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Abstract

Studies of cooperation in infinitely repeated matching games focus on homogeneous
economies, where full cooperation is efficient and any defection is collectively sanctioned.
Here we study heterogeneous economies where occasional defections are part of efficient
play, and show how to support those outcomes through contagious punishments.
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1 Introduction

The social norms literature has extended the study of cooperation in infinitely
repeated games from the case of stable partnerships (Rubinstein, 1979; Fudenberg
and Maskin, 1986) to unstable meetings among homogeneous strangers (Kandori,
1992; Ellison, 1994). Patient strangers can attain the efficient outcome by trig-
gering community-wide responses to privately observed defections (“grim” play).
However, this requires sufficiently small groups. Large groups must be able to
publicly monitor defections, which makes the economy’s size irrelevant, and ho-
mogeneity greatly reduces the information that must be shared; since full coop-
eration is efficient, knowing that not everyone acted identically is sufficient. The
open question is how results change when strangers are heterogeneous. Here, the
structure of incentives may vary across meetings and efficient play may require
some players to cooperate and others not.

We study social norms among heterogeneous strangers. Players receive iid pro-
ductivity shocks, so payoff matrices stochastically vary across meetings, and can be
asymmetric. Before choosing an action, players see productivities in their match.
If full cooperation is efficient, publicly exposing defections supports cooperation;
heterogeneity simply alters the admissible discount factors relative to the homo-
geneous case. Otherwise, if occasional defections are part of efficient play, then we
need contagious punishments to support high payoffs because publicly exposing
defections without productivities in other matches cannot reveal off-equilibrium
play. Contagious punishment can deter defections only under moderate produc-
tivity differences.

The analysis has merit because little exists about cooperation under hetero-
geneity. The closest paper is Blonski and Spagnolo (2015), an infinitely repeated
PD game in fixed pairs where cooperation is efficient but asymmetrically benefits
players. The technique we present generates tractable closed-form expressions for

continuation payoffs, which can be employed to calibrate laboratory economies.



2 Model

In every period N > 4 (even) players are paired with uniform probability (Kandori,
1992; Ellison, 1994). Subsequently, each player i = 1,..., N, draws a random iid
productivity shock 6; € {1,a}, a > 1: 0; = a (productive) with probability ¢, and
0; = 1 (unproductive) otherwise. A match between i and opponent —i is either

symmetric (6; = 0_;) or asymmetric. Payoffs are in Figure 1.

Player —
C D
C , . _ .
Player i O.c, 0_;c I, O;(c+g)
D | 6ic+g), I 0. 0

Figure 1: The game between player 7 and —i.

Let ¢,g,1 > 0 and ;¢ > 0;g — l. The cooperative outcome (C,C) maximizes
total earnings if

c>ag—I, (1)

thus amounting to a proper Prisoners’ Dilemma (PD). Otherwise, we have an
asymmetric social dilemma where D is dominant but asymmetric cooperation,
(D,C) or (C, D), is efficient. Iterated PDs in fixed pairs assume (1) to rule out
taking turns at selecting C' and D (e.g., Rapoport and Chammah, 1965). Inter-
estingly, Kandori (1992) and Ellison (1994) do not assume (1), possibly because
pairs are short-lived and break up over time, which complicates coordination on
action alternation.

Before choosing, players observe productivities only in their match, not in oth-
ers. At the period’s end players are informed if everyone chose identically or not.
Full defection is an equilibrium—giving payoff 0—because D is a best response
to D by everyone else. Other equilibria exist. If (1) holds, public monitoring
supports full cooperation. Everyone chooses C unless someone acted differently,

in which case everyone chooses D forever. This equilibrium exists—independent
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of N—if

cla—1)+ ga
2 e -Tralerg

If (1) does not hold, the available public information is no longer useful to

€ (0,1).

attain efficiency. Earnings in matches with unequal productivities are maximized
by asymmetric cooperation; hence, (C, D) is part of efficient play. As players
cannot see productivities in other matches, making defections public cannot reveal
deviations from efficient play.

Hence, consider community-based enforcement triggered by privately observed
deviations. Players cooperate whenever their productivity is no smaller than their
opponent’s; otherwise, they defect. If they observe someone choosing D when C

should be chosen, then they switch to play “always defect.”

Definition 1 (Asymmetric cooperation). At the start of any period, player
i either (i) “cooperates” by choosing C if 0; > 0_;, and D otherwise, or (ii)
“punishes” by unconditionally choosing D. Player i follows “cooperate” but per-

manently switches to “punish” if someone deviates to D when C should be chosen.
The equilibrium payoff is (1 — 8)~'7*, where
™ = ¢ac+ (1 —q)*c+ (1 - q)q(ac+ ag —1)
denotes expected period earnings.

c

Theorem 1. Fizx q. If — is sufficiently small, then there exists o € (a, o) such
g

that if B and | are sufficiently large, then asymmetric cooperation is a sequential

equilibrium.

The conditions on discounting [ and sucker’s payoff [ are standard. Players
must be patient to prefer C' to D in equilibrium; the sucker’s payoff must be
sufficiently large for punishment to be incentive-compatible. The new conditions
involve temptation payoff and productivity parameter. Productivities cannot be
too different or productive players would avoid punishing in asymmetric meetings.

The proof follows.



2.1 Contagious punishment

When everyone follows the strategy in Definition 1, partition the population into
N —k cooperators and k € x := (1,..., N)T defectors. Cooperators follow equilib-
rium play; Defectors only play D. The economy is off-equilibrium if £ > 2; k=1
denotes when player ¢ moves off-equilibrium in a match 6; > 6_;. Indeed, player ¢
has no incentive to deviate to C' from D if 6, < 6_;.

The N x N upper-triangular transition matrix

Qi Qi 0 0 0 0 ... 0 0
0 Qxn Q3 Qu 0 0o ... 0 0
0 0 @33 Q3 @3 Q5 ... 0 0
QN - . . . . . . . . (2)
0 0 0 0 0 0 ... Qn-1N-1 @nN-1N
0 0 0 0 0 0o ... 0 1

describes the contagious punishment process.

The first row applies if ¢ moves off-equilibrium when 6; > 6_;, with probability
Q12 = 1 — q(1 — q). This triggers contagious punishment, gradually bringing the
economy to full defection. 11 = (1 — ¢)q is the probability that 6; < 6_;, so no
punishment is triggered.

In the second row there are two defectors ¢ = ¢, m. The number of defectors
doubles with probability o4, if they both are in mixed matches where 6; > 6_;. If
the defectors meet each other or are in matches where 6; < 0_;, then the number
of defectors does not increase (with probability Q22). If only one defector i = ¢, m
is in a mixed match with 6; > 6_;, then there is only one additional defector, with
probability Qos3.

Not all mized matches—cooperator-defector matches—contribute to spread
punishment since D is part of equilibrium play. This is the central difference
with homogeneous economies Kandori (1992). When cooperator i meets defector
—t and 6; > 6_;, i will not start defecting since —i follows equilibrium play. This
match occurs with probability ¢(1—g), so, if there are j mixed matches, contagion

occurs in n < j of those with probability (i) [1—q(1 —q)]"[q(1 —q)] ™.



A transition from k > 2 to K > k defectors occurs with probability

min(k,N—k) j / -
QuelN) = 2, o (k . k) [1— g1 — g ~*g(1 — QP+,
j=k—k

where N is omitted in Qy. The probability of j mixed matches

POy
Ay = (N —1)! ’

is the number of such pairings divided by the number (N —1)!! of possible pairings,

where

{0,2,4,... ,min(k, N — k)} if k = even
{1,3,5,...,min(k, N — k)} if k = odd.

jEJkZI

2.2 Off-equilibrium continuation payoffs

Let player ¢ be one of k > 1 defectors. She meets one of N — k cooperators with
probability o, := ]]\\;__li Let o = (01,...,0n5-1,0)T and e}, be the N—dimensional
column vector with 1 in the k¢ position and 0 everywhere else.

From Camera and Gioffré (2014, Theorem 2), the rate at which a defector

expects to meet cooperators in the continuation game is
¢k = (1 - 6)6-15(] - BQN)_10-7 k > 17 (3)

where lim ﬂ < 00.
g—1-1—0
The beginning-of-period payoff to defector i is

N
Vg = ORT + ﬁ Z Qkk/vk/, for k Z 17 (4)
k'=k

where

m:=(c+g)lga+ (1 — ¢)?

denotes earnings expected ex-ante in a mixed match.

Letting v := (v1,...,vy)", we have

v=om+ BQNV = v=(—-pQy) ton,



and we have v, < v with

— e](I - BQ)om =

2.3 Equilibrium deviations

Deviating to D in symmetric matches 6; = 6_; = 0 is suboptimal if

*

7
90+51_629(c+g)+6v2. (6)
Here 6; = 0_; = « represents the most stringent case, and we have
i pr* Boam

ac—l—ﬁ

—alc+g) — Pre = —ag+

(7)

.y 1-8 1-4

Since hm gbﬂ < oo for all £ > 1, and 7#* > 0, by continuity there exists a
pre ( ) such that (6) holds for g € [8%,1) and 0 = 1, a.
Deviating to D in asymmetric matches 6; > 6_; is suboptimal for 7 if

*

—1 + B 5 = ﬁv% (8)
or equivalently
pr* _ Boam >
1-5 1-57""

Using again hm 1¢kﬁ < oo and 7 > 0, by continuity there exists 5} € (0, 1) such
o1 ] —
that (8) holds for all 8 € [8},1). Letting f* := max(f}, 5¥) equilibrium deviations

are suboptimal if § € [3*,1).

2.4 Off-equilibrium deviations

When k > 2 a deviation occurs when defector i chooses C' instead of D, in a match

where Qz Z 9_1‘

Asymmetric matches. If §; > 0_;, defector ¢ surely earns —[ since the other
selects D. The deviation slows down contagion if —¢ is a cooperator, with probabil-
ity 0. The transition matrix Qy_o with elements Qg (N —2) describes contagion

in all other meetings.



The payoff to defector i from deviating is

i meets a cooperator i meets a defector
N—-2 N-2
—l+of D Quoiw(N=2vpi+ 1 —0k)8 Y. Qroow(N —2)vpsa. (9)
k'=k—1 k'=k—2

Continuation payoffs depend on whether —i is a cooperator or not. If she is, devi-
ating limits future defectors to k&’ 4 1 instead of &4 2. The transition probabilities
Qr—1 (N —2) account for this by considering all matchings among k — 1 defectors
(k defectors excluding i) and N — k — 1 cooperators (N — k cooperators excluding
—i). Here, deviating raises ¢’s continuation payoff, because vy falls in £'. If ¢
meets a defector no such benefit exists; the transition probabilities Qg_g (N —2)
account for this meeting by considering all matchings among k — 2 defectors (k
defectors excluding i and —i) and N — k cooperators. Deviating to C' (instead of

D) is suboptimal if

N-2 N-2
—l+of D Quoaw(N =)o+ (1 —0k)8 D, Qroow (N —2)vpso
k'=k—1 k'=k—2
N-2 N-2
<o Y Quaw(N=2opia+(1=01)8 Y Qroop(N = 2)vpyo,
k' =k—1 k'=k—2
that is
N-2
o Z Q-1 (N = 2) (Vg1 — Ve42) <1, for k > 2.
k'=k—1
Using vy:
= Or41 — Qi
o > Qriw (N — 2>W <, for k > 2. (10)
k' =k—1 -

Symmetric matches. If 0, = 0_;, the expected payoff to defector 7 who deviates

to C' from D when k > 2 is

i meets a cooperator i meets a defector
N-2 N-2
O {910 + ﬁ Z Qkfl,k’(N - 2)Uk/+1 +(1—O’k) [ —1 + 5 Z Qk,Q,kl(N — Q)Ukurg .

k'=k—1 k'=k—2



Deviating is suboptimal if

N-2 N-2
orbic+ (1 — o) (=) + 0B D Querw(N =2)vpr + (L —0%)B DY, Qreopw (N — 2)vp4o
K =k—1 K —k—2
N-2 N-2
<olilc+g)+orB Y. Quorw(N —2)vpyo+ (1 —0k)B > Quoopw (N —2)vpa,
K =k—1 K =k—2
yielding
N—2
0B Y. Queiw (N = 2)(vpy1 — Uiyo) < obig + (1 — o),
K =1
or equivalently
= Or41 — Qi
o Y Qraw(N - Q)W < opbig + (1 — o), (11)
K —k—1

most stringent when 6, = 1.
From Camera and Gioffré (2014, Theorem 2), the most stringent case for (10)

and (11) is k = 2. A sufficient condition to avoid off-equilibrium deviations is
T™Yq S min(97 l)a (12)

where

= Ok'+1 — Or'42
o= sp Y Qu(N — )P O
BE(0,1) pr=1 1-p

Lemma 1. For all ¢ € [0,1] and n € N, the function v, € (0,1).

The proof is in Appendix. Using the definition of 7, (12) becomes

min(g, ()

+(1—-¢")] <
Yalgor+ (1= ¢7)] < et

From Lemma 1 v, < 1, so if ¢ < [, a necessary condition for (12) is

1 - 'Yq(l - Q)2

Oé<OéqZ: e
q

Since | < ag — ¢ two cases arise.
g+c

l
1. 1 <g¢g: |l < ag — cimplies a > j, which holds if o >
g

g
2.9g<l<ag-—c Weneedg<ag—c,implyinga>C—'—J.

c
Hence, letting o := + g, if ¢/g is sufficiently small, then there exists a €
g




(o, ) ensuring that deviating off-equilibrium is suboptimal.
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Appendix: Proof of Lemma 1

The cases ¢ = 0 and ¢ = 1 are in Camera and Gioffré (2014). For ¢ € (0,1)
)= 3 Quuy - 2= s

¢f:§3 +[1—q(1- q)]ﬁ¢i’:g4-

For any 5 € (0,1) and Yk > 1 we have ¢, > ¢r1 (Camera and Gioffré, 2014,

=q(1-q)8

Theorem 2), so v,(3) > 0. To show that v, < 1, the payoff v, is

i transmits the defection i does not transmit the defection
N-—2 N-—2
Vg = 02{7T + 5{ (1 - Q(l - Q)) Z Ql,k’(N - 2)”k’+2 +Q(1 - Q) Z Ql,k’(N - Q)Uk’—i-l }
k'=1 k'=1

i meets the other defector

+ (1= 0)|d+Bua)

or, equivalently,

vy = 01 — d) +d+ 021 — q(1 — )[{q(1 — q)vs + [1 — q(1 — q)]vs}

+098q(1 — ){q(1 — @va + [1 — (1 — g)]vs} + (1 — 02)Bvs.

Rearranging
o3[l = ¢*(1 = 9)*]B(v2 — v3) = oa(m — d) + d — va(1 = B) — 32B[1 — q(1 — q)]*(vs — va),

and using (5)

¢ — 3 1 ¢\ [ —q(1 -9
1—5_1—(12(1—(1)2(1 02) 1 —¢*(1—q)?

Using the definition of ~,(3):

$3 — ¢4
1-3°

8

B (13)

7a(B) a(l —q) (1 _ @) L D=0 —a)f jo5— o

:l—qz(l—q)Q 09 1—¢?(1—¢q)?* 1-p5

and since ¢3 — ¢y < ¢o — ¢3 (see Camera and Gioffré, 2014, Theorem 2) we have

q(1—q) (1_@) n [1—61(1—Q)]2ﬁ¢2—¢3

Vq(ﬁ) < oy 1—q2(1—q)2 1-6°

T l-¢(1—¢q)?

11



Again using (13):

<1 Yqe[0,1] <1 >0
1+¢*(1 —q)° o\ [L—q(1 =)' ¢35~ ¢u
7alB) < [1+q(1 = )][1 — ¢?(1 — ¢)?] (1 02> [1—q2(1—q)2]2ﬁ =5 " :

where we used ¢o < 03, as proved in Camera and Gioffré (2014, Theorem 2).

Taking the supremum of v,(3) concludes the proof.
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