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ABSTRACT
The effect of the endogenous cannabinoid anandamide on K�

currents activated by the ATP-sensitive potassium (KATP) chan-
nel opener cromakalim was investigated in follicle-enclosed
Xenopus oocytes using the two-electrode voltage-clamp tech-
nique. Anandamide (1–90 �M) reversibly inhibited cromakalim-
induced K� currents, with an IC50 value of 8.1 � 2 �M.
Inhibition was noncompetitive and independent of membrane
potential. Coapplication of anandamide with the cannabinoid
type 1 (CB1) receptor antagonist N-(piperidin-1-yl)-5-(4-
chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-
carboximide hydrochloride (SR 141716A) (1 �M), the CB2
receptor antagonist N-[(1S)endo-1,3,3-trimethyl bicyclo heptan-
2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-
carboxamide (SR144528) (1 �M), or pertussis toxin (5 �g/ml) did
not alter the inhibitory effect of anandamide, suggesting that
known cannabinoid receptors are not involved in anandamide

inhibition of K� currents. Similarly, neither the amidohydrolase
inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxy-
genase inhibitor indomethacin (5 �M) affected anandamide inhi-
bition of K� currents, suggesting that the effects of anandamide
are not mediated by its metabolic products. In radioligand binding
studies, anandamide inhibited the specific binding of the KATP
ligand [3H]glibenclamide in the oocyte microsomal fractions, with
an IC50 value of 6.3 � 0.4 �M. Gonadotropin-induced oocyte
maturation and the cromakalim-acceleration of progesterone-in-
duced oocyte maturation were significantly inhibited in the pres-
ence of 10 �M anandamide. Collectively, these results indicate
that cromakalim-activated K� currents in follicular cells of Xeno-
pus oocytes are modulated by anandamide via a cannabinoid
receptor-independent mechanism and that the inhibition of these
channels by anandamide alters the responsiveness of oocytes to
gonadotropin and progesterone.

Arachidonylethanolamine (anandamide) is an endogenous
signaling lipid that binds to cannabinoid receptors and pro-
duces pharmacological effects similar to cannabinoids in sev-
eral in vitro preparations (Howlett et al., 2002). Anandamide
has been implicated in a number of physiological and patho-
physiological processes, including drug abuse, vascular tone,
obesity, and embryonic development. Although the mecha-
nisms of action of anandamide are complex and not well

established, modulation of various ion channels is thought to
mediate some of its effects. For example, in excitable cells
such as neurons, the activation of cannabinoid receptors by
anandamide suppresses the presynaptic release of various
neurotransmitters by inhibiting the function of voltage-de-
pendent Ca2� channels (Howlett et al., 2002). Other studies
have shown that anandamide modulates K� channels (Poling
et al., 1996; Van den Bossche and Vanheel, 2000; Maingret et
al., 2001; Oliver et al., 2004; Sade et al., 2006).

ATP-sensitive potassium (KATP) channels form an impor-
tant link between metabolic state and cell excitability. They
are implicated in the control of insulin secretion, vasocon-
striction, and cardiac rhythmicity (for review, see Seino and
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Miki, 2003). KATP channel openers such as cromakalim and
pinacidil or manipulations that decrease intracellular ATP
levels activate these channels, whereas antidiabetic sulfonyl-
ureas such as glibenclamide suppress their activity. In ear-
lier investigations, it was reported that follicular cells sur-
rounding the oocytes of Xenopus laevis express KATP

channels and that activity of these channels can be moni-
tored electrophysiologically (Honoré and Lazdunski, 1991;
Guillemare et al., 1994). KATP channels of follicular cells
have been shown to play important roles in oocyte matura-
tion, hormonal regulation of oocyte development (Honoré and
Lazdunski, 1991; Wibrand et al., 1992; Arellano et al., 1996),
and the growth of Xenopus embryos (Cheng et al., 2002;
Rutenberg et al., 2002). In the present study, we have inves-
tigated the effect of anandamide on KATP channels of follicle-
enclosed oocytes and on the cromakalim-induced acceleration
of oocyte maturation.

Materials and Methods
Clusters of oocytes from X. laevis frogs (Xenopus I, Ann Arbor, MI)

were removed surgically under tricaine (Sigma-Aldrich, St. Louis,
MO) anesthesia (0.15%). Oocytes were manually dissected in a solu-
tion containing 88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 0.8 mM
MgSO4, and 10 mM HEPES, pH 7.5, and they were stored for 2 to 7
days in modified Barth’s solution (MBS) containing 88 mM NaCl, 1
mM KCl, 2.4 mM NaHCO3, 0.3 mM Ca(NO3)2, 0.9 mM CaCl2, 0.8
mM MgSO4, and 10 mM HEPES, pH 7.5, supplemented with 2 mM
sodium pyruvate, 10,000 IU/l penicillin, 10 mg/l streptomycin, and
50 mg/l gentamicin. They were placed in a 0.25-ml recording cham-
ber, and then they were superfused at a constant rate of 5 to 7
ml/min. The bathing solution consisted of 95 mM NaCl, 2 mM KCl, 2
mM CaCl2, and 5 mM HEPES, pH 7.5. The cells were impaled at the
animal pole with two glass microelectrodes filled with 3 M KCl (1–5
M�) and voltage-clamped at a holding potential of �20 mV using a
GeneClamp-500 amplifier (Molecular Devices, Sunnyvale, CA). Cur-
rent responses were digitized by A/D converter and analyzed using
pClamp 6 (Molecular Devices) run on an IBM/PC or directly recorded
on a Gould 2400 rectilinear pen recorder (Instrument Systems Inc.,
Cleveland, OH). Current-voltage characteristics were studied using
1-s voltage steps (�120 to 20 mV). Drugs were applied externally by
addition to the superfusate. Oocytes were incubated in pertussis
toxin (PTX; 5 �g/ml) overnight (14–16 h). Procedures for the injec-
tions of BAPTA (50–70 nl, 100 mM) were described earlier in detail
(Oz et al., 1998). BAPTA was prepared in Cs4-BAPTA. Injections
were performed 1 h before recordings using an oil-driven ultrami-
crosyringe pump (Micro4; WPI, Sarasota, FL). Stock solutions of
anandamide were prepared in dimethyl sulfoxide (DMSO) at a con-
centration of 100 mM. DMSO, alone, did not affect cromakalim-
induced currents when added at concentrations up to 0.3% (v/v), a
concentration 2-fold greater than the highest concentration used in
the present study.

Anandamide, cromakalim, glibenclamide, R-(�)-methanandam-
ide, N-ethylmaleimide, pertussis toxin, human chorionic gonadotro-
pin, progesterone, and BAPTA were obtained from Sigma/RBI (St.
Louis, MO). SR 141716A and SR144528 were generously provided by
National Institute on Drug Abuse Drug Supply System/National
Institutes of Health (Baltimore, MD). Both SR 141716A and
SR144528 were originally synthesized by Research Triangle Insti-
tute (Research Triangle Park, NC) on behalf of National Institute on
Drug Abuse.

Data are expressed as mean � S.E.M. Statistical significance at
the level of 0.05 was analyzed using the Student’s t test, paired t test,
or ANOVA. Concentration-response curves were obtained by fitting
the data to the logistic equation y � {(Emax � Emin)/(1 � [EC50/x]n)}
� Emin, where x and y are concentration and response, respectively,

Emax is the maximal response, Emin is the minimal response, EC50 is
the half-maximal concentration, and n is the slope factor.

Radioligand Binding Experiments. For radioligand binding
experiments, follicle-enclosed oocytes were suspended in 300 ml of
buffer containing 50 mM HEPES, 0.3 M sucrose, and 1 mM EDTA at
4°C on ice. Oocytes were homogenized using a motorized Teflon
homogenizer (six strokes, 15 s each at high speed). This was followed
by sequential centrifugations at 1000g for 10 min and 10,000g for 20
min; each time the pellet was discarded, and the supernatant was
used for the subsequent step. The final centrifugation was at 60,000g
for 25 min. The microsomal pellet, which contains the membranes of
follicular cells (Guillemare et al., 1994), was resuspended in 50 mM
HEPES buffer, and it was used for the binding studies.

The radioligand binding experiments were carried out at room
temperature (20–22°C) for 1 h (Oz et al., 2004), and 0.2 mM PMSF
was routinely included to prevent anandamide degradation. Oocyte
membranes were incubated in 1 ml of 50 mM HEPES, pH 7.5, at a
protein concentration of 200 to 500 �g/ml. [3H]glibenclamide was
dissolved in ethanol/dimethyl sulfoxide (1:1). For each experiment,
freshly made glibenclamide solution was used. At the final concen-
trations used in this study (0.2%), organic solvents had no effect on
[3H]glibenclamide binding. IC50 values were determined using one-
site competition nonlinear curve fitting. For the nonlinear curve-
fitting and regression fits of the radioligand binding data, the com-
puter software Origin (OriginLab Corp., Northampton, MA) was
used.

Maturation Experiments. Oocytes (stages V or VI according to
Dumont, 1972) were manually dissected using watchmaker’s forceps
under a stereomicroscope, and then they were stored in MBS until
used for drug or hormone treatments. Groups of oocytes (20 oocytes
each) from each donor were incubated in the MBS containing hor-
mones (200 IU/ml human chorionic gonatropin or 0.1 �M progester-
one and 100 �M cromakalim) at 18°C in the absence or presence of
test compounds (10 �M anandamide or 10 �M glibenclamide) up to
18 h. Germinal vesicle breakdown (GVBD) was monitored by track-
ing white spot (Roux) formation followed by fixation of oocytes in 2%
trichloroacetic acid, dissection using watchmaker’s forceps under the
stereomicroscope, and examination for the presence or absence of an
intact nucleus (germinal vesicle). Stock solutions of anandamide
were prepared in 0.1% DMSO (v/v), and 0.2 mM PMSF was routinely
included in MBS solution to prevent anandamide degradation. At
these concentrations, DMSO alone and PMSF alone did not affect
oocyte maturation monitored up to 16 h. The results are expressed as
the percentage of the matured oocytes (% GVBD) as a function of
time. The total number of oocytes in each group was considered as
100%.

Results
Figure 1A shows that application of cromakalim induces a

slowly developing outward current in follicle-enclosed oo-
cytes. In agreement with earlier studies (Honoré and Laz-
dunski, 1991), the maximal amplitudes of outward currents
did not change during repeated applications of cromakalim
every 15 min for up to 2 h. Cromakalim-activated currents
are reversibly inhibited to 53 � 6% of controls (mean �
S.E.M.; n � 4) by 1 �M glibenclamide, a selective blocker of
KATP channels.

Treatment of follicle-enclosed oocytes with 10 �M anand-
amide for 30 min significantly inhibited the slow-outward
current induced by 100 �M cromakalim (Fig. 1A). Recovery
was incomplete during the 45- to 60-min washout period.
Results of experiments demonstrating the time course of the
effects of anandamide on the mean amplitudes of the cro-
makalim-induced currents are presented in Fig. 1B. Effects
of anandamide were observed in response to a concentration
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of 1 �M, and they reached a maximum in the range of 90 to
100 �M (84 � 7% inhibition; n � 4–6). Figure 1C shows the
effect of increasing anandamide concentrations on cro-
makalim-induced outward currents. The concentration re-
sulting in 50% of maximal anandamide inhibition (IC50) was
obtained at 8.1 �M. The slope value was 0.9.

To determine whether endogenous cannabinoid-like re-
ceptors mediate the effects of anandamide, we tested the
effects of the CB1 antagonist SR 141716A on anandamide-
induced inhibition of cromakalim-activated currents. Co-
application of 1 �M SR 141716A with 10 �M anandamide
for 30 min did not alter the effects of anandamide (Fig. 2A)
(ANOVA: P � 0.05, n � 5–7). Likewise, the CB2 receptor
antagonist SR144528 (1 �M) did not affect the inhibition of

cromakalim-activated currents by anandamide (Fig. 2A)
(ANOVA: P � 0.05, n � 5– 6). Applications of 1 �M SR
141716A alone or 1 �M SR 144528 alone for 30 min did not
significantly alter the amplitudes of peak currents in re-
sponse to cromakalim (paired t test: P � 0.05, n � 3– 4;
data not shown).

Because the G proteins involved in the signaling of canna-
binoid receptor-mediated effects are PTX-sensitive (Howlett

Fig. 1. Anandamide inhibits cromakalim-induced outward current in
follicular cells of Xenopus oocytes. A, current traces induced by 100 �M
cromakalim (left), during coapplication of cromakalim and 10 �M anan-
damide following 30-min preincubation in anandamide (middle), and
45-min recovery (right). Application times for cromakalim are presented
with black lines. Continuous application of anandamide during record-
ings is presented with dashed lines. B, time course of the peak cro-
makalim-activated currents in the absence (open circles) and the pres-
ence 10 �M anandamide (closed circles). Each data point represents the
normalized means and S.E.M. of four to six experiments. The duration of
the anandamide application is indicated by the horizontal bar. C, concen-
tration-response curve for inhibitory effect of 30-min anandamide treat-
ment on 100 �M cromakalim-activated currents. Data points are ex-
pressed as mean � S.E.M (n � 4–5). The curve is the best fit of the data
to the logistic equation described under Materials and Methods. In all
figures, AEA and CKL indicate anandamide and cromakalim, respec-
tively.

Fig. 2. Anandamide inhibition of cromakalim-activated K� currents is
not altered by CB1 or CB2 receptor antagonist, and it is not mediated by
pertussis toxin-sensitive G proteins. A, CB1 receptor antagonist SR
141716A at 1 �M or the CB2 receptor antagonist SR144528 at 1 �M was
coapplied with 10 �M anandamide for 30 min, and the maximal ampli-
tudes of cromakalim-activated K� currents are presented as percentage
of controls. B, oocytes were incubated in 5 �g/ml pertussis toxin over-
night, and the extent of anandamide inhibition was presented as percent-
age of controls. In experiments using NEM, 10 �M anandamide was
coapplied with 10 �M NEM. C, percentage of anandamide (10 �M) inhi-
bition of cromakalim-activated currents in the presence of R-methanan-
damide, PMSF, and indomethacin. The number of oocytes tested is pre-
sented on top of each bar. INDO, indomethacin, metAEA,
R-methanandamide,
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et al., 2002), we tested the effect of anandamide in vehicle
(distilled water) and PTX-treated follicle-enclosed oocytes.
No significant difference between controls and PTX-treated
cells in the response to anandamide was seen (Fig. 2B)
(ANOVA: P � 0.05, n � 6). N-Ethylmaleimide (NEM; 10 �M),
a sulfhydryl-alkylating agent that blocks G protein-effector
interactions by alkylating �-subunits of PTX-sensitive GTP-
binding protein, is commonly used to investigate the func-
tional roles of Gi and Go type of G proteins (Oz and Renaud,
2002). Analogous to PTX, the extent of inhibition by 30-min
treatment with 10 �M NEM and 10 �M anandamide was not
significantly different from the inhibition by 10 �M anand-
amide alone (Fig. 2B) (51 � 6 versus 47 � 5%; n � 5, in the
absence and presence of NEM treatment, respectively;
ANOVA: P � 0.05).

Anandamide is hydrolyzed by an intracellularly located
enzyme, fatty acid amide hydrolase (FAAH) (Cravatt and
Lichtman, 2002). Because degradation products of anandam-
ide hydrolysis can mediate the effects of anandamide, the
inhibition of cromakalim-activated currents by anandamide
was quantified in the presence and absence of 0.2 mM PMSF,
an inhibitor of FAAH (Cravatt and Lichtman, 2002). PMSF

did not alter the inhibitory actions of anandamide (Fig. 2C)
(ANOVA: P � 0.05, n � 6). The effect of R-methanandamide,
a metabolically stable chiral analog of anandamide that is
resistant to hydrolytic inactivation by fatty acid amide hy-
drolase (Abadji et al., 1994) on cromakalim-activated cur-
rents was also tested. R-methanandamide at 10 �M evoked
significantly greater inhibition than anandamide (52 � 4%,
n � 6 versus 64 � 5%, n � 5 for anandamide and R-meth-
anandamide, respectively; ANOVA: P � 0.05). Anandamide
is a substrate for cyclooxygenase. To rule out the involvement
of cyclooxygenated metabolites of anandamide, we tested the
effects of anandamide in the presence and absence of the
cyclooxygenase inhibitor indomethacin (5 �M). The extent of
anandamide inhibition was not altered significantly by indo-
methacin (Fig. 2C) (ANOVA: P � 0.05, n � 5). Figure 3, A to
D, shows the influence of anandamide on the current-voltage
relationship of the cromakalim-induced net outward current
(cromakalim-activated current minus resting current at
given voltage). In the presence and absence of 10 �M anan-
damide, the reversal of the outward current is observed at
�97 � 4 and �95 � 3 mV, respectively (paired t test: P �
0.05, n � 4). These findings indicate that ionic selectivity of

Fig. 3. Anandamide inhibition of cromakalim-activated K� currents is independent of voltage and intracellular Ca2� levels. A, current-voltage
relationship of cromakalim-activated currents recorded during 1-s voltage steps applied before (closed circles) and after application of 10 �M
anandamide (open circles). Control currents were subtracted from cromakalim induced currents. B, percentage of inhibition of cromakalim-activated
K� currents by anandamide at different membrane potentials. There were no statistically significant differences among the means of current
inhibitions by anandamide at different holding potentials (ANOVA: P � 0.05, n � 4–5). C, equivalent resistive-circuit diagram is presented in inset
to Fig. 2C. Before (gray bars) and after 5-min incubation with 10 �M anandamide (black bars), the mean values for the sum of Rj and Rf in
follicle-enclosed oocytes are presented on the right side (n � 8). Values, before and after anandamide treatment, for Ro of enzymatically defolliculated
oocytes are shown on the left (n � 12). Resistance values were calculated from current-voltages curves recorded in the range of �50 to �10 mV. Bars,
on the right side, show mean values for resistance as a sum of Rj and Rf before and after 30-min anandamide incubation. Bars, on the left side, show
mean values for Ro measurements (in the range of �50 to �10 mV) in defolliculated oocytes before and after 30-min incubation with 10 �M
anandamide. D, percentage of anandamide (10 �M) inhibition of cromakalim activated currents in BAPTA-treated oocytes. Asterisk (�) indicates a
statistically significant difference between two groups shown by the arrows in the figure (ANOVA: P � 0.05, n � 6–8).

550 Oz et al.

 at A
SPE

T
 Journals on February 26, 2015

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


the cromakalim-induced outward current is not affected by
anandamide. Follicular cells are coupled to oocytes through
gap junctions (for reviews, see Dascal, 1987; Arellano et al.,
1996). Anandamide may affect gap junctions (Venance et al.,
1995), thereby altering the resistance of the ionic pathway
presented as equivalent resistive circuitry in the inset to Fig.
3C. In this case, total resistance would be determined by
oocyte input resistance (Ro) on the one branch and by the sum
of gap junction resistance (Rj) and/or follicular cell input
resistance (Rf) on the other branch. We measured resistances
in follicle-enclosed (to investigate the involvement of Ro) and
enzymatically (2-h treatment in 0.2% collagenase A; Roche
Diagnostics, Indianapolis, IN) defolliculated oocytes (to in-
vestigate the involvements of Rj and Rf) in the presence and
absence of anandamide without inducing cromakalim-acti-
vated conductances in follicular cells. In the presence and
absence of anandamide, there were no significant changes in
resistances measured from defolliculated or follicle-enclosed
oocytes (Fig. 3C) (paired t test: P � 0.05, n � 7–11).

Because anandamide releases intracellular Ca2� in vari-
ous cell types (Mombouli et al., 1999; Yeh et al., 2006),
activation of Ca2�-dependent second messenger systems or
Ca2�-activated Cl� and/or K� channels may interfere with
anandamide actions. To examine this possibility, follicle-en-
closed oocytes were incubated in 5 �M BAPTA-AM for 1 h,
and then they were injected with 5 nl of 100 mM BAPTA 10
min before recordings to ensure chelation of intracellular
Ca2� in both follicular cells and oocytes. No significant dif-
ference in the percentage of inhibition of cromakalim-in-
duced currents by anandamide was observed in BAPTA-
treated oocytes relative to controls (Fig. 3D) (Student’s t test:
P � 0.05, n � 5). In BAPTA-treated oocytes, current-voltage
curves recorded in the absence and presence of anandamide
did not show significant changes in reversal potential (�96 �
3 versus �92 � 4; Student’s t test: P � 0.05, n � 5) or in
characteristics of the curve.

Anandamide may also compete with cromakalim binding
site(s) located on the KATP channel complex, thereby causing
inhibition of cromakalim-activated currents. Thus, the con-
centration-response curve of cromakalim activation was ex-
amined in the absence and presence of 10 �M anandamide.
As shown in Fig. 4, anandamide inhibited maximal cro-
makalim-induced currents without altering EC50 values for
cromakalim (n � 4–5). The EC50 and slope values in the
presence and absence of 10 �M anandamide were 127 � 18
�M and 1.07 versus 132 � 21 �M and 1.02. These results
suggest that anandamide inhibits cromakalim-activated K�

currents in a noncompetitive manner.
The KATP channel is formed from four Kir6.2 subunits,

each of which is associated with a larger regulatory sulfonyl-
urea receptor (SUR) subunit (for review, see Seino and Miki,
2003). Because the binding site for sulfonylureas and cro-
makalim is located in the SUR subunit of the channel, we
tested the effect of anandamide on the specific binding of
[3H]glibenclamide in the microsomal fraction of Xenopus oo-
cytes. Equilibrium curves for the binding of [3H]gliben-
clamide, in the presence and absence of the anandamide, are
presented in Fig. 5A. In the presence of 10 �M anandamide,
the specific binding of [3H]glibenclamide decreased to 64.3 �
7.2% of controls (n � 4). Maximum binding activity (Bmax) of
[3H]glibenclamide was 6.28 � 0.23 and 2.86 � 0.16 pmol/mg
for controls and anandamide, respectively. The affinity (Kd)

Fig. 4. Concentration-response curves for cromakalim-activated current
in the absence (closed circles) and presence (open circles) of 10 �M
anandamide. Anandamide was applied for 30 min, and cromakalim and
anandamide were then coapplied for 2 min. Data points are the mean �
S.E.M. (n � 4–5; error bars not visible are smaller than the size of the
symbols). The curves are the best fit of the data to the logistic equation
described under Materials and Methods. The concentration-response
curves are normalized to the percentage of maximal control cromakalim
response. In absence and presence of anandamide, EC50 values were
163 � 21 versus 154 � 24 �M, respectively.

Fig. 5. Effects of anandamide on the specific binding of [3H]glibenclamide
to microsomal membrane fraction of Xenopus oocytes. A, specific binding
as a function of the concentration of [3H]glibenclamide. Data are pre-
sented as the arithmetic means of four experimental measurements in
the absence (F) and presence of 10 �M anandamide (E). The incubation
time was 60 min at 22°C, pH 7.5. Equivalent samples were incubated
with 10 nM of unlabeled glibenclamide to determine nonspecific binding.
B, effects of increasing concentration of anandamide on the specific bind-
ing of [3H]glibenclamide. Microsomal membranes were incubated with 1
nM [3H]glibenclamide at a concentration of 0.3 to 0.5 mg/ml for 60 min
with increasing concentrations of anandamide in the medium. Bound and
free [3H]glibenclamide were separated by filtration. Symbols are the
means of at least five experiments. The results present data from four to
five experiments. Data points indicate mean � S.E.M.

Anandamide on Cromakalim-Activated Channels 551

 at A
SPE

T
 Journals on February 26, 2015

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


of [3H]glibenclamide was 1.3 � 0.1 and 1.1 � 0.2 nM for
controls and anandamide, respectively. The effect of anand-
amide on the displacement of specific binding of [3H]gliben-
clamide from microsomal membranes were also investigated
(Fig. 5B). Anandamide (1–100 �M) inhibited the specific
binding of [3H]glibenclamide to 80 to 85% of control (n �
4–6). The IC50 value for anandamide was 6.3 � 0.4 �M, with
corresponding slope factors of 0.9.

KATP channels play an important role in hormonal activa-
tion of the maturation process in Xenopus oocytes (Woodward
and Miledi, 1987; Honoré and Lazdunski, 1991; Wibrand et
al., 1992; Arellano et al., 1996). During maturation, the large
oocyte nucleus (germinal vesicle), which resides in the darkly
pigmented animal part of the oocyte (Fig. 6A, top left) falls
apart and the appearance of a white (Roux) spot on the
animal pole (Fig. 6A, top right) correlates with GVBD, a
process indicating the resumption of meiosis in oocytes
(Smith, 1989). Pharmacological agents such as cromakalim
or hormones such as gonadotropins and insulin are potent
activators of KATP channels in follicular cells (Woodward and
Miledi; 1987; Honoré and Lazdunski, 1991; Sakuta, 1994;
Arellano et al., 1996). Activation of KATP channels by gonad-
otropins induces oocyte maturation and GVBD that can be
effectively blocked by KATP channel blockers such as gliben-
clamide (Woodward and Miledi, 1987; Wibrand et al., 1992;
Arellano et al., 1996). Thus, we have tested the effect of
anandamide on human chorionic gonadotropin (hCG; 200
IU/ml)-induced GVBD process in follicle-enclosed Xenopus
oocytes. In agreement with earlier findings (for reviews, see
Smith, 1989; Murakami and Vande Woude, 1997), incubation
of oocytes in hCG containing MBS solution caused a time-
dependent increase of the maturation response (Fig. 6A). In
the presence of 10 �M anandamide, hCG-induced maturation
of oocytes from three different donors was significantly in-
hibited (Fig. 6A) (ANOVA: P � 0.05, n � 60). Similarly,
incubation of oocytes in MBS containing 10 �M gliben-
clamide inhibited the hCG-induced maturation process
(ANOVA: P � 0.05, n � 60 from three different donors). In
agreement with earlier findings (Honoré and Lazdunski,
1991; Wibrand et al., 1992), tolbutamide, an antidiabetic
sulfonylurea with approximately 1000 times less affinity
than glibenclamide on pancreatic � cells (Kd values are in the
range of 0.5–20 nM and 1–17 �M for glibenclamide and
tolbutamide, respectively), was not active on cromakalim-
activated currents in follicle-enclosed oocytes at 10 �M (n �
4), and it was also ineffective on maturation (n � 60). Com-
pared with control oocytes kept in MBS, anandamide alone at
10 �M caused a small (14.2 � 4.6%) but statistically signif-
icant increase in the maturation rate of follicle-enclosed oo-
cytes (ANOVA: P � 0.05, n � 60). Glibenclamide alone at 10
�M (n � 60) did not alter maturation process (Fig. 6A).

In Xenopus oocytes, gonadotropins stimulate surrounding
follicle cells, causing them to secrete the steroid hormone
progesterone, which induces maturation in the oocyte (for
review, see Murakami and Vande Woude, 1997). Thus, in
defolliculated oocytes, progesterone, but not gonadotropins,
can induce maturation, and KATP channel activators can
potentiate progesterone-induced maturation only in follicle-
enclosed oocytes (Woodward and Miledi, 1987; Wibrand et
al., 1992). In the presence of cromakalim, progesterone, at
concentrations that do not induce maturation when applied
alone, can stimulate the maturation process in follicle-en-

closed oocytes (Wibrand et al., 1992). Thus, we tested the
effect anandamide on cromakalim potentiation of progester-
one-induced maturations process in follicle-enclosed oocytes.
Similar to an earlier result (Wibrand et al., 1992), although
cromakalim at 100 �M alone did not induce GVBD (n � 20),
it caused a significant acceleration of progesterone-induced
GVBD (Fig. 6B) (ANOVA: P � 0.05, n � 60 from three
different donors). Both, anandamide at 10 �M (n � 60) and
glibenclamide at 10 �M (n � 60) significantly inhibited the
cromakalim potentiation of progesterone-induced GVBD
(Fig. 6B) (ANOVA: P � 0.05).

Fig. 6. Effects of anandamide on the oocyte maturation induced by the
either gonadotropin alone or by cromakalim and progesterone in follicle-
enclosed oocytes. A, effect of anandamide on hCG (200 IU/ml)-induced
maturation in follicle-enclosed oocytes. The kinetics of maturation was
assayed in oocytes exposed continuously to hCG alone (F), in the presence
of hCG and 10 �M glibenclamide (f), and in the presence of hCG and
anandamide (Œ) were examined for GVBD process during a 8-h exposure.
Control group (E) was incubated in MBS alone. The results for 10 �M
glibenclamide alone and 10 �M anandamide alone were presented by �
and ‚, respectively. Data for each group are from total of 60 oocytes from
three donors (mean � S.E.M.). B, effect of anandamide on the cromakalim
potentiation of progesterone-induced maturation in follicle-enclosed Xe-
nopus oocytes. Oocytes were incubated in MBS in the presence of 0.1 �M
progesterone or progesterone and 100 �M cromakalim for 16 h. Matura-
tion responses induced by cromakalim and progesterone were tested in
the presence of 10 �M anandamide or 10 �M glibenclamide. Each bar
represents means � S.E.M. of 60 oocytes from three donors. Asterisk (�)
indicates a statistically significant difference between treatment groups
and cromakalim � progesterone group (ANOVA: P � 0.05). AEA, anan-
damide; CKL, cromakalim; GLB, glibenclamide; PG, progesterone.
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Discussion
In this study, we have demonstrated that anandamide

inhibits cromakalim-induced K� currents in follicle-enclosed
oocytes in a noncompetitive manner. The CB1 receptor an-
tagonist SR 141716, the CB2 receptor antagonist SR144528,
pertussis toxin, and NEM treatments did not affect the anan-
damide inhibition of cromakalim-induced K� currents. Thus,
it is unlikely that the observed effects of anandamide on
cromakalim-induced K� currents are due to the activation of
cannabinoid receptors or other Gi/Go-dependent G protein-
coupled receptors. In presence of PMSF, amidohydrolase in-
hibitor, or indomethacin, cyclooxygenase inhibitor anandam-
ide-induced inhibition of cromakalim-induced K� currents
was not significantly altered, suggesting that hydrolization
and cyclooxygenation products of anandamide are not in-
volved in anandamide inhibition of cromakalim-induced cur-
rents. Furthermore, R-methanandamide, a metabolically
stable chiral analog of anandamide that is resistant to hy-
drolytic inactivation by fatty acid amide hydrolase (Abadji et
al., 1994), also inhibited cromakalim-induced currents, fur-
ther indicating that the metabolites of anandamide degrada-
tion do not contribute significantly to the observed effect of
anandamide.

In agreement with our results, several earlier studies in-
dicated that different types K� channels are modulated by
anandamide in a cannabinoid receptor-independent manner
(Poling et al., 1996; Van den Bossche and Vanheel, 2000;
Maingret et al., 2001; Oliver et al., 2004; Sade et al., 2006).
Anandamide belongs to a class of signaling lipids consisting
of amides of long-chain polyunsaturated fatty acids (Howlett
et al., 2002). Thus, several fatty acid-based lipids have also
been shown to modulate the functions of K� channels in
various expression systems (Baukrowitz and Fakler, 2000;
Oliver et al., 2004; Klein et al., 2005). In addition to K�

channels, anandamide modulates the functions of other ion
channels such as serotonin type 3 (Oz et al., 2002), nicotinic
acetylcholine (Oz et al., 2003) and glycine (Lozovaya et al.,
2005; Hejazi et al., 2006) receptors, and voltage-gated Ca2�

(Oz et al., 2000; Fisyunov et al., 2006) and Na� (Nicholson et
al., 2003; Kim et al., 2005) channels in a manner independent
of known cannabinoid receptors (for recent review; see Oz,
2006).

Follicular cells of oocytes endogenously express cro-
makalim-activated KATP channels that have similar pharma-
cological and biophysical properties to those found in other
tissues (Honoré and Lazdunski, 1991; Guillemare et al.,
1994). These cells are electrically coupled to oocytes through
gap junctions (for review, see Arellano et al., 1996). Thus, the
effect of anandamide on gap junctions (Venance et al., 1995)
might be expected to affect membrane resistance (through
oocyte, gap junction, and follicular cells). However, in both
follicle-enclosed and defolliculated oocytes, anandamide did
not cause a detectable change in cell input resistance, which
was calculated near �20 mV (the holding potential for cro-
makalim-activated currents). These results suggest that
when cromakalim-activated channels are closed, ionic con-
ductances are not altered by 10 �M anandamide in either
follicle-enclosed or defolliculated oocytes and that anandam-
ide does not affect conductances other than those activated
by cromakalim.

Anandamide previously was shown to increase intracellu-

lar Ca2� levels (Mombouli et al., 1999; Yeh et al., 2006). The
changes in intracellular Ca2� levels could affect the function
of Ca2�-activated Cl� channels and might interfere with the
effect of anandamide on K� currents. However, in BAPTA-
treated oocytes, anandamide continued to suppress cro-
makalim responses to the same extent in untreated oocytes.
Furthermore, there was no apparent change of the reversal
potential of cromakalim-induced currents, suggesting that
Ca2�-activated conductances are not significantly involved in
the effect of anandamide on K� currents. In addition, be-
cause we voltage-clamped near the reversal potential (�20
mV) for Ca2�-activated Cl� channels in oocytes (Dascal,
1987), it is unlikely that the changes in intracellular Ca2�

concentrations would interfere with the effect of anandamide
on K� conductance. In agreement with earlier studies
(Honoré and Lazdunski, 1991; Guillemare et al., 1994), the
current-voltage relationship for cromakalim-activated cur-
rent was linear within the voltage range studied (�120 to 20
mV). In the presence of anandamide, neither the character-
istics nor the reversal potential for cromakalim-activated K�

currents was altered (Fig. 2A).
The pore of the KATP channel is formed from four Kir6.2

subunits, each of which is associated with a larger regulatory
SUR subunit, which is the primary target for KATP blockers
and openers (Seino and Miki, 2003). Anandamide did not
alter EC50 values for cromakalim activation, and it inhibited
the maximal cromakalim-induced currents, suggesting that
it does not compete with the cromakalim binding site. The
ability of anandamide to inhibit the maximal specific binding
of the radioligand [3H]glibenclamide to oocyte microsomal
membranes without altering its affinity to [3H]glibenclamide
suggests that anandamide interacts with the glibenclamide
binding site on the SUR in a noncompetitive manner. Sub-
unit identification of endogenous KATP channels in follicular
cells remains currently unknown. A recent study suggested
that a novel type of Kir6.1/SUR2A combination comprises
endogenous KATP channels (Fujita et al., 2007). Some pre-
liminary findings indicate that anandamide inhibits [3H]g-
libenclamide binding to Kir6.2/SUR1 and SUR1 expressed in
human embryonic kidney-293 cells, with IC50 values ranging
3 to 5 �M (Dr. Ulrich Quast, unpublished results), and
Kir6.2/SUR2A subunit combination expressed in Xenopus
oocytes is inhibited by 10 �M anandamide (Dr. Thomas
Baukrowitz, unpublished results).

For many years, Xenopus oocytes have served as a model
system for studying intricate mechanisms of follicle matura-
tion and cell cycle control (Brown, 2004). In vivo, stage VI
immature oocytes are physiologically arrested in the first
meiotic prophase at the G2/M border, and they resume mei-
osis when gonadotropins stimulate surrounding follicle cells.
This causes progesterone secretion (for reviews, see Smith,
1989; Murakami and Vande Woude, 1997) and the initiation
of oocyte maturation, a crucial process transforming the im-
mature oocyte into a fertilizable egg. In Xenopus oocytes,
gonadotropins and insulin activate KATP channels (Wood-
ward and Miledi, 1987; Honoré and Lazdunski, 1991; Sakuta,
1994) and they facilitate progesterone-induced oocyte matu-
ration (Wibrand et al., 1992). It was previously shown that
suppression of cromakalim-activated channels by gliben-
clamide inhibits gonadotropin-induced maturation in follicle-
enclosed oocytes (Wibrand et al., 1992). The results of the
present study indicate that the gonadotropin-induced, glib-
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enclamide-sensitive oocyte maturation process is inhibited
by anandamide. Furthermore, both glibenclamide and anan-
damide inhibited the cromakalim-induced acceleration of
progesterone-induced oocyte maturation, suggesting that the
inhibition of KATP channels by anandamide modulates the
hormonal maturation process in oocytes.

KATP channels are also expressed in early embryonic cells,
and their functional modulation prevents the hatching of the
Xenopus embryos (Cheng et al., 2002; Rutenberg et al., 2002),
resulting in defective development. The effect of anandamide
on the hormonal induction of oocyte development has not
been studied. Because KATP channels in follicular cells mod-
ulate the actions of several hormones implicated in oocyte
maturation, the present results provide suggestive evidence
that inhibition of KATP channels by anandamide can modu-
late the hormonal maturation process in Xenopus oocytes.
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