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Abstract

Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to 

influence cardiovascular functions under various physiological and pathological conditions. In the 

present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular 

myocytes were investigated. Video edge detection was used to measure myocyte shortening. 

Intracellular Ca2+ was measured in cells loaded with the Ca2+ sensitive fluorescent indicator fura-2 AM. 

Whole-cell patch clamp was used to measure action potential and Ca2+ currents. Radioligand binding 

was employed to study pharmacological characteristics of CBD binding. CBD (1 μM) caused a 

significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients. 

However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically-

evoked Ca2+ transients following caffeine application were not altered. Whole-cell patch-clamp 

technique was employed to investigate the effect of CBD on the characteristics of action potentials 

(APs) and L-type Ca2+ channels. CBD (1 μM) significantly decreased the duration of APs. Further 

studies on L-type Ca2+ channels indicated that CBD inhibits these channels with IC50 of 0.1 µM in a 

voltage-independent manner. Radioligand studies indicated that the specific binding of [3H]Isradipine, 

was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by 

suppressing L-type Ca2+ channels at a site different than dihydropyridine binding site and inhibits

excitation-contraction coupling in cardiomyocytes.



Page 3 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

3

Key words: Cannabidiol; Cannabinoid; Ventricular myocytes; Contraction; Intracellular calcium; 

Calcium channels.

List of abbreviations: Action potential (AP); Action potential duration (APD); Action potential 

duration at 60% level of repolarization (APD60); Amplitude (AMP); Bovine serum albumin (BSA);

Cannabidiol (CBD); Δ9-tetrahydrocannabinoid (THC); Dimethylsulphoxide (DMSO); Normal Tyrode 

(NT); Resting cell length (RCL); Sarcoplasmic reticulum (SR); Time from peak to half (THALF); Time 

to peak (TPK); Transient receptor potential (TRP).
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Introduction

Cannabidiol (CBD) is a major nonpsychoactive phytocannabinoid found in Cannabis sativa. 

Although it is devoid of psychoactive properties, in earlier studies CBD has been shown to possess 

anti-apoptotic, anti-oxidant, and anti-inflammatory effects [for reviews, 1, 2]. Interestingly, CBD 

displays low affinity for the cannabinoid CB1 and CB2 receptors [for reviews, 3, 4]. Thus, 

pharmacological actions of CBD have been suggested to be mediated mainly by its direct actions on 

various enzymes and ion channels or through a novel cannabinoid (non-CB1 and non-CB2) receptor [for 

reviews, 3, 4]. 

Several earlier studies indicate that CBD has beneficial effects in various cardiovascular 

pathologies such as myocardial infarction, ischemia-induced arrhythmias, and diabetic cardiomyopathy

[5, 6, 7, 8]. Although anti-oxidant and anti-inflammatory actions have been suggested to be involved in 

these beneficial effects [9], the exact mechanisms of CBD actions are currently unknown.

Haeomodynamic effects of CBD have been investigated in earlier in vivo and in vitro studies

[10]. In pentobarbitone anaesthetized rats, CBD has been shown to cause a significant but transient fall

in mean arterial blood pressure [6]. Similarly, in arterial segments taken from rat mesenteric vascular 

bed that have been pre-constricted with phenylephrine, CBD has been shown to cause a concentration-

dependent vasorelaxation [11]. Likewise, in rat isolated aortae, application of CBD (1-30 µM) caused 

vasorelaxation. In agreement with these findings, in human mesenteric arteries, it has been shown that 

CBD causes vasorelaxation of endothelin-1 pre-constricted arterial segments [12]. In these studies, both 

cannabinoid receptor-dependent and independent mechanisms have been shown to play roles in CBD

inhibition of smooth muscle contraction. Further contributions to the complexity of CBD actions

include the type of vascular structure, the presence of intact endothelium, the metabolic products of 
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endocannabinoids [13] and the activity of metabolizing enzymes have also been shown to modulate the 

actions of CBD on cardiovascular system [10].

Compared with the information available on the vascular effects of CBD, to our knowledge, 

there have been few studies focusing on the role of CBD in the regulation of contractility and Ca2+

signaling in cardiac muscle. In earlier in vitro studies, negative inotropic and bradycardic effects of 

CBD have been reported [14]. In addition, in perfused rat heart, CBD has been shown to antagonize the 

Δ9-tetrahydrocannabinoid-induced positive inotropic effect and tachycardia, one of the most consistent 

cardiovascular effects of Cannabis intoxication [15]. In the present study, we have hypothesized that 

the negative inotropic actions of CBD observed in earlier studies are due to the inhibition of excitation-

contraction coupling in ventricular myocytes. Thus, we have investigated the effects of CBD on 

contractility and electrical properties of acutely dissociated rat ventricular myocytes.
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Materials and Methods

Ventricular myocyte isolation

Ventricular myocytes were isolated from adult male Wistar rats (248 ± 17 g) according to 

previously described techniques [16]. This study was carried out in accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of 

Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the UAE 

University. Briefly, the animals were euthanized using a guillotine and hearts were removed rapidly 

and mounted for retrograde perfusion according to the Langendorff method. Hearts were perfused at a 

constant flow of 8 ml g heart-1 min-1 and at 36-37 ˚C with a solution containing (mM): 130 NaCl, 5.4 

KCl, 1.4 MgCl2, 0.75 CaCl2, 0.4 NaH2PO4, 5 HEPES, 10 glucose, 20 taurine, and 10 creatine set to pH 

7.3 with NaOH. When the heart had stabilized, perfusion was continued for 4 min with Ca2+-free 

isolation solution containing 0.1 mM EGTA, and then for 6 min with cell isolation solution containing 

0.05 mM Ca2+, 0.75 mg/ml collagenase (type 1; Worthington Biochemical Corp, USA) and 0.075 

mg/ml protease (type X1 V;  Sigma, Germany). Ventricles were excised from the heart, minced and 

gently shaken in collagenase-containing isolation solution supplemented with 1 % BSA. Cells were 

filtered from this solution at 4 minute intervals and resuspended in isolation solution containing 0.75 

mM Ca2+.

Measurement of ventricular myocyte shortening

Ventricular myocytes were allowed to settle on the glass bottom of a Perspex chamber mounted 

on the stage of an inverted microscope (Axiovert 35, Zeiss, Germany). Myocytes were superfused (3–5 

ml/min) with normal Tyrode (NT) containing (mM): 140 NaCl, 5 KCl, 1 MgCl2, 10 glucose, 5 HEPES, 

1.8 CaCl2 (pH 7.4). Shortening of myocytes was recorded using a video edge detection system (VED-
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114, Crystal Biotech, USA). Resting cell length (RCL) and amplitude of shortening (expressed as a % 

of resting cell length) were measured in electrically stimulated (1 Hz) myocytes maintained at 35–36˚C. 

Data were acquired and analyzed with Signal Averager software v 6.37 (Cambridge Electronic Design, 

UK).  Experimental solutions were prepared from stocks immediately prior to each experiment. 

Measurement of intracellular Ca2+ concentration

Myocytes were loaded with the fluorescent indicator fura-2 AM (F-1221, Molecular Probes, 

USA) as described previously [17]. In brief, 6.25 µl of a 1 mM stock solution of fura-2 AM (dissolved 

in dimethylsulphoxide) was added to 2.5 ml of cells to give a final fura-2 concentration of 2.5 µM. 

Myocytes were shaken gently for 10 min at 24 ˚C (room temperature). After loading, myocytes were 

centrifuged, washed with NT to remove extracellular fura-2 and then left for 30 min to ensure complete 

hydrolysis of the intracellular ester. To measure intracellular Ca2+concentration, myocytes were 

alternately illuminated by 340 and 380 nm light using a monochromator (Cairn Research, UK) which 

changed the excitation light every 2 ms. The resulting fluorescence emitted at 510 nm was recorded by 

a photomultiplier tube and the ratio of the emitted fluorescence at the two excitation wavelengths 

(340/380 ratio) was calculated to provide an index of intracellular Ca2+ concentration. Resting fura-2 

ratio, TPK Ca2+ transient, THALF decay of the Ca2+ transient, and the amplitude of the Ca2+ transient 

were measured in electrically stimulated (1 Hz) myocytes.

Measurements of sarcoplasmic reticulum Ca2+ content

Sarcoplasmic reticulum (SR) Ca2+ release was assessed using previously described techniques

[18]. After establishing steady state Ca2+ transients in electrically stimulated (1 Hz) myocytes 

maintained at 35– 36 ˚C and loaded with fura-2, stimulation was paused for a period of 5 s. Caffeine 

(20 mM) was then applied for 10 s using a solution switching device customized for rapid solution 
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exchange. Electrical stimulation was resumed and the Ca2+ transients were allowed to recover to steady 

state. SR- releasable Ca2+ was assessed by measuring the area under the curve of the caffeine-evoked 

Ca2+ transient. Fractional release of SR Ca2+ was assessed by comparing the amplitude of the 

electrically evoked steady state Ca2+ transients with that of the caffeine-evoked Ca2+ transient and 

refilling of SR was assessed by measuring the rate of recovery of electrically evoked Ca2+ transients 

following application of caffeine.

Assessment of myofilament sensitivity to Ca2+

In some cells shortening and fura-2 ratio were recorded simultaneously. Myofilament sensitivity 

to Ca2+ was assessed from phase-plane diagrams of fura-2 ratio vs. cell length by measuring the 

gradient of the fura-2-cell length trajectory during late relaxation of the twitch contraction. The position 

of the trajectory reflects the relative myofilament response to Ca2+ and hence, was used as a measure of 

myofilament sensitivity to Ca2+ [19].

Electrophysiological measurements of action potentials

Action potentials (APs) were measured using whole-cell patch clamp technique. Recordings

were made with an Axopatch 200B amplifier (Molecular Devices, Downington, PA, USA) coupled to 

an A/D interface (Digidata 1322; Molecular Devices, Downington, PA, USA). Patch pipettes were 

fabricated from filamented GC150TF borosilicate glass (Harvard Apparatus, Holliston, MA, USA) on a 

horizontal puller (Sutter Instruments Co., Novato, CA). Electrode resistances ranged from 2.0 to 3.0 

MΩ, and seal resistances were 1-5 GΩ. After giga seal formation, the membrane was ruptured with 

gentle suction to obtain whole cell current-clamp configuration. APs were elicited by injection of 0.9 to 

1 nA square current pulses for 4-ms at a frequency of 0.2 Hz. Extracellular solution contained (mM): 

144 NaCl, 5.4 KCl, 1.8 CaCl2, 1.2 MgCl2, 1 NaH2PO4, 10 HEPES, 10 glucose, and pH 7.4 (adjusted 
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with NaOH). Recording pipettes were filled with intracellular solution containing (mM): 150 KCl, 10 

NaCl, 120 aspartate, 5 MgCl2, 0.1 CaCl2, 1.1 EGTA, 10 HEPES, 4 Mg-ATP, 5 sucrose, and рН 7.2 

(adjusted with HCl). Experiments were performed at room temperature (22-24 ºC). Changes of external 

solutions and application of drugs were performed using a multi-line perfusion system driven by a 

micro-pump with a common outflow connected to the cell chamber. In some experiments, applications 

of drugs were performed using multi-barrel puffing micropipette with a common outflow positioned in 

close proximity to the cell under investigation. Complete external solution exchange was achieved in 

<1 s. In recording of Ca2+ currents, voltage pulses were elicited from a holding potential of −50 mV to 

membrane potentials ranging from -70 mV to +70 mV in 10 mV increments every 300 ms. The whole-

cell bath solution contained (mM): 95 NaCl, 50 TEACl, 2 MgCl2, 2 CaCl2, 10 HEPES and 10 glucose 

(adjusted to pH 7.35 with NaOH). The pipette solution contained (mM): 140 CsCl, 10 TEACl, 2.0 

MgCl2, 2 HEPES 1 MgATP and 10 EGTA (adjusted to pH 7.25 with CsOH). 

Radioligand binding studies with [3H]Isradipine

Experiments on the binding of [3H]Isradipine (Specific activity 58.6 Ci /mmol, New England 

Nuclear, Chadds Ford, PA, USA) were conducted similar to our earlier studies [20]. Briefly, aliquots of 

membranes (0.1 mg) were added to different concentrations of radiolabeled ligand to give a final 

concentration of 0.02 mg/ml membranes in a total volume of 0.8 ml. After 60 min incubation at room 

temperature, 0.4 ml aliquots of each sample were filtered under vacuum through Watman GF\C filters 

and rapidly washed with 5 ml of ice-cold assay buffer. The filters were dried and extracted in 5 ml of 

HydroflourTM (National Diagnostics, St. Louis, MO, USA) scintillation fluid before counting for 3H. 

Triplicate 50-μl samples of the incubation mixtures were also counted directly for estimations of total 

binding. Nonspecific binding was estimated from parallel measurements of binding in the presence of 5 
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μM unlabeled nifedipine. DMSO, at the highest concentration used in our experiments (0.02 % v/v) had 

no effect on the specific binding of [3H]Isradipine.

Cannabidiol (purchased from Ascent Scientific, Cambridge, UK) was dissolved in DMSO. In 

our control experiments, DMSO, at the highest concentration used (0.02 % v/v), caused 18-20 % 

inhibition of the shortening in experiments lasting up to 20-25 min. Stock solutions of CBD were kept 

at -20 °C until its use. Reagents and chemicals used in our experiments were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Stocks were kept at -20 °C until their use. 

Data Analysis

Electrophysiological data were analyzed using pClamp 8.0 (Molecular Devices, Downington, 

PA), Origin 8.0 (Origin Lab Corp., Northampton, MA) and Mat Lab R2011a (MathWorks Corp., 

Natick, MA) software. APD was measured at 60 % of repolarization from AP amplitude. The results of 

the experiments were expressed as mean ± standard error of the mean (S.E.M.). Statistical analysis was 

performed using the paired t-test (within the same cell analysis). Statistical significance among groups 

was determined using one way ANOVA followed by Bonferroni Post-hoc analysis. Statistical analysis 

of the data was performed using Origin 7.0 software (OriginLab Corp., Northampton, MA) and IBM 

SPSS statistics version 20. On all graphs (*) denotes statistical significance with P<0.05, between 

specified values, or if not specified to the respective control.
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Results

Effects of cannabidiol on ventricular myocyte shortening

In Normal Tyrode (NT) solutions, amplitudes of myocyte shortening in response to electrical 

stimulation (stimulated at 1 Hz) gradually decreased to 85-80 % of controls during experiments lasting 

up to 20 min. No further run down of the shortening amplitudes was observed in NT solution 

containing 0.02 % DMSO (used as vehicle in 1 µM CBD solution; data not shown; n=11; compared to 

0 time point; ANOVA, P>0.05) and, unless it was stated otherwise, DMSO (in the concentration used 

in CBD containing solution) was also included routinely in control (NT) solutions during shortening 

and Ca2+ transient experiments.

Fig. 1A shows typical records of shortening in a myocyte superfused with either NT (in the 

absence of CBD, NT contained 0.02 % DMSO in all experiments) or NT + 1 µM CBD and during 

washout with NT. Time course of the effect of CBD was presented in the Fig. 1B. The effect of CBD 

reached a steady level within 5 min of CBD application. Increasing the incubation time to 10 min did 

not cause further change in the amplitudes of shortening. Recovery from CBD inhibition was 

incomplete during the 5-10 min washout time. In summary, the amplitude of shortening measured after 

5 min bath application of CBD was significantly (paired t-test; n=17; P<0.05) reduced up to 46.4 ± 3.1 

% of controls (Fig.1C). Concentration-response relationship normalized to maximal CBD inhibition 

indicated that CBD suppresses shortening of amplitudes with an IC50 of 0.6 µM (Fig. 1D).
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Effects of cannabidiol on intracellular Ca2+ levels

We have investigated the effects of 5 min bath application of 1 µM CBD on the resting 

intracellular Ca2+ levels and on the amplitudes and kinetics of Ca2+ transients elicited by electrical-field 

stimulation. Typical records of Ca2+ transients in a myocyte superfused with NT (containing 0.02 % 

DMSO), NT + 1 µM CBD and during washout with NT are shown in Fig. 2A. The effects of 1 µM 

CBD on resting fura-2 ratio, TPK Ca2+ transients, THALF decay of the Ca2+ transients, and AMP of Ca2+

transients are shown in Fig. 2B-E, respectively. Although, CBD has been shown to alter intracellular 

Ca2+ levels in various types of cells [for reviews, 3, 9], application of 1 µM CBD for 5 to10 min did not 

cause a significant alteration in resting fura-2 ratio, TPK Ca2+ transients, and THALF decay of the Ca2+ 

transients (paired t-test; n=11-14 cells, P>0.05). However, AMP of the Ca2+ transients were 

significantly reduced by 1 µM CBD (0.337 ± 0.043 fura-2 ratio units) compared to 0.488 ± 0.056 fura-2 

ratio units (paired t-test, n =11 cells) in controls.

Effects of cannabidiol on sarcoplasmic reticulum Ca2+ transport

Maximal amplitudes and the rates of Ca2+ release by 20 mM caffeine remained unaltered after 

10 min bath application of 1 µM CBD (Figure 3A and 3B; paired t-test; n = 7 cells, P>0.05).

Fig. 3C shows a typical record illustrating the protocol used to measure fractional release of SR 

Ca2+. Initially, the myocyte was electrically stimulated at 1Hz. Electrical stimulation was then turned 

off for 5 s. Caffeine was then applied for 10 s using a rapid solution-exchanger device. Electrical 

stimulation was then restarted, and the recovery of intracellular Ca2+ was recorded during a period of 60 

s. SR Ca2+ content was assessed by measuring caffeine-evoked Ca2+ release (area under the caffeine-

evoked Ca2+ transient) and fractional release of Ca2+ by comparing the amplitude of the electrically 

evoked steady-state Ca2+ transients with that of the caffeine-evoked Ca2+ transient in the presence of 
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either NT alone or NT with 1 µM CBD. Fractional release of SR Ca2+ was not significantly altered in 1 

µM CBD compared to NT (0.78 ± 0.04 in CBD versus 0.81 ± 0.07 in controls; paired t-test; n =8 cells; 

Fig. 3D). The recovery of the Ca2+ transients during electrical stimulation following application of 

caffeine (Fig. 3D) was also not significantly altered in myocytes exposed to 1 µM CBD myocytes 

compared to control cells (paired t-test; n = 8 cells, P>0.05).

Effects of cannabidiol on myofilament sensitivity to Ca2+

The effects of CBD on myofilament sensitivity to Ca2+ were also investigated. These 

experiments tested whether CBD decreases the mechanical responses by altering the affinity of the 

contractile machinery of the ventricular myocytes to intracellular Ca2+. Typical record of myocyte 

shortening, fura-2 ratio and phase-plane diagrams of fura-2 ratio vs. cell length in myocytes exposed to 

NT are shown in Fig. 4A. The gradient of the trajectory reflects the relative myofilament response to 

Ca2+ and hence, has been used as a measure of myofilament sensitivity to Ca2+ [19]. The gradients of 

the fura-2-cell length trajectory during late relaxation of the twitch contraction measured during the 

periods 500-600 ms (Fig. 4B), 500-700 ms (Fig. 4C), and 500–800 ms (Fig. 4D) were not significantly 

altered in CBD compared to NT suggesting that myofilament sensitivity to Ca2+ is not reduced by CBD

(CBD-treatment was compared to NT containing 0.02 % DMSO, paired t-test; n = 17 cells; P>0.05).

Effects of cannabidiol on the action potentials of ventricular myocytes

In this set of experiments, patch-clamped cardiomyocytes were exposed to the CBD while 

continuously monitoring their Vrest and APs in the current clamp mode. The generation of APs was 

evoked by 0.9-1 nA depolarizing current pulses of 4 ms duration. Since the intracellular pipette solution 

did not contain Ca2+-chelating agents, the generation of each AP was accompanied by myocyte 

contraction. Therefore, current pulses were applied at a frequency of 0.2 Hz. During a typical 
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experiment following protocols were employed: first, whole-cell configuration was established and 4 to 

5 min dialysis of the myocytes with pipette solution was allowed to ensure the equilibrium conditions 

between the intracellular pipette solution and intracellular milieu. After achieving stable recordings of 

baseline electrical activity (Vrest and AP parameters), myocytes were exposed to CBD for 5 to 10 min 

and subsequently it was washed out.

Resting membrane potentials (means ± SEM) were -77.4 ± 1.9 and -79.2 ± 1.7 mV in control 

and after CBD treatment (n=9) myocytes, respectively (Fig. 5A, inset and Fig. 5B). Maximal 

amplitudes of AP and rate of rising of AP (maximal velocity; V/s, Fig. 5C and Fig 5D) were not altered 

significantly in the presence of CBD. CBD (1 µM) consistently shortened the duration of AP (measured 

at 60 % of repolarization, APD60) (Figs. 5A inset and Fig. 5E). Changes in AP shortening in response to 

CBD (1 µM) application were noticeable within 20 to 30 s (inset to Fig. 5A). Recoveries were usually 

partial and required longer time.
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Effects of cannabidiol on L-type Ca2+ currents

We have also investigated the effect of CBD (1 µM) on the L-type Ca2+ currents (IL,Ca). Figure 

6A shows a typical record of IL,Ca elicited by applying a single 300 ms voltage pulse to +10 mV from a 

holding potential of -50 mV in rat ventricular myocyte before and after 10 min superfusion with 1 µM 

CBD. Time course of the effect of CBD on the density of IL,Ca was presented in Figure 6B. Application 

of vehicle (0.02% DMSO) for 10 min caused a 10-15% inhibition of the current density of IL,Ca in 

experiments lasting up to 15 to 20 min. The effects of CBD were also investigated on the biophysical 

properties of IL,Ca in rat ventricular myocytes. IL,Ca was recorded in the presence of intracellular Cs+ and 

extracellular TEA+ to suppress K+ currents while retaining 95 mM Na+ in the extracellular solution. 

Elimination of contaminating Na+ current during recording of IL,Ca was achieved by applying voltage 

step-pulses from relatively depolarized Vh of -50 mV, which produced steady-state inactivation of 

sodium channels [21]. As evident from original recordings and I-V relationships (Fig. C, D), IL,Ca

started to appear at Vm = -30 mV, reached maximum at around Vm = +10 mV, and decreased at higher 

voltages approaching zero at about Vm = +60 mV (Fig. 6D). Maximal amplitudes of IL,Ca  were 

suppressed in the presence of CBD (1 µM). 

CBD did not change the steady-state activation curve of IL,Ca (V1/2 values in control and in the 

presence of CBD are -19.1 ± 0.4 mV and -17.6 ± 0.3 mV, respectively; n=6, paired t-test, P>0.05)

(Fig.7A). However, there was a hyperpolarizing shift of IL,Ca steady-state inactivation by 9.6 mV (i.e., 

from control value V1/2= -10.2 ± 0.9 mV to V1/2= -19.8 ± 1.1 mV in the presence of CBD) (Fig 7B).

However, there was little influence on the slopes of respective curves (k = 7.7 ± 0.5 mV and k = -4.5 ± 

0.4 mV for the control activation and inactivation, respectively, vs. k = 7.9 ± 0.3 mV and k = -4.2 ± 0.3

mV for the CBD-modified activation and inactivation, respectively).
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In line with earlier reports [22], kinetic analysis of I L,Ca currents were fit to double-exponential 

function with fast (τf) and slow (τs) inactivation time constants. Comparison of I L,Ca currents in the 

absence and presence of CBD revealed noticeable acceleration of the current's inactivation kinetics by 

CBD. Quantification of the time constants of I L,Ca  inactivation showed that CBD (1 μM) significantly 

reduced τi in the range of Vm -30 mV and +10 mV (Fig. 7C).

Effects of CBD on [3H]Isradipine binding

It was possible that CBD interacts directly with the binding site of dihydropyridine class of Ca2+

channel antagonists on L-type Ca2+ channels. For this reason, we tested the effect of CBD on the 

specific binding of [3H]Isradipine. Equilibrium curves for the binding of [3H]Isradipine, in the presence 

and absence of the CBD are presented in Figure 8A (n= 9-11). At a concentration of 10 μM, CBD did 

not cause a significant inhibition of the specific binding of [3H]Isradipine. In controls and in presence 

of 10 μM CBD, maximum binding activities (Bmax) were 196 ± 12 and 184 ± 9 fM/mg protein, and KD

values were 98 ± 11 and 92 ± 8 pM, respectively. There was no statistically significant difference 

between control and CBD treated groups with respect to Bmax values (P>0.05, ANOVA, n=9-11). The 

effect of increasing CBD concentration was also investigated on the specific [3H]Isradipine binding 

from cardiac muscle membranes (Fig. 7C). In the concentration range used (0.1 to 30 μM), CBD did 

not alter the specific binding of [3H]Isradipine. 
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Discussion

The results of this study indicate for the first time that inhibition of Ca2+ signaling underlies the 

negative inotropic actions of CBD in rat ventricular myocytes and that the inhibition of L-type Ca2+

channel mediates the effects of CBD on myocyte contractility. 

Administration of cannabinoids, such as THC and CBD, causes complex hemodynamic changes 

involving phases of both increased and decreased blood pressure as well as changes in heart rate and 

contractility [for reviews, 10, 23]. CBD has been shown to have various effects on muscular structures, 

neuronal and endothelial cells and alter the activities of several receptors, ion channels [for reviews, 3, 

9, 24] and neurotransmitter transporters [24, 25]. However, using video edge detection system allows 

measurement of contractility at single-cell level in a relatively isolated environment and excludes the 

influence of autonomic nerve endings, gap-junctions, neurotransmitter uptake system, and coronary 

perfusion status. In our experiments, CBD caused a significant reduction in the maximal shortening 

amplitudes without significantly altering the time course of myocyte contraction. These findings

provide evidence that the negative inotropic effect of CBD reported in earlier studies [14, 15] results

from a direct interaction of CBD with ventricular myocytes, rather than actions of CBD on nerve 

endings and neurotransmitter uptake systems in the heart.

CBD has been shown to have antagonist effects on GPR55 [27]. Therefore antagonism of a 

constitutive GPR55 activity can mimic the actions of CBD on the contractility of cardiomyocytes. 

However, AM251, an agonist of GPR55 and antagonist/inverse agonist of CB1 receptor, does not alter 

the contractility of cardiomyocytes and amplitudes of L-type Ca2+ currents [28, 29] suggesting that 

antagonism of GPR55 receptors does not mediate the effects of CBD in cardiomyocytes. In several 

recent studies, activation of peroxisome proliferator-activated receptor gamma (PPARγ) has been 

shown to mediate the effects of CBD [13, 30]. However, PPARγ antagonist, GW9662 (1 µM, [13]), did 

not reverse the effects of CBD on myocyte shortening (data not shown).
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Negative inotropic actions of CBD might be attributed to the inhibition of Ca2+ release from the 

SR. In fact, CBD and other cannabinoids have been reported to modulate the ryanodine sensitive 

intracellular Ca2+ stores in neurons [9, 31]. However, the amplitude and kinetics of caffeine-induced 

Ca2+ release from intracellular Ca2+ stores were not changed by CBD suggesting that ryanodine-

sensitive intracellular Ca2+ stores are not involved in negative inotropic effects of CBD observed in this 

study. CBD can alter the levels of second messengers such as cAMP, cGMP and protein kinase C

which are known to be involved in tuning the Ca2+ sensitivity of the contractile proteins. In an earlier 

study in cardiac muscle membranes, cAMP levels have been shown to be unaltered in the presence of 

CBD [32]. Furthermore, sensitivity of contractile proteins to intracellular Ca2+ remained unchanged in 

the presence of CBD suggesting that phosphorylation and de-phosphorylation of the contractile proteins 

do not play a significant role in negative inotropic actions of CBD. Collectively, these results suggest

that the effects of CBD on myocyte contractility are not related to changes in intracellular Ca2+ release 

machinery or sensitivity of myofilaments to Ca2+. In addition, in the presence of CBD, resting levels of 

intracellular Ca2+ and cell length of ventricular myocytes remained unaltered suggesting that CBD does 

not significantly affect Ca2+ homeostasis under resting conditions. 

During excitation-contraction coupling, alterations in the amplitudes and kinetics of cardiac AP

are closely associated with corresponding changes in the contractility of myocytes [33]. In our study, 

CBD decreased durations of APs without significantly affecting the amplitudes and dV/dtmax of APs

suggesting that voltage-gated sodium channels are not affected by CBD. In cardiac muscle, 

extracellular Ca2+ required to trigger Ca2+ release from SR enters through L-type voltage-dependent 

Ca2+ channels opened during the AP. Results of whole-cell patch clamp experiments indicate that, in 

line with the decrease of AP duration, CBD (1-10 µM) caused a significant inhibition of voltage-

dependent L-type Ca2+ channels in cardiomyocytes by accelerating the inactivation of these channels.
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Left-ward (hyperpolarizing) shift of the inactivation curve, together with increased acceleration of 

inactivation kinetics, indicate that more L-type Ca2+ channels would be in closed state during action 

potential. Inactivation of these channels would cause shortening of action potential since the L-type 

Ca2+ channels are the main conductance during plateau phase (phase 2) of the ventricular action 

potential. Collectively, these results suggest that during excitation-contraction coupling, shortening of 

action potential due to the inhibition of L-type Ca2+ channels decreases Ca2+-induced Ca2+ release from 

SR and causes negative inotropic effect of CBD reported in earlier studies. In line with this hypothesis, 

although caffeine-induced contractures and myofilament sensitivity to Ca2+ remained unchanged, 

electrically-induced Ca2+ transients were significantly depressed by CBD; further suggesting that Ca2+-

induced Ca2+ release was inhibited in the presence of CBD. 

In clinical studies, acute CBD intake does not cause a significant change in blood pressure and 

heart rate [for a review, 10]. However, several earlier studies indicate that the increases in blood 

pressure and heart rate during stressful conditions are markedly attenuated by CBD [34, 35, 36]. In in 

vivo studies, increased heart rate and blood pressure, two of the most consistent effects of Cannabis

intoxication, are also decreased by CBD [15]. Collectively these results suggest that CBD, at relatively 

high concentrations, can suppress the function of cardiovascular system. In fact, cardiac failure due to 

depressed heart contractility has been suggested to be the main cause of mortality in Cannabis

intoxication [for a review, 37]. Thus it is likely that some of the effects of Cannabis plant are mediated 

by CBD during Cannabis intoxication.

In addition to cardiac contractility, the electrical activity of the heart has also been suggested to 

be affected by CBD. In an earlier study, CBD has been shown to have beneficial actions in ischemia-

induced cardiac arrhythmias [6]. Shortening of AP duration by CBD observed in our study can be

beneficial or harmful, depending on the underlying pathology. Thus, during acute ischemia, in which
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the duration of the cardiac APD is already shortened, a further decrease should be proarrhythmic [for a 

review, 38]. However, shortening of AP duration may be beneficial in preventing those arrhythmias

caused by triggered activities observed in conditions such as heart failure [38]. In conclusion, the 

results indicate for the first time that CBD inhibits myocyte contractility by acting on L-type Ca2+

channels.
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FIGURE LEGENDS

Figure 1: Effects of CBD on ventricular myocyte shortening. (A) Typical records of shortening in 

an electrically stimulated (1 Hz) ventricular myocyte superfused with either NT (containing the vehicle, 

0.02% DMSO) or NT + 1 µM CBD and during washout with NT. (B) Time course of the mean 

amplitudes (AMP) of shortening expressed as a percentage of control values in vehicle (NT + 0.02% 

DMSO), and in presence of CBD (1 µM). Myocytes were maintained at 35-36 °C and superfused with 

CBD for 10 min. Data are shown as means ± S.E.M., n = 6-8 cells. (C) Bar graph showing the mean 

amplitudes (AMP) of shortening expressed as a percentage of control values in the presence of vehicle, 

and in presence of CBD after 10 min bath exposure to CBD (1 µM). Data are shown as means ± 

S.E.M., n = 17 cells. * indicates statistically significant difference at the level of P < 0.05. (D)

Concentration-response curve for the inhibitory effect of CBD on myocyte shortening. The data was 

normalized to the maximal inhibitory effect of CBD and plotted as a function of CBD concentrations. 

Each data point represents means ± S.E.M. from n = 6-8 cells for each concentration.

Figure 2: Effects of CBD on amplitude and time-course of intracellular Ca2+ in rat ventricular 

myocytes. (A) Typical records of Ca2+ transients in an electrically stimulated (1 Hz) ventricular 

myocyte superfused with either NT or NT + 1 µM CBD and during washout with NT; scale bar 

indicates 0.1 fura-2 ratio unit (RU). Also shown resting fura-2 ratio (340/380 nm) (B), time to peak 

(TPK) Ca2+ transient (C), time to half (THALF) decay of the Ca2+ transients (D) and amplitude (AMP) of 

the Ca2+ transients (E). Myocytes were maintained at 35-36 °C and superfused with CBD for 10 min. 

Data are shown as means ± SEM, n=11-14 cell. * indicates statistically significant difference at the 

level of P < 0.05.
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Figure 3: Effects of CBD on sarcoplasmic reticulum Ca2+ transport. (A) Typical records illustrating 

the effects of CBD on caffeine-induced Ca2+ transients. (B) Comparison of the effect of caffeine 

application on the area under caffeine-evoked Ca2+ transients in NT and CBD-treated cells in rat 

ventricular myocytes. (C) Typical record illustrating the effects of electrical stimulation (ES) and rapid 

application of caffeine on fura-2 ratio. (D) Mean amplitude of SR fractional release of Ca2+ (on the 

right) and recovery of electrically evoked intracellular Ca2+ after application of caffeine (on the left). 

Data are shown as means ± S.E.M., n = 7-8 cells.

Figure 4: Effects of CBD on myofilament sensitivity to Ca2+. (A) Typical record of myocyte 

shortening and fura-2 ratio and phase-plane diagrams of fura-2 ratio vs. cell length in a myocytes 

exposed to NT. The arrow indicates the region where the gradient was measured. B-D show the effect 

of 1 µM CBD on the mean gradient of the fura-2 cell length trajectory of the twitch contraction during 

the periods 500-600 (B), 500-700 (C) and 500-800 ms (D) of late relaxation. Data are shown as means 

± S.E.M., n = 17 cells.

Figure 5: Effects of CBD on the action potentials of ventricular myocytes. (A) Representative 

recordings show the APs in controls (dark grey area), in the presence of 1 μM CBD (light grey area)

and after washout (striped area) in the ventricular myocytes; the insets on panel A show the time course 

of the action potential duration (APD60) and resting potential (Vrest) changes in response to CBD

application (indicated by horizontal bars). (B-E) show summary of CBD effects on amplitude and 

shape of the AP in cardiomyocytes; quantification of the changes in Vrest (B), AP amplitude (C), AP 

maximal rate of rise (D) and AP duration (E), characterized by APD60 in controls (dark grey bars) and 

in response to 1 μM CBD (light grey bars). Data are shown as means ± S.E.M. from 6 to 9 myocytes

for each group. 
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Figure 6: Effects of cannabidiol on Ca2+ currents mediated by L-type Ca2+ channels in rat 

ventricular myocytes. (A) CBD inhibits L-type Ca2+ currents recorded using whole-cell voltage-clamp 

mode of patch clamp technique. Current traces are recorded before (control) and after 10 min 

application of 1 μM CBD. L-type Ca2+ currents were recorded during 300 ms voltage pulses to +10 mV 

from a holding potential of -50 mV. (B) Averages of the maximal currents of VGCCs presented as a 

function of time in the presence of vehicle (0.02% DMSO; filled circles) and 1 μM CBD (n=5 cells; 

open circles). Application time for the agents was presented in horizontal bars. (C) Representative 

recordings of ICa in response to the depicted pulse protocol under control conditions and after 

application of 1μM CBD. (D) Normalized and averaged I-V relationships of control ICa (filled circles) 

and ICa in the presence of 1 μM CBD (open circles) determined by applying a series of step 

depolarizing pulses from -70 mV to +70 mV in 10 mV increments for a duration of 300 ms. Data points 

(means ± S.E.M.) are from 5 to 7 cells.

Figure 7: Effects of CBD on steady state activation and inactivation of ICa in rat ventricular 

myocytes. Steady-state activation (SSA) (A) and steady-state inactivation (SSI) (B) curves of ICa in the 

absence (filled circles) and presence of 1 μM CBD (open circles). Data points (mean ± S.E.M.) are 

from 5 cells. Fit of experimental data points with Boltzmann equation. (C) Voltage-dependent fast 

(triangles) and slow (circles) inactivation time constants (τi) of IL,Ca under control conditions (filled 

circles, and triangles) and in the presence of 1 μM CBD (open circles and triangles). Data points 

(means ± S.E.M.) are from 5-6 cells. 



Page 28 of 38

Acc
ep

te
d 

M
an

us
cr

ip
t

28

Fig. 8: Effects of CBD on the specific binding of [3H]Isradipine to rat ventricular muscle 

membranes. (A) Specific binding as a function of the concentration of [3H]Isradipine in the absence 

and presence of CBD. Data points for controls and CBD (1 μM) are indicated by filled and open 

circles, respectively. (B) Effects of increasing the concentration of CBD on the specific binding of 

[3H]Isradipine to cardiac muscle membranes. Data are the means± S.E.M. of 9-11 experiments. 
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 Highlights

 The effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were 
investigated using video edge detection, the Ca2+ sensitive fluorescent indicator fura-2 AM, whole-cell 
patch clamp, and radioligand binding methods. 

 CBD caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and 
Ca2+ transients and inhibited L-type Ca2+ channels. 

 The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca2+ channels at a 
site different than dihydropyridine binding site and inhibits excitation-contraction coupling in 
cardiomyocytes.
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Figure4
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Figure 5
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Figure 6
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