009.
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2 M. ANDREW MOSHIER AND PETER JIPSEN

order. This is an example of the latter sort of result, namely, a duality between lattices and

a subcategory of a generalization ofTop.

Urquhart [Urq78], Hartung [Har92] and Hartonas [HD97] developed similar dualities

for arbitrary bounded lattices. It is fair to say that they follow in the spirit of Priestley dual-

ity for distributive lattices in that their dual objects arecertain topological spaces equipped

with additional (partial order) structure. The dual morphisms are continuous maps that

suitably preserve the additional structure. This is in contrast to the spirit of Stone duality,

in which the dual category is simply a subcategory ofTop.

Urquhart’s construction equips the dual spaces with two partial orders in such a way that

Priestley duality is precisely the special case where the two orders agree. Hartung takes

a slightly different approach via the theory of concept lattices. His construction yields

two topological spaces and a binary relation between them. Again, Priestley duality is a

special case. Whereas Urquhart and Hartung must appeal to theaxiom of choice to show

that their spaces are inhabited with enough points, Hartonas avoids this in his duality and

develops some interesting applications. His spaces are certain Stone spaces equipped with

an auxiliary binary relation. So the sense in which this follows Priestley is clear.

Another approach to dualities for arbitrary lattices is given an exposition in Chapters 1

and 4 of Gierzet al, [GHK+80]. There, the duality between inf complete semilattices and

sup complete semilattices arising from adjoint pairs of maps is specialized to various cate-

gories of algebraic and arithmetic lattices (reviewed below). Since algebraic and arithmetic

lattices are precisely the ideal completions of join semilattices and lattices respectively, the

general duality specializes to categories of lattices.

We take a different path via purely topological considerations that simplifies Hartonas’

duality by eliminating the need for an auxiliary binary relation. At the end of this path, we

find algebraic and arithmetic lattices characterized as topological spaces. This establishes

an affirmative answer to our original question with no riders: the dual category toLat is a

subcategory ofTop simpliciter.

Like Stone, we find subcategories ofTop (actually, of spectral spaces) that are dually

equivalent to the categories of arbitrary semilattices with unit and arbitrary bounded lat-

tices. The results makes explicit the relation between Hartonas’ duality and the duality via

arithmetic lattices.

Because the sequel paper applies topological duality to problems of lattices with addi-

tional operations such as modal operators, residuals, etc., the sense in which a map be-

tween lattices is “structure preserving” must be considered carefully. We consider here

meet semilattice homomorphisms (Halmos’ word for these ishemimorphisms), and lattice

homomorphisms. In addition, there is an obvious functor(−)∂ sending a lattice to its order

opposite. This allows us to consider order reversing, orantitone, maps that send meets to

joins and so on.
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2. BACKGROUND AND DEFINITIONS

In this paper, lattices are always bounded; semilattices always have a unit. Also, we

designate semilattices as meet or join semilattices according to which order we intend.

Lattice and semilattice homomorphisms preserve bounds. Insympathy with this view, for

a collection of subsets of a universal setX to be “closed under finite intersections” includes

empty intersection, so thatX belongs to the collection.

Since our main concern is an interplay between ordered structures and topological struc-

tures, we can lay some ground rules at the start.

• Order-theoretic jargon and notation, when applied to aT0 space, refer to the

specialization order (which we denote by⊑ when X is understood). For our

purpose, the simplest characterization of specializationis x ⊑ y if and only if

N◦(x) ⊆ N◦(y) whereN◦(x) is the filter of open neighborhoods ofx. For ex-

ample, forx ∈ X, ↓x and↑x denote the sets of elements, respectively, below or

equal tox and above or equal tox in the specialization order. Evidently,↓x is the

closure of the singleton{x}. Also, a set isdirectedif it has nonempty intersection

with ↑x∩ ↑y for any membersx, y of the set. In general, we will reserve “square”

symbols for topological situations. For examplex ⊓ y will mean the meet with

respect to specialization (if it exists).

• Topological jargon and notation, when applied to a partial order, refer to the Scott

topology. Opens are upper setsU that are inaccessible by directed joins: ifD is

directed,
∨

↑D exists and
∨

↑D ∈ U , thenD ∩ U 6= ∅.

For a partially ordered setP , P ∂ denotes the order opposite. This notation is used

mostly with respect to lattices. SoL∂ is again a lattice.

In a topological spaceX, say that a pointa ∈ X is finite if ↑a is open. The term agrees

with usage in lattice and domain theory, where an elementa of a dcpo (or complete lattice)

is called finite if and only if↑a is open in the Scott topology. Finite points of a complete

lattice were first calledcompactby Nachbin [Nac49] and that usage continues in order

theory today, but so does the term “finite.” LetFin(X) denote the collection of finite points

of X. We takeFin(X) to be ordered by restriction of the specialization order onX. Again,

if C is a complete lattice, thenFin(C) is to be understood relative to the Scott topology on

C.

A topological space is said to besoberif the mapx 7→ N◦(x) is a bijection betweenX

and the collection of completely prime filters in the latticeof opens. Equivalently, a space

is sober if every closed irreducible set is of the form↓x for a unique pointx (recall a set

A is irreducible if A ⊆ B ∪ C for closed setsB, C impliesA ⊆ B or A ⊆ C). Sobriety

is a topological condition that ensures the space isT0 and has some nice order-theoretic

behavior. We will use the following well-known fact about sober spaces.
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Lemma 2.1. In a sober space, any directed setD has a supremum
⊔

↑D, which is in the

closure ofD. Moreover, any continuous function between sober spaces preserves directed

suprema:f(
⊔

↑D) =
⊔

↑f(D).

In our deliberations, we will construct canonical extensions of lattices and show that

they too are topologically representable.

A complete latticeC is a completionof a latticeL if L is a sublattice ofC (more

generally,L is embedded inC). L is lattice densein C if

MeetsC(JoinsC(L)) = C = JoinsC(MeetsC(L)),

where

MeetsC(A) = {
∧

A′ | A′ ⊆ A}

JoinsC(A) = {
∨

A′ | A′ ⊆ A}

FurthermoreL is lattice compactin C if for all U, V ⊆ L, if
∧

C U ≤
∨

C V then there

exist finiteU0 ⊆ U , V0 ⊆ V for which
∧

U0 ≤
∨

V0.

Notice that lattice density and lattice compactness arenot the same as topological den-

sity and compactness with respect to the Scott topology, hence the extra qualifier. In most

work on canonical extension, these two properties are referred to simply as density and

compactness.

A completionC is acanonical extension ofL if L is lattice dense and lattice compact

in C. In Section 4, we give a proof of the following theorem, originally due to Gehrke and

Harding [GH01].

Theorem 2.2 ([GH01]). Every latticeL has a canonical extension, denoted byLσ, unique

up to isomorphism, i.e. ifC is also a canonical extension ofL, then there is a lattice

isomorphism betweenLσ andC that keepsL fixed.

Our touchstone for topological duality is Stone’s representation theorem for bounded

distributive lattices:

Theorem 2.3. The categoryDL of distributive lattices and lattice homomorphisms is du-

ally equivalent to the categorySpec of spectral spaces and spectral functions.

A spectral spaceis a sober spaceX in which the compact open sets form a basis that is

closed under finite intersections (in particular,X is itself compact). Aspectral functionis

a continuousf for whichf−1 also preserves the way below relation on opens, whereU is

way belowV means that any open cover ofV contains a finite subcover ofU . The way be-

low relation is denoted byU ≪ V . On spectral spaces, this is equivalent to requiring that

f−1 preserves compact opens. Spectral functions (often in moregeneral settings) are also

known asperfectfunctions. We prefer to avoid this terminology because perfect has an en-

tirely different meaning in lattice theory. LettingKO(X) denote the collection of compact

open subsets ofX, Stone’s Theorem establishes thatKO extends to a contravariant equiva-

lence functor fromSpec to DL. The inverse equivalence functor is denoted byspec(L). It
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takes a distributive latticeL to the space of its prime filters with topology generated by the

sets{P ∈ specL | a ∈ P} for a ∈ L.

For a spaceX, afilter in X is a filter in the usual order-theoretic sense: a setF so that

(i) x ∈ F andx ⊑ y impliesy ∈ F (ii) F is non-empty and (iii)x, y ∈ F implies there

existsz ∈ F so thatz ⊑ x, y. Note that this isnot the same as the more familiar notion of

afilter onX, i.e., a filter of subsets ofF .

A set satisfying (i) is anupper setwith respect to specialization. In the topological

setting, such sets are said to besaturated. Evidently, any open set is saturated and any

intersection of saturated sets is again saturated. Moreover, supposeA is saturated and

x /∈ A. Then for eachy ∈ A, we find an open setUy containingy but notx. The union

of all suchUy coversA and excludesx. Thus,A is exactly the intersection of its open

neighborhoods.

We will be interested in special sorts of saturated sets: compact saturated sets, open sets

and filters. In that light, we define

• K(X): the collection of compact saturated subsets ofX;

• O(X): the collection of open subsets ofX; and

• F(X): the collection of filters ofX.

Intersections of these are denoted by concatenation, e.g.,OF(X) = O(X) ∩ F(X). In

particular,OF, KO andKOF will be important. As already noted, spectral spaces are char-

acterized by havingKO(X) as a basis that is closed under finite intersection. On spectral

spaces, spectral maps are those mapsf : X → Y for whichf−1 sendsKO(Y ) into KO(X).

We take each of these collections to be ordered by inclusion.

The following technical observation is useful.

Lemma 2.4. In a topological spaceX, let F1, . . . , Fm be pairwise incomparable filters.

ThenF1 ∪ · · · ∪ Fm is compact if and only if eachFi is a principal filter.

Proof. Clearly, a principal filter↑x is compact, so a finite union of principal filters is

compact.

SupposeF1, . . . , Fm are pairwise incomparable filters andFm is not principal. LetD

be the collection of opensU such thatFm \ U 6= ∅. For x ∈ Fm, there is an element

y ∈ Fm so thatx 6⊑ y. So there is anU for whichx ∈ U andy /∈ U . Forx ∈ Fi (i < m),

the filters are pairwise incomparable, so there is an elementy ∈ Fm so thatx 6⊑ y. Again

there is an openU separatingx from y. ThusD is an open cover ofF1∪· · ·∪Fm. Suppose

U, V ∈ D. Then there are elementsx ∈ Fm \ U andy ∈ Fm \ V . BecauseFm is a filter,

there is also an elementz ∈ Fm below bothx andy. Hencez ∈ Fm \ (U ∪ V ). SoD is

directed. By construction, noU ∈ D coversF1 ∪ · · · ∪ Fm. �

In particular, the compact filters are principal, andKOF(X) is in an order reversing

bijection withFin(X). ForF ∈ KOF(X), we letmin F denote the generator ofF .

Theorem 2.5. For a topological spaceX, the following are equivalent:
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(1) X is spectral andOF(X) forms a basis that is closed under finite intersection;

(2) X is spectral,OF(X) forms a basis,X is a meet semilattice with respect to spe-

cialization andX has a least element;

(3) X is sober andKOF(X) forms a basis that is closed under finite intersection.

Proof. Suppose (3) holds, then the compact opens and the open filtersseparately form

bases. Furthermore, ifK andH are compact opens, thenK = F1 ∪ · · · ∪ Fm for some

compact open filtersFi and likewiseH = G1∪· · ·∪Gn. Since each setFi∩Gj is compact

open, so isK ∩H. Similarly X =
⋂
∅ is a compact open filter. SoX is spectral and has a

least element. SinceKOF(X) is closed under finite intersection,Fin(X) is itself a directed

subset ofX. By sobriety the supremum exists, which must be the greatestelement ofX.

Forx0, x1 ∈ X, considerBx0,x1
= {a ∈ Fin(X) | x0, x1 ∈ ↑a}. Because of (3), this is a

directed set which has a supremum,y :=
⊔

↑Bx0,x1
. If y ∈ U , theny ∈ ↑a ⊆ U for some

a ∈ Bx0,x1
. Soy ⊑ x0, x1. Now considery′, a lower bound ofx0 andx1. Theny′ ∈ U

implies thaty′ ∈ ↑a ⊆ U for some finitea. But a ∈ Bx0,x1
, soy′ ⊑ y.

Suppose (2) holds. The least element ofX ensures thatX itself is a filter. SupposeF

andG are open filters. ThenF ∩ G is open and is a filter becauseX is a meet semilattice.

Suppose (1) holds. Spectral spaces are sober. Any compact openK equalsF1∪· · ·∪Fm

for some open filtersFi. These can be chosen to be pairwise incomparable. SoKOF(X)

forms a basis. Evidently, a finite intersection of compact open filters is compact open

becauseX is spectral. Separately, a finite intersection of open filters is an open filter.

Hence (3) holds. �

We refer to a topological space satisfying these conditionsas anSLspace (abbreviating

“semilattice”).

3. F -SATURATION

Saturation can be relativized to any special class of opens in place of arbitrary opens.

In particular, any intersection of open filters is saturatedand is either empty or is a filter.

Because of the greatest element, in anSL space an intersection of open filters is never

empty. Say that a set isF -saturatedif it is an intersection of open filters. We have just

noted thatF -saturated subsets of anSL space are always filters. (In general spaces, the

only possibleF -saturated non-filter is∅). We letFSat(X) denote the complete lattice of

F -saturated subsets ofX ordered by inclusion, and define

fsat(A) :=
⋂

{F ∈ OF(X) | A ⊆ F}.

Thus arbitrary meets inFSat(X) are intersections, and joins are defined by
∨

A :=

fsat(
⋃

A). In short, in any space,fsat is a closure operator; in any space with a great-

est element,fsat produces a filter.

Lemma 3.1. If X is an SL space, thenX is a complete lattice with respect to specializa-

tion. Moreover, for a compact setA, fsat(A) is compact, hence is a principal filter, and

min fsat(A) =
d

A.
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Proof. The earlier proof thatX is a meet semilattice generalizes to arbitrary meets. That

is, for A ⊆ X, let B∗
A := {F ∈ KOF(X) | A ⊆ F}, writing it asB∗

x for singletons. Each

F ∈ B∗
A is principal, soBA := {min F | F ∈ B∗

A} is directed. Hencex :=
⊔

↑BA exists.

Obviously,x is a lower bound ofA. If x′ is another lower bound ofA, thenBx′ ⊆ BA. So⊔
↑Bx′ ⊑ x. But sinceKOF(X) is a basis of the topology,x′ ⊑

⊔
↑Bx′ .

If A is compact andA ⊆ F for an open filterF , then by compactness there is some

G ∈ KOF(X) for whichA ⊆ G ⊆ F . Thusfsat(A) =
⋂

B∗
A = ↑

d
A. �

FSat(X) has a bit more concrete structure. In particular, supposeD is a directed set of

open filters. Then the union is also an open filter. Hence this union isF -saturated. In other

words, inFSat(X) a directed join of open filters is simply a union.

We now consider what conditions on anSL space are necessary and sufficient for

KOF(X) to form a lattice, not just a semilattice.

Theorem 3.2. For an SL space, the following are equivalent.

(1) OF(X) forms a sublattice ofFSat(X);

(2) KOF(X) forms a sublattice ofFSat(X);

(3) fsat(U) is again open for any openU .

Proof. Suppose (1) holds. For compact open filtersF and G, the join in FSat(X) is

fsat(F ∪ G). But F ∪ G is compact, hence by Lemma 3.1 so isfsat(F ∪ G). Likewise,

fsat(∅) is the least element ofFsat(X) and is compact.

Suppose (2) holds. Consider an open setU . SinceX is a (complete) meet semilattice,U

generates a filterF . That is,x ∈ F if and only if for somey0, . . . , ym ∈ U , y0⊓· · ·⊓ym ⊑

x. Evidently, it suffices to show thatF is open, for thenF = fsat(U). For x ∈ F , pick

y0, . . . , ym ∈ U that meet below it. According to Lemma 3.1,yi =
∨

↑Byi
. ButU is open.

So we may choose an element ofai ∈ Byi
∩U in place ofyi. Now,↑ai is a compact open

filter, so (2) tells us thatfsat(↑a0 ∪ · · · ∪ ↑am) = ↑(a0 ⊓ · · · ⊓ am) ⊆ F is a compact open

filter that containsx.

Suppose (3) holds. Then for any two open filters,fsat(F ∪ G) is open. It is a filter

because it is not empty. Likewise,fsat(∅) is open and non-empty. �

We refer to the spaces satisfying the conditions of the theorem asBL spaces (BL abbre-

viating “bounded lattice”).

The next task is to show that every semilattice and every lattice occurs isomorphically

asKOF(X) for someSL space and someBL space, respectively. The basic construction

is the same in both cases, and establishes thatSLandBL spaces are simply algebraic and

arithmetic lattices with their Scott topologies.

We know thatSLandBL spaces are complete lattices with respect to specialization. But

in fact, they are more structured than that.

A complete latticeC is said to bealgebraicif and only if it is isomorphic toIdl(J) for

some join semilatticeJ . HereIdl(J) simply refers to the lattice of ideals ofJ , i.e., subsets

that are closed under↓ and finite joins. Of course, there is nothing preventing us from
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thinking of Idl(J) as being the lattice of filters ofJ∂ instead, but the tradition is to charac-

terize algebraicity in terms of ideals. The reader familiarwith classical universal algebra

will recall that algebraic lattices are precisely those lattices that occur as congruence lat-

tices of algebraic structures (where the ‘ideal formulation’ is natural). A complete lattice

C is said to bearithmeticif it is isomorphic toIdl(L) for some latticeL. Again, this can

just as well be defined in terms of filters. Of course, there areseveral other useful internal

characterizations of algebraic and arithmetic lattices (details can be found in [GHK+03]),

but this characterization is easiest to use for our purposes.

For a meet semilatticeM , let Filt(M) be the space of filters inM with the Scott topol-

ogy. Since filters ofM correspond to ideals ofM∂ , every algebraic lattice occurs as

Filt(M). This topology can be captured by a canonical basis. Namely,for a ∈ M , let

ϕa := {F ∈ Filt(M) | a ∈ F}.

Lemma 3.3. LetP be a partially ordered set. Then the opens ofFilt(P ) are order isomor-

phic with the collection of lower sets ofP .

Proof. SupposeD ⊆ P is a lower set. DefineUD := {F ∈ Filt(P ) | D ∩ F 6= ∅}.

Clearly, UD is an upper set of filters. Moreover, ifD is a directed set of filters, then⋃
D ∈ UD then for someF ∈ D, F ∈ UD. SoUD is Scott open.

SupposeU is a Scott open set of filters, defineDU := {a ∈ P | ↑a ∈ U}. SinceU

is an upper set, this is a lower set. Because any filterF is the directed union of principal

filters contained in it,F ∈ U if and only if there existsa ∈ F such thata ∈ DU. Likewise,

for a lower setD, a ∈ D if and only if ↑a ∈ UD. So the constructionsDU andUD are

order preserving bijections. �

For a meet semilatticeM , let DL(M) denote the free distributive lattice overM . That

is, DL(M) is concretely built as the collection of finite unions of principal lower sets inM .

Join is union and meet is computed in general by extension of↓a ∩ ↓b = ↓(a ∧ b). The

mapa 7→ ↓a is the semilattice embeddingM → DL(M).

Lemma 3.4. For a meet semilatticeM , Filt(M) is homeomorphic tospec(DL(M)).

Proof. A filter F in M determines a filter basis{↓a | a ∈ F} in DL(M), which evidently

generates a prime filter. A prime filterP ⊆ DL(M) determines a filter{a ∈ M | ↓a ∈ P}

in M . These are easily checked to be inverses of one another. It isalso routine, using

Lemma 3.3 to check that these two maps are continuous. �

In the case thatL is a lattice,Filt(L) has additional structure. We collect various useful

facts in the following.

Lemma 3.5. LetL be a lattice. InFilt(L) the following hold.

(1) An openUD is a filter if and only ifD is an ideal inL.

(2) Finite joins of compact open filters are given by joins inL. That is,fsat(U↓a ∪

U↓b) = U↓(a∨b) and similarly,fsat(∅) = U{0}.
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(3) The way below relation is given byUD ≪ UE if and only if for some finite

{a1, . . . , an} ⊆ E, D is a subset of
⋃n

i=1 ↓ai.

Proof. For (1), supposeD is an ideal inL, anda ∈ F ∩D andb ∈ G ∩D. Soa ∨ b ∈ D,

andx∨ y ∈ F ∩G. SoUD is a filter of filters. Conversely, supposeUD is a filter of filters,

anda, b ∈ D. Then↑a ∈ UD and↑b ∈ UD. So↑a ∩ ↑b = ↑(a ∨ b) ∈ UD. That is,

a ∨ b ∈ D.

For (2),U↓(a∨b) is anF -saturated set containingU↓a ∪ U↓b. If UI containsU↓a ∪ U↓b,

then in particular,a, b ∈ I. Soa ∨ b ∈ I. Evidently,U{0} = {L}, which is the smallest

F -saturated set of filters.

The characterization of≪ in (3) is a standard fact about the Scott topology of an alge-

braic dcpo. �

Lemma 3.6. For a meet semilatticeM , Filt(M) is an SL space. For a latticeL, Filt(L) is

a BL space.

Proof. For the first claim, because{1} andM are the least and greatest elements, it re-

mains to check that the open filters form a basis. But the setsϕa for a ∈ M form a basis,

and these clearly are filters.

For a latticeL, it remains to check thatfsat(UD) is open whenD is a lower set inL.

The open filters containingUD are bijective with the ideals containingD. So letI be the

smallest ideal containingD. ThenUI is evidently equal tofsat(UD). �

Putting all these facts together we obtain the following.

Theorem 3.7. Any meet semilatticeM is isomorphic toKOF(Filt(M)). Any SL spaceX

is homeomorphic toFilt(KOF(X)). These constructions restrict to lattices and BL spaces.

Proof. The map sendinga ∈ M to ϕa := {f ∈ Filt(M) | a ∈ f} is the isomorphism.

Similarly, the map sendingx ∈ X to θx := {F ∈ KOF(X) | x ∈ F} is the homeomor-

phism. �

Notice that these results also tell us that theSLspaces are exactly the algebraic lattices

and theBL spaces are exactly the arithmetic lattices, both with theirtopologies.

4. CANONICAL EXTENSION

Theorem 4.1. For a BL spaceX, FSat(X) is a canonical extension ofKOF(X).

Proof. One half of lattice density is almost trivial. Consider an open filterF =
⋃
{↑a |

a ∈ F ∩ Fin(X)}. From Lemma 3.1, this union is directed, so it is the join inFSat(X).

Hence anyS ∈ FSat(X) takes the form

S =
⋂

{F ∈ OF(X) | S ⊆ F}

=
⋂

{
⋃

{↑a | a ∈ F ∩ Fin(X)} | F ∈ OF(X) andS ⊆ F}

=
⋂

{
∨

{↑a | a ∈ F ∩ Fin(X)} | F ∈ OF(X) andS ⊆ F}.
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For the other half of density, considerS ∈ FSat(X). ThenS =
⋂

i∈I Fi for some family

of open filters{Fi}. EachFi is a directed join, hence union, of compact open filters

{↑aij}j∈Ji
. So

S =
⋃

γ∈
∏

i∈I
Ji

⋂

i∈I

↑ai,γ(i)

⊆ fsat(
⋃

γ∈
∏

i∈I
Ji

⋂

i∈I

↑ai,γ(i))

=
∨

γ∈
∏

i∈I
Ji

⋂

i∈I

↑ai,γ(i)

⊆ S.

For lattice compactness, it suffices to show that when{Fi}i is a downward directed

family of compact open filters and{Gj}j is an upward directed family of compact open

filters, if
⋂

i Fi ⊆
⋃

j Gj , then for somei andj, Fi ⊆ Gj . EachFi is a principal filter,

so let ai = min Fi. Because the family{Fi}i is downward directed, the set of these

generators{ai}i is directed. By sobriety ofX, this directed set has a least upper bound,

sayx. Evidently,x ∈
⋂

i Fi, and every open neighborhood ofx includes someai. In

particular,
⋃

j Gj is such a neighborhood. So for somei, ai ∈
⋃

j Gj . Hence for somej,

ai ∈ Gj . �

Corollary 4.2. Every lattice has a canonical extension, unique up to isomorphism.

Proof. FSat(Filt(L)) is a canonical extension ofKOF(Filt(L)) which is isomorphic toL.

SupposeC is a canonical extension ofL, X is a BL space andi : L → KOF(X) is a

lattice isomorphism.

Define mapsj : OF(X) → JoinsC(L) andm : X → MeetsC(L) by

j(F ) =
∨

C

{a ∈ L | i(a) ⊆ F}

m(x) =
∧

C

{a ∈ L | x ∈ i(a)}

SupposeA ⊆ L. Theni(A) is open inX, andfsat(i(A)) is an open filter. Furthermore,

j(fsat(i(A))) =
∨

C A. Likewise, the join ofi(A) exists inX, andm(
⊔

C i(A)) =
∧

C A

becauseX is sober. So bothj and m are onto. Furthermore,F ⊆ G if and only if

j(F ) ≤ j(G) andx ⊑ y if and only if m(x) ≥ m(y) follow easily from the fact that

compact open filters form a basis ofX.

Also because of lattice compactness ofC, x ∈ F if and only if m(x) ≤ j(F ).

Now we define two mapsij : C → FSat(X) andim : C → FSat(X) by

ij(γ) =
⋂

{F ∈ OF(X) | γ ≤ j(F )}

im(γ) = {x ∈ X | m(x) ≤ γ}
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Clearly these are both monotonic andij is onto because of the completeness ofC. Because

m(x) ≤ γ ≤ j(F ) impliesx ∈ F , we also haveim(γ) ⊆ ij(γ). By lattice density,

γ =
∨

C

{m(x) | x ∈ im(γ)}

and

δ =
∧

C

{j(F ) | ij(δ) ⊆ F}.

Soim(γ) ⊆ ij(δ) impliesγ ≤ δ. Putting these facts togetherim andij are actually equal

and are the desired isomorphism. �

5. MORPHISMS

Clearly, the next thing to do is to extend Theorem 3.7 to a duality of categories. We do

this first, by characterizing those (continuous) functionsbetweenSLspaces that correspond

to meet semilattice morphisms. Second, we cut this down to lattice homomorphisms.

Lemma 5.1. For a functionf : X → Y between SL spaces, the following are equivalent.

(1) f−1 restricted toKOF(Y ) co-restricts toKOF(X).

(2) f is spectral andf−1 restricted toOF(Y ) co-restricts toOF(X).

(3) f is spectral andfsat(f−1(B)) ⊆ f−1(fsat(B)) for all B ⊆ Y .

(4) f is spectral andfsat(f−1(U)) ⊆ f−1(fsat(U)) for all opensU ⊆ Y .

Proof. Suppose (1). Then immediatelyf is continuous. AlsoU ≪ V holds if and only

if there is a compact openK so thatU ⊆ K ⊆ V . But K is simply a finite union of

compact open filtersF1 ∪ · · · ∪Fm. Sof−1(U) ⊆ f−1(F1)∪ · · · ∪ f−1(Fm) ⊆ f−1(V ).

The middle set is a finite union of compact open filters. Thereforef is spectral. Suppose

F ∈ OF(Y ). ThenF is a directed union of compact open filters. Sof−1(F ) is a directed

union of compact open filters, hence is an open filter.

Suppose (2), and considerB ⊆ Y . Sincefsat(B) =
⋂
{F ∈ OF(X) | B ⊆ F} and

f−1(F ) ∈ OF(X) for any F ∈ OF(Y ), f−1(fsat(B)) is an intersection of fewer open

filters thanfsat(f−1(B)).

Trivially, (3) implies (4).

Suppose (4). In particular,fsat(f−1(↑a)) ⊆ f−1(↑a) because↑a is alreadyF -saturated.

Obviously,f−1(↑a) ⊆ fsat(f−1(↑a)). Becausef is spectral,f−1(↑a) is compact open.

BecauseX is aBL space,fsat(f−1(↑a)) = f−1(↑a) is a compact open filter. �

A functionf is calledF -continuousif it satisfies the equivalent conditions of the lemma.

This leads to our first duality theorem.

Theorem 5.2. The category of semilattices and meet preserving functionsis dually equiv-

alent to the category of SL spaces andF -continuous functions. This cuts down to the full

subcategory of lattices and meet preserving functions and the full subcategory of BL spaces

andF -continuous functions.
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Proof. Lemma 5.1 clearly indicates thatKOF extends to a functor into the category of meet

semilattices via the restriction ofKOF(f) = f−1 to compact open filters.

Likewise for h : L → M , Filt(h) = h−1 sends filters to filters becauseh pre-

serves meets. Moreover, for a compact open filterϕa ∈ KOF(Filt(L)), we haveF ∈

Filt(h)−1(ϕa) if and only if h(a) ∈ F if and only if F ∈ ϕh(a). Therefore,Filt(h) is

F -continuous.

Evidently, the isomorphism and homeomorphism of Theorem 3.7 are natural in these

functors.

�

To cut this duality down to lattice homomorphisms, we recallthat OF(X) is theBL

space dual toFin(X). So anF -continuous map fromOF(X) to OF(Y ) corresponds dually

to a join preserving map betweenKOF(Y ) andKOF(X).

Lemma 5.3. For anF -continuous mapf : X → Y between BL spaces, the following are

equivalent.

(1) f−1 preserves finite joins of compact open filters.

(2) f−1 preserves finite joins of open filters.

(3) f−1 preserves all joins of open filters.

(4) f−1(fsat(U)) ⊆ fsat(f−1(U)) for any openU ⊆ Y .

Proof. Obviously, (3) implies (2) and (2) implies (1).

Suppose (4) holds. Then

f−1(
∨

i

Fi) = f−1(cofsat(
⋃

i

Fi))

= fsat(f−1(
⋃

i

Fi))

= fsat(
⋃

i

f−1(Fi))

=
∨

i

f−1(Fi)

Finally, suppose (1) holds. Consider an openU ⊆ Y andF ∈ OF(X) so thatf−1(U) ⊆

F . Per Theorem 3.2,

fsat(U) =
⋃

{↑(a1 ⊓ . . . ⊓ am) | a1, . . . , am ∈ U ∩ Fin(X)}

Sincef−1 preserves finite joins, we also havef−1(fsat(U)) ⊆ F . �

Say that a spectral function isF -stableif

f−1(fsat(U)) = fsat(f−1(U))

for any openU .

Theorem 5.4. The category of lattices and lattice homomorphisms is dually equivalent to

the category of BL spaces andF -stable functions.



A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS 13

Proof. The evidently the dual equivalence of Theorem 5.2 cuts down to this, so long as the

functorFilt cuts down. That is, we need to check thatFilt(h) is F -stable whenh : L → M

is a lattice homomorphism. We already know it isF -continuous.

SupposeL andM are lattices andh : L → M is a lattice homomorphism. Consider

two compact open filtersϕa, ϕb ∈ KOF(Filt(L)). Evidently, Filt(h)−1(ϕa) = ϕh(a).

The joinϕa ⊔ ϕb of these two inKOF(Filt(L)) is fsat(ϕa ∪ ϕb) = ϕa∨b. And of course

Filt(h)−1(ϕa∨b) = ϕh(a)∨h(b) = ϕh(a) ⊔ ϕh(b). �

In a finite lattice,Filt(L) is isomorphic toL∂ , and since all upper sets inFilt(L) are

open,KOF(Filt(L)) is isomorphic toFilt(L)∂ . That is, the natural isomorphism from finite

latticeL to KOF(Filt(L)) is rather trivial. For a non-trivial example, consider the lattice

consisting of two copies of[0, 1] with 0’s and1’s identified. We can writex for elements of

one copy andx′ for the corresponding elements of the other copy. So there are two types

of filter:

(1) ↑x – the principal filter generated by anyx ∈ L;

(2) �↑x = ↑x\{x} – the ‘round’ filter of elements strictly abovex by anyx ∈ L\{1}.

In the special case of0, we make a distinction between�↑0 and�↑0′ according to

which copy of[0, 1] is used.

Figure 1 illustratesL andFilt(L).

1′ = 1

0′ = 0

L Filt(L)

1

2

′

↑0
�↑0
↑1

2

�↑1

2

↑1

�↑0′

1

2 �↑1

2

′

↑1

2

′

FIGURE 1. A non-distributive lattice and its filters

In Filt(L) (specialization order being inclusion), we have three types of filters,

Hx := {F ∈ Filt(L) | �↑x ⊆ F} [x 6= 1]

Gx := {F ∈ Filt(L) | ↑x ⊆ F}

Fx :=
⋃

y<x

Hy [x 6= 0]

Clearly,Fx ⊆ Gx ⊆ Hx when these exist. The filtersHx andGx are compact. The filters

Gx andFx are open. So the filtersGx constituteKOF(X). Figure 2 illustratesF(Filt(L)),

KF(Filt(L)), OF(Filt(L)) andKOF(Filt(L)). In this example, every member ofF(Filt(L))

is saturated, hence the canonical extension ofL is isomorphic toF(Filt(L)).
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G1

G 1

2

KOF(Filt(L))

G0

F 1

2

G1

F1

G 1

2

OF(Filt(L))

F 1

2

H 1

2

G1

G 1

2

KF(Filt(L))

G0G0

H0

F 1

2

H 1

2

G1

F1

G 1

2

F(Filt(L))

G0

H0

FIGURE 2. Sets of filters inFilt(L)

6. CONCLUSION

We have established a dual equivalence betweenLat and the category ofBL spaces and

F -stable maps, an easily described subcategory ofTop. In addition, in aBL spaceX,

the very natural construction of the complete lattice ofF -saturated subsets produces the

canonical extension ofKOF(X). Along the way, we also have established a dual equiva-

lence between the category of semilattice reducts of lattices and the category ofSLspaces

andF -continuous maps.

In the sequel paper, we extend the topological duality for lattices to handlen-ary op-

erations that are join reversing or meet preserving in each argument, or dually that are

meet reversing or join preserving in each argument. Such operations are called quasioper-

ators, and we consider several examples to illustrate the general case. Similar extensions

have been discussed by Hartonas, but our topological duality for the underlying lattices

simplifies the description of morphisms in the dual category.
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