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Abstract
We provide a classification of entangled states that uses new discrete entanglement invariants.

The invariants are defined by algebraic properties of linear maps associated with the states. We

prove a theorem on a correspondence between the invariants and sets of equivalent classes of

entangled states. The new method works for an arbitrary finite number of finite-dimensional state

subspaces. As an application of the method, we considered a large selection of cases of three

subspaces of various dimensions. We also obtain an entanglement classification of four qubits,

where we find 27 fundamental sets of classes.
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I. INTRODUCTION

The phenomenon of entanglement is one of the most fundamental and counterintuitive
features of quantum mechanics. Its fundamental role was emphasized by the formulation of
the EPR paradox [1], despite the original purpose of the latter to question physical reality
of the wave function. The counterintuitive nature of entanglement is a hallmark of quantum
mechanics, and its properties reveal deep distinctions between quantum and classical objects.

From the mathematical point of view entanglement is a consequence of the superposition
principle and the tensor product postulate in quantum mechanics. Specifically, the principle
and postulate imply that a state vector of a system consisting of several subsystems is a
linear combination of tensor products of state vectors of the subsystems. Mathematical and
physical properties of states interrelate: a state is disentangled if it can be transformed into
a factorizable state; any other state is entangled. Equivalently, a state is disentangled if and
only if each subsystem is in a definite state.

Despite the simplicity of the above qualitative features of entanglement the complete list
of its quantitative characteristics is unknown. For example, it might appear that the smallest
number of linearly independent factorizable terms representing a state is an appropriate
characteristic of its entanglement. This is true for two subsystems, in which case this single
quantity completely classifies all entangled states. For more than two subsystems, however,
this quantity does not characterize entanglement since it depends on a choice of bases.
To choose appropriate entanglement characteristics for the general case we need to study
invariant properties of states of composite systems; these are the key properties shaping the
following discussion.

For states of composite systems entanglement quantifies ways in which states of sub-
systems contribute to linear combinations of tensor products. The larger the numbers of
contributing states of subsystems, the greater the variety of arrangements of terms in linear
combinations. However, some of the arrangements should be considered as dependent since
they are related by transformations of bases. Such related states form equivalence classes,
finding the complete set of which is the goal of entanglement classification.

To classify entangled states one usually employs entanglement invariants, which are cer-
tain invariant quantities associated with the states. The nature of the problem requires that
the invariants do not change under all transformations that can be reduced to changes of
bases. Consequently, the invariants take the same values for all states within each equiva-
lence class, and the standard method of finding them uses the classical theory of invariants
[2]. Variants of this method are used in most known cases of partial or complete entangle-
ment classification; see, for example, [3–20].

Developing the ideas outlined above, we have introduced in [21] a new entanglement
classification method based on algebraic properties of tensor products of linear maps. In
this paper we generalize and expand both the method and its applications. We first introduce
various equivalence relations and corresponding equivalence classes on linear spaces of states.
We then show how these classes lead to various linear subspaces and their invariants, which
are the central objects in our method of algebraic classification of entangled states. During
the development of our method we turn repeatedly to the example of three qubits to illustrate
the procedure. Finally, we proceed with numerous more complicated but physical relevant
examples demonstrating the use of the method in classifying the entanglement of many
systems unsolved until now.
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II. PRELIMINARIES

Tensor product space

We begin by introducing the main components of our construction. Let S be a quantum
system that consists of n subsystems {Si}i∈I , where I = {1, . . . , n}. For each i ∈ I, let
a finite-dimensional vector space Vi over a field F be the state space of Si. Extension to
infinite-dimensional spaces is nontrivial and is not considered here. We choose F = R for
the simplicity of presentation; the case F = C needs only minimal modifications.

Our first task is to define the space V , the state space of S. The tensor product postulate
in quantum mechanics says that V is a subspace of the tensor product space ⊗i∈IVi. A
specific choice of subspace V depends on the nature of S. For identical subsystems, for
example, the permutation symmetry acting on the subsystems determines V . In particular,
for bosonic or fermionic subsystems V is, respectively, the symmetric or antisymmetric part
of the product ⊗i∈IVi. Also, if there is an equivalence relation among elements of V (as, for
example, for linearly dependent vectors in quantum mechanics), then V is the appropriate
quotient set. Modifications due to these and similar properties can be easily included into
the following development, which assumes the simplest case where V = ⊗i∈IVi.

Transformation group

We aim to study properties of the system S related to its composition in terms of the
subsystems {Si}i∈I ; these are equivalent to properties of V related to its composition in terms
of {Vi}i∈I . The latter manifest themselves in their transformations under an appropriate
group. Note that the tensor structure of V implies that the transformation group relevant
for studying properties of V is not the general linear group of V , GL(V ), but rather its
subgroup ×i∈IGL(Vi). Accordingly, for each i ∈ I we choose a subgroup Gi of GL(Vi) and
define the corresponding subgroup G = ×i∈IGi of GL(V ). As a result, the group G is the
transformation group for V , and it determines properties of V related to its composition
in terms of {Vi}i∈I . Particular cases (where only certain subsets of V and subgroups of G
matter) are of interest as well and can be treated similarly to the general case of V = ⊗i∈IVi

and G = ×i∈IGL(Vi) considered here.

Equivalence classes

The group G induces the equivalence relation ∼V on V , which is given by v′ ∼V v for
each v, v′ ∈ V if and only if there exists g ∈ G such that v′ = gv. The equivalence relation
defines the equivalence class of v under ∼V ,

C(v) = {v′ ∈ V : v′ ∼V v}.

Since all elements of the class C(v) are equivalent, any one of its elements determines the
whole class. It is thus convenient to replace C(v) with its arbitrary single element ṽ ∈ C(v),
which we call a representative element of the class. (For each specific class C(v) the choice
of ṽ based on various symmetry considerations generally leads to simplifications.) Repeating
this procedure for each v ∈ V , we partition V into the set of equivalence classes

C = ∪v∈V {C(v)}
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such that each vector in V belongs to one and only one class. Finally, replacing each class
in C by its representative element, we arrive at the set

Ṽ = {ṽ ∈ C(v) : C(v) ∈ C},

which can also be written as the quotient set Ṽ = V/ ∼V .

Properties of entangled states

Understanding the structure of the quotient set Ṽ is our ultimate goal. We begin with a
general property of Ṽ , its partition into three characteristic subsets of vectors: (1) the zero
vector, (2) decomposable vectors, (3) nondecomposable vectors. By definition, a decompos-
able vector v ∈ V is a vector that can be written in the factorizable form v = ⊗i∈Ivi, where
vi ∈ Vi is a nonzero vector for each i ∈ I. A nondecomposable vector is a vector which
is neither zero nor decomposable. We will derive the general form of a nondecomposable
vector after we establish its invariant characteristics.

The above partition is physically significant because it is in a one-to-one correspondence
with the partition of quantum states into three types: (1) the vacuum state, (2) disentangled
states, (3) entangled states. The zero vector (the vacuum state) and decomposable vectors
(disentangled states) are the simplest elements of V ; although they comprise only a small
part of V , they span all of it. By contrast, nondecomposable vectors (entangled states) are
more complex and difficult to categorize. The difficulty is combinatorial because decom-
posable vectors from V that enter the linear combination representing a nondecomposable
vector differ by ways in which linearly independent vectors from {Vi}i∈I enter the expression.
Finding all such possibilities of nonequivalent combinations (which is the same as finding
the quotient set Ṽ ) is the problem of entanglement classification.

Another general property of Ṽ concerns the number of its elements. Although the set Ṽ
is not a vector space, we use the notation dim Ṽ for the number of unconstrained elements
of F that a general element of Ṽ depends on. Using a similar notation for dimG, we find

dim Ṽ ≥ dimV − dimG.

The inequality sign appears here because, in general, the system of linear equations for
g ∈ G that follows from the equivalence condition v′ = gv is not linearly independent. We
have two distinct cases here: (1) if dimV − dimG ≤ 0, the above inequality does not tell us
if there are any unconstrained elements of F that a general element of Ṽ depends on; (2)
if dimV − dimG > 0, there are at least dimV − dimG such elements of F . Consequently,
Ṽ is an infinite set in the second case. Asymptotically for large n, dimV is exponential in
n and dimG is at most quadratic in n. It follows that n does not need to be very large for
the set Ṽ to be infinite; in other words, Ṽ is typically infinite.

Example of three qubits

To illustrate the concepts introduced above, we consider a particular example of three
qubits, in which case there are three 2-dimensional spaces V1, V2, V3 and their tensor product
V = V1⊗V2⊗V3. We choose arbitrary bases {ei,j}1≤j≤2 for each Vi and expand an arbitrary
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element v ∈ V in terms of its coordinates {vj1,j2,j3},

v =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3e1,j1 ⊗ e2,j2 ⊗ e3,j3 .

The transformation group G acts on v according to v 7→ g1g2g3v, where gi ∈ GL(Vi) and the
coordinates of g1g2g3v are

(g1g2g3v)j1,j2,j3 =
2

∑

k1=1

2
∑

k2=1

2
∑

k3=1

vk1,k2,k3(g1)k1,j1(g2)k2,j2(g3)k3,j3.

The simplest example of a decomposable vector in V (a disentangled state in S) is v =
e1,1 ⊗ e2,1 ⊗ e3,1. This is a state of the system S in which each of its subsystems Si is in a
definite state ei,1.

There are three types of nondecomposable vectors in V (entangled states in S). For
the first type, vectors are nondecomposable for the tensor product of two spaces but de-
composable for the tensor product of the three spaces. Choosing V1 and V2 as two such
spaces, we have the state v = (e1,1 ⊗ e2,1 + e1,2 ⊗ e2,2)⊗ e3,1 in which the subsystems S1 and
S2 are not in definite states, while the subsystem S3 is in a definite state. The other two
states of this type are obtained by permutation of the subsystems. For the second and third
type (which in the literature are called respectively the W and the GHZ classes), states
are nondecomposable for the tensor product of the three spaces. The standard forms of
their representative states are v = e1,1 ⊗ e2,1 ⊗ e3,2 + e1,1 ⊗ e2,2 ⊗ e3,1 + e1,2 ⊗ e2,1 ⊗ e3,1 and
v = e1,1 ⊗ e2,1 ⊗ e3,1 + e1,2 ⊗ e2,2 ⊗ e3,2, respectively. For these states, no subsystem is in a
definite state.

Applying all elements of the group G to a representative vector v in any of the above three
types of elements of V , we obtain the equivalence class C(v), which leads to 7 equivalence
classes (counting permutations and including the zero vector which is in its own equivalence
class). This is a well-known result (which we also proved by using our method in [21]) that
these 7 classes constitute the complete entanglement classification of three qubits.

Invariants

The problem of finding Ṽ can be solved by direct or indirect methods. In a direct
method, one uses the definition of Ṽ to derive the general form of representative elements
of equivalence classes. Although there are no restrictions to such methods in theory, they
are usually inefficient in practice because of the need to solve complicated equations. By
contrast, in an indirect method, one seeks quantities characterizing elements of V which
are invariant under G. Equivalence classes are obtained by finding allowed values of these
invariants. Indirect methods are usually efficient if all invariants are known.

Continuing with indirect methods, let a(v) ∈ F be an invariant of v induced by the group
G. This is a quantity that satisfies a(v′) = a(v) for each v ∈ V , v′ ∈ C(v), which implies that
invariants depend only on classes. Let A(v) be a complete set of algebraically independent
invariants of v, so that v′ ∼V v if and only if A(v′) = A(v), for each v, v′ ∈ V . The standard
method of finding A(v) is to use the classical theory of invariants and covariants; for a
modern introduction, see, for example, [2]. Almost all known cases of partial or complete
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entanglement classifications use this method to a certain extent; see, for example, [3–20].
The rapid increase of |A(v)| with n is the main reason why only the simplest cases of
entanglement classification have been fully carried out.

Let us now consider a typical case of infinite Ṽ . We find that the set of all possible values
of the invariants, ∪v∈V {A(v)}, is infinite. The resulting information about Ṽ in terms of
its elements and invariants is both overwhelming in its detail and impractical in its use. As
a key part of our method, we reduce the amount of information by grouping equivalence
classes into a finite number of sets. The grouping is determined by certain equivalence
relation between classes in each set, a natural choice for which is defined as follows.

Equivalence of invariants

We first introduce the rescaling equivalence of invariants. We note that since linearly
dependent vectors in quantum mechanics correspond to the same physical state, we require
fv ∈ C(v) for each v ∈ V , f ∈ F , f 6= 0. It follows that algebraic invariants are homogeneous
polynomials; consequently, zero is the most important value of each invariant. This suggests
we extend the above rescaling equivalence of states to the rescaling equivalence of invariants.
Specifically, we define the equivalence relation ∼F on the field F by setting a′ ∼F a for each
a, a′ ∈ F if and only if there exists f ∈ F , f 6= 0 such that a′ = fa. (For F = R or F = C,
this simply means that any two nonzero elements are equivalent.) It is easy to generalize
this equivalence to ordered sets over F , so that for each pair of such sets (a′k)k∈K and (ak)k∈K
we define (a′k)k∈K ∼F (ak)k∈K if and only if a′k ∼F ak for each k ∈ K.

Having established equivalence for invariants, we transfer it to vectors. Namely, we define
the equivalence relation ∼′

V on the set V by setting v′ ∼′
V v if and only if A(v′) ∼F A(v),

for each v, v′ ∈ V . Since invariants depend only on classes, v′ ∼V v implies v′ ∼′
V v. The

relation ∼′
V defines the quantities C ′(v), ṽ′, C ′, Ṽ ′ in the same manner as the relation ∼V

defines the quantities C(v), ṽ, C, Ṽ . Clearly, C ′ is a partition of C.
The sets C ′ and Ṽ ′ are the main objects of our study. We call the problem of finding

them the restricted entanglement classification problem to emphasize that we seek only sets
of classes, not the classes themselves. One way to solve the problem is to use the set of
invariants A(v) from the standard classification method. This approach requires studying
conditions under which elements of A(v) are zero. If A(v) is known, this method gives the
solution; however, we prefer a simpler approach that uses new algebraic invariants Ñ(v)
instead of A(v). The advantage of our approach is that each element of Ñ(v) describes
certain algebraic properties of v and takes a value from only a finite set of integers. The
construction of Ñ(v) uses only basic linear algebra [22] and proceeds as follows.

III. METHOD

Outline

The set of invariants Ñ(v) is uniquely determined by the following conditions. First,
Ñ(v) depends only on the equivalence class C ′(v) to which v belongs. As a result, both
C ′(v) and Ñ(v) are invariant under the action of the transformation group G. Second, the
rescaling property of A(v) implies that Ñ(v) depends only on properties of linear subspaces
of V ; let L(v) be the set of such subspaces. Third, L(v) depends linearly on v. Fourth, L(v)
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describes properties of v associated with all partitions of the system S into subsystems build
from {Si}i∈I . Such partitions result from all choices of writing V as the tensor product of
spaces built from {Vi}i∈I .

Maps

The above conditions require that L(v) is defined in terms of linear maps. We find these
as follows. We first partition the system S into subsystems T and T ′, so that S = T ∪ T ′.
Let W and W ′ be the state spaces for T and T ′, respectively, so that V = W ⊗W ′. Our
main tool for constructing L(v) is a linear map

f(v) : W → W ′, f(v)(w) = v ⊗ w∗,

where w∗ ∈ W ∗ is the dual of w ∈ W .
According to a standard result in linear algebra, all information about a linear map is

contained in two fundamental spaces associated with it: its kernel and image,

ker f(v) = {w ∈ W : f(v)(w) = 0} ⊆ W,

im f(v) = {w′ ∈ W ′ : w′ = f(v)(w), w ∈ W} ⊆ W ′.

Associated with the map f(v) is the transpose map

f ′(v) : W ′ → W, f ′(v)(w′) = v ⊗ w′∗.

The matrices of f(v) and f ′(v) are the transposes of each other.
Introducing inner products in W and W ′, we can relate the kernels and images of f(v)

and f ′(v) through orthogonal compliments,

im f(v) = (ker f ′(v))⊥, im f ′(v) = (ker f(v))⊥.

(The orthogonal complement Y ⊥ of a subspace Y of an inner product space X is the set of all
vectors in X that are orthogonal to every vector in Y , Y ⊥ =

{

x ∈ X : 〈x, y〉 = 0, ∀y ∈ Y
}

.)
Thus, if both maps are used to construct L(v), then it suffices to consider only their

kernels, for example. We adopt this choice. Furthermore, since f ′(v) is obtained from f(v)
by interchanging W and W ′, both maps are included by considering only f(v) for both
V = W ⊗W ′ and V = W ′ ⊗W .

For specific computations we need expressions for the above quantities in terms of coor-
dinates. We introduce these by choosing arbitrary bases {ei}1≤i≤dimW and {e′i}1≤i≤dimW ′ for
the spaces W and W ′ and representing a vector v ∈ V in terms of its coordinates {vi,j},

v =
dimW
∑

i=1

dimW ′
∑

j=1

vi,jei ⊗ e′j .

We find

f(v)(w) =
dimW
∑

i=1

dimW ′
∑

j=1

vi,jwie
′
j ,

ker f(v) =
{

w ∈ W :
dimW
∑

i=1

vi,jwi = 0, j ∈ {1, . . . , dimW ′}
}

.

The kernel of a map is found by solving a homogeneous system of linear equations.
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Partitions

To describe properties of v related to partitioning the system into any two subsystems, we
need to consider all possible subsystems T and T ′ such that S = T∪T ′ and the corresponding
W and W ′ such that V = W ⊗W ′. These quantities are given by

T = SJ , T ′ = SI\J , W = VJ , W ′ = VI\J , J ∈ P ′(I),

SH = ∪h∈HSh, VH = ⊗h∈HVh, H ∈ P ′(I).

Here I \ J is the relative complement of J in I. Also, P ′(I) = P (I) \ {∅, I}, where P (I)
is the power set of I (the set of all subsets of I). We use P ′(I) instead of P (I) to exclude
partitions with empty subsystems (T, T ′) = (∅, S) and (T, T ′) = (S,∅).

Now, for each J ∈ P ′(I), we define the corresponding map

fJ(v) : VJ → VI\J , fJ(v)(w) = v ⊗ w∗,

its kernel KJ(v) = ker fJ(v), and its nullity nJ(v) = dimKJ(v).
In terms of arbitrary bases {ei}1≤i≤dimVJ

and {e′i}1≤i≤dimVI\J
for the spaces VJ and VI\J ,

we have

v =

dimVJ
∑

i=1

dimVI\J
∑

j=1

vi,jei ⊗ e′j,

fJ(v)(w) =

dimVJ
∑

i=1

dimVI\J
∑

j=1

vi,jwie
′
j ,

KJ(v) =
{

w ∈ VJ :

dimVJ
∑

i=1

vi,jwi = 0, j ∈ {1, . . . , dimVI\J}
}

.

Example of three qubits

For three qubits we have

I = {1, 2, 3}, P ′(I) = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}},

which gives the maps

f{1}(v) : V1 → V2 ⊗ V3, f{1}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj1e2,j2 ⊗ e3,j3,

f{2}(v) : V2 → V1 ⊗ V3, f{2}(v)(w) =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj2e1,j1 ⊗ e3,j3,

f{3}(v) : V3 → V1 ⊗ V2, f{3}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj3e1,j1 ⊗ e2,j2,

f{1,2} : V1 ⊗ V2 → V3, f{1,2}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj1,j2e3,j3,
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f{1,3} : V1 ⊗ V3 → V2, f{1,3}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj1,j3e2,j2,

f{2,3} : V2 ⊗ V3 → V1, f{2,3}(v)(w) =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3wj2,j3e1,j1.

Tensor products of maps

To obtain the complete entanglement information about a vector v, we need to describe
its properties related to partitioning the system S into any number of subsystems. For
this purpose we construct the set of new maps {f̃J(v)}J∈P ′(I) from the set of the maps
{fJ(v)}J∈P ′(I) using the operation of the tensor product. The new maps should be linear in
v, and it should be possible to compare them with each other, for example, by comparing
their kernels. Linearity in v requires that the only other maps allowed in the construction are
the identity maps. Comparison of the new maps is possible only if their domains coincide,
and a natural choice for such a common domain is the space V . These requirements fix the
form of the new maps,

f̃J(v) : V → VI\J ⊗ VI\J , f̃J(v) = fJ(v)⊗ idI\J , f̃J(v)(x⊗ y) = (v ⊗ x∗)⊗ y,

where idW ′ : W ′ → W ′ is the identity map. Let K̃J(v) = ker f̃J(v) and ñJ(v) = dim K̃J(v)
for each J ∈ P ′(I). We note the relation K̃J(v) = KJ(v) ⊗ VI\J , which follows from the
identities

ker (fJ(v)⊗ idI\J) = ker fJ(v)⊗ VI\J + VJ ⊗ ker idI\J

and ker idI\J = {0}.
In terms of arbitrary bases {ei}1≤i≤dimVJ

and {e′i}1≤i≤dimVI\J
for the spaces VJ and VI\J ,

we have

v =

dimVJ
∑

i=1

dimVI\J
∑

j=1

vi,jei ⊗ e′j ,

f̃J(v)(w) =

dimVJ
∑

i=1

dimVI\J
∑

j=1

dimVI\J
∑

k=1

vi,jwi,ke
′
j ⊗ e′k,

K̃J(v) =
{

w ∈ VJ :

dimVJ
∑

i=1

vi,jwi,k = 0, j ∈ {1, . . . , dimVI\J}, k ∈ {1, . . . , dimVI\J}
}

.

Finally, the set L(v) = {K̃J(v)}J∈P ′(I) is the desired set of subspaces of V that describes
entanglement properties of v.

Example of three qubits

For three qubits the maps f̃J(v) are

f̃{1}(v) : V → V2 ⊗ V3 ⊗ V2 ⊗ V3,
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f̃{1}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k2=1

2
∑

k3=1

vj1,j2,j3wj1,k2,k3e2,j2 ⊗ e3,j3 ⊗ e2,k2 ⊗ e3,k3,

f̃{2}(v) : V → V1 ⊗ V3 ⊗ V1 ⊗ V3,

f̃{2}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k1=1

2
∑

k3=1

vj1,j2,j3wk1,j2,k3e1,j1 ⊗ e3,j3 ⊗ e1,k1 ⊗ e3,k3,

f̃{3}(v) : V → V1 ⊗ V2 ⊗ V1 ⊗ V2,

f̃{3}(v)(w) =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k1=1

2
∑

k2=1

vj1,j2,j3wk1,k2,j3e1,j1 ⊗ e2,j2 ⊗ e1,k1 ⊗ e2,k2,

f̃{1,2}(v) : V → V3 ⊗ V3,

f̃{1,2}(v)(w) =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k3=1

vj1,j2,j3wj1,j2,k3e3,j3 ⊗ e3,k3,

f̃{1,3}(v) : V → V2 ⊗ V2,

f̃{1,3}(v)(w) =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k2=1

vj1,j2,j3wj1,k2,j3e2,j2 ⊗ e2,k2,

f̃{2,3}(v) : V → V1 ⊗ V1,

f̃{2,3}(v)(w) =
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

2
∑

k1=1

vj1,j2,j3wk1,j2,j3e1,j1 ⊗ e1,k1.

Spaces and their intersections

Results in linear algebra [22] show that the complete information about a set of linear
subspaces is given by the dimensions of the subspaces and of all their intersections. Each
linear space is identified by its dimension, and the intersections are needed to account for
the relative positions of the subspaces. We specify such intersections for each set of subsets
of I,

K̃Q(v) = ∩J∈QK̃J(v), ñQ(v) = dim K̃Q(v), Q ∈ P (P ′(I)).

Consequently, considering all such intersections, we find the sequence (ordered set) of new
invariants describing all entanglement properties of v,

Ñ(v) = (ñQ(v))Q∈P (P ′(I)).

We order elements of Ñ(v) using the canonical ordering of elements of P (I), which is ob-
tained from binary representations of elements of P (I) considered as {0, 1}I . We call el-
ements of Ñ(v) algebraic invariants of v because they are derived using standard tools of
linear algebra.

Finally, we define the equivalence relation ∼′′
V on the set V by setting v′ ∼′′

V v if and only

if Ñ(v′) = Ñ(v), for each v, v′ ∈ V . The relation ∼′′
V defines the quantities C ′′(v), ṽ′′, C ′′,

Ṽ ′′ in the same manner as the relations ∼V and ∼′
V define the quantities C(v), ṽ, C, Ṽ and

C ′(v), ṽ′, C ′, Ṽ ′, respectively.

10



The proceeding development shows that the equivalence relations∼′
V and∼′′

V are identical
and proves the following theorem.

Theorem 1. There is a one-to-one correspondence between the quotient set C ′ and the

sequence of values of the algebraic invariants (Ñ(v))v∈V .

Independent invariants

In general, there are certain algebraic relations between elements of Ñ(v). For example,

dim VJ −
ñJ(v)

dimVI\J

= dim VI\J −
ñI\J(v)

dimVJ

is true for all v ∈ V and J ∈ P ′(I). We can say, for example, that ñJ(v) is an independent
invariant and ñI\J(v) is a dependent invariant, which can be done consistently by taking J
only from an appropriate subset of P ′(I).

It is convenient to remove dependent elements from Ñ(v) by defining a subsequence of
independent invariants

Ñ ′(v) = (ñQ(v))Q∈R, R ⊆ P (P ′(I)),

which we call a generating sequence of invariants of v. For consistency, we use the same
R for each v ∈ V . We order elements of Ñ ′(v) canonically. All elements of Ñ ′(v) are
algebraically independent of each other, and all elements of Ñ(v) which are not in Ñ ′(v)
can be algebraically expressed in terms of elements of Ñ ′(v). We choose R with the smallest
number of elements; although this choice is not unique, all such choices are equivalent for
our purposes.

It remains to choose the set R. We define R = limk→∞Rk, where the sequence of sets
(R1, R2, . . . ) is such that Rk ⊇ Rk+1 for each k ∈ N. We set R1 = P (P ′(I)) and find the
elements of the sequence iteratively by the following steps that remove dependent invariants:

1. If there exist X ∈ R′
k and X1, X2 ∈ X such that X1 ⊆ X2, then R′′

k = (R′
k \ {X}) ∪

(X \ {X1}) for any such X,X1; otherwise, R
′′
k = R′

k.

2. If there exists X ∈ R′′
k such that X1∩X2 = ∅ for any X1, X2 ∈ X , then R′′′

k = R′′
k\{X}

for any such X ; otherwise, R′′′
k = R′′

k.

3. If there exist X, Y ∈ R′′′
k such that X1 ∈ Y for any X1 ∈ X , then Rk+1 = R′′′

k \ {X}
for any such X ; otherwise, Rk+1 = R′′′

k .

If there is more than one choice for X (and for X1 in step 1) that satisfies the conditions in a
given step, then any such choice can be made. (The resulting sequence (R1, R2, . . . ) depends
on these choices.) For any such choice, however, the sequence is convergent and its limit
R = limk→∞Rk is reached after a finite number of iterations, i.e. there exists m ∈ N such
that Rk = R for each k ≥ m. Even though the above choices can lead to different sets R
and resulting generating sequences Ñ ′(v), they lead to the same entanglement classification.
This completes the construction of each generating sequence of invariants Ñ ′(v).

The relation

K̃Q(v) = ∩J∈Q(KJ(v)⊗ VI\J), Q ∈ P (P ′(I))

11



implies

ñQ(v) = nQ(v) dimVI\∪J∈QJ , ∪J∈QJ ⊂ I, Q ∈ P (P ′(I)),

where we set dim V∅ = 1. (To prove this, note that K̃Q(v) does not involveKJ ′(v), where J ′ ∈
I \∪J∈QJ .) For n ≥ 3, this relation between the invariants means that such ñQ(v) describes
properties of v related to partitioning the system into at most |I\ ∪J∈Q J | subsystems. For
such cases, it is convenient to replace ñQ(v) with nQ(v) and define the set of invariants

Ñ ′′(v) = (mQ(v))Q∈R, mQ(v) =

{

nQ(v), ∪J∈QJ ( I,

ñQ(v), ∪J∈QJ = I.

We order elements of Ñ ′′(v) canonically. We give our explicit solutions in terms of Ñ ′′(v).

General forms of states

As our main computational device, we use the general forms of elements of Ṽ ′′. We obtain
them from expressions for elements of ker f(v) for a map f(v) : W → W ′, to derivation of
which we now turn. We choose arbitrary bases {ui}1≤i≤dimW and {u′

i}1≤i≤dimW ′ for the
spaces W and W ′, respectively, and represent a vector v ∈ V in terms of its coordinates,

v =
dimW
∑

i=1

dimW ′
∑

j=1

vi,jui ⊗ u′
j, {vi,j} ⊂ F.

It follows that v decomposes according to

v =
dimW
∑

i=1

ui ⊗ ũ′
i, ũ′

i =
dimW ′
∑

j=1

vi,ju
′
j, {ũ′

i} ⊂ W ′,

v =
dimW ′
∑

j=1

ũj ⊗ u′
j, ũj =

dimW
∑

i=1

vi,jui, {ũj} ⊂ W.

The defining relation v ⊗ w∗ = 0 for w ∈ ker f(v), which is a system of homogeneous linear
equations for the coordinates of w, now implies the general form of v,

v =

dimW−n(v)
∑

i=1

wi ⊗ w′
i, {wi} ⊂ W, {w′

i} ⊂ W ′,

dim span ({wi}) = dim span ({w′
i}) = dimW − n(v),

where n(v) = dimker f(v) and the dimension of the span of a set of vectors is the number of
its linearly independent elements. This decomposition is unique up to linear transformations
wi 7→

∑

j Bi,jwj and w′
i 7→

∑

j B
′
i,jw

′
j, where B and B′ are nonsingular square matrices of

order dimW − n(v) that satisfy the condition BtB′ = 1.
When considering the above general forms of elements of V resulting from different choices

of W and W ′ such that V = W ⊗W ′, we need to choose {wi} and {w′
i} (using appropriate
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B and B′) such that the corresponding decompositions are consistent for all such choices.
This results in restrictions on allowed values of the invariants in Ñ(v) and, consequently,
leads to the classification of all entangled states.

The described method solves the restricted classification problem for arbitrary {Vi}i∈I .
Obtaining explicit solutions, however, is entirely different matter. We did not obtain such
solutions for arbitrary {Vi}i∈I , but we found them for numerous examples given in the
following section.

Particularly interesting are cases where the spaces in {Vi}i∈I are of equal dimensions.
The resulting permutation symmetry among the spaces reduces the equivalence classes to
sets of classes related by the symmetry. As a result, representative elements for the sets of
classes take simple forms. We have explicit solutions for two such symmetric examples.

IV. EXAMPLES

The present classification method works for arbitrary finite n and D = (dimVi)i∈I . The
case n = 2 is easily solved [21] for arbitrary D. We now apply our method to the case n = 3
for a large selection of values of D and the case n = 4, D = (2, 2, 2, 2) (four qubits).

A. n = 3

Independent invariants for n = 3 are given by the sets

Q1 = {{1}}, Q2 = {{2}}, Q3 = {{3}}, Q4 = {{1, 2}, {1, 3}, {2, 3}}.

The sets Q1, Q2, Q3 and Q4 lead to invariants related to partitioning the system into two
and three subsystems, respectively. For each of these invariants, there are corresponding
invariants generated by the transpose maps, which do not need to be considered. Since all
other partitions lead to dependent invariants, we choose the generating set of invariants

Ñ ′′(v) = (nQ1
(v), nQ2

(v), nQ3
(v), ñQ4

(v))

for each v ∈ V .
For the set of equivalent classes we find

C ′′ = {C0} ∪ {Ck1,k2,k3,j : k1 ∈ {1, . . . , d1}, k2 ∈ {1, . . . , d2}, k3 ∈ {1, . . . , d3}, j ∈ Mk1,k2,k3},

where D = (d1, d2, d3) and Mk1,k2,k3 is a certain set of natural numbers that is symmetric in

k1, k2, k3. The values of the invariants in Ñ ′′(v) for the classes C0 and Ck1,k2,k3,j are given in
Table I. Although we do not have a general formula for Mk1,k2,k3 for arbitrary (k1, k2, k3), we

TABLE I. The values of the invariants in Ñ ′′(v) for n = 3, D = (d1, d2, d3).

nQ1
(v) nQ2

(v) nQ3
(v) ñQ4

(v)

C0 d1 d2 d3 d1d2d3

Ck1,k2,k3,j d1 − k1 d2 − k2 d3 − k3 d1d2d3 − k1d1 − k2d2 − k3d3 + (Mk1,k2,k3
)j

give Mk1,k2,k3 for various particular values of (k1, k2, k3) in Table II, which is our main result
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for the case n = 3. With analogous computations for additional values of (k1, k2, k3), the
table can be easily expanded. Such a table is directly used for explicit computations of C ′′

for various values of D. In particular, the values of Mk1,k2,k3 given in Table II suffice to find
the set of classes C ′′ for each value of D given in Table III; the latter table gives only the
number of classes |C ′′|. As illustrative examples and because of space limits, we present here
the full results only for D = (2, 2, d) and D = (2, 3, d), where d is arbitrary, in Tables IV
and V, respectively. For the symmetric case D = (2, 2, 2), there are 5 sets of classes related
by permutations of {V1, V2, V3}; Table VI lists the sets and their representative elements.

TABLE II. The set Mk1,k2,k3 for various values of (k1, k2, k3). The notation (m, . . . ,m′) means all

integers between and including m and m′.

(k1, k2, k3) Mk1,k2,k3
(k1, k2, k3) Mk1,k2,k3

(1, 1, 1) (2) (2, 6, 6) (7, . . . , 23, 28, 29)

(1, 2, 2) (5) (2, 6, 7) (5, . . . , 22, 24, 25, 26, 34)

(1, 3, 3) (10) (2, 6, 8) (8, . . . , 25, 31)

(1, 4, 4) (17) (2, 6, 9) (13, 14, 16, . . . , 20, 22, . . . , 26, 29, 30)

(1, 5, 5) (26) (2, 6, 10) (20, 23, 24, 28, 29, 31)

(1, 6, 6) (37) (2, 6, 11) (29, 34)

(2, 2, 2) (4, 5) (2, 6, 12) (40)

(2, 2, 3) (5, 6) (3, 3, 3) (2, . . . , 8, 10)

(2, 2, 4) (8) (3, 3, 4) (2, . . . , 11)

(2, 3, 3) (4, . . . , 8) (3, 3, 5) (2, . . . , 11, 14)

(2, 3, 4) (5, . . . , 8, 10) (3, 3, 6) (2, . . . , 12)

(2, 3, 5) (8, 10) (3, 3, 7) (4, . . . , 11, 14)

(2, 3, 6) (13) (3, 3, 8) (10, 11, 14)

(2, 4, 4) (5, . . . , 13) (3, 3, 9) (18)

(2, 4, 5) (5, . . . , 13, 16) (3, 4, 4) (2, . . . , 12, 14)

(2, 4, 6) (8, 9, 10, 12, 13, 15) (3, 4, 5) (2, . . . , 16)

(2, 4, 7) (13, 16) (3, 4, 6) (2, . . . , 16, 20)

(2, 4, 8) (20) (3, 4, 7) (2, . . . , 17)

(2, 5, 5) (6, . . . , 16, 19, 20) (3, 4, 8) (2, . . . , 17, 19)

(2, 5, 6) (5, . . . , 18, 24) (3, 4, 9) (2, . . . , 17, 20)

(2, 5, 7) (8, 10, . . . , 18, 20, 22) (3, 4, 10) (5, . . . , 16, 19, 20)

(2, 5, 8) (13, 15, 16, 19, 20, 22) (3, 4, 11) (14, 16, 20)

(2, 5, 9) (20, 24) (3, 4, 12) (25)

(2, 5, 10) (29)

It is easy to obtain general expressions for Mk1,k2,k3 for various particular values of
(k1, k2, k3), and we give here just a few such results:

Mk1,k2,k1k2 = (k2
1 + k2

2),

Mk1,k2,k1k2−1 = (. . . , k2
1 + k2

2 − 2(k1 + k2) + 5, k2
1 + k2

2 − (k1 + k2) + 2).

These and similar readily available expressions for Mk1,k2,k3 suggest certain patterns, which
might eventually lead to the general result for arbitrary (k1, k2, k3).

14



TABLE III. The numbers of equivalence classes |C ′′| for n = 3 and various values of D.

D |C′′| D |C′′| D |C′′|

(2, 2, 2) 7 (2, 5, 5) 77 (3, 3, 3) 39

(2, 2, 3) 9 (2, 5, 6) 99 (3, 3, 4) 60

(2, 2, d), d ≥ 4 10 (2, 5, 7) 113 (3, 3, 5) 75

(2, 3, 3) 17 (2, 5, 8) 120 (3, 3, 6) 88

(2, 3, 4) 23 (2, 5, 9) 122 (3, 3, 7) 97

(2, 3, 5) 25 (2, 5, d), d ≥ 10 123 (3, 3, 8) 100

(2, 3, d), d ≥ 6 26 (2, 6, 6) 141 (3, 3, d), d ≥ 9 101

(2, 4, 4) 39 (2, 6, 7) 177 (3, 4, 4) 103

(2, 4, 5) 51 (2, 6, 8) 203 (3, 4, 5) 143

(2, 4, 6) 58 (2, 6, 9) 219 (3, 4, 6) 178

(2, 4, 7) 60 (2, 6, 10) 226 (3, 4, 7) 205

(2, 4, d), d ≥ 8 61 (2, 6, 11) 228 (3, 4, 8) 226

(2, 6, d), d ≥ 12 229 (3, 4, 9) 244

(3, 4, 10) 258

(3, 4, 11) 261

(3, 4, d), d ≥ 12 262

TABLE IV. The entanglement classes, their algebraic invariants, and their representative elements

for n = 3, D = (2, 2, d). Classes for which any of the invariants in the set Ñ ′′(v) are negative

should be discarded. Classes within a horizontal block are added each time d increases by 1, so

that there are 7, 9, 10 classes for d = 2, d = 3, d ≥ 4, respectively. Each expression [j1, j2, j3]

stands for u1,j1 ⊗ u2,j2 ⊗ u3,j3 , where {ui,j} is a set of any linearly independent elements of Vi.

Ñ ′′(v) v

C0 (2, 2, d, 4d) 0

C1 (1, 1, d− 1, 3d− 2) [1, 1, 1]

C2 (0, 0, d− 1, 3d− 3) [1, 1, 1] + [2, 2, 1]

C3 (0, 1, d− 2, 2d− 1) [1, 1, 1] + [2, 1, 2]

C4 (1, 0, d− 2, 2d− 1) [1, 1, 1] + [1, 2, 2]

C5 (0, 0, d− 2, 2d− 3) [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 (0, 0, d− 2, 2d− 4) [1, 1, 1] + [2, 2, 2]

C7 (0, 0, d− 3, d− 2) [1, 1, 1] + [1, 2, 2] + [2, 2, 3]

C8 (0, 0, d− 3, d− 3) [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C9 (0, 0, d− 4, 0) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

The needed computations for the above cases are lengthy but elementary, and we do
not give their details here. Instead, we invite the reader to study graphical representation
of entanglement classes for the cases D = (2, 2, d) and D = (2, 3, d) in Figs. 1 and 2,
respectively, which can be easily generalized for arbitrary D. Although these and similar
figures cannot replace the actual computations, they are useful in understanding relations
between the classes, finding their general properties, and, perhaps, even in solving the general
case. In this regard, generalizations of Table VI seems to be particularly promising when
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TABLE V. The entanglement classes, their algebraic invariants, and their representative elements

for n = 3, D = (2, 3, d). Classes for which any of the invariants in the set Ñ ′′(v) are negative

should be discarded. Classes within a horizontal block are added each time d increases by 1, so

that there are 9, 17, 23, 25, 26 classes for d = 2, d = 3, d = 4, d = 5, d ≥ 6, respectively. Each

expression [j1, j2, j3] stands for u1,j1 ⊗u2,j2 ⊗u3,j3, where {ui,j} is a set of any linearly independent

elements of Vi.

Ñ ′′(v) v

C0 (2, 3, d, 6d) 0

C1 (1, 2, d− 1, 5d− 3) [1, 1, 1]

C2 (0, 1, d− 1, 5d− 5) [1, 1, 1] + [2, 2, 1]

C3 (0, 2, d− 2, 4d− 2) [1, 1, 1] + [2, 1, 2]

C4 (1, 1, d− 2, 4d− 3) [1, 1, 1] + [1, 2, 2]

C5 (0, 1, d− 2, 4d− 5) [1, 1, 1] + [1, 2, 2] + [2, 1, 2]

C6 (0, 1, d− 2, 4d− 6) [1, 1, 1] + [2, 2, 2]

C7 (0, 0, d− 2, 4d− 7) [1, 1, 1] + [1, 2, 2] + [2, 3, 1]

C8 (0, 0, d− 2, 4d− 8) [1, 1, 1] + [1, 2, 2] + [2, 2, 1] + [2, 3, 2]

C9 (1, 0, d− 3, 3d− 1) [1, 1, 1] + [1, 2, 2] + [1, 3, 3]

C10 (0, 1, d− 3, 3d− 4) [1, 1, 1] + [1, 2, 2] + [2, 1, 3]

C11 (0, 1, d− 3, 3d− 5) [1, 1, 1] + [1, 2, 2] + [2, 1, 2] + [2, 2, 3]

C12 (0, 0, d− 3, 3d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2]

C13 (0, 0, d− 3, 3d− 6) [1, 1, 1] + [1, 2, 2] + [2, 3, 3]

C14 (0, 0, d− 3, 3d− 7) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3]

C15 (0, 0, d− 3, 3d− 8) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 3, 1]

C16 (0, 0, d− 3, 3d− 9) [1, 1, 1] + [1, 2, 2] + [2, 2, 2] + [2, 3, 3]

C17 (0, 1, d− 4, 2d− 2) [1, 1, 1] + [1, 2, 2] + [2, 1, 3] + [2, 2, 4]

C18 (0, 0, d− 4, 2d− 3) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 3, 4]

C19 (0, 0, d− 4, 2d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 4] + [2, 3, 1]

C20 (0, 0, d− 4, 2d− 6) [1, 1, 1] + [1, 2, 2] + [2, 2, 3] + [2, 3, 4]

C21 (0, 0, d− 4, 2d− 7) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 2, 3] + [2, 3, 4]

C22 (0, 0, d− 4, 2d− 8) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 2] + [2, 2, 3] + [2, 3, 4]

C23 (0, 0, d− 5, d− 3) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5]

C24 (0, 0, d− 5, d− 5) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 3] + [2, 2, 4] + [2, 3, 5]

C25 (0, 0, d− 6, 0) [1, 1, 1] + [1, 2, 2] + [1, 3, 3] + [2, 1, 4] + [2, 2, 5] + [2, 3, 6]

solving the symmetric case D = (d, d, d) for arbitrary d.

B. n = 4

Table VII lists sets that give independent invariants for n = 4, arranged according to
types of partitions of the system. The sets Q1, . . . , Q4 and Q5, . . . , Q8 lead to invariants
related to partitioning the system into two and three subsystems, respectively. Partitions
into four subsystems are of three different types and are given by the sets Q9, . . . , Q14,
and Q15, . . . Q18, and Q19. For each of these five types, there are corresponding invariants
generated by the transpose maps, which do not need to be considered. Since all other
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TABLE VI. Representative elements for the sets of equivalence classes for n = 3, D = (2, 2, 2)

induced by the permutation symmetry of the spaces in {V1, V2, V3}. A representative element v

is given by v = Av1, where A : V → V is a certain linear operator and v1 ∈ V is a fixed vector.

(Without loss of generality and for comparison with other tables, we choose v1 = [1, 1, 1].) The

operator ai is defined by ai[. . . , 1, . . . ] = [. . . , 2, . . . ] and ai[. . . , 2, . . . ] = [. . . , 1, . . . ], where only

the ith index changes. To obtain all classes in each group, all possible choices of the indices

{i, j, k} = {1, 2, 3} should be considered.

A

C0 0

C1 1

{C2, C3, C4} 1 + aiaj

C5 1 + ai(aj + ak)

C6 1 + aiajak

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

FIG. 1. Graphical representation of entanglement classes for n = 3, D = (2, 2, d). Each vertex

corresponds to a certain expression [j1, j2, j3] in a representative element v for each class, and v

is the sum of such expressions over all vertices of a given three-dimensional lattice; see Table IV.

The invariants nQ1
(v), nQ2

(v), nQ3
(v) equal the numbers of linearly independent two-dimensional

lattices. To obtain the corresponding representations for D = (2, 2, d), we remove 4 − d cubes

from tops of stacks for d < 4 or add d− 4 cubes on top of stacks without adding any new vertices

for d > 4. There are only 10 classes for any d ≥ 4 because the number of linearly independent

two-dimensional lattices along one of the directions is already maximal (four) for the class C9. The

construction for arbitrary D is analogous; see, for example, Fig. 2.

partitions lead to dependent invariants, we choose the generating set of invariants

Ñ ′′(v) = (nQ1
(v), . . . , nQ8

(v), ñQ9
(v), . . . , ñQ19

(v))

for each v ∈ V .
As an illustrative example, we take D = (2, 2, 2, 2). It is convenient to partition C ′′ into

three sets,

C ′′ = C ′′
I,1 ∪ C ′′

I,2 ∪ C ′′
I,3,

according to possible forms of representing elements for classes in each set. The set C ′′
I,1

consists of classes that can be represented by elements with coefficients in linear combinations
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C0 C1 C2 C3 C4 C5 C6 C7 C8

C9 C10 C11 C12 C13 C14 C15 C16 C17

C18 C19 C20 C21 C22 C23 C24 C25

FIG. 2. Graphical representation of entanglement classes for n = 3, D = (2, 3, d). See Fig. 1 for

further details.

TABLE VII. Sets that give independent invariants for n = 4.

Q1 = {{1}} Q9 = {{1, 2}, {1, 3, 4}, {2, 3, 4}}

Q2 = {{2}} Q10 = {{1, 3}, {1, 2, 4}, {2, 3, 4}}

Q3 = {{3}} Q11 = {{1, 4}, {1, 2, 3}, {2, 3, 4}}

Q4 = {{4}} Q12 = {{2, 3}, {1, 2, 4}, {1, 3, 4}}

Q5 = {{1, 2}, {1, 3}, {2, 3}} Q13 = {{2, 4}, {1, 2, 3}, {1, 3, 4}}

Q6 = {{1, 2}, {1, 4}, {2, 4}} Q14 = {{3, 4}, {1, 2, 3}, {1, 2, 4}}

Q7 = {{1, 3}, {1, 4}, {3, 4}} Q15 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}

Q8 = {{2, 3}, {2, 4}, {3, 4}} Q16 = {{1, 2}, {2, 3}, {2, 4}, {1, 3, 4}}

Q17 = {{1, 3}, {2, 3}, {3, 4}, {1, 2, 4}}

Q18 = {{1, 4}, {2, 4}, {3, 4}, {1, 2, 3}}

Q19 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

of bases vectors taken from {0, 1}. The set C ′′
I,2 consists of classes that do not belong to C ′′

I,1

and that can be represented by elements with coefficients in linear combinations of bases
vectors taken from {0, 1,−1}. The set C ′′

I,3 consists of classes that do not belong to either
C ′′

I,1 or C
′′
I,2. The classes in C ′′

I,1 are the simplest and the most typical, and the classes in C ′′
I,3

are the most complex and the least typical. It is clear that classes in C ′′
I,1 and C ′′

I,2 can be
represented by elements with coefficients in linear combinations of bases vectors taken from
other sets besides {0, 1} and other sets besides {0, 1}, {0, 1,−1}, respectively. Nevertheless,
our results show that the chosen partition of C ′′ is by no means arbitrary.
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We find

C ′′
I,1 = {C0, . . . , C29, C34, . . . , C66, C68, . . . , C82}, C ′′

I,2 = {C30, C31, C32, C67}, C ′′
I,3 ⊇ {C33}.

We used the Monte Carlo method to search for the set C ′′
I,3, and it is possible that it contains

additional classes besides C33. However, our results show that such additional classes are
very rare with respect to a measure that is uniform on the space of coefficients in linear
combinations of bases vectors. Tables VIII, IX, X list the classes, their independent invari-
ants and representative elements. In these tables, all 83 classes appear in 27 fundamental
sets of classes related by permutations of {V1, V2, V3, V4}. Table XI lists the sets of classes
and their representative elements.

TABLE VIII. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C0 (2, 2, 2, 2, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16) 0

C1 (1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 10, 10, 8, 8, 8, 8, 11) [1, 1, 1, 1]

C2 (0, 0, 1, 1, 3, 3, 2, 2, 9, 7, 7, 7, 7, 10, 3, 3, 7, 7, 10) [1, 1, 1, 1] + [2, 2, 1, 1]

C3 (0, 1, 0, 1, 3, 2, 3, 2, 7, 9, 7, 7, 10, 7, 3, 7, 3, 7, 10) [1, 1, 1, 1] + [2, 1, 2, 1]

C4 (0, 1, 1, 0, 2, 3, 3, 2, 7, 7, 9, 10, 7, 7, 3, 7, 7, 3, 10) [1, 1, 1, 1] + [2, 1, 1, 2]

C5 (1, 0, 0, 1, 3, 2, 2, 3, 7, 7, 10, 9, 7, 7, 7, 3, 3, 7, 10) [1, 1, 1, 1] + [1, 2, 2, 1]

C6 (1, 0, 1, 0, 2, 3, 2, 3, 7, 10, 7, 7, 9, 7, 7, 3, 7, 3, 10) [1, 1, 1, 1] + [1, 2, 1, 2]

C7 (1, 1, 0, 0, 2, 2, 3, 3, 10, 7, 7, 7, 7, 9, 7, 7, 3, 3, 10) [1, 1, 1, 1] + [1, 1, 2, 2]

C8 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 0, 0, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 2, 2, 2]

C9 (0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 9, 0, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 2, 2]

C10 (0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0, 9) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 2, 2]

C11 (0, 0, 0, 1, 1, 2, 2, 2, 5, 5, 7, 5, 7, 7, 2, 2, 2, 7, 8) [1, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 1]

C12 (0, 0, 1, 0, 2, 1, 2, 2, 5, 7, 5, 7, 5, 7, 2, 2, 7, 2, 8) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 2, 1, 1]

C13 (0, 1, 0, 0, 2, 2, 1, 2, 7, 5, 5, 7, 7, 5, 2, 7, 2, 2, 8) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1]

C14 (1, 0, 0, 0, 2, 2, 2, 1, 7, 7, 7, 5, 5, 5, 7, 2, 2, 2, 8) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2]

C15 (0, 0, 0, 1, 0, 2, 2, 2, 4, 4, 7, 4, 7, 7, 2, 2, 2, 7, 7) [1, 1, 1, 1] + [2, 2, 2, 1]

C16 (0, 0, 1, 0, 2, 0, 2, 2, 4, 7, 4, 7, 4, 7, 2, 2, 7, 2, 7) [1, 1, 1, 1] + [2, 2, 1, 2]

C17 (0, 1, 0, 0, 2, 2, 0, 2, 7, 4, 4, 7, 7, 4, 2, 7, 2, 2, 7) [1, 1, 1, 1] + [2, 1, 2, 2]

C18 (1, 0, 0, 0, 2, 2, 2, 0, 7, 7, 7, 4, 4, 4, 7, 2, 2, 2, 7) [1, 1, 1, 1] + [1, 2, 2, 2]

C19 (0, 0, 0, 0, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 2, 2, 2, 2, 7) [1, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C20 (0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 4, 5, 2, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 2, 1, 2]

C21 (0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 5, 4, 2, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 1, 2] + [2, 2, 2, 1]

C22 (0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 2, 2, 5, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 2, 2, 1]

C23 (0, 0, 0, 0, 1, 0, 1, 0, 2, 5, 2, 2, 4, 2, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2]

C24 (0, 0, 0, 0, 0, 0, 1, 1, 4, 2, 2, 2, 2, 5, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 2, 1]

C25 (0, 0, 0, 0, 1, 1, 0, 0, 5, 2, 2, 2, 2, 4, 1, 1, 1, 1, 6) [1, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1]

C26 (0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [2, 2, 2, 2]
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TABLE IX. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C27 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C28 (0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 5, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 2, 1, 1]

C29 (0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 6) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 1, 2, 1]

C30 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 2, 1]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C31 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 1, 2]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 2, 1] + [2, 1, 2, 2] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C32 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6) [1, 1, 1, 1]− [1, 1, 1, 2]− [1, 1, 2, 1] + [1, 1, 2, 2]− [1, 2, 1, 1]

+[1, 2, 2, 2]− [2, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 1, 2]

+[2, 2, 2, 1] + [2, 2, 2, 2]

C33 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6) [1, 1, 1, 1] + c[1, 1, 2, 2]− (1 + c)[1, 2, 1, 2]− (1 + c)[2, 1, 2, 1]

+c[2, 2, 1, 1] + [2, 2, 2, 2], c ∈ F , c 6∈ {−2,−1, 0, 1}

C34 (0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 5) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

C35 (0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 2, 2, 2, 2, 1, 0, 1, 1, 5) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 2, 2, 1]

C36 (0, 0, 0, 0, 0, 1, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 2, 2] + [2, 1, 1, 2]

C37 (0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C38 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 4, 2, 2, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 1] + [2, 1, 1, 2]

C39 (0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 2, 2, 4, 2, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1]

C40 (0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 2, 2, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 2, 1, 1]

C41 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 2]

C42 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 2, 2, 1]

C43 (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 1, 1] + [2, 1, 2, 2] + [2, 2, 2, 1]

C44 (0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 4, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 2, 1, 2]

C45 (0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [2, 2, 1, 2] + [2, 2, 2, 1]

C46 (0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 1] + [2, 1, 2, 2]

C47 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 2] + [2, 2, 2, 1]

C48 (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 2]

C49 (0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C50 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 0, 0, 0, 1, 4) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C51 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 2] + [2, 2, 1, 1]

C52 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 0, 1, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 2]

C53 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 2, 2, 1]

C54 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C55 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C56 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 2, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [2, 1, 1, 2] + [2, 2, 1, 1]

C57 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 2, 1, 1]

C58 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 2, 1, 1]

C59 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 2, 1]
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TABLE X. The entanglement classes, their independent algebraic invariants, and their rep-

resentative elements for n = 4, D = (2, 2, 2, 2). Each expression [j1, j2, j3, j4] stands for

u1,j1 ⊗ u2,j2 ⊗ u3,j3 ⊗ u4,j4 , where {ui,j} is a set of any linearly independent elements of Vi. Classes

within each horizontal block are related by a permutation symmetry of {Vi}i∈I .

Ñ ′′(v) v

C60 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 2] + [2, 1, 2, 1]

+[2, 2, 2, 2]

C61 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 1, 2, 1]

+[2, 2, 1, 2]

C62 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 1, 1]

C63 (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 1, 1, 2]

+[2, 2, 2, 1]

C64 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 1, 2] + [2, 1, 2, 2] + [2, 2, 2, 1] + [2, 2, 2, 2]

C65 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 2] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2] + [2, 2, 2, 1] + [2, 2, 2, 2]

C66 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [1, 2, 2, 1]

+[2, 1, 1, 1] + [2, 1, 2, 2] + [2, 2, 1, 1] + [2, 2, 1, 2] + [2, 2, 2, 2]

C67 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1]− [1, 2, 1, 1] + [1, 2, 1, 2]

−[2, 1, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 1] + [2, 2, 2, 2]

C68 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C69 (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C70 (0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 2, 2, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [2, 1, 1, 1] + [2, 2, 2, 2]

C71 (0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 1, 2, 1] + [1, 2, 1, 1] + [2, 2, 2, 2]

C72 (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 2, 2, 2] + [2, 1, 1, 2] + [2, 1, 2, 1] + [2, 2, 1, 1]

C73 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 2, 1] + [2, 2, 1, 2]

C74 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 2, 2, 1]

C75 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 2] + [2, 2, 2, 1]

C76 (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

C77 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 2] + [2, 2, 2, 1]

C78 (0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 2, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

C79 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 1, 2] + [1, 2, 2, 1] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 1, 2]

C80 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 1] + [1, 2, 1, 2] + [2, 1, 1, 1] + [2, 1, 2, 2]

+[2, 2, 2, 1]

C81 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [2, 1, 1, 1] + [2, 2, 1, 2]

+[2, 2, 2, 1]

C82 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3) [1, 1, 1, 1] + [1, 1, 2, 2] + [1, 2, 1, 1] + [1, 2, 1, 2] + [2, 1, 1, 1]

+[2, 1, 2, 1] + [2, 2, 2, 2]
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TABLE XI. Representative elements for the sets of equivalence classes for n = 4, D = (2, 2, 2, 2)

induced by the permutation symmetry of the spaces in {V1, . . . , V4}. A representative element v

is given by v = Av1, where A : V → V is a certain linear operator and v1 ∈ V is a fixed vector.

(Without loss of generality and for comparison with other tables, we choose v1 = [1, 1, 1, 1].) The

operator ai is defined by ai[. . . , 1, . . . ] = [. . . , 2, . . . ] and ai[. . . , 2, . . . ] = [. . . , 1, . . . ], where only

the ith index changes. To obtain all classes in each group, all possible choices of the indices

{i, j, k, l} = {1, 2, 3, 4} should be considered. This results in 27 fundamental sets of 83 classes.

A

C0 0

C1 1

{C2, . . . , C7} 1 + aiaj

{C8, C9, C10} (1 + aiaj)(1 + akal)

{C11, . . . , C14} 1 + ai(aj + ak)

{C15, . . . , C18} 1 + aiajak

C19 1 + ai(aj + ak + al)

{C20, . . . , C25} 1 + ai(aj + akal)

C26 1 + aiajakal

{C27, C28, C29} 1 + (ai + aj)(ak + al)

{C30, C31, C32} 1− (ai + aj + ak + al) + ajakal + aiakal + aiajal + aiajak + aiaj + akal + aiajakal

C33 1 + c(aiaj + akal)− (1 + c)(aiak + ajal) + aiajakal, c ∈ F , c 6∈ {−2,−1, 0, 1}

{C34, . . . , C37} 1 + ai + ajak + aiakal

{C38, C39, C40} 1 + aiaj + akal

{C41, . . . , C46} 1 + (ai + aj)(1 + akal)

{C47, C48, C49} 1 + aiaj + (ai + aj)akal

{C50, . . . , C53} 1 + ai(aj + ak) + ajakal

{C54, . . . , C59} 1 + aiaj + akal + aiak

C60 1 + (ai + aj)(ak + al) + aiajakal

{C61, C62, C63} 1 + ai + aj + akal + aiak + aiajal

{C64, C65, C66} 1 + ai + aj + akal + aial + ajak + ajal + aiakal + aiajak + aiajakal

C67 1− ai − aj + ak + al + aiaj + aiak + ajal + aiajakal

{C68, . . . , C71} 1 + ai + aj + ak + aiajakal

C72 1 + ai(aj + ak + al) + ajakal

{C73, . . . , C78} 1 + ai(1 + akal) + aj(ak + al)

{C79, C80, C81} 1 + ai + aj + akal + aiaj(ak + al)

C82 1 + ai + aj + akal + aiak + ajal + aiajakal

V. COMPARISON WITH CLASSICAL INVARIANTS

The central distinction between the classification presented in this work and classifications
found in the literature is in the type of invariants used. We rely on discrete invariants, while
most other methods use continuous invariants. Broadly speaking, the relation between the
two types of invariants is such that different values of the discrete invariants correspond to
certain continuous invariants being zero or nonzero. We do not attempt here the complete
comparison between classifications based on the two types of invariants and present results
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only for the methods reviewed in [19] for 3 qubits and developed in [8] for 4 qubits.

A. n = 3

For an arbitrary state of 3 qubits

v =

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

vj1,j2,j3e1,j1 ⊗ e2,j2 ⊗ e3,j3 ,

the classical invariants (see e.g. [19]) are

h1 = v1,1,1v1,2,2 − v1,1,2v1,2,1 + v2,1,1v2,2,2 − v2,1,2v2,2,1,

h2 = v1,1,1v2,1,2 − v1,1,2v2,1,1 + v1,2,1v2,2,2 − v1,2,2v2,2,1,

h3 = v1,1,1v2,2,1 − v1,2,1v2,1,1 + v1,1,2v2,2,2 − v1,2,2v2,1,2,

h4 = v21,1,1v
2
2,2,2 + v21,1,2v

2
2,2,1 + v21,2,1v

2
2,1,2 + v22,1,1v

2
1,2,2

− 2(v1,1,1v1,1,2v2,2,1v2,2,2 + v1,1,1v1,1,2v2,2,1v2,2,2 + v1,1,1v1,1,2v2,2,1v2,2,2

+ v1,1,1v1,1,2v2,2,1v2,2,2 + v1,1,1,1v1,1,2v2,2,1v2,2,2 + v1,1,1v1,1,2v2,2,1v2,2,2)

+ 4(v1,1,1v1,2,2v2,1,2v2,2,1 + v1,1,2v1,2,1v2,1,1v2,2,2).

Table XII lists zero and nonzero values of h1, . . . , h4 for the classes C0, . . . , C6. Ignoring
the trivial difference between C0 and C1, we conclude that zero values of the continuous
invariants h1, . . . , h4 distinguish all the classes for 3 qubits found using the discrete invariants.
Similar comparisons for n = 3, D = (d1, d2, d3) can be easily done.

TABLE XII. The continuous invariants h1, . . . , h4 for the sets of equivalence classes based on the

discrete invariants for n = 3, D = (2, 2, 2).

h1 h2 h3 h4

C0 0 0 0 0

C1 0 0 0 0

C2 0 0 6= 0 0

C3 0 6= 0 0 0

C4 6= 0 0 0 0

C5 6= 0 6= 0 6= 0 0

C6 0 0 0 6= 0

B. n = 4

For an arbitrary state of 4 qubits

v =

2
∑

j1=1

· · ·

2
∑

j4=1

vj1,...,j4e1,j1 ⊗ · · · ⊗ e4,j4 ,
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the Hilbert series lead [8] to the classical invariants

h1 = v1,1,1,1v2,2,2,2 − v1,1,1,2v2,2,2,1 − v1,1,2,1v2,2,1,2 + v1,1,2,2v2,2,1,1

− v1,2,1,1v2,1,2,2 + v1,2,1,2v2,1,2,1 + v1,2,2,1v2,1,1,2 − v1,2,2,2v2,1,1,1,

h2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1,1,1,1 v1,2,1,1 v2,1,1,1 v2,2,1,1
v1,1,1,2 v1,2,1,2 v2,1,1,2 v2,2,1,2
v1,1,2,1 v1,2,2,1 v2,1,2,1 v2,2,2,1
v1,1,2,2 v1,2,2,2 v2,1,2,2 v2,2,2,2

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

h3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1,1,1,1 v2,1,1,1 v1,1,2,1 v2,1,2,1
v1,1,1,2 v2,1,1,2 v1,1,2,2 v2,1,2,2
v1,2,1,1 v2,2,1,1 v1,2,2,1 v2,2,2,1
v1,2,1,2 v2,2,1,2 v1,2,2,2 v2,2,2,2

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

h4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1,1,1,1 v1,1,1,2 v2,1,1,1 v2,1,1,2
v1,1,2,1 v1,1,2,2 v2,1,2,1 v2,1,2,2
v1,2,1,1 v1,2,1,2 v2,2,1,1 v2,2,1,2
v1,2,2,1 v1,2,2,2 v2,2,2,1 v2,2,2,2

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

h5 = det(h5,i,j)1≤i≤3;1≤j≤3,

h5,1,1 = −v1,1,1,2v1,1,2,1 + v1,1,1,1v1,1,2,2,

h5,1,2 = v1,1,2,2v1,2,1,1 − v1,1,2,1v1,2,1,2 − v1,1,1,2v1,2,2,1 + v1,1,1,1v1,2,2,2,

h5,1,3 = −v1,2,1,2v1,2,2,1 + v1,2,1,1v1,2,2,2,

h5,2,1 = v1,1,2,2v2,1,1,1 − v1,1,2,1v2,1,1,2 − v1,1,1,2v2,1,2,1 + v1,1,1,1v2,1,2,2,

h5,2,2 = v1,2,2,2v2,1,1,1 − v1,2,2,1v2,1,1,2 − v1,2,1,2v2,1,2,1 + v1,2,1,1v2,1,2,2

+ v1,1,2,2v2,2,1,1 − v1,1,2,1v2,2,1,2 − v1,1,1,2v2,2,2,1 + v1,1,1,1v2,2,2,2,

h5,2,3 = v1,2,2,2v2,2,1,1 − v1,2,2,1v2,2,1,2 − v1,2,1,2v2,2,2,1 + v1,2,1,1v2,2,2,2,

h5,3,1 = −v2,1,1,2v2,1,2,1 + v2,1,1,1v2,1,2,2,

h5,3,2 = v2,1,2,2v2,2,1,1 − v2,1,2,1v2,2,1,2 − v2,1,1,2v2,2,2,1 + v2,1,1,1v2,2,2,2,

h5,3,3 = −v2,2,1,2v2,2,2,1 + v2,2,1,1v2,2,2,2,

h6 = det(h6,i,j)1≤i≤3;1≤j≤3,

h6,1,1 = −v1,1,1,2v1,2,1,1 + v1,1,1,1v1,2,1,2,

h6,1,2 = −v1,1,2,2v1,2,1,1 + v1,1,2,1v1,2,1,2 − v1,1,1,2v1,2,2,1 + v1,1,1,1v1,2,2,2,

h6,1,3 = −v1,1,2,2v1,2,2,1 + v1,1,2,1v1,2,2,2,

h6,2,1 = v1,2,1,2v2,1,1,1 − v1,2,1,1v2,1,1,2 − v1,1,1,2v2,2,1,1 + v1,1,1,1v2,2,1,2,

h6,2,2 = v1,2,2,2v2,1,1,1 − v1,2,2,1v2,1,1,2 + v1,2,1,2v2,1,2,1 − v1,2,1,1v2,1,2,2

− v1,1,2,2v2,2,1,1 + v1,1,2,1v2,2,1,2 − v1,1,1,2v2,2,2,1 + v1,1,1,1v2,2,2,2,

h6,2,3 = v1,2,2,2v2,1,2,1 − v1,2,2,1v2,1,2,2 − v1,1,2,2v2,2,2,1 + v1,1,2,1v2,2,2,2,

h6,3,1 = −v2,1,1,2v2,2,1,1 + v2,1,1,1v2,2,1,2,

h6,3,2 = −v2,1,2,2v2,2,1,1 + v2,1,2,1v2,2,1,2 − v2,1,1,2v2,2,2,1 + v2,1,1,1v2,2,2,2,

h6,3,3 = −v2,1,2,2v2,2,2,1 + v2,1,2,1v2,2,2,2,

h7 = det(h7,i,j)1≤i≤3;1≤j≤3,

h7,1,1 = −v1,1,2,1v1,2,1,1 + v1,1,1,1v1,2,2,1,
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h7,1,2 = −v1,1,2,2v1,2,1,1 − v1,1,2,1v1,2,1,2 + v1,1,1,2v1,2,2,1 + v1,1,1,1v1,2,2,2,

h7,1,3 = −v1,1,2,2v1,2,1,2 + v1,1,1,2v1,2,2,2,

h7,2,1 = v1,2,2,1v2,1,1,1 − v1,2,1,1v2,1,2,1 − v1,1,2,1v2,2,1,1 + v1,1,1,1v2,2,2,1,

h7,2,2 = v1,2,2,2v2,1,1,1 + v1,2,2,1v2,1,1,2 − v1,2,1,2v2,1,2,1 − v1,2,1,1v2,1,2,2

− v1,1,2,2v2,2,1,1 − v1,1,2,1v2,2,1,2 + v1,1,1,2v2,2,2,1 + v1,1,1,1v2,2,2,2,

h7,2,3 = v1,2,2,2v2,1,1,2 − v1,2,1,2v2,1,2,2 − v1,1,2,2v2,2,1,2 + v1,1,1,2v2,2,2,2,

h7,3,1 = −v2,1,2,1v2,2,1,1 + v2,1,1,1v2,2,2,1,

h7,3,2 = −v2,1,2,2v2,2,1,1 − v2,1,2,1v2,2,1,2 + v2,1,1,2v2,2,2,1 + v2,1,1,1v2,2,2,2,

h7,3,3 = −v2,1,2,2v2,2,1,2 + v2,1,1,2v2,2,2,2.

The invariants satisfy the relations

h2 + h3 + h4 = 0,

h1h2 − h6 + h7 = 0,

h1h3 − h7 + h5 = 0,

h1h4 − h5 + h6 = 0,

which imply that only two invariants among h2, h3, h4 are independent and only one invariant
among h5, h6, h7 is independent. Nevertheless, in the results below we use all the invariants
h1, . . . , h7 for the sake of symmetry.

Tables XIII, XIV, XV list zero and nonzero values of h1, . . . , h7 for the classes C0, . . . , C82.
Table XVI shows that with only 21 possibilities for their independent values, the zero values
of invariants h1, . . . , h7 cannot distinguish all the classes found using the discrete invariants.
Of course, since h1, . . . , h7 is a complete list of invariants for 4 qubits, all their possible
values completely characterize the entangled states (and with a greater refinement than our
invariants, as explained earlier). The difficulty of using the continuous invariants is of course
in finding all their allowed values.

Note that some of our classes split with respect to the values of the classical invariants,
but it should be remembered that there are relations that could allow individual classical
invariants to be less constrained than their irreducible set.

We also note that the families of entangled 4 qubits found in [5] are related to our
entanglement classes as follows:

Gabcd ∈ C82, Labc2 ∈ C82, La2b2 ∈ {C73, . . . , C78}, Lab3 ∈ C67,

La4 ∈ {C73, . . . , C78}, La203⊕1
∈ {C68, . . . , C71}, L0

5⊕3
∈ {C34, . . . , C37},

L0
7⊕1

∈ {C50, . . . , C53}, L0
3⊕1

0
3⊕1

∈ {C15, . . . , C18}.

With the correction suggested in [18], we find the same result as above except now Lab3 ∈ C82.
This leaves many classes found here unaccounted for in the method of [5].

VI. CONCLUSIONS

Mathematical structure of entangled states gives rise to new entanglement invariants,
which lead to a new method of entanglement classification. The invariants describe alge-
braic properties of linear maps associated with the states. For finite-dimensional spaces,
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TABLE XIII. The continuous invariants h1, . . . , h7 for the sets of equivalence classes based on the

discrete invariants for n = 4, D = (2, 2, 2, 2).

h1 h2 h3 h4 h5 h6 h7

C0 0 0 0 0 0 0 0

C1 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0

C3 0 0 0 0 0 0 0

C4 0 0 0 0 0 0 0

C5 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0

C7 0 0 0 0 0 0 0

C8 6= 0 6= 0 6= 0 0 0 0 6= 0

C9 6= 0 6= 0 0 6= 0 0 6= 0 0

C10 6= 0 0 6= 0 6= 0 6= 0 0 0

C11 0 0 0 0 0 0 0

C12 0 0 0 0 0 0 0

C13 0 0 0 0 0 0 0

C14 0 0 0 0 0 0 0

C15 0 0 0 0 0 0 0

C16 0 0 0 0 0 0 0

C17 0 0 0 0 0 0 0

C18 0 0 0 0 0 0 0

C19 0 0 0 0 0 0 0

C20 0 0 0 0 0 0 0

C21 0 0 0 0 0 0 0

C22 0 0 0 0 0 0 0

C23 0 0 0 0 0 0 0

C24 0 0 0 0 0 0 0

C25 0 0 0 0 0 0 0

C26 6= 0 0 0 0 0 0 0

C27 6= 0 6= 0 6= 0 0 0 0 6= 0

C28 6= 0 6= 0 0 6= 0 0 6= 0 0

C29 6= 0 0 6= 0 6= 0 6= 0 0 0

C30 6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0

C31 6= 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

C32 6= 0 0 6= 0 6= 0 6= 0 6= 0 6= 0

C33 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

C34 0 0 0 0 0 0 0

C35 0 0 0 0 0 0 0

C36 0 0 0 0 0 0 0

C37 0 0 0 0 0 0 0

C38 6= 0 0 0 0 0 0 0

C39 6= 0 0 0 0 0 0 0

C40 6= 0 0 0 0 0 0 0
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TABLE XIV. The continuous invariants h1, . . . , h7 for the sets of equivalence classes based on the

discrete invariants for n = 4, D = (2, 2, 2, 2).

h1 h2 h3 h4 h5 h6 h7

C41 6= 0 6= 0 6= 0 0 0 0 6= 0

C42 6= 0 6= 0 6= 0 0 0 0 6= 0

C43 6= 0 6= 0 0 6= 0 0 6= 0 0

C44 6= 0 6= 0 0 6= 0 0 6= 0 0

C45 6= 0 0 6= 0 6= 0 6= 0 0 0

C46 6= 0 0 6= 0 6= 0 6= 0 0 0

C47 0 6= 0 6= 0 0 0 0 0

C′
47 6= 0 6= 0 6= 0 0 0 0 6= 0

C48 0 6= 0 0 6= 0 0 0 0

C′
48

6= 0 6= 0 0 6= 0 0 6= 0 0

C49 0 0 6= 0 6= 0 0 0 0

C′
49

6= 0 0 6= 0 6= 0 6= 0 0 0

C50 0 0 0 0 0 0 0

C51 0 0 0 0 0 0 0

C52 0 0 0 0 0 0 0

C53 0 0 0 0 0 0 0

C54 6= 0 0 0 0 0 0 0

C55 6= 0 0 0 0 0 0 0

C56 6= 0 0 0 0 0 0 0

C57 6= 0 0 0 0 0 0 0

C58 6= 0 0 0 0 0 0 0

C59 6= 0 0 0 0 0 0 0

C60 6= 0 0 0 0 6= 0 6= 0 6= 0

C61 0 6= 0 6= 0 0 0 0 0

C′
61

6= 0 6= 0 6= 0 0 0 0 6= 0

C62 0 6= 0 0 6= 0 0 0 0

C′
62

6= 0 6= 0 0 6= 0 0 6= 0 0

C63 0 0 6= 0 6= 0 0 0 0

C′
63

6= 0 0 6= 0 6= 0 6= 0 0 0

C64 0 6= 0 6= 0 0 6= 0 6= 0 6= 0

C′
64

6= 0 6= 0 6= 0 0 6= 0 6= 0 0

C′′
64

6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0

C65 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

C′
65

6= 0 6= 0 0 6= 0 6= 0 0 6= 0

C′′
65 6= 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

C66 0 0 6= 0 6= 0 6= 0 6= 0 6= 0

C′
66

6= 0 0 6= 0 6= 0 0 6= 0 6= 0

C′′
66 6= 0 0 6= 0 6= 0 6= 0 6= 0 6= 0
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TABLE XV. The continuous invariants h1, . . . , h7 for the sets of equivalence classes based on the

discrete invariants for n = 4, D = (2, 2, 2, 2).

h1 h2 h3 h4 h5 h6 h7

C67 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

C′
67

6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 0

C′′
67

6= 0 6= 0 6= 0 6= 0 6= 0 0 6= 0

C′′′
67 6= 0 6= 0 6= 0 6= 0 0 6= 0 6= 0

C′′′′
67

6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

C68 6= 0 0 0 0 0 0 0

C69 6= 0 0 0 0 0 0 0

C70 6= 0 0 0 0 0 0 0

C71 6= 0 0 0 0 0 0 0

C72 0 0 0 0 6= 0 6= 0 6= 0

C73 0 6= 0 6= 0 0 0 0 0

C74 0 6= 0 6= 0 0 0 0 0

C75 0 6= 0 0 6= 0 0 0 0

C76 0 6= 0 0 6= 0 0 0 0

C77 0 0 6= 0 6= 0 0 0 0

C78 0 0 6= 0 6= 0 0 0 0

C79 0 6= 0 6= 0 0 6= 0 6= 0 6= 0

C80 0 6= 0 0 6= 0 6= 0 6= 0 6= 0

C81 0 0 6= 0 6= 0 6= 0 6= 0 6= 0

C82 0 6= 0 6= 0 6= 0 0 0 0

each invariant takes a value from a finite set of integers, and the resulting set of entan-
glement classes is finite. The relation to the standard continuous invariants is such that
different values of the discrete invariants correspond to certain continuous invariants being
zero or nonzero. We believe that our classification is the most refined restricted classification
possible. Although this result is formulated as a theorem in the text, its proof is not a usual
mathematical proof, but rather a proof by exhaustion of possibilities.

The new method works for an arbitrary finite number of spaces of finite dimensions. As
its application, we obtained entanglement classifications for a wide selection of individual
cases of three subsystems and the case of four qubits.

For three subsystems, in addition to finding classifications for individual values of D =
(d1, d2, d), it is rather easy to obtain results for infinite sequences of values of d. An inter-
esting general feature of these results (which is easy to prove) is that increasing d beyond
d1d2 does not introduce any new entanglement classes. As examples, we have found such
classifications for the values (d1, d2) ∈ {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4)} and ar-
bitrary d. Only one of these sequences, D = (2, 2, d), had been conjectured in the literature,
for which our method gives the same number of classes as the classifications in [3], [4], [7],
[9] and the conjectured classification in [7], [9].

Entanglement classes and representative elements could be easily generated for other
infinite sequences. The classification problem for the general case of three subsystems,
however, is challenging and currently under study. Note that the entanglement of a set of
three large spin subsystems is in some practical sense complementary to a system of many
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TABLE XVI. The continuous invariants h1, . . . , h7 for the sets of equivalence classes based on the

discrete invariants for n = 4, D = (2, 2, 2, 2).

h1 h2 h3 h4 h5 h6 h7

0 0 0 0 0 0 0
C0, C1, {C2, . . . , C7}, {C11, . . . , C14}, {C15, . . . , C18},

C19, {C20, . . . , C25}, {C34, . . . , C37}, {C50, . . . , C53}

6= 0 0 0 0 0 0 0 C26, {C38, C39, C40}, {C54, . . . , C59}, C60, {C68, . . . , C71}

0 6= 0 6= 0 0 0 0 0 C47, C61, C73, C74

0 6= 0 0 6= 0 0 0 0 C48, C62, C75, C76

0 0 6= 0 6= 0 0 0 0 C49, C63, C77, C78

0 0 0 0 6= 0 6= 0 6= 0 C72

0 6= 0 6= 0 6= 0 0 0 0 C82

6= 0 6= 0 6= 0 0 0 0 6= 0 C8, C27, C41, C42C
′
47, C

′
61

6= 0 6= 0 0 0 6= 0 6= 0 0 C9, C28, C43, C44, C
′
48
, C′

62

6= 0 0 6= 0 6= 0 6= 0 0 0 C10, C29, C45, C46C
′
49
, C′

63

0 6= 0 6= 0 0 6= 0 6= 0 6= 0 C64, C79

0 6= 0 0 6= 0 6= 0 6= 0 6= 0 C65, C80

0 0 6= 0 6= 0 6= 0 6= 0 6= 0 C66, C81

6= 0 6= 0 6= 0 0 6= 0 6= 0 0 C′
64

6= 0 6= 0 0 6= 0 6= 0 0 6= 0 C′
65

6= 0 0 6= 0 6= 0 0 6= 0 6= 0 C′
66

6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0 C30, C
′′
64

6= 0 6= 0 0 6= 0 6= 0 6= 0 6= 0 C31, C
′′
65

6= 0 0 6= 0 6= 0 6= 0 6= 0 6= 0 C32, C
′′
66

0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 C67

6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 0 C′
67

6= 0 6= 0 6= 0 6= 0 6= 0 0 6= 0 C′′
67

6= 0 6= 0 6= 0 6= 0 0 6= 0 6= 0 C′′′
67

6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 C33, C
′′′′
67

low spin (e.g., many qubit) subsystems. Both have potential for the construction of practical
devices.

The classification of entanglement of four qubits has been considered by several groups
of authors [5, 13–18, 20]. All previous works found 9 or fewer fundamental sets of classes
after permutations have been removed. In our work we found 27 fundamental sets of classes.
Our refined classification could be useful to experimenters who consider detailed properties
of four qubit systems. For example, Barreiro et al. [23] find a rich dynamics when they
arrange four Ca+ ions as qubits and study entanglement via decoherence and dissipation.
See also [24] for earlier 4 qubit work.

To deepen our knowledge about other quantum systems, their entanglement should be
thoroughly studied as well. Our method provides a simple, general, practical approach to
such studies.

Our new invariants are topological since they are the dimensions of linear spaces. Al-
though the invariants are rather simple from the point of view of topology, they may have
a different interpretation when viewed from other perspective. For an example of a possibly
related interpretation, see [25]. Finally, it is also worth pointing out that while we find pure
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representative states for each class, it is straightforward to combine them into mixed states
via a density matrix approach.
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