
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

2004

Anomaly-Free Component Adaptation with Class
Overriding
Atanas Radenski
Chapman University, radenski@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Programming Languages and Compilers Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Radenski, A. Anomaly-Free Component Adaptation with Class Overriding. Journal of Systems and Software, Elsevier Science, Vol. 71,
Issues 1-2, 2004, 37-48. doi: 10.1016/S0164-1212(02)00137-1

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Anomaly-Free Component Adaptation with Class Overriding

Comments
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Systems
and Software, volume 71, issues 1-2, 2004 following peer review. The definitive publisher-authenticated
version is available online at DOI:10.1016/S0164-1212(02)00137-1

The Creative Commons license below applies only to this version of the article.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0
License.

Copyright
Elsevier

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/211

http://dx.doi.org/10.1016/S0164-1212(02)00137-1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://digitalcommons.chapman.edu/scs_articles/211?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages

Page 1: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Anomaly-Free Component Adaptation with Class

Overriding

Atanas Radenski

Chapman University

Department of Computer Science, Mathematics, and Physics

One University Drive

Orange, CA 92866, U.S.A.

mailto:radenski@chapman.edu

http://www.chapman.edu/~radenski/

Abstract

Software components can be implemented and distributed as collections of classes, then

adapted to the needs of specific applications by means of subclassing. Unfortunately,

subclassing in collections of related classes may require re-implementation of otherwise

valid classes just because they utilize outdated parent classes, a phenomenon that is referred

to as the subclassing anomaly. The subclassing anomaly is a serious problem since it can

void the benefits of component-based programming altogether. We propose a code

adaptation language mechanism called class overriding that is intended to overcome the

subclassing anomaly. Class overriding does not create new and isolated derived classes as

subclassing does, but rather extends and updates existing classes across collections of related

classes. If adopted in new languages for component-based programming, or in existing

compiled languages such as C# and Java, class overriding can help maintain the integrity of

evolving collections of related classes and thus enhance software component adaptability.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 2: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

While other techniques such as reflection and binary code adaptation can be used to reduce

the magnitude of the subclassing anomaly, class overriding has the advantage of being easy-

to-use and efficient.

Keywords: software component adaptation, subclassing, class overriding, the C#

programming language, the Java programming language, modular languages

1. Introduction

The Need

Software components are pre-manufactured building blocks that can be assembled into

various applications, in order to avoid crafting such applications individually from

scratch (Szyperski, 1998). Application assemblers can acquire individual components

from different vendors and actually combine the many special skills, ideas, and

inventions each vendor has to offer. Component vendors cannot be expected to

synchronize their work with each other, but they can build on common ‘gluing’

standards, such as COM and CORBA (Rogerson, 1996; OMG, 1997) that define common

calling conventions. Ideally, neither the components would need to be adapted nor any

programming would be required to glue the components together (Büchi and Weck,

1998). In practice, the amalgamation of independently developed components and the

adaptation of existing components to the needs of particular applications can suffer form

various component incompatibility problems, such as the subclassing anomaly (discussed

in this paper).

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 3: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Object-oriented software components are more likely to be complex collections of

related classes, rather than individual classes or libraries of independent classes.

Subclassing, the principal code adaptation mechanism that is offered by mainstream

object-oriented languages, provides effective adaptation and reuse for individual classes.

Unfortunately, adaptation of a collection of related classes may not be effectively

provided by independent adaptation of its constituent classes. When a class is adapted to

new requirements by means of subclassing, other classes from the same collection may

continue to utilize the outdated parent class rather than the newly derived class. Even

though such classes may be otherwise valid, they may need to be re-implemented in order

to maintain the integrity of the entire collection of classes. This subclassing anomaly may

void the benefits of component-oriented programming.

Our Approach

We overcome the subclassing anomaly by means of an alternative code adaptation

language mechanism that can be applied to a collection of related classes rather than to an

isolated class. Such a collection-wide adaptation mechanism can be beneficial, because

object-oriented components and applications are not limited to individual classes. In this

paper, we propose class overriding, a collection-wide adaptation mechanism that extends

and updates an existing class across a collection of related classes. Class overriding can

be adopted in new or existing compiled languages, such as C# and Java, as a language

feature that is complementary to subclassing and that provides an alternative mechanism

for code adaptation. With subclassing, one derives a new class from an isolated parent

class; with class overriding, one does not create a new class but rather extends and

updates an existing class across an entire collection of related classes, such as a C#

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 4: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

namespace or a Java package. Because class overriding updates all references to a class

within a collection of classes, it guarantees the integrity of the collection. While

reflection, binary code adaptation, and other existing techniques can reduce the

magnitude of the subclassing anomaly, class overriding offers the advantages of being

easy-to-use and efficient.

Rationale

Both class overriding and subclassing are forms of class-based (implementation)

inheritance. We focus on this type of inheritance because it can be supported by compiled

languages in an efficient and reliable manner. It is not the goal of this paper to focus on

less popular kinds of inheritance, such as interface-based, prototype-based, and actor-

based inheritance, nor to target the less efficient category of interpreted languages.

Recent proposals to overcome component adaptation difficulties typically follow

two distinct scenarios: a) design a new language for component-oriented programming

with component-adaptation features (Fröhlich and Franz, 2001; Sreedhar, 2001), or b) use

an existing object-oriented language and enhance it with component adaptation

mechanisms (Aldrich and Chambers, 2001; Zenger 2002). We are among those who

prefer to take the object-oriented paradigm as given (on the basis of its contribution to the

production of quality software) and investigate how to enhance it so that it provides

effective component adaptation as well. The transition from an object-oriented language

to its component-oriented enhancement would be easier and less frustrating than the

transition to a new language designed from scratch. The problem is not so much that of

learning a new language as it is of rewriting a 100,000-line program (Almasi and Gotlieb,

1994).

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 5: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

This paper uses C# and Java as sample languages for the analysis of the

subclassing anomaly and for the definition of class overriding. We believe that C# and

Java are good choices because these languages represent well a variety of compiled

object-oriented languages. Besides, C# is a new language that is developed and promoted

by Microsoft and is therefore expected to have strong impact on object-oriented software

development, while Java is well established and already has such impact. The subclassing

anomaly occurs not only in C# and Java, but also in a variety of similar compiled object-

oriented languages, such as C++ and Eiffel, and also in more remote modular object-

oriented languages, such as Ada 95, Modula 3, and Oberon 2, to mention a few. The

reuse potential of such compiled object-oriented languages can be improved with class

overriding. While we utilize C# and Java as sample languages in order to provide clarity

of discussion, we also address issues in general and language independent terms

whenever appropriate.

 Following this introduction, section 2 is focused on the subclassing anomaly. The

subclassing anomaly is first discussed in general terms and is then illustrated by a GUI

component example. The analysis of the subclassing anomaly provides the ground for

Section 3, which is dedicated to class overriding, a mechanism for anomaly-free

component adaptation. . This section first defines class overriding in language-

independent terms, then specifies how class overriding can be adopted in existing object-

oriented languages, such as C# and Java. After that, section 3 demonstrates how class

overriding can provide a solution for the subclassing anomaly. Section 3 also describes a

prototype implementation of class overriding. Section 4 presents an overview of related

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 6: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

work. Finally, section 5 summarizes the contributions of this paper and outlines

opportunities for future work.

2. Analysis of the Subclassing Anomaly

Object technology facilitates code adaptation and reuse through implementation inheritance.

Subclassing is the de facto standard object-oriented programming language feature that

provides code adaptation. Subclassing allows the derivation of new classes from existing

ones through extension and method overriding. A subclass can inherit variables and

methods from a parent class, can extend the parent class with newly declared variables

and methods, and can override inherited methods with newly declared ones.

Collection
Constituent

Collection
Container

namespace Collection {
 public class Constituent { … }
 public class Container { …
 Constituent constituent = new Constituent (); …
 }
 public class Application { … Collection

Application Constituent constituent = new Constituent ();
 Container container = new Container (); …
 }

Figure 1. A collection of related classes.
Legend. An arrow from C to A represents an A depends-on C relationship.

An object-oriented component can be implemented as a collection of related classes.

In order to adapt the collection to the needs of a particular application the developer may

need to update some classes in order to adapt them to specific requirements of that particular

application. When a class that needs to be updated is independent from all other classes from

the same collection, the functionality of that class can be easily updated through subclassing

and method overriding.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 7: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

namespace Collection { Collection Collection
Constituent Container public class Constituent { … }

 public class Container { …
 Constituent constituent = new Constituent (); …

subclassing }
 public class Application { …
 Constituent constituent = new Constituent (); EvolvedCollection

Constituent Container container = new Container (); …
 }
}

namespace EvolvedCollection { EvolvedCollection
 public class Constituent : Collection.Constituent {…} Application
 public class Application { …
 Constituent constituent = new Constituent ();
 Container container = new Container (); …
 }
}

Figure 2. The subclassing anomaly: The Collection.Container class must be re-implemented to
instantiate EvolvedCollection.Constituent.

Legend. A solid single arrow from C to A represents an existing A depends-on C relationship. A
dotted single arrow represents a depends-on relationship that is needed to preserve the integrity of

the EvolvedCollection.

Subclassing is a straightforward code adaptation mechanism in the case of

independent classes. Unfortunately, subclassing may not work well for code adaptation

when there are dependencies between classes. Let us assume that in a collection of related

classes, a container class instantiates and utilizes an object of a constituent class (Fig. 1). Let

us also assume that at a later point of the existence of the collection of classes, the

constituent class needs to be adapted to changing requirements, while the container class

remains valid, meaning that it still provides relevant functionality and needs no changes.

Subclassing of the constituent produces an evolved constituent subclass of the

original constituent class, which is then incorporated in the evolved collection. The

problem is that the integrity of the evolved collection is violated, since in the evolved

collection the container class still instantiates and utilizes an object of the old parent

constituent class, rather than an object of the evolved constituent class (Fig. 2). Even

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 8: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

though the container class is assumed to provide relevant functionality it needs to be re-

implemented so that it creates an object of the evolved class and thus maintains the

integrity of the evolved collection. In summary, subclassing of constituent classes may

require the re-implementation of valid container classes, a phenomenon that we term as

the subclassing anomaly.

Classes may depend on each other in various ways. Some dependencies do not

cause anomalies, while others do. The so-called monomorphic dependencies that trigger

the subclassing anomaly are defined below.

Object-oriented languages allow two types of references to classes: polymorphic

references and monomorphic references. A polymorphic reference to a class C stands (1)

for C itself and (2) for all possible subclasses of C. A monomorphic reference to a class C

stands for C only but not for any subclasses of C.

Polymorphic references to a class C occur in:

• parameter, variable, and constant declarations, e.g.: void f (C x); C x;

• type tests, e.g.: if (y is C) …; if (y instanceof C) …;

• type casts, e.g.: x = (C) y;

Monomorphic references to a class C occur in:

• constructor invocations, e.g.: x = new C ();

• static member access, e.g.: C.staticMethod ();

• subclass definitions, e.g.: class C1 : C {…} ; class C1 extends C {…};

A class A depends monomorphically on class C if the definition of A contains a

monomorphic reference to C; further on, we skip the word monomorphically and simply

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 9: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

say that A depends on C. A class A depends on C when A invokes the constructor of C,

when A extends C, or when A refers to a static member of C.

The subclassing anomaly is triggered by monomorphic dependencies within a

collection of classes. When the collection evolves, subclasses can be defined in order to

adapt the collection to the changing environment. However, no matter how subclassing is

applied, a monomorphic reference continues to stand for the outdated base class in the

evolved collection. Thus, all classes that contain monomorphic references must be re-

implemented, often in textually equivalent form, as members of the evolved collection.

Such re-implemented classes must be recompiled so that monomorphic references are

bound to up-to-date subclasses. In contrast to monomorphic references, polymorphic

references to outdated base classes do not necessarily require re-implementation of the

referring classes - because polymorphic references stand not only for the base class (as

monomorphic references do), but for all of its subclasses as well.

From a language perspective, a collection of related classes is normally packaged

in a separate unit, such as a C# namespace, a Java package, an Ada 95 package, an

Oberon 2 module, etc. There are certain differences between packaging features that are

adopted in various languages; for example, C# namespaces and Java packages do not

have state, while Ada 95 packages and Oberon 2 modules do. No matter what the

differences are, all mainstream packaging mechanisms suffer from the subclassing

anomaly. Our class-overriding solution will be adaptable to various packaging

mechanisms.

The rest of this section is devoted to a GUI component example that exibits the

subclassing anomaly.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 10: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Example: The Subclassing Anomaly in a GUI Component

The programming language C# is used as implementation language in this example. A

collection of two related GUI classes, such as Window and Dialog, is packaged as a C#

namespace (Fig. 3). A Window object has a title and border and can be used to display

information to the user. The Window constructor invokes a PaintGray method to fill the

background of the window in gray. A Dialog object is a Window that takes input from the

user. A Dialog object creates a Window object then enhances it with input functions. An

application can use both Window and Dialog objects, and each Dialog object uses a

Window object.

Suppose that a GUI application that is to utilize the GUI collection needs to adapt

the Window class to its own requirements. For example, the GUI application may need a

new implementation of the Show method so that it paints the window background in blue

rather than in gray. Such an adaptation can be achieved by subclassing the existing

Window class and overriding the inherited Show method with a new one (see Fig. 3).

The GUI application is assumed to create both Window and Dialog objects, as

illustrated in Fig. 3. Note that the GUI application instantiates its own derived Window

class, rather than the parent Window class from the GUI collection. For this reason, in the

GUI application the Window constructor invokes the new Show method which on its turn

paints the Window object in blue, as required. Furthermore, the GUI application

instantiates the unchanged Dialog class as defined in the GUI collection. For this reason,

in the GUI application the Dialog constructor invokes the old Show method which on its

turn paints the Window object, and therefore the Dialog object in gray, rather than in

blue, as required by the GUI application.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 11: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

namespace GUIcollection {
public class Window {

 virtual public void Show () { PaintGray(); …}
 public Window () { Show (); … }
 }
 public class Dialog {
 Window window = new Window ();
 … add dialog to window …
 }
}

using GUIcollection;
namespace GUIapplication {
 public class Window : GUIcollection.Window {…
 override public void Show () { PaintBlue(); … }
 }
 public class Application {
 public static void Main () {
 Window window = new Window ();

Dialog dialog = new Dialog ();
 }
 }
}

Figure 3. The subclassing anomaly in a GUI example.

With subclassing, the integrity of the application is compromised, because a

method that is supposed to be executed in the same way within the same application is

actually executed in a different way. Indeed, one invocation of Show executes the

overriding implementation GUIapplication.Window.Show, while another invocation

executes the old overridden implementation GUIcollection.Window.Show. Technically,

the GUI application paints output-only windows in blue and dialog windows in gray.

To ensure the integrity of the GUI application, the developer needs to re-

implement the Dialog class. The re-implementation of the Dialog class is textually

identical with the old one and only needs to be encapsulated within the GUI application

namespace.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 12: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

The necessity to re-implement a valid Dialog class is an example the subclassing

anomaly. Note that class Dialog instantiates an object of class Window and incorporate

the created instance of Window as a data member. This monomorphic dependence of

class Dialog on class Window triggers the inheritance anomaly.

3. Technical Approach to Class Overriding

Class Replication and Overriding

Subclassing in a collection of dependent classes may require re-implementation of all

classes that depend monomorphically on the parent class. The need to re-implement such

otherwise valid classes is referred to as the subclassing anomaly. The subclassing

anomaly is a serious concern since it can largely invalidate the benefits of inheritance.

We propose to eliminate the subclassing anomaly with class overriding, an object-

oriented language feature that is complementary to subclassing. In contrast to

subclassing, class overriding does not create a new and isolated derived class, but rather

extends and updates an existing class. Class overriding is not limited to a single class but

propagates across a collection of related classes: it updates all classes from the collection

that refer to the class being overridden. Thus, class overriding preserves the integrity of a

collection of classes by guaranteeing that any update to a class replaces the previous

version of the class within the whole collection.

Depending on the programming language, a collection of classes can be

represented as a namespace (in C#), a stateless package (in Java), as a package with a

state (in Ada 95), or as a module (in Oberon 2). We first use the language independent

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 13: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

term collection to define class overriding, then we demonstrate how this general

definition applies to particular languages, such as C# and Java.

Collection
Constituent

Collection
Container

namespace Collection {
 public class Constituent { … }
 public class Container { …
 Constituent constituent = new Constituent (); …

Collection
Application

 }
 public class Application { …
 Constituent constituent = new Constituent ();
 Container container = new Container (); …

namespace replication and class overriding }
}

EvolvedCollection

Constituent
EvolvedCollection

Container
namespace EvolvedCollection {
 replicate Collection;

… overriding
class definition…

 override public class Constituent {
 … overriding inherited methods…
 … additional data and method members
 } EvolvedCollection

Application … additional class members …
}

Figure 4. Namespace replication and class overriding in C#.

The definition of class overriding is based on the concept of replication.

Replication consists in embedding a replica of each class from an existing collection of

classes (the replicated collection) into a newly created collection of classes (the

replicating collection). In addition to class replicas, the replicating collection can be

further extended with newly defined classed or subclasses.

Replication changes class membership: while all original classes are members of

the replicated collection, the class replicas become members of the replicating collection.

Except for class membership, class replication preserves all other class properties,

including names and access levels. In the replicating collection, each class replica is

referred to by the same name and incorporates the same public, protected, and private

access levels as the original class in the replicated collection.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 14: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

A class replica can be overridden (meaning replaced) across the entire replicated

collection with its own extension. Similarly to a subclass, the overriding class:

• inherits all data and method members of the class replica

• can override some of the inherited methods

• can extend the replica with additional data and method members

The overriding class replaces the class replica across the entire replicated

collection, meaning that all classes from the replicated collection are updated to use the

overriding class instead of the replica. Technically this is achieved by late class binding:

class references are bound to particular class definitions late, at class loading time, rather

than early, at compile time. This is in contrast to traditional compiled languages, such as

C# and Java, which use late binding only for methods but restrict monomorphic class

references to early static binding.

C# and Java can be enhanced to support class overriding. Collections of classes

can be represented as C# namespaces or as Java packages. Therefore, C# is to be

extended with a namespace replication statement, while Java is to be extended with a

package replication statement. Furthermore, the two languages are to be extended with

class overriding definitions. A C# an example of namespace replication and class

overriding is presented in Fig. 4. Because Java classes include individual package

declaration statements, Java classes should also include individual replication statements.

Modular languages such as Ada 95 and Oberon 2 can be likewise enhanced with module

replication and class overriding.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 15: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Replication versus Import

A programming languages that allows the encapsulation of collections of classes

normally supports collection import as well. Although import and replication share

syntactical similarities, there are very different semantically. The most important

differences between replication and import are discussed in this section.

In Java a collection of classes can be encapsulated in a package; classes from the

collection can be selectively or entirely imported in any other package. In C# a collection

of classes is encapsulated as a namespace; such a collection is implicitly imported when it

is referenced to. In addition, the C# using statement explicitly imports a namespace and

assigns an alias to it. Ada 95 offers with clause for package import, while Oberon 2 offers

an import declaration for module import. We ignore some syntactic differences between

various language features and use the term import in a language independent manner in

order to compare import and replication.

The principal difference between import and replication is that import defines

shares-a relationship between collections of classes while replication defines contains-a

relationship.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 16: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Collection C0; Collection C0;

Collection C1; Collection C2; Collection C1; Collection C2;
Import C0; Import C0; Replicate C0; Replicate C0;

Collection C0; Collection C0;

Collection Application;
Import C0, C1, C2;

Collection Application;
Import C0, C1, C2;

Figure 5. Import (left) versus replication (right).
Legend. Shares-a relationship is visualized by arrows; contains-a relationship is visualized

by nesting.

Consider for example an application in which collections C1 and C2 import

collection C0 (Fig. 5, left). The imported collection C0 is shared between collections C1

and C2. Any change of a static data of a class from C0 by a class from C1 is visible for

any class from C2 as well.

Alternatively, assume that collection C0 is replicated in both collections C1 and

C2. In this case each of the collections C1 and C2 incorporates a separate replica of C0

and therefore has C0 as its proper part (Fig. 5, right). Thus, C1 may change static data

members replicated from C0, but these changes do not affect the same data members

Collection C1;
Import C0;

Collection C2; Replicate C0; Collection C0; Import C0;
Collection C0;

Figure 6. Shares-a and contains-a relationships can be mixed.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 17: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

replicated by C2. Besides, C1 and C2 can define different extensions of the same class

from M0, simply because they incorporate their own replicas of the class. Likewise, C1

and C2 can define different overriding methods for the same method replicated from C0.

Note that import and replication can be mixed, if necessary in order to implement

shares-a and contains-a relationships. For example, a collection C1 can import collection

C0 and, at the same, replicate collection C0 (Fig. 6). In this case, C1 embeds a separate

replica of collection C0 and at the same time refers to the shared instance of the imported

collection C0.

If a replicated class and an imported class have the same name, the replicated

class name hides the imported class name. In this case, an unqualified class name

resolves to the replicated class, but the imported class can still be referenced through a

qualified name.

Consider, for example a GUI collection A that defines classes Window and Dialog

(Fig. 7). Consider also a GUI collection B that is defined independently from collection A

and that defines its own classes with the same names, Window and Dialog, and, in

addition, a new DrawingWindow class. A GUI application can (1) import collection B (by

means of a using statement in C# in this example), (2) replicate collection A, and (3)

override the replicated Window class (Fig. 7). In the GUI application, the use of the

qualified name GUICollectionB.Dialog results in a purple window that beeps. In contrast,

the unqualified name Dialog resolves to GUICollectionA.Dialog and therefore delivers a

blue window that does not beep. Finally, DrawingWindow is defined in collection B only

and does not need to be qualified.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 18: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

namespace GUIcollectionA {
public class Window {

virtual public void Show () { PaintGray (); …}
}
public class Dialog {

Window window = new Window ();
… add dialog to window …

}
}

namespace GUIcollectionB {

public class Window {
virtual public void Show () { PaintPurple (); …}
public Window () { Show (); … }

}
public class Dialog {

Window window = new Window ();
… sound beep …
… add dialog to window …

}
public class DrawingWindow {

… unable user to draw …
}

}

using GUICollectionB;
namespace GUIapplication {

replicate GUIcollectionA;

override public class Window {…
override public void Show () { PaintBlue (); … }

}
public class Application {

public static void Main () {
GUICollectionB.Dialog dialog1 = new GUICollectionB.Dialog ();
Dialog dialog2 = new Dialog ();
DrawingWindow drawingWindow = new DrawingWindow ();

}
}

}

Figure 7. Name resolution in a GUI example with replication and import.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 19: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Class overriding is possible only within replicated collections of classes, because

they are exclusively owned by the replicating collection and not by any other collections.

Updating a class requires an exclusive control over the class, as does updating anything

else. In contrast to replicated collections, imported collections of classes are shared.

Overriding a class from one importing collection may easily generate conflict with other

importing collections. For example, two importing collections may try to override the

same sheared class. Thus, class overriding can be based on replication but not on import.

Class Overriding as a Solution for the Subclassing Anomaly

The subclassing anomaly, as analyzed in section 2, refers to the necessity to re-implement

otherwise valid classes that depend on outdated parent classes in evolving class

collections. The subclassing anomaly is triggered by monomorphic references to outdated

parent classes. Constructor invocations, subclass definitions, and static member access

are all monomorphic references. The problem with monomorphic class references is that

they are bound to class definitions statically, at compile time. Classes that contain

monomorphic references must be re-implemented, typically in textually equivalent form,

as members of an evolved collection of classes. Such re-implemented classes need be

recompiled so that monomorphic references are bound to updated subclasses, rather than

to their outdated parent classes.

Class overriding, as defined earlier in this section, imposes late binding semantics

for all class references. In a language with class overriding, monomorphic class

references are bound to particular class definitions at class loading time. This is in

contrast to traditional compiled languages, such as C# and Java, which limit

monomorphic class references to early static binding.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 20: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Class overriding replaces a class replica across the entire replicated collection,

meaning that all classes from the replicated collection are updated to use the overriding

class instead of the replica. In the replicated collection, monomorphic references stand for

the overriding class, rather than for the parent class. Therefore, valid classes do not need

to be re-implemented just because they contain monomorphic references. Thus, the

subclassing anomaly is avoided if classes are adapted by means of class overriding,

instead of subclassing.

Section 2 introduces GUI component that suffers from the subclassing anomaly. It

is possible to modify the GUI component so that it utilizes class overriding instead of

subclassing and thus eliminate the subclassing anomaly.

Example: Eliminating the subclassing Anomaly in a GUI

Let us return to the GUI component example from Section 2 which reveals the

subclassing anomaly in an evolving collection of GUI classes. As shown in Fig. 3, the

collection of GUI classes includes classes Dialog and Window, such that class Dialog

depends on class Window. Assume again, as in the Section 2 example that a GUI

application needs to update the Window class with a new version of the Show method.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 21: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

namespace GUIcollection {
public class Window {

 virtual public void Show () { PaintGray(); …}
 public Window () { Show (); … }
 }
 public class Dialog {
 Window window = new Window ();
 … add dialog to window …
 }
}

namespace GUIapplication {

replicate GUIcollection;
 override public class Window {…
 override public void Show () { PaintBlue(); … }
 }
 public class Application {
 public static void Main () {
 Window window = new Window ();

Dialog dialog = new Dialog ();
 }
 }
}

Figure 8. Elimination of the subclassing anomaly in a GUI

example.

The GUI application can replicate the GUI collection and then override the replicated

Window class (Fig. 8). The overriding Window class extends the replicated Window class

and overrides the replicated Show method. Class overriding updates the Window class

across the entire replicated GUI collection, including the replicated Dialog class. For this

reason, in the GUI application the replicated Dialog class instantiates the overriding

Window class which supplies the overriding Show method. When subclassing is used

rather than class overriding, the Dialog class needs to be re-implemented because it

instantiates the parent Window class which invokes the old Show method, as

demonstrated in the section 2 example.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 22: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Implementation

In this paper, we analyze the subclassing anomaly, a software reuse problem that appears

in evolving collections of related classes. As a solution to the subclassing anomaly, we

propose software reuse mechanism that is based on class replication and class overriding

instead of class import and subclassing. In earlier research, we have defined class

overriding as an element of a modular language reuse mechanism named module

embedding (Radenski, 1998). Class replication, as defined in this paper, is the object-

oriented alternative to module embedding. We have incorporated class overriding and

module embedding in a modular message-parallel language called Paradigm/SP.

Paradigm/SP has been used to specify and validate generic message-parallel algorithms

and to derive various cluster-computing applications from such generic algorithms

(Radenski and Norris, 2000).

An implementation of Paradigm/SP has been developed and documented

(Radenski, 2000). The implementation of module embedding is based on run-time

module, type, and procedure descriptors that are set by a dynamic loading process. Those

descriptors bind types and methods to particular definitions at loading time. This

implementation technique can be adapted to support class replication and class overriding

in non-modular object-oriented languages, such as C# and Java.

Run-type descriptors introduce an additional level of indirection for object

references and therefore impose additional run-time overhead. This run-time overhead

can be replaced by loading-time overhead if dynamic loading is replaced by dynamic

compilation. The development for dynamic compilation techniques for class replication

and overriding is a subject for future research.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 23: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

4. Related Work

A number of researchers have studied and proposed solutions to various component

incompatibility problems, such as: component integration and evolution problems, type

compatibility problems, conflicts between independent interfaces, the extensibility

problem, the fragile base class problem, and the fragile subclassing problem. We agree

with researchers who recognize extensibility as the central feature of component-oriented

languages (Fröhlich and Franz, 2001), who state that modular (i.e., collection-wise)

reasoning is a key requirement for component-oriented programming (Büchi and Weck,

2000), and who claim that components are becoming central to the design process and

deserve close integration with the programming language (McDirmid et al., 2001a;

McDirmid et al., 2001b). While subclassing and polymorphism support the construction

of individual extensible classes, they fail to integrate extensions in collections of related

classes. In contrast, class overriding applies to entire collections of related classes and

directly enables the process of developing and integrating extensions within such

collections.

Component integration and evolution problems. Keller and Holzle (1998)

assume that a component is a single class and review the so-called component integration

and evolution problems. The component integration problem appears when an

application needs to employ uniformly components from different vendors that have the

same functionality but use different method names and signatures. The component

evolution problem is related to component modifications (such as interface evolution)

that may invalidate existing applications based on such components. These problems can

be solved by means of a technique called binary code adaptation that essentially consists

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 24: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

in byte-code rewriting; this does not require access to source files but is governed instead

by rewriting rules that are formalized in special delta files. Binary code adaptation makes

systems harder to understand as delta files must also be taken into account. An advantage

of class overriding to binary code adaptation is that class overriding is integrated within

the programming language and thus does not involve the superfluous language

formalisms that are required for binary component adaptation.

Type compatibility problems. Büchi and Weck (1998) argue that evolving

software components will need to comply with new contracts during component

evolution. Unfortunately, existing components may fail to conform to such new contracts

because of limitations of the type system of the underlying programming language. As a

technical example, assume that contracts are defined as Java interfaces and consider a

class C that implements both interfaces I and J. Assume now that a new contract K is

defined as a simple extension of the two interfaces I and J, without the addition of any

new features. Despite of the fact that class C implements all methods of K (because it

implements I and J), formally C does not implement interface K, due to the name type

compatibility rules of Java. Therefore, Büchi and Weck proposed to solve such

compatibility problems through the introduction of compound types with structural type

equivalency. Alternatively, class overriding can solve such compatibility problems by

overriding class C and declaring the overriding version as one that implements K. An

advantage of class overriding is that it avoids the increased complexity of a language that

combines both name and structural type equivalency.

Büchi and Weck (1998) describe a hypothetical compatibility problem that

involves three or more types, one of which is a class. They have demonstrated that

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 25: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

compound types solve these type compatibility problems as well. Note that the later

compatibility problem can be easily resolved through the well-established mechanism of

multiple inheritance, or alternatively, through multiple class overriding. Discussion of

multiple class overriding is however beyond the scope of this paper.

Conflicts between independent interfaces. Fröhlich and Franz (2000) discuss

interface conflicts that appear when a new component tries to implement several existing

independent interfaces. For example, two interfaces are in conflict if they specify distinct

methods with identical signatures. Stand-alone messages are proposed as a solution to

syntactical and semantic conflicts between independent interfaces. Technically, stand-

alone messages are method signatures that are encapsulated in modules and

independently of classes and interfaces. New interface modules can be derived from

existing ones, and classes can implement interface modules. A programming language

with stand-alone messages needs to incorporate both classes and modules, while class

replication and class overriding as proposed in this paper do not require modules to

belong to the underlying language.

The Extensibility Problem. This problem appears when a recursively defined set

of data and related operations are to be extended with new data variants or new

operations (Findler, 1999; Flatt 1999). A typical example is an object-oriented

programming language translator that as a standard incorporates a set of mutually

recursive syntax trees and translation operations on such trees. Should the language be

extended with additional features, new syntax trees and operations on them that may need

to be added to the existing translator? Although extensibility of a language translator can

be achieved through subclassing, it requires extensive use of type casts and cumbersome

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 26: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

adaptation code, a necessity that is referred to as the extensibility problem. Class

overriding offers an easy to use alleviation to the extensibility problem because it

replaces existing classes with their extensions (rather than create new subclasses) and

therefore eliminates the need for type casts. Alternatively, Zenger and Odersky (2001a)

propose to define default behavior for operations on recursive data sets and argue that

inherited implementation of default behavior can serve future extensions if specific

adaptations of operations for new data variants are not needed. This approach is

materialized as a design pattern for extensible visitors with default cases. While it is

possible to encode the extensible visitor pattern in an object-oriented language without

relying on additional language features, it is complicated to implement the extensible

visitor pattern by hand (Zenger and Odersky, 2001a). Nevertheless, it is worth

mentioning that the extensible visitor pattern has been used to design and implement an

extensible java compiler (Zenger and Odersky, 2001b), that we plan to use for future

implementation of class overriding as an extension of Java.

MultiJava is a backward extension to Java that supports evolving open classes

(Clifton et al., 2000). New methods can be added to open classes without creating distinct

subclasses and without editing existing code. With open classes, a data type is

represented by an abstract superclass and type variants are represented by concrete

subclasses. The default behavior is defined as a method for the abstract superclass. If a

specific behavior for a variant has to be provided, this method has to be overridden for

the variant (Zenger and Odersky, 2001a). In practice, open classes are difficult to use.

Whereas a new operation is typically defined as an external top-level method in a single

compilation unit, extending or modifying an existing operation can only be done by

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 27: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

explicitly subclassing all affected variants and overriding the corresponding methods.

This leads to an inconsistent distribution of code, making it very difficult to group related

operations and to separate unrelated ones. Furthermore, extending or modifying an

operation always entails extensions of the data type. This restricts and complicates reuse

(Zenger and Odersky, 2001a).

Class overriding can add new methods to existing classes exactly as the open

class feature of MultiJava does. In addition to adding new methods, class overriding

allows programmers to override existing methods without creating distinct subclasses and

without editing existing code.

The extensibility problem can be avoided by following design patterns that are

targeted specially at extensibility, such as the extensible visitor (Krishnamurthi et al.,

1998), the generic visitors (Palsberg and Jay, 1997), and the translator pattern (Kühne,

1997). Using such patterns implies serious penalties. In the case of the extensible visitor

and the translator patterns, the penalty is the significant programming effort needed for an

extension. In the case of the generic visitors, the penalty is the significant run-time

overhead imposed by the utilization of reflectivity.

A number of object-oriented languages support reflection, a feature that allows

programs to examine the structure of classes or objects, and even to change classes

(Guimarães, 1998). The main advantage of class overriding to reflection is that class

overriding applies to entire collections of classes while reflection normally applies to

individual classes. In contrast to class overriding, reflection imposes considerable

performance overhead and is relatively difficult to learn.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 28: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Aspect-oriented programming (Kiczalez et al., 1997; Elrad et al., 2001) also

allows programmers to add methods to existing classes but requires source code for all

classes that are extended, while class overriding does not. An alternative approach that

does not require source code is to describe class relationships in the Universal Modeling

Language (UML), then use reflection to interpret these relationship at run-time, rather

than establish them at design time (Lieberherr et al., 2001; Blake and Bose, 2000). While

UML and reflection decrease dependencies within class collections, they incur noticeable

slowdown (Lieberherr et al., 2001). In contrast, class overriding does not require run-time

interpretation and can be compiled into efficient code.

The fragile base class problem. Mikhajlov and Sekerinski (1998) study

systematically the fragile base class problem, a code inheritance difficulty that was

initially informally introduced while discussing object-oriented component standards.

The fragile base class problem appears in components that are delivered to users as

collections of classes. Users may develop extensions of component classes in order to

enhance the functionality of delivered components. Meanwhile, component developers

who are unaware of extensions developed by users may produce seemingly acceptable

revisions of base component classes that actually invalidate extensions produced by

users. Mikhajlov and Sekerinski (1998) formally express five different problematic points

of code inheritance that lead to the fragile base class problem. These authors then suggest

four restrictions on inheritance that are proven to be sufficient to guarantee safe

substitution of a base class with its revision in the presence of extension classes. The

subclassing anomaly, as formulated in this paper, appears in components with class

dependencies. We overcome the subclassing anomaly by means of class overriding,

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 29: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

which is basically a linguistic mechanism to revise base component classes. Because

class overriding is a class revision mechanism, it may potentially generate occurrences of

the fragile base class problem. Inheritance restrictions similar to those in (Mikhajlov and

Sekerinski, 1998) can guarantee safe class overriding, i.e., class overriding free of the

fragile base class problem.

The fragile subclassing problem. Ruby and Leavens (2000) explore the fragile

subclassing problem, a code inheritance difficulty that is caused by downcalls. A

downcall occurs in a subclass when a superclass method calls a method that is overridden

in the subclass. Downcalls may be problematic because the overriding subclass method

may behave differently from what the superclass method expects. Ruby and Leavens

propose to eliminate the fragile subclassing problem through (1) some new forms of base

class specifications and (2) a set of subclassing restrictions that guarantee that subclasses

are free from downcall problems. In very much the same way as subclassing, class

overriding can be compromised by improper downcalls. Therefore, the solution to the

fragile subclassing problem proposed by Ruby and Leavens (2000) can be adapted to

eliminate downcalls from overriding classes.

5. Conclusion

In this paper, we have defined and analyzed the subclassing anomaly, a software reuse

problem that appears during the evolution and adaptation of software components that are

represented as collections of related classes. We have shown that adaptation through

subclassing may violate the integrity of collection of related classes. From a

programming language perspective, the subclassing anomaly is triggered by

monomorphic class references that stand for classes themselves but not for any

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 30: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

subclasses. We overcome the subclassing anomaly by means of class overriding, a code

adaptation mechanism that extends and updates a class throughout entire collections of

related classes. Class overriding requires that class references are resolved with late

binding, at class loading time, in contrast to traditional compiled object-oriented

languages, in which class references are resolved with early binding, at compile time. We

have discussed how class overriding eliminates the subclassing anomaly. We have also

discussed our experience with implementation and utilization of class overriding.

 Class overriding is a generic anomaly-free component adaptation mechanism that

is applicable to various component-oriented languages. If adopted in new languages for

component-oriented programming, or in existing object-oriented languages such as Java

and C#, class overriding can help maintain the integrity of evolving collections of related

classes and thus enhance software component adaptability. The analysis of the

subclassing anomaly (presented in this paper) can help reveal and avoid possible pitfalls

in the design of future component-oriented programming languages; it can also help

foresee and avoid possible pitfalls in the development of future component-oriented

programming languages.

Acknowledgement

Thank are due to the anonymous reviewers who helped improve the paper by making

valuable suggestions. It should be noted that the case presented in Fig. 7 and its

discussion in the text was spawned by one of the reviewers.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 31: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

References

Almasi, G., A. Gotlieb, 1994. Highly Parallel Computing. 2nd Ed., The

Benjamin/Cummings Publishing Co., Inc., Redwood City, California.

Aldrich, J., C. Chambers, 2001. Architectural Reasoning with ArchJava. First OOPSLA

Workshop on Language Mechanisms for Programming Software Components,

Tampa Bay, Florida, October 2001, 22-31.

http://www.cs.iastate.edu/~leavens/SAVCBS/papers-2001/TR.pdf

Blake, B., P. Bose, 2000. An Agent-based Approach to Alleviating Packaging Mismatch.

4th International Conference on Autonomous Agents (AGENTS2000), Barcelona,

Spain, June 2000, ACM Press, New York, 64-69.

http://cssun.georgetown.edu/~blakeb/pubs/agents2000.pdf

Büchi, M., W. Weck, 2000. Generic Wrappers. ECOOP’00, Cannes, France, June 2000,

Springer, Berlin, 201-225.

 ftp://ftp.abo.fi/pub/cs/papers/mbuechi/ECOOP2000.pdf

Büchi, M., W. Weck, 1998. Compound Types for Java. OOPSLA’98, Vancouver, BC,

Canada, October 1998, ACM Press, New York, 362 – 373.

 ftp://ftp.abo.fi/pub/cs/papers/mbuechi/OOPSLA98.pdf

Clifton, C., G. Leavens, C. Chambers, T. Millstein, 2000. MultiJava: Modular Open

Classes and Symmetric Multiple Dispatch for Java. OOPSLA’00, Minneapolis,

Minnesota, October 2000, ACM Press, New York, 130-145.

 http://www.cs.iastate.edu/~cclifton/multijava/papers/TR00-06.pdf

Elrad, T., M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher, 2001. Discussing Aspects

of AOP. CACM 44(10), 33-38.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 32: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Findler, R., M. Flatt, 1999. Modular Object-Oriented Programming with Units and

Mixins. ACM SIGPLAN International Conference on Functional Programming

(ICFP '98), 34(1), 94-104.

 http://www.cs.utah.edu/plt/publications/icfp98-ff/icfp98-ff.pdf

Flatt, M., 1999. Programming Languages for Reusable Software Components. PhD

thesis, Rice University, Houston, Texas.

 http://cs-tr.cs.rice.edu/Dienst/UI/2.0/Describe/ncstrl.rice_cs/TR99-345/

Fröhlich, P., M. Franz, 2001. On Certain Basic Properties of Component-Oriented

Programming Languages. First OOPSLA Workshop on Language Mechanisms

for Programming Software Components, Tampa Bay, Florida, October 2001,

ACM Press, New York, 15-18.

http://www.ccs.neu.edu/home/lorenz/oopsla2001/23_Frohlich.pdf

Fröhlich, P., M. Franz, 2000. Stand-Alone Messages: A Step Towards Component-

Oriented Programming Languages. In: Gutkneht, J., W. Wech (Eds.), Modular

Programming Languages, Springer, Berlin, 90-103.

 http://nil.ics.uci.edu/~phf/pub/tr-ics-2000-18.pdf

Guimarães, J., 1998. Reflection for Statically Typed Languages. ECOOP’98, Brussels,

Belgium, July 1998, Springer, Berlin, 440-461.

Keller, R., U. Holzle, 1998. Binary Component Adaptation. In: Jul, E. (Ed.), ECOOP’98

Conference Proceedings, Lecture Notes in Computer Science 1445, Springer,

Berlin, 307-329.

 http://www.cs.ucsb.edu/labs/oocsb/papers/TRCS97-20.pdf

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 33: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Kiczalez, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, J.

Irwin, 1997. Aspect-Oriented Programming. ECOOP’97, Jyväskylä, Finland, June

1997, Springer, Berlin, 220-242.

Krishnamurthi, S., M. Felleisen, D. P. Friedman, 1998. Synthesizing Object-Oriented and

Functional Design to Promote Reuse. ECOOP’98, Brussels, Belgium, July 1998,

Springer, Berlin, 91-113.

Kühne, T., 1997. The Translator Pattern - External Functionality with Homomorphic

Mappings. In Ege, R., M. Singh, and B. Meyer (Eds.), The 23rd TOOLS

conference USA 1997, 48-62.

Lieberherr, K., D. Orleans, J. Ovlinger, 2001. Aspect-Oriented Programming with

Adaptive Methods. CACM 44(10), 39-41.

McDirmid, S., M. Flatt, W. Hsieh, 2001a. Jiazzi: New Age Components for Old

Fashioned Java. In the proceedings of OOPSLA 2001, Tampa, Florida, 211-222.

 http://www.cs.utah.edu/plt/jiazzi/download/jiazzi01oopsla.pdf

McDirmid, S., M. Flatt, and W. Hsieh, 2001b. Mixing COP and OOP. Proc. First

OOPSLA Workshop on Language Mechanisms for Programming Software

Components, Tampa Bay, Florida, October 2001, ACM Press, New York, 29-32.

 http://www.ccs.neu.edu/home/lorenz/oopsla2001/31_McDirmid.pdf

Mikhajlov, L., E. Sekerinski, 1998. A Study of the Fragile Base Class Problem.

ECOOP’98, Brussels, Belgium, July 1998, Springer, Berlin, 355-382.

 http://www.cas.mcmaster.ca/~emil/publications/fragile/ecoop98.pdf

OMG (Object Management Group), 1997. The Common Object Request Broker:

Architecture and Specification. Revision 2.0, formal document 97-02-25.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 34: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

http://www.omg.org.

Palsberg, J., C. B. Jay, 1997. The Essence of the Visitor Pattern. Technical Report 05,

University of Technology, Sydney, Australia.

Radenski, A., 1998. Module Embedding. International Journal Software - Concepts and

Tools 19(3), 122-129.

 http://www.chapman.edu/~radenski/research/papers/module.pdf

Radenski, A., B. Norris, 2000. Generic Cluster-Computing Algorithms and Applications.

International Conference on Parallel and Distributed Processing Techniques and

Applications, Las Vegas, Nevada, June 26-29, 2000, CSREA Press, 485-491.

Radenski, A., 2000. The Paradigm/SP Prototyping and Specification Message-Parallel

Language. http://www.chapman.edu/~radenski/research/language.html

Rogerson, D., 1996. Inside COM. Microsoft Press, Redmond, Washington.

Ruby, C., G. Leavens, 2000. Safely Creating Correct Subclasses without Seeing

Superclass Code. OOPSLA’00, Minneapolis, USA, October 2000, ACM Press,

New York, New York, 208-228.

Sreedhar, V., 2001. ACOEL on CORAL: A Component Requirement and Abstraction

Language. First OOPSLA Workshop on Language Mechanisms for Programming

Software Components, Tampa Bay, Florida, October 2001, 125-131.

 http://www.cs.iastate.edu/~leavens/SAVCBS/papers-2001/sreedhar.pdf

Szyperski, C., 1998. Component Software. ACM Press/Addison-Wesley Publishing Co.,

New York, New York.

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 35: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Zenger, M., M. Odersky, 2001a. Extensible Algebraic Datatypes with Defaults.

International Conference on Functional Programming, ICFP 2001, Firenze, Italy,

September, 2001.

 http://lamp.epfl.ch/~zenger/papers/icfp01.pdf

Zenger, M., M. Odersky, 2001b. Implementing Extensible Compilers. ECOOP’01

Workshop on Multiparadigm Programming with Object-Oriented Languages,

Budapest, June 2001.

 http://lamp.epfl.ch/~zenger/papers/mpool01.pdf

Zenger, M., 2002. Type-Safe Prototype-Based Component Evolution, ECOOP’02,

Malaga, Spain, June 2002, Springer, Berlin, 470-497.

 http://icwww.epfl.ch/publications/documents/IC_TECH_REPORT_200214.pdf

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Page 36: Atanas Radenski: Anomaly-Free Component Adaptation with Class Overriding

Under print in the Journal of Systems and Software, Elsevier Science, Vol. 70-1.

Vitae

Atanas Radenski (http://www.chapman.edu/~radenski) is a Professor of Computer

Science in Chapman University, California. His research interests are in the areas of

programming languages, object-orientation, parallel computing, distributed computing,

and evolutionary computing. He has authored about 70 publications. His research has

been supported by grants from the National Science Foundation, from the National

Aeronautics and Space Administration, and from other agencies.

	Chapman University
	Chapman University Digital Commons
	2004

	Anomaly-Free Component Adaptation with Class Overriding
	Atanas Radenski
	Recommended Citation

	Anomaly-Free Component Adaptation with Class Overriding
	Comments
	Creative Commons License
	Copyright

	Anomaly-Free Component Adaptation with Class Overriding
	Software components can be implemented and distributed as collections of classes, then adapted to the needs of specific applications by means of subclassing. Unfortunately, subclassing in collections of related classes may require re-implementation of ot

