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Economic Analysis with Security Biased Agents  
 

BY MARK SCHNEIDER* 

           This Version: January 25, 2018 

          ABSTRACT 

 A tenet of behavioral economics is that biases are systematic and should have visible effects in 

economic applications. Expected utility maximization has been widely applied in economics, but 

progress has been slower incorporating 'systematically biased' agents into applications involving 

risk. This contrasts with the widespread application of present-biased preferences in intertemporal 

settings. To address this gap, we advocate a model of quasi-rank dependent probability weighting 

as a natural risky choice analog to quasi-hyperbolic time discounting. The model provides a 

formulation of ‘security bias’ – a disproportionate preference for lotteries with larger minimum 

payoffs, which unifies the certainty effect and loss aversion. The model satisfies stochastic 

dominance and transitivity and transforms individual rather than cumulative probabilities. We 

illustrate the model’s tractability, demonstrating that it predicts the optimal purchase of insurance 

at actuarially unfair prices, the existence of gaps between buying and selling prices, and potential 

market failure due to security bias. The model also demonstrates that markets can generate 

unbiased prices even if all traders are systematically biased. A generalization of the model 

produces an asset pricing formula in which an asset’s price depends on its fundamental value, a 

risk premium, a positive skewness premium, and a premium for robustness to model uncertainty. 

We also extend the model to time preferences, resulting in a ‘three-factor’ model of behavioral 

biases with factors reflecting (positive) skewness preference, present bias, and security bias. We 

demonstrate that this three-factor model predicts eight prominent behavioral anomalies in the 

literature for decisions under risk and over time.                                          
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I.     INTRODUCTION 

   The expected utility (EU) model has been the workhorse of economic analysis since it was 

axiomatized by John von Neumann and Oscar Morgenstern nearly seventy years ago1. It was 

swiftly applied to decisions involving insurance (Friedman and Savage, 1948), the existence of 

mixed strategy equilibria in non-cooperative games (Nash 1950a, 1951), cooperative bargaining 

theory (Nash, 1950b) and optimal portfolio selection (Tobin 1958; Markowitz, 1959). With the 

rise of information economics, EU became the micro foundation for analyzing games and markets 

under asymmetric information. It has penetrated the barriers into neighboring disciplines, finding 

application in political science, evolutionary biology, and sociology. Even one of its greatest critics 

has referred to EU as “the most important theory in the social sciences” (Kahneman 2011, p. 270). 

   Almost since its adoption, however, EU has been subject to persistent challenges, most notably 

due to Allais (1953). Allais introduced two paradoxes – the common consequence effect and the 

common ratio effect in which many people frequently reveal a bias toward certainty that violates 

the independence axiom - one of the central assumptions of EU. Motivated by the premise that 

more accurate assumptions would lead to more accurate predictions, or perhaps that EU imposed 

too stringent a definition of rationality, research in the late 1970’s began to experiment with 

weakening the axioms of EU, or modifying its basic functional form to better accommodate 

empirical evidence such as the Allais paradoxes.      

   One of the earliest approaches to generalizing EU involved transforming individual probabilities 

in accordance with some probability weighting function to give the model greater flexibility 

(Edwards 1954; Karmarkar 1978; Kahneman and Tversky, 1979). This approach was abandoned 

however, when it was recognized that transforming individual probabilities seems to lead 

inevitably to violations of first-order stochastic dominance, a fundamental principle of rational 

choice which is rarely violated in experiments (Diecidue and Wakker, 2001). 

  Quiggin (1982) provided an elegant solution to the problem of transforming probabilities while 

preserving stochastic dominance. His rank dependent utility (RDU) model made the basic 

observation that to satisfy stochastic dominance, a probability weighting model should account for 

the rank of payoffs in a lottery and transform cumulative rather than individual probabilities. The 

probability transformations in RDU were subsequently incorporated into cumulative prospect 

                                                 
1 See Bleichrodt et al. (2016) for the conclusion that John Nash and Jacob Marschak were the first to provide a 

complete axiomatization of EU in their 1950 papers in the same issue of Econometrica (Marschak 1950; Nash 1950b). 
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theory (CPT) by Tversky and Kahneman (1992) which is widely viewed today as the leading 

descriptive model of choices under risk (Fox et al., 2015).  

  Without delving into a debate regarding the strengths or limitations of CPT in describing human 

behavior, we make a different point – that CPT has generally lagged far behind EU in terms of 

economic applications. Reflecting on thirty years of prospect theory, Barberis (2013, p.173) 

comments, “It is curious, then, that so many years after the publication of the 1979 paper, there 

are relatively few well-known and broadly accepted applications of prospect theory in economics.” 

  This observation is in contrast to the domain of choices over time where the model of quasi-

hyperbolic discounting has already been ‘plugged in’ to a wide variety of applications ranging 

from consumption and saving decisions  (e.g., Angeletos et al., 2001; Diamond and Koszegi, 

2003), problems of self-control (Laibson et al., 1998), addiction (Khwaja et al., 2007), credit card 

usage (e.g., Laibson, 1997; Meier and Sprenger, 2010) and bilateral bargaining (Kodritsch, 2014), 

even though it was popularized in a paper published nearly 20 years after prospect theory (Laibson, 

1997). With regard to the model of quasi-hyperbolic discounting, Prelec (2006, p. 334) comments: 

“It is arguably the single most productive theoretical innovation associated with behavioral 

economics, overshadowing prospect theory in the breadth of applications.”    

   One might be led to wonder why prospect theory has seen relatively limited application, despite 

being described in survey articles as “the most successful general-purpose model currently 

available for predicting, describing, and interpreting decisions under risk” (Fox et al., 2015).  

   We suggest that a potential answer to this question lies in the observation made by Prelec. Both 

CPT and the quasi-hyperbolic model of time preference formalize systematic deviations from the 

standard models of rational choice. CPT captures a variety of different biases (e.g., the Allais 

paradoxes, loss aversion, risk aversion for gains and risk-seeking for losses) as arising from 

different components of the model (probability weighting, reference dependence, diminishing 

sensitivity). As the value function is defined over gains and losses rather than final wealth, and as 

multiple components of the model generate different effects, CPT does not always lend itself to 

produce clean comparisons with EU. In contrast, the quasi-hyperbolic model focuses on one 

important deviation from the standard discounted utility (DU) theory (present bias), and captures 

this bias through a single parameter which facilitates very clean comparisons with DU. Rather than 

taking a comprehensive approach, the quasi-hyperbolic model has its own descriptive limitations- 

its strength lies in the simplicity in which it captures an important behavior. The generality and 



4 

 

comprehensiveness of CPT is impressive, but it is difficult to plug in CPT to game theoretic 

settings, or markets, or to represent agents in an economy and derive closed solutions the way that 

this can be done in the simple quasi-hyperbolic model. Indeed, Machina (1989) writes that the 

theoretical goal of descriptive decision models “is to show that non-expected utility models of 

individual decision making can be used to conduct analyses of standard economic decisions under 

uncertainty, such as insurance, gambling, investment, or search, in a manner that at least 

approximates the elegance and power of expected utility analysis” (p. 1623). For this purpose, it 

may be desirable to have a model of risky choice that is analogous to the quasi-hyperbolic model. 

  While the quasi-hyperbolic model is a standard generalization of DU which incorporates 

systematically biased agents, there is no standard recipe to incorporate systematically biased agents 

who deviate from EU into economic applications involving risk. Given the preceding discussion, 

one might raise the question of whether there is a natural analog to quasi-hyperbolic discounting 

for decisions under risk which generalizes EU to capture systematic biases, but which is also 

portable to a variety of economic applications. We argue that the answer to this question appears 

to be ‘yes’ and the resulting model appears to be one of ‘quasi-rank dependent' utility (QRD). The 

QRD model formalizes ‘security bias’ – a disproportionate preference for lotteries with higher 

minimum payoffs. The QRD model satisfies basic axioms of rational choice such as transitivity 

and stochastic dominance, and transforms individual rather than cumulative probabilities. This 

observation may be surprising since it is widely believed that models which transform individual 

probabilities necessarily violate stochastic dominance or transitivity (Diecidue et al., 2004; Dhami, 

2016). Yet QRD retains each of these properties. In contrast, models that overweight outcomes 

which occur with certainty do violate transitivity or stochastic dominance (Neilson, 1992; Schmidt 

1998; Bleichrodt and Schmidt 2002; Diecidue et al., 2004; Andreoni and Sprenger, 2010). The 

QRD model is the special case of the non-extreme outcome additive (NEO-additive) model 

(Schmidt 2000; Chateauneuf et al., 2007; Webb and Zank 2011) which preserves risk aversion. 

   After outlining the quasi-rank dependent (QRD) model in Section II, we consider behavioral 

implications (Section III) and apply QRD to optimal insurance decisions (Section IV), prediction 

markets (Section V), and auctions (Section VI). Section VII extends QRD to account for optimism 

and pessimism. Section VIII applies the model to finance. Section IX extends QRD to both risk 

and time preferences. Section X discusses the related literature. Section XI concludes. Proofs for 

Sections III and IX are provided in the Appendix. Other proofs are in the main text.    
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II. QUASI-RANK DEPENDENT UTILITY THEORY 

     Let 𝑋 ⊂ ℝ denote a finite set of possible outcomes. A lottery, 𝑓,  is a probability distribution 

on 𝑋. Denote the set of lotteries by ∆(𝑋). Consider model (1) where 𝑥(𝑓) is the minimum outcome 

in the support of 𝑓, 𝑈(𝑓) = ∑ 𝑓(𝑥) ⋅ 𝑢(𝑥)𝑥∈𝑋  and 𝜃 ∈ [0,1]: 
 

(1)   𝑉(𝑓) = 𝜃[𝑈(𝑓)] + (1 − 𝜃)[𝑢(𝑥(𝑓))], 
 

Model (1) takes the convex combination of the expected utility and the minimum utility of the 

lottery and can be interpreted as a disproportionate preference for lotteries with larger minimum 

payoffs. We refer to this behavior as ‘security bias’ since lotteries with higher minimum payoffs 

offer greater ‘security’ to the decision maker by limiting the worst-case scenario. Security bias can 

be quantified by 1 − 𝜃. We show that security bias offers a unified explanation for the certainty 

effect (the Allais paradox and common ratio effect) and loss aversion (aversion to symmetric small 

mixed gambles) for choices under risk (in Section III), and that security bias generates the sign 

effect in intertemporal choice (in Section IX). If probabilities are subjective, security bias can also 

reflect a preference for robustness to mis-specified beliefs, and indeed, it reduces to Wald’s (1950) 

maximin rule when 𝜃 = 0, which is widely used in robust decision making under uncertainty.  

    Model (1) first appeared explicitly in Schmidt (2000), although a variant of (1) was introduced 

in Gilboa (1988). An analogous model to (1) for decisions under ambiguity is characterized in 

Kopylov (2009). Model (1) also appears as a special case of the model in Webb and Zank (2011) 

which allows for both optimistic and pessimistic behavior. However, despite the simplicity of (1) 

and its convenient properties, it has received almost no attention in applications.  

   There are several related behavioral interpretations for (1). The minimum payoff of a lottery may 

be salient in the mind of the decision maker and 1 − 𝜃 then reflects disproportionate attention 

allocated to that payoff, where attention is a limited resource. A decision maker might also 

overweight the worst outcome in a lottery’s support because it carries valuable information that is 

not shared by the other outcomes – namely it informs the decision maker prior to his decision what 

is the most he can be guaranteed from that lottery with certainty. Alternatively, a pessimistic 

decision maker who feels ‘unlucky’ or who ‘expects the worse’ may over-weight the worst 

outcome in a lottery’s support. An axiomatic foundation for (1) is given by Webb and Zank (2011). 

Instead, we will focus on behavioral implications, applications, and extensions of the model. 
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    To begin, we note that (1) has an equivalent representation as a model of quasi-rank dependent 

utility. Let 𝑋𝑓 denote a random variable associated with 𝑓. Let ≿ denote a binary (preference) 

relation on ∆(𝑋), with strict preference and indifference represented by ≻ and ~, respectively.    

Definition 1: (Quasi-Rank Dependent Utility): Under Quasi-Rank Dependent (QRD) utility 

theory, there exists utility function, 𝑢, probability weighting function 𝜋, with 𝜋(0) = 0, 𝜋(1) = 1, 

and ∑ 𝜋(𝑓(𝑥)) = 1𝑥∈𝑋 , and a unique parameter 𝜃 ∈ [0,1] such that for any 𝑓, 𝑔 ∈ ∆(𝑋),  𝑓 ≿ 𝑔 

if and only if  𝑉(𝑓) ≥ 𝑉(𝑔), where for all 𝑥 in the support of 𝑓: 

(2)         𝑉(𝑓) = ∑ 𝜋(𝑓(𝑥)) ∙ 𝑢(𝑥),𝑥∈𝑋   𝜋(𝑓(𝑥)) = {
1 − 𝜃 + 𝜃𝑓(𝑥), 𝑃(𝑋𝑓 ≥ 𝑥) = 1

                𝜃𝑓(𝑥),   𝑃(𝑋𝑓 ≥ 𝑥) < 1
 

Note that the weights sum to 1. Somewhat surprisingly, the simple probability weighting function 

in (2) has not yet appeared in the literature. The formula in Definition 1 is a tractable “quasi-rank-

dependent” probability weighting model which satisfies both stochastic dominance and 

transitivity. In addition, it is straightforward to test expected utility theory in this setup by testing 

if 𝜃 = 1. The parameter 𝜃 ∈ [0,1] indexes a decision maker’s degree of security bias – the extent 

to which the agent deviates from expected utility maximization in the direction consistent with the 

certainty effect (Allais, 1953) and loss aversion (Kahneman and Tversky, 1979) with greater bias 

for lower values of 𝜃. A rational unbiased agent corresponds to 𝜃 = 1. This approach transforms 

individual probabilities (rather than cumulative probabilities). It is ‘quasi-rank-dependent’ since 

the weight is different for the lowest ranked outcome, but all other outcomes receive the same 

weight. For further intuition, consider an analogy to choice over time. Note that (2) is somewhat 

analogous to the model of quasi-hyperbolic discounting (3) which has discount function 𝑑(𝑡), and 

consumption stream (𝑥0, 𝑥1, … , 𝑥𝑇) is evaluated as (3) where 𝛽 ∈ [0,1]: 

(3)      𝑊(𝑥0, 𝑥1, … , 𝑥𝑇) = ∑ 𝑑(𝑡) ∙ 𝑢(𝑥𝑡)𝑡   and (𝑡) = {
1, 𝑡 = 0

𝛽𝛿𝑡, 𝑡 > 0
 . 

A. Certainty Preference or Security Bias? 

Previous work has led to the impression that the analog to quasi-hyperbolic discounting under risk 

is a model of ‘certainty preference’ with weights assigned to probabilities depending on whether  

𝑓(𝑥) = 1 or 𝑓(𝑥) < 1. However, such models necessarily violate either stochastic dominance or 

transitivity (e.g., Diecidue et al., 2004). Yet because such models capture the certainty effect, 

which is viewed as a risky choice analog to present bias (Prelec and Loewenstein, 1991; Halevy 

2008), it seems unavoidable that such models are the appropriate analog to quasi-hyperbolic 



7 

 

discounting. This conclusion is disappointing since it is generally agreed that any normative model 

should satisfy both stochastic dominance and transitivity, and those axioms are rarely violated in 

experiments (e.g., Blavatskyy (2010), Regenwetter et al. (2011) and Baillon et al. (2014)).   

    Upon closer inspection, however, it seems that such models do not capture certainty preference 

in an intuitive way: They allow for situations, for example, where a person chooses a guaranteed 

$10 over a 50-50 chance of gaining $11 or gaining $12, merely because the former is ‘certain’. It 

seems plausible, at least in such cases, that certainty is better viewed as the ‘minimum guarantee’ 

of a lottery. Under this view, certainty preference would predict choosing the non-degenerate 

lottery since the former guarantees $10 whereas the latter guarantees at least $11. This observation 

suggests that a more appropriate analog assigns different weights to the probability of outcome 𝑥 

depending on if 𝑃(𝑋𝑓 ≥ 𝑥) = 1 or 𝑃(𝑋𝑓 ≥ 𝑥) < 1.   

     It also appears that models which assign different weights to probabilities depending on 

whether 𝑓(𝑥) = 1 or 𝑓(𝑥) < 1 do not capture the behavior of most subjects who exhibit the Allais 

paradox. For instance, Incekara-Hafalir and Stecher (2016) conducted a novel test of Allais-style 

violations of EU in which they replaced the common consequence across a series of six decisions. 

Using a Savage matrix representation of lotteries, their subjects chose between safe lottery 

($𝑐, 0.89; $8, 0.10; $8, 0.01) and risky lottery ($𝑐, 0.89; $10, 0.10; $0, 0.01) for 𝑐 ∈

{0,5,8,10,16,20}. Let R denote a ‘risky’ choice and S denote a ‘safe’ choice. Ordering the six 

choices from those with the lowest value of 𝑐 to the highest value of 𝑐, only the preference patterns 

RRRRRR and SSSSSS are consistent with EU. The classic Allais paradox corresponds to the case 

where the first letter in the sequence is R (where 𝑐 = 0) and the third letter is S (where 𝑐 = 8). 

Models which assign different weights to certain and uncertain outcomes predict a ‘certainty 

effect’ pattern of RRSRRR but not the ‘zero effect’ pattern RSSSSS. In contrast, QRD is consistent 

with a ‘zero effect’ pattern RSSSSS, but not with a certainty effect pattern. The standard RDU 

model permits the zero effect pattern, the certainty effect pattern, and the reverse of each pattern, 

and so is not very helpful in predicting which effect will dominate. In fact, Incekara-Hafalir and 

Stecher (2016) observed strong support for the zero effect pattern while none of the subjects in 

their experiment exhibited the certainty effect pattern2. Both of these findings are consistent with 

security bias as formalized by QRD. It thus appears that (2) may actually be the more appropriate 

                                                 
2 Incekara-Hafalir and Stecher also find that the effect of security level is strongest when the minimum payoff is zero.   
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analog to (3). Such a conclusion is encouraging because (2) satisfies both stochastic dominance 

and transitivity. Furthermore, as we will illustrate in the following sections, (2) can be plugged 

into economic models involving risk as simply as quasi-hyperbolic discounting can be plugged 

into economic models involving time. 

 

III. BEHAVIORAL IMPLICATIONS 

We next explore four behavioral implications of QRD: continuity violations, loss aversion, the 

Allais paradox and the common ratio effect.  

A. Violations of Continuity  

The continuity axiom of EU implies that for any lotteries 𝑝, 𝑝′, 𝑝′′ such that 𝑝 ≿ 𝑝′ ≿ 𝑝′′, there 

exists probability 𝛼 ∈ [0,1] such that 𝛼𝑝 + (1 − 𝛼)𝑝′′~ 𝑝′. Although continuity is a standard 

assumption, there are intuitive cases where it can be violated. Adapting an example from Levin 

(2006), suppose 𝑝 ≔ (𝑤 + $10, 1), (i.e., 𝑝 yields your current wealth 𝑤 plus $10 with certainty), 

𝑝′ ≔ (𝑤, 1) (i.e., the status quo), and 𝑝′′ ≔ (0,1) (you lose all your wealth with certainty). Would 

most people really be willing to risk losing all their wealth for a chance of gaining $10? Does 

rationality really require such behavior? We show that QRD can explain violations of continuity 

in such cases. In this example, under QRD, continuity requires there to be some 𝛼 ∈ [0,1] so that 

𝑉(𝛼𝑝 + (1 − 𝛼)𝑝′′) =  𝜃𝛼(𝑢(𝑤 + 10) − 𝑢(0)) + 𝑢(0) = 𝑢(𝑤). 

Clearly this equation need not hold when 𝜃 < 1. For instance, we can normalize utilities so that 

𝑢(𝑤 + 10) = 1 and 𝑢(0) = 0. If 𝑢(𝑤) > 0.9, then any 𝜃 ≤ 0.9, implies 𝑝′ ≻ 𝛼𝑝 + (1 − 𝛼)𝑝′′ 

for all 𝛼 ∈ [0,1] and the agent will not risk all his wealth for any 𝛼 ∈ [0,1]. Under QRD, continuity 

is satisfied for lotteries with the same worst-case scenario which may be a more natural condition.  

B. Loss Aversion 

A fundamental property of observed choices under risk is loss aversion which has been defined 

behaviorally by Kahneman and Tversky (1979) and Schmidt and Zank (2005) as aversion to 50-

50 gain-loss bets. More formally, given a choice between lotteries 𝑓 and 𝑔 where 𝑓 ≔

(𝑦, 0.5; −𝑦, 0.5) and 𝑔 ≔ (𝑥, 0.5; −𝑥, 0.5), for any 𝑥 > 𝑦 ≥ 0, loss aversion holds if 𝑓 ≻ 𝑔.  

Proposition 1: Let 𝑢(−𝑥) = −𝑢(𝑥) for all 𝑥. Then loss aversion holds if and only if 𝜃 ∈ [0,1). 

C. Rabin’s Paradox 

Rabin (2000) introduced a powerful critique of EU. Rabin proved a calibration theorem which 

implies, for instance, that an EU maximizer who rejects a 50-50 bet to lose $100 or win $125 at 
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all wealth levels will also reject a 50-50 bet to lose $600 or win $1 million. Rabin’s theorem is 

often taken as strong evidence against the assumption of a utility function over final wealth levels  

Under the QRD model, the 50-50 lose $100, gain $125 bet is rejected at all wealth levels, 𝑤 >

$100, if 𝑢(𝑤) > (1 − 𝜃/2)𝑢(𝑤 − 100) + (𝜃/2)𝑢(𝑤 + 125) for all 𝑤 > $100. Under the 

assumption that 𝑢 is strictly concave, it follows that: 

𝑢((1 − 𝜃/2)(𝑤 − 100) + (𝜃/2)(𝑤 + 125))  > (1 − 𝜃/2)𝑢(𝑤 − 100) + (𝜃/2)𝑢(𝑤 + 125) 

for all 𝜃 ∈ (0,1). Also, note that for any 𝜃 ∈ (0, 8/9), we have: 

𝑢(𝑤) > 𝑢((1 − 𝜃/2)(𝑤 − 100) + (𝜃/2)(𝑤 + 125)). 

Thus, for any strictly concave utility function, a QRD agent with 𝜃 ∈ (0, 8/9) will always reject 

Rabin’s small stakes gamble. Next consider the 50-50 gamble to lose $600 or gain $𝑧. The gamble 

is accepted at current wealth level, 𝑤, if (𝜃/2)𝑢(𝑤 + 𝑧) + (1 − 𝜃/2)𝑢(𝑤 − 600) > 𝑢(𝑤). 

In order for the gamble to be accepted, it must also be the case that: 

𝑢(𝑤 + 𝑧(𝜃/2) − 600(1 − 𝜃/2)) > 𝑢(𝑤), 

which implies 𝜃 > 1200/(600 + 𝑧). Under the preceding restrictions on 𝜃, a QRD agent may 

reject the small stakes gamble at all wealth levels and choose the gamble with a 50-50 chance of 

losing $600 or gaining $𝑧 for sufficiently large 𝑧. As concrete examples, fixing 𝜃 = 0.7, if 𝑢(𝑥) =

𝑥, the first gamble is always rejected and the second is accepted for all 𝑧 ≥ $1115; if 𝑢(𝑥) =

ln(𝑥), the first gamble is always rejected and the second is accepted. for all 𝑧 ≥ $1218.  

D. The Common Ratio Effect 

In the following analysis, we provide general conditions on 𝜃 which explain two systematic 

deviations from EU – the common ratio effect and the Allais paradox. In both cases, we assume 

that the decision maker has QRD preferences. 

A robust violation of EU, the common ratio effect (at certainty), is defined next. 

Definition 2: (Common Ratio Effect): Let 𝑓 ≔ (𝑦, 1), 𝑓′ ≔ (𝑦, 𝑞; 0,1 − 𝑞), 

𝑔 ≔ (𝑥, 𝑝; 0,1 − 𝑝), 𝑔′ ≔ (𝑥, 𝑞𝑝; 0,1 − 𝑞𝑝), for any ∈ (0, 𝑥) 𝑎𝑛𝑑 𝑝, 𝑞 ∈ (0,1). The common 

ratio effect holds if 𝑓 ~ 𝑔 implies 𝑓′ ≺ 𝑔′. 

Proposition 2: The common ratio effect holds if and only if 𝜃 ∈ (0,1) 

In the classic version of the common ratio effect due to Kahneman and Tversky (1979), 

(𝑥, 𝑦, 𝑝, 𝑞) = ($4000, $3000, 0.8, 0.25). Definition 2 implies that an agent who is indifferent 

between lotteries 𝑓 and 𝑔 will strictly prefer 𝑔′ over 𝑓′. 
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E. The Allais Paradox 

The Allais paradox (also known as the common consequence effect) is defined as:  

Definition 3: (Allais Paradox): Let 𝑓 ≔ (𝑦, 1), 𝑓′ ≔ (𝑦, 𝑞; 0,1 − 𝑞),  

𝑔 ≔  (𝑥, 𝑝; 𝑦, 1 − 𝑞; 0, 𝑞 − 𝑝), 𝑔′ ≔ (𝑥, 𝑝, 0; 1 − 𝑝), for any 𝑦 ∈ (0, 𝑥) and 𝑝, 𝑞 ∈ (0,1).  The 

Allais paradox holds if 𝑓 ~ 𝑔 implies 𝑓′ ≺ 𝑔′. 

Proposition 3: The Allais paradox holds if and only if 𝜃 ∈ (0,1). 

In the classic Allais paradox (𝑥, 𝑦, 𝑝, 𝑞) = ($5 Million, $1 Million, 0.10, 0.11). Definition 3 

implies that an agent who is indifferent between lotteries 𝑓 and 𝑔 will strictly prefer 𝑔′ over 𝑓′. 

F. Stake Dependence of the Allais Paradox 

The QRD model also makes predictions regarding the Allais paradox which distinguish it from 

the most widely used specification of CPT. While the Allais paradox is observed at the large stakes 

of Allais (1953) where (𝑥, 𝑦, 𝑝, 𝑞) = ($5 Million, $1 Million, 0.10, 0.11), and at the stakes used 

by Kahneman and Tversky (1979), where (𝑥, 𝑦, 𝑝, 𝑞) = ($2500, $2400, 0.33, 0.34), the paradox 

is greatly diminished at small stakes. In particular, when payoffs are scaled down to (𝑥, 𝑦, 𝑝, 𝑞) =

($100, $20, 0.10, 0.11), as done by Fan (2002), or to (𝑥, 𝑦, 𝑝, 𝑞) = ($25, $5, 0.10, 0.11), as done 

by Huck and Muller (2012), experimental subjects typically choose the riskier lottery in both 

choices. There is a strong intuitive basis for not observing the paradox at these small stakes: People 

are naturally willing to accept the 1% chance of receiving $0 in exchange for a 10% chance of 

receiving $100. The appeal of the sure-thing is not as strong at small stakes. It is only when the 

large payoff is not much larger than the sure-thing (as in Kahneman and Tversky’s example), or 

when the sure-thing is a very large amount (as in the Allais example), that the paradox is likely to 

be observed. Thus, a more complete explanation of the Allais paradox should predict the paradox 

to occur at the large stakes observed by Allais, and Kahneman and Tversky, but should predict 

behavior consistent with EU at the smaller stakes used by Fan (2002) and Huck and Muller (2012). 

The standard version of CPT with a power value function defined over gains and losses cannot 

account for this aggregate pattern even given any rank-dependent probability weighting function. 

However, QRD naturally accommodates all four cases. For example, if  𝑢(𝑤 + 𝑥) = ln(𝑤 + 𝑥), 

for an agent with current wealth 𝑤, and 𝜃 = 0.9, then for any 𝑤 such that $5,000 ≤ 𝑤 ≤

$500,000, QRD predicts the Allais paradox to be observed for the examples by Allais (1953) and 

Kahneman and Tversky (1979), and predicts behavior consistent with EU (the choice of the two 

riskier options) for the examples from Fan (2002) and Huck and Muller (2012).  
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IV. APPLICATION TO RISK REDUCTION AND INSURANCE PURCHASE 

For decisions under risk, an important implication of quasi-rank dependent probability weighting 

is that a decision maker will pay a disproportionately higher premium for risk elimination than for 

an equivalent degree of risk reduction that does not eliminate the risk. This prediction also has 

empirical support. For instance, Botzen et al. (2013) find that households place a substantial 

premium on policies to eliminate flood risk relative to other opportunities which merely reduce 

the risk. A similar conclusion was reached by Viscusi et al. (2014) who found there to be a greater 

premium for policies that reduce cancer risks to zero relative to policies which reduce but do not 

eliminate the risk. We illustrate this preference for risk elimination in the context of insurance.  

A. The Decision to Purchase Regular Insurance 

Consider the following situation described by Blavatskyy (2014): A decision maker has a risk 

of losing 𝐷 dollars with probability 𝑞 ∈ (0,1). The decision maker has the option of purchasing 

𝑥 ∈ [0, 𝐷] units of insurance, where one unit of insurance costs 𝑐 dollars, with 𝑐 ∈ (0,1), and pays 

the decision maker one dollar if the loss occurs. We consider the optimality of purchasing regular 

(full) insurance (i.e., the case where 𝑥 = 𝐷) under the quasi-rank dependent model. 

As noted by Blavatskyy, under regular insurance, the decision maker loses exactly 𝑐𝐷 dollars 

regardless of whether the loss occurs. If 𝑥 < 𝐷, the decision maker loses 𝑐𝑥 dollars with 

probability 1 − 𝑞 and loses 𝐷 + 𝑥(𝑐 − 1) dollars with probability 𝑞. Under the quasi-rank 

dependent model, the decision maker will purchase regular insurance if and only if the following 

inequality holds for any 𝑥 ∈ [0, 𝐷). 

𝑢(−𝑐𝐷) > 𝜃(1 − 𝑞)𝑢(−𝑐𝑥) + (1 − 𝜃 + 𝜃𝑞)𝑢(−𝐷 − 𝑥(𝑐 − 1)). 

The preceding inequality can be arranged as follows: 

𝑢(−𝑐𝐷)−𝑢(−𝐷−𝑥(𝑐−1))

(𝐷−𝑥)(1−𝑐)
(1 − 𝑐) >

𝑢(−𝑐𝑥)−𝑢(−𝐷−𝑥(𝑐−1))

𝐷−𝑥
(1 − 𝑞)𝜃.  

The fraction on the left-hand side of the inequality is the slope of the utility function between 

points −𝑐𝐷 and −𝐷 − 𝑥(𝑐 − 1), and the fraction on the right-hand side is the slope of the utility 

function between points −𝑐𝑥 and −𝐷 − 𝑥(𝑐 − 1). For any strictly concave utility function 𝑢, the 

slope on the left hand side is always greater than the slope on the right hand of the inequality. 

Therefore, regular insurance will be optimal to purchase when (1 − 𝑐)/(1 − 𝑞) ≥ 𝜃. 
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    Under EU, we have 𝜃 = 1, and regular insurance is optimal when 𝑞 ≥ 𝑐. This observation is the 

well-known result that a risk-averse expected utility maximizer will never purchase regular 

insurance at an actuarially unfair price. This implication cannot be reconciled under EU with the 

large premiums many people are willing to pay to eliminate risk. Rearranging the above 

expression, we have the following which holds for any concave utility function: 

Proposition 4: A risk-averse consumer with QRD preferences will purchase regular insurance at 

an actuarially unfair price 𝑐 > 𝑞 if (4) holds: 

(4)      1 − (1 − 𝑞)𝜃 ≥ 𝑐. 

Note that there is always some 𝜃∗ < 1 such that an agent will purchase regular insurance, even at 

an actuarially unfair price for any 𝜃 ≤ 𝜃∗.  

    The QRD model can also explain the finding from Sydnor (2010) that many people ‘over-insure’ 

for modest risks. Sydnor found that expected utility theory could not explain his observations from 

real insurance purchases that customers with a 4 percent probability of a loss were willing to pay 

$95 to lower the deductible from $1,000 to $500. Let 𝑝 denote the price of insurance with a $1000 

deductible, and let 𝑤 denote the consumer’s initial wealth. For simplicity and to isolate the role of 

security bias, let 𝑢(𝑥) = 𝑥. Then a QRD consumer prefers to pay $95 to lower the deductible from 

$1000 to $500 if the following inequality holds:  

(1 − 0.96𝜃)(𝑤 − 𝑝 − 595) + 0.96(𝑤 − 𝑝 − 95)𝜃 > (1 − 0.96𝜃)(𝑤 − 𝑝 − 1000) + 0.96(𝑤 − 𝑝)𝜃.  

This inequality holds under QRD for all 𝜃 < 0.84375. 

B. Aversion to Probabilistic Insurance 

Expected utility theory also predicts that a risk-averse agent will prefer ‘probabilistic insurance’ 

to regular insurance. Under probabilistic insurance, the decision maker pays a fraction of the 

insurance premium up front. If the loss occurs, there is a probability that the decision maker pays 

the remainder of the premium to receive full coverage from the insurance firm, but otherwise the 

insurance firm refunds the partial premium already paid by the decision maker and does not cover 

the loss. Kahneman and Tversky (1979) demonstrate that many people will not purchase 

probabilistic insurance, even though expected utility theory (with a concave utility function) 

implies that probabilistic insurance will be preferred to regular insurance.  
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As in the example from Kahneman and Tversky (1979), suppose that at wealth 𝑤, a person is 

indifferent between paying premium 𝑦 to insure against a probability 𝑞 of losing 𝑥, where 𝑥 >

𝑦 > 0. Then a risk-averse expected utility maximizer would be willing to pay a smaller premium 

𝑟𝑦 to reduce the probability of losing 𝑥 from 𝑞 to (1 − 𝑟)𝑞 for 𝑟 ∈ (0,1). Kahneman and Tverksy 

note that in expected utility theory, “if one is indifferent between (𝑤 − 𝑥, 𝑞; 𝑤, 1 − 𝑞) and (𝑤 −

𝑦), then one should prefer probabilistic insurance (𝑤 − 𝑥, (1 − 𝑟)𝑞; 𝑤 − 𝑦, 𝑟𝑞; 𝑤 − 𝑟𝑦, 1 − 𝑞) 

over regular insurance (𝑤 − 𝑦).”  

Without loss of generality, set 𝑢(𝑤 − 𝑥) = 0 and 𝑢(𝑤) = 1. Under the quasi-rank dependent 

model, the indifference condition implies 

𝑢(𝑤 − 𝑦) = 𝜃(1 − 𝑞). 

Probabilistic insurance is preferred to regular insurance if 

𝑢(𝑤 − 𝑦) < 𝜃𝑟𝑞𝑢(𝑤 − 𝑦) + 𝜃(1 − 𝑞)𝑢(𝑤 − 𝑟𝑦). 

For any 𝜃 > 0, substituting the indifference condition, we have 

(1 − 𝑞) < (1 − 𝑞)𝑟𝑞𝜃 + (1 − 𝑞)𝑢(𝑤 − 𝑟𝑦). 

For 𝜃 = 1, the above inequality holds if and only if 𝑢 is concave, implying a preference for 

probabilistic insurance over regular insurance under expected utility theory. In contrast, we see 

that regular insurance is preferred to probabilistic insurance if 1 − 𝑟𝑞𝜃 > 𝑢(𝑤 − 𝑟𝑦), which can 

hold for 𝜃 < 1. As the examples in this section illustrate, the quasi-rank dependent model can be 

very tractable in applications and provides a clean comparison to the expected utility predictions.  

V. APPLICATION TO PREDICTION MARKETS 

We consider a prediction market based on Wolfers and Zitzewitz (2006).  Assets are Arrow-

Debreu securities which pay $1 if a target event occurs and $0 otherwise. There are 𝑚 traders, 𝑗 =

1, … . , 𝑚, of whom 𝑛 < 𝑚 are buyers and 𝑚 − 𝑛 are sellers. There is heterogeneity in beliefs, 

where trader 𝑗 believes the target event will occur with probability 𝑞𝑗. Wealth, 𝑤, is assumed to 

be independent of beliefs. Beliefs are drawn from a distribution 𝐹(𝑞). Traders are price-takers and 

pursue trading strategies which maximize their preferences. We assume that preferences are given 

by the quasi-rank dependent utility model. Traders are risk-averse with log utility and have the 

same degree of bias given by 𝜃. Wealth is only affected by the outcome of the prediction market 

so there are no hedging motives for trading the security. Let 𝑝 denote the price of the security and 
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let 𝑥𝑗 denote the quantity of the security purchased by trader 𝑗, for 𝑗 = 1, … , 𝑛. Let 𝑦𝑗 denote the 

quantity of the security sold by trader 𝑗, for 𝑗 = 𝑛 + 1, … 𝑚. Buyers of the security solve (5): 
 

(5)        max
𝑥

𝑉𝑗 = 𝜃𝑞𝑗ln( 𝑤 + 𝑥𝑗(1 − 𝑝)) + (1 − 𝜃𝑞𝑗)ln(𝑤 − 𝑥𝑗𝑝) 

for  𝑗 = 1, … , 𝑛. Sellers of the security solve a similar maximization problem: 

(6)      max
𝑦

𝑉𝑗 = (1 − 𝜃 + 𝜃𝑞𝑗)ln( 𝑤 − 𝑦𝑗(1 − 𝑝)) + 𝜃(1 − 𝑞𝑗)ln(𝑤 + 𝑦𝑗𝑝) 

for 𝑗 = 𝑛 + 1, … , 𝑚. The optimal quantity, 𝑥𝑗
∗, demanded by buyer 𝑗 = 1, … , 𝑛 and the optimal 

quantity, 𝑦𝑗
∗, offered by seller 𝑗 = 𝑛 + 1, … , 𝑚 are given by: 

(7)   𝑥𝑗
∗ = 𝑤

𝜃𝑞𝑗−𝑝

𝑝(1−𝑝)
,            𝑦𝑗

∗ = 𝑤
𝜃(1−𝑞𝑗)−(1−𝑝)

𝑝(1−𝑝)
.  

From the formulas for 𝑥𝑗
∗ and 𝑦𝑗

∗, a buyer j’s demand is positive if 𝜃𝑞𝑗 − 𝑝 > 0 and seller j’s supply 

is positive if 𝜃(1 − 𝑞𝑗) − (1 − 𝑝) > 0. In equilibrium, supply equals demand, which implies: 

(8)   ∫ 𝑤
𝜃(1−𝑞)−(1−𝑝)

𝑝(1−𝑝)
𝑓(𝑞)𝑑𝑞 = ∫ 𝑤

𝜃𝑞−𝑝

𝑝(1−𝑝)

∞
𝑝

𝜃

1+
𝑝

𝜃
−

1

𝜃
−∞

𝑓(𝑞)𝑑𝑞  

From (7), we see that security bias implies that buying-selling price gaps will exist in equilibrium. 

A similar finding was derived by Dow and Werlang (1992) in the context of portfolio choice3: 

Proposition 5: Buying-selling price gaps exist in equilibrium: For QRD preferences, a trader with 

belief 𝑞 will buy if and only if 𝑝 < 𝜃𝑞 and will sell if and only if 𝑝 > 𝜃𝑞 + 1 − 𝜃.  

Note that when 𝜃 = 1 (i.e., under EU preferences), there are no buying-selling price gaps: A trader 

with belief 𝑞 will buy the security when 𝑝 < 𝑞 and will sell when 𝑝 > 𝑞. Also note that the size 

of the buying-selling price gap is equal to the degree of security bias (1 − 𝜃). For 𝜃 < 1, security 

bias results in an efficiency loss: A buyer with belief 𝑞, could earn a positive subjective expected 

payoff by trading for all 𝑞 ∈ (𝑝, 𝑝/𝜃) and a seller with belief 𝑞 could earn a positive subjective 

expected payoff by trading for all 𝑞 ∈ (1 +
𝑝

𝜃
−

1

𝜃
, 𝑝). Yet no trade takes place for agents with 𝑞 ∈

(1 +
𝑝

𝜃
−

1

𝜃
,

𝑝

𝜃
). In an extreme case, if security bias is sufficiently strong, it can even lead to market 

failure. For instance, if 𝑝 = 0.5 and 𝜃 = 0.5, then no trade occurs for any beliefs 𝑞 ∈ (0,1), even 

though welfare enhancing trade could occur for all buyers with 𝑞 > 𝑝 and all sellers with 𝑞 < 𝑝. 

For a less extreme example, if 𝑝 = 0.5 and 𝜃 = 0.9, then no trade occurs for beliefs 𝑞 ∈ (
4

9
,

5

9
). 

                                                 
3 Dow and Werlang (1992) demonstrated that buying-selling price gaps for assets in financial markets hold under the 

more general Choquet Expected Utility preferences. The model of Bordalo et al. (2012a) generates buying-selling 

price gaps in the context of salience-based consumer choice.  
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   Next, we consider the impact of security bias on market prices. Let 𝑞 = ∫ 𝑞𝑓(𝑞)𝑑𝑞
∞

−∞
 (i.e., the 

average belief across the entire population of traders).  

Definition 4: The equilibrium market price, 𝑝, is unbiased if 𝑝 = 𝑞. 

Gjerstad (2005) and Wolfers and Zitzewitz (2006) show that in the EU case (i.e., 𝜃 = 1), market 

prices will be unbiased. A natural question is whether prices can be unbiased despite the systematic 

security bias of market participants (i.e., for 𝜃 < 1). That is, do equilibrium prices necessarily 

depend on 𝜃 if traders have preferences that depend on 𝜃? We offer a simple illustration.  

Proposition 6: Suppose buyers and sellers maximize (5) and (6), respectively, and that supply and 

demand are each positive. If beliefs are uniformly distributed on [0,1], then equilibrium market 

level prices will be unbiased (i.e., 𝑝 = 𝑞) for any systematic individual level bias 𝜃 ∈ (0.5,1]. 

Proof: The restriction 𝜃 ∈ (0.5,1] is necessary for supply and demand to each be positive4. Given 

our assumption that wealth is independent of beliefs, if 𝑓(𝑞) is uniform on [0,1], and supply and 

demand are positive, then (8) becomes: 

𝑤

𝑝(1−𝑝)
∫ (𝜃(1 − 𝑞) − (1 − 𝑝))𝑑𝑞 =

𝑤

𝑝(1−𝑝)
∫ (𝜃𝑞 − 𝑝)

1
𝑝

𝜃

1+
𝑝

𝜃
−

1

𝜃
0

𝑑𝑞.  

The equilibrium price is then the price 𝑝 that solves (𝑝 + 𝜃 − 1)2 = (𝑝 − 𝜃)2, yielding: 

𝑝 =
1 − 2𝜃

2 − 4𝜃
=

1

2
= 𝑞. ∎ 

   Although simple, Proposition 6 is a surprising result – aggregating preferences of systematically 

biased agents produces unbiased market level prices!  

   A primary finding in behavioral economics is that biases are systematic. Thus, they will not 

cancel out as noise in ways that random errors might. In contrast, many economists argue that 

biases will be eliminated by the market. In his book, Misbehaving: The Making of Behavioral 

Economics, Thaler (2015) writes: “I call this argument the invisible handwave…The vague 

argument is that markets somehow discipline people who are misbehaving. Handwaving is a must 

because there is no logical way to arrive at a conclusion that markets transform people into rational 

agents.” Interestingly, Proposition 6 considers the case where biases are systematic in the same 

direction (in a manner consistent with the Allais paradox, and loss aversion) and shows that even 

                                                 
4 Given that beliefs are uniformly distributed over [0,1], the restriction that supply and demand are positive implies 

that [1 +
𝑝

𝜃
−

1

𝜃
,

𝑝

𝜃
] ⊂ [0,1] or, equivalently, that 1 − 𝜃 < 𝑝 < 𝜃.  
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if all agents in a market are systematically biased, equilibrium prices can accurately aggregate 

beliefs and produce the same prices as-if all agents maximized expected utility.    

   Proposition 6 does not mean that biases do not affect market prices in general. The result is 

restrictive, particularly given the uniform assumption for beliefs and the assumption that traders 

have the same risk aversion and bias (although one might view this as a representative agent).  

   A subtle point related to Proposition 6 is that traders may revise their prior beliefs given the 

information revealed by market prices to form posterior beliefs.  We have implicitly assumed that 

traders have fixed beliefs (i.e., their prior and posterior probabilities are equal). We next provide a 

simple and plausible illustration that equilibrium prices can be the same for prior and posterior 

beliefs, even if traders update their prior beliefs based on the information they extract from 

observing market prices. To distinguish prior and posterior beliefs, we now denote the former by 

𝑞 and the latter by 𝑞(𝑝). Consider a simple and plausible belief-updating rule discussed in Manski 

(2006) in which a trader’s posterior belief is determined by a weighted average of her prior belief 

and the observed market price. That is: 

(9)     𝑞(𝑝) ≔ 𝜆𝑞 + (1 − 𝜆)𝑝. 

where 𝜆 ∈ [0,1]. Under this rule, prior beliefs are updated in the direction of the market price, with 

(1 − 𝜆) determining the degree to which beliefs are revised, including as special cases no revision 

((1 − 𝜆) = 0) and full revision ((1 − 𝜆) = 1). If prior beliefs are uniformly distributed over [0,1], 

then the distribution of posterior beliefs is uniform over the interval [(1 − 𝜆)𝑝, 𝜆 + (1 − 𝜆)𝑝] 

which is a subset of [0,1]. This interval encompasses many possible supports for the uniform 

distribution of posterior beliefs including those not centered at 0.5. Performing the same analysis 

as in Proposition 6, assuming supply and demand are positive and setting supply equal to demand 

in equilibrium yields:  

∫
(𝜃(1 − 𝜆𝑞 − (1 − 𝜆)𝑝) − (1 − 𝑝))

𝜆
𝑑𝑞 = ∫

(𝜃(𝜆𝑞 + (1 − 𝜆)𝑝) − 𝑝)

𝜆

𝜆+(1−𝜆)𝑝

𝑝(1−𝜃(1−𝜆))
𝜃𝜆

𝑝(1−𝜃(1−𝜆))−(1−𝜃)
𝜃𝜆

(1−𝜆)𝑝

𝑑𝑞. 

The equilibrium price is then the price 𝑝 that solves the following equation: 

(𝑝((𝜆2 − 1)𝜃 + 1) + (𝜃 − 1))2 = (𝑝((𝜆2 − 1)𝜃 + 1) − 𝜆2𝜃)2. 

Solving for 𝑝 yields: 

𝑝 =
1 − 2𝜃 − 𝜆4𝜃2 + 𝜃2

2(1 − 2𝜃 − 𝜆4𝜃2 + 𝜃2)
=

1

2
=

2(1 − 𝜆)𝑝 + 𝜆

2
= 𝑞. ∎ 
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Thus, even if agents use an updating rule that takes a weighted average of their prior and the market 

price to form their posterior beliefs, the equilibrium price is the same as in Proposition 6.  

 

 

VI. APPLICATION TO EQUILIBRIUM BIDDING AND REVENUE EQUIVALENCE 

The QRD model provides a simple tool for investigating whether and how economic conclusions 

depend on the expected utility assumption. To further illustrate, consider an application to 

auctions: There are 𝑛 bidders in a first price sealed bid private value auction for a single 

deterministic object. Bidder valuations are independently drawn from a uniform distribution over 

[0,1]. Bidders are QRD agents with linear utility and bias parameter 𝜃 ∈ (0,1]. Then there is a 

symmetric equilibrium in which a bidder with value 𝑣 bids 𝑏(𝑣) = (
𝑛−1

𝑛
) 𝑣. This bidding strategy 

is well known although it has only been proven for the case 𝜃 = 1  (i.e., where all bidders satisfy 

EU). Here we observe that the result holds more generally for any 𝜃 ∈ (0,1]. To see this, suppose 

bidder 𝐵1 has value 𝑣1 and bids 𝑏1. Since 𝐵1 always wins the auction if 𝑏1 = (𝑛 − 1)/𝑛, we can 

restrict our analysis to bids over the interval [0, (𝑛 − 1)/𝑛]. We need to establish that the strategy, 

𝑏(𝑣), above, is a best response for 𝐵1 if it is adopted by all other bidders. Suppose another bidder 

𝐵2 with value 𝑣2 bids 𝑏2(𝑣2) = [(𝑛 − 1)/𝑛]𝑣2 < 𝑏1. Since 𝑣2 is uniformly distributed over [0,1], 

𝐵1 bids higher than 𝐵2 with probability 𝑛𝑏1/(𝑛 − 1). To win, 𝐵1 must outbid all other bidders. 

The probability 𝐵1 wins is:  

𝑞(𝑏1) = 𝑏1
𝑛−1 (

𝑛

𝑛 − 1
)

𝑛−1

. 

A QRD agent values each bid according to: 

𝑉(𝑏1) = 𝜃𝑞(𝑏1)(𝑣1 − 𝑏1) + (1 − 𝜃𝑞(𝑏1))(0). 

When finding the bid that maximizes 𝑉(𝑏1), 𝜃 cancels and we obtain the same bid function 𝑏(𝑣) 

noted above which is well known for the expected utility case. But now the result is more general, 

holding for any degree of bias 𝜃 ∈ (0,1]. Also 𝜃 does not affect bidding behavior in a second price 

sealed bid private value auction for a deterministic object5. It is then immediate that revenue 

equivalence for the first and second price auctions, originally established for risk-neutral EU 

agents, continues to hold for QRD agents with linear utility. Note that this conclusion holds for 

any probability 𝑞(𝑏1) and so is robust to assuming a uniform value distribution. 

                                                 
5 Karni and Safra (1989) have demonstrated that when the object up for auction is a lottery, bidding one’s value in a 

second price auction is only an equilibrium if the bidders are expected utility maximizers.  
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VII. EXTENSION TO OPTIMISM AND PESSIMISM 

In the preceding analysis, we have considered the implications of a QRD agent in several 

different economic environments. One might also be interested in the behavior of an agent who 

exhibits both optimism and pessimism. The QRD model can be extended to the full NEO-EU 

model of Chateauneuf et al. (2007) by allowing for the possibility that an agent is sensitive to both 

the best and worst outcome of a lottery. For a lottery 𝑓, the NEO-EU model can be written as: 

(10)    𝑉(𝑓) = 𝜃𝑈(𝑓) + (1 − 𝜃)[𝛼𝑢(𝑥) + (1 − 𝛼)𝑢(𝑥)] 

where 𝑈(𝑓) is the expected utility of 𝑓, 𝛼 ∈ [0,1] represents the agent’s degree of optimism, and 

𝑥 and 𝑥 are, respectively, the most and least preferred outcomes in the support of 𝑓. Let                   

𝑎 ≔ (1 − 𝜃)𝛼 and let 𝑏 ≔ (1 − 𝜃)(1 − 𝛼). The equivalent QRD representation to (10) is (11): 

(11)                 𝑉(𝑓) = ∑ 𝜋(𝑓(𝑥)) ∙ 𝑢(𝑥),𝑥∈𝑋   where   𝜋(𝑓(𝑥)) = {

𝑎 + 𝜃𝑓(𝑥),           𝑥 = 𝑥      

          𝜃𝑓(𝑥),           𝑥 ∈ (𝑥, 𝑥)

𝑏 + 𝜃𝑓(𝑥),           𝑥 = 𝑥      

 

    Note that (11) is ‘quasi-rank dependent’ in that it transforms individual rather than cumulative 

probabilities and rank matters only for the best and worst outcomes. The model in (11) also 

satisfies transitivity and stochastic dominance.  

   The results from Section V on prediction markets extend to the general QRD preferences in (10). 

Buyers of the security now solve the following problem: 

(12)     max
𝑥

𝑉𝑗 = ((1 − 𝜃)𝛼 + 𝜃𝑞𝑗)ln( 𝑤 + 𝑥𝑗(1 − 𝑝)) + ((1 − 𝜃)(1 − 𝛼) + 𝜃(1 − 𝑞𝑗))ln(𝑤 − 𝑥𝑗𝑝) 

for  𝑗 = 1, … , 𝑛. Sellers of the security solve a similar maximization problem: 

(13)    max
𝑦

𝑉𝑗 = ((1 − 𝜃)(1 − 𝛼) + 𝜃𝑞𝑗)ln( 𝑤 − 𝑦𝑗(1 − 𝑝)) + ((1 − 𝜃)𝛼 + 𝜃(1 − 𝑞𝑗))ln(𝑤 + 𝑦𝑗𝑝) 

for 𝑗 = 𝑛 + 1, … 𝑚. The optimal quantity, 𝑥𝑗
∗, demanded by buyer 𝑗 = 1, … 𝑛 and the optimal 

quantity, 𝑦𝑗
∗, offered by seller 𝑗 = 𝑛 + 1, … . 𝑚 are now given by: 

𝑥𝑗
∗ = 𝑤

𝜃𝑞𝑗−𝑝+𝛼(1−𝜃)

𝑝(1−𝑝)
,            𝑦𝑗

∗ = 𝑤
𝜃(1−𝑞𝑗)−(1−𝑝)+𝛼(1−𝜃)

𝑝(1−𝑝)
.  

In equilibrium, supply equals demand, which implies 

(14)            ∫ 𝑤
𝜃(1−𝑞)−(1−𝑝)+𝛼(1−𝜃)

𝑝(1−𝑝)
𝑓(𝑞)𝑑𝑞 = ∫ 𝑤

𝜃𝑞−𝑝+𝛼(1−𝜃)

𝑝(1−𝑝)

∞
𝑝−(𝛼(1−𝜃))

𝜃

1+
𝑝

𝜃
−

1

𝜃
+

𝛼

𝜃
−𝛼

−∞
𝑓(𝑞)𝑑𝑞  

Next, we have the following generalization of Proposition 6: 
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Proposition 7: Suppose buyers and sellers maximize (12) and (13), respectively, and that supply 

and demand are each positive. If beliefs are uniform on [0,1], then equilibrium market prices will 

be unbiased (i.e., 𝑝 = 𝑞) for any 𝜃 ∈ (0.5,1], and any degree of optimism or pessimism, 𝛼 ∈ [0,1]. 

Proof: Proceeding as in Section V, computing the optimal solutions to (12) and (13), and setting 

demand equal to supply in equilibrium yields (14) for equilibrium prices. If beliefs are uniform on 

[0,1], then solving (14) for 𝑝 yields: 

𝑝 =
1 − 2𝛼 − 2𝜃 + 2𝛼𝜃

2(1 − 2𝛼 − 2𝜃 + 2𝛼𝜃)
= 0.5 = 𝑞. ∎ 

Thus, even if we allow for any 𝛼 ∈ [0,1], distorting probabilities in the direction of optimism or 

pessimism does not affect market prices when the distribution of beliefs is uniform.  

 

VIII. APPLICATION TO FINANCE 

We next apply the model to the domain of finance.  Chateauneuf et al. (2007) considered a stylized 

setting with one risky asset and one risk-free asset and demonstrated that model (10) could help 

explain the equity premium puzzle. Here we generalize their approach to an arbitrary number of 

risky assets and consider the implications of the model for some classical asset pricing anomalies. 

We consider a representative agent economy with a representative investor who has initial wealth 

𝑤0 and can invest in J > 1 risky assets and a riskless asset (bond). Asset j trades at price 𝑝𝑗 and 

pays dividend 𝑥𝑗𝑠 if state 𝑠 occurs. There are S possible states of nature. The bond has a normalized 

price of 1 and pays return 𝑟 in every state. The investor has subjective prior 𝜋 over states in which 

state 𝑠 ∈ {1, … , 𝑆} occurs with probability 𝜋𝑠 > 0. The investor has preferences from (10, 11) with 

temporal discount factor 𝛿 and chooses a portfolio (holdings of assets) to maximize (15):  

(15)   max
{𝜆𝑗}

𝑢(𝑐0) + 𝛿 (𝔼𝜋[𝑢(𝑐𝑠)]𝜃 + [𝛼 max
𝑠∈𝑆

𝑢(𝑐𝑠) + (1 − 𝛼) min
𝑠∈𝑆

𝑢(𝑐𝑠)] (1 − 𝜃)) 

subject to the constraints: 𝑐0 = 𝑤0 − ∑ 𝜆𝑗𝑝𝑗 ,𝑗   𝑐𝑠 = 𝑤1 + ∑ 𝜆𝑗𝑗 𝑥𝑗𝑠 ,  𝜆𝑗 ≥ 0, where 𝜆𝑗, 𝑗 = 1, … , 𝐽 

is the investor’s holding of asset 𝑗 (short sales are not permitted), and 𝑤1 is a deterministic 

component of the investor’s wealth in Period 1. Substituting the constraints into the objective 

function, (15) becomes (16) where the 𝜇𝑗 values are Karush-Kuhn-Tucker (KKT) multipliers:  

(16)   max 
{𝜆𝑗}

𝑢(𝑤0 − ∑ 𝜆𝑗𝑝𝑗𝑗 ) + 𝛿𝔼𝜋[𝑢(𝑤1 + ∑ 𝜆𝑗𝑗 𝑥𝑗𝑠)]𝜃 

          + 𝛿 [𝛼 max
𝑠∈𝑆

𝑢(𝑤1 + ∑ 𝜆𝑗𝑗 𝑥𝑗𝑠) + (1 − 𝛼) min
𝑠∈𝑆

𝑢(𝑤1 + ∑ 𝜆𝑗𝑗 𝑥𝑗𝑠)] (1 − 𝜃)} − ∑ 𝜆𝑗𝜇𝑗𝑗 .   
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A difficulty in extending the model beyond the case of one risky asset is that when maximizing 

(16), the partial derivatives of the max and min functions will not generally exist everywhere. To 

address this issue and for illustration purposes, we make the following simplifying assumption: 

We let all assets have the same (unique) worst state and the same (unique) best state. This amounts 

to an assumption that asset returns are highly correlated in the best and worst market conditions, 

consistent with the notion that economies transition through good times and bad times that affect 

the entire market. Note that this assumption places no restriction on the relationship between asset 

returns in intermediate states, nor does it restrict the relationship between returns of different assets 

in the best and worst states.   

Denote the state with the best and worst returns by 𝑠 and 𝑠, respectively. The assumption 

that all assets have their best returns in the same state and their worst returns in the same state is a 

strong assumption. There is, however, some surprising empirical support for this assumption, at 

least as an approximation. For instance, Kim et al. (2015) present the data in Figure 1, which 

depicts the average correlation across the daily returns of the Thomson Reuters Datastream Global 

Equity Indices (Industry Classification Benchmark, Level 2) which spans 10 different industries, 

conditioned on the market returns from 1973 to 2010. Kim et al. note, “The most distinctive feature 

is that the average correlations during the extreme downside and the extreme upside are 

considerably higher than the correlations under the normal market states. The principal implication 

is that while industry index prices move relatively independently during normal market states, they 

go down (up) simultaneously during extremely bad (good) times. (p.21)”.   

 

Figure 1. Average correlation across industries from 1973 to 2010 conditioned on market returns. 

(Reproduced from Kim et al., 2015) 
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Let 𝑢(𝑐) and 𝑢(𝑐) denote the maximum utility and minimum utility across all states in Period 1, 

and let 𝑥𝑗𝑠 and 𝑥𝑗𝑠 likewise denote the maximum and minimum randomized payoffs across states. 

Under our correlation assumption, and given 𝜆𝑗 ≥ 0 for all 𝑗 with at least one strict inequality, 

we have ∑ 𝜆𝑗𝑥𝑗𝑠 > ∑ 𝜆𝑗𝑥𝑗𝑠𝑗 > ∑ 𝜆𝑗𝑥𝑗𝑠𝑗𝑗  for all 𝑠 ≠ 𝑠, 𝑠. Setting the derivative with respect to each 

𝜆𝑗 equal to zero yields the first order conditions: 

  −𝑝𝑗𝑢′(𝑐0) + 𝛿 (𝔼𝜋[𝑢′(𝑐𝑠)𝑥𝑗𝑠]𝜃 + [𝛼𝑢′(𝑐)𝑥𝑗𝑠 + (1 − 𝛼)𝑢′(𝑐)𝑥𝑗𝑠](1 − 𝜃)) − 𝜇𝑗 = 0  for all j. 

The KKT conditions require 𝜇𝑗𝜆𝑗 = 0 for all 𝑗. Consider the case where the representative investor 

holds the market portfolio (consisting of all securities in the market). Then 𝜆𝑗 > 0 for all 𝑗, and 

thus 𝜇𝑗 = 0 for all securities. Thus, the market portfolio is a local optimum. However, we are only 

assured that the solution is a global maximum when the objective function is concave (i.e., when 

𝛼 = 0). Nevertheless, as the KKT conditions are necessary for a global maximum, the equilibrium 

price of any asset 𝑗 can be solved for directly in the general case, yielding (17):  

(17)         𝑝𝑗 = 𝛿 (𝔼𝜋[𝑢′(𝑐𝑠)𝑥𝑠]𝜃 + [𝛼𝑢′(𝑐)𝑥𝑗𝑠 + (1 − 𝛼)𝑢′(𝑐)𝑥𝑗𝑠](1 − 𝜃)) /𝑢′(𝑐0). 

Next, define 𝛿𝑠 ≔ 𝛿𝑢′(𝑐𝑠)/𝑢′(𝑐0). The quantity 𝛿𝑠 is the familiar ‘stochastic discount factor’ 

widely studied in asset pricing models. Also, define 𝛿𝑠 ≔ 𝛿𝑢′(𝑐)/𝑢′(𝑐0) and 𝛿𝑠 ≔ 𝛿𝑢′(𝑐)/𝑢′(𝑐0). 

The pricing formula for asset 𝑗 can then be written: 

(18)            𝑝𝑗 = 𝔼𝜋[𝛿𝑠𝑥𝑗𝑠]𝜃 + [𝛼(𝛿𝑠)(𝑥𝑗𝑠) + (1 − 𝛼)(𝛿𝑠)(𝑥𝑗𝑠)](1 − 𝜃). 

Using a covariance decomposition, we can write: 

(19)             𝑝𝑗 = 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑥𝑗𝑠]𝜃 + cov(𝛿𝑠, 𝑥𝑗𝑠)𝜃 + [𝛼(𝛿𝑠)(𝑥𝑗𝑠) + (1 − 𝛼)(𝛿𝑠)(𝑥𝑗𝑠)](1 − 𝜃). 

In formula (19), the price of an asset depends on (i) the fundamental value of the asset 

(discounted expected dividend); (ii) a risk premium; (iii) a positive skewness premium; (iv) an 

ambiguity robustness premium; and (v) the investor’s degree of optimism, 𝛼. To see this, note that 

we can rewrite (19) as (20):  

(20)                                         𝑝𝑗 = 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑥𝑗𝑠] + ℛ𝑗 + 𝛼𝒮𝑗 + (1 − 𝛼)ℳ𝑗  

         𝑤ℎ𝑒𝑟𝑒   ℛ𝑗 = [𝔼
𝜋[(𝛿

𝑠
)(𝑥𝑗𝑠)] − 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑥

𝑗𝑠
]]𝜃 =  cov(𝛿𝑠, 𝑥𝑗𝑠)𝜃                            

       𝒮𝑗 = [[(𝛿𝑠)(𝑥𝑗𝑠)] − 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑥𝑗𝑠]](1 − 𝜃)      

          ℳ𝑗 = [[(𝛿𝑠)(𝑥𝑗𝑠)] − 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑥𝑗𝑠]](1 − 𝜃)             
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In (20), ℛ𝑗 is the risk premium, as in standard consumption-based asset pricing models which is 

determined by the covariance of the returns on asset j with consumption. The quantity 𝒮𝑗  can be 

interpreted as a positive skewness premium: For two assets with the same values of 

𝔼𝜋[𝛿𝑠], 𝔼𝜋[𝑥𝑗𝑠], and 𝛿𝑠, the asset with more positive skewness (in the sense of having a higher 

maximum payoff) will be priced higher. The quantity ℳ𝑗  can be interpreted as a premium for 

assets that are more robust to model uncertainty: For two assets with the same values of 

𝔼𝜋[𝛿𝑠], 𝔼𝜋[𝑥𝑗𝑠], and 𝛿𝑠, the asset which is more robust to ambiguity (in the sense of having a 

higher minimum payoff) will be priced higher. Note that in (20), prices depend on both market 

fundamentals (expected dividends) and ‘animal spirits’ (the market degree of optimism, 𝛼). 

The equilibrium pricing formula for 𝑝𝑗 in (20) includes four important special cases: If the 

investor has subjective expected utility preferences (𝜃 = 1), then 𝑟 = 1/𝔼𝜋[𝛿𝑠] and prices are: 

(21)                                       𝑝𝑗
𝑆𝐸𝑈 =

𝔼𝜋[𝑥𝑗𝑠]

𝑟
+ cov(𝛿𝑠, 𝑥𝑗𝑠). 

If the investor has Hurwicz (1951) preferences (𝜃 = 0), based on the Hurwicz criterion for 

robust decision making, then equilibrium prices do not depend on the investor’s beliefs and are: 

(22)                                𝑝𝑗
𝐻𝑢𝑟𝑤𝑖𝑐𝑧 = 𝛼(𝛿𝑠)(𝑥𝑗𝑠) + (1 − 𝛼)(𝛿𝑠)(𝑥𝑗𝑠). 

If the investor follows Wald’s (1950) maximin criterion for robust decisions under uncertainty 

(𝜃 = 0, 𝛼 = 0), then equilibrium prices, (23), do not depend on the utility function or beliefs: 

(23)                                    𝑝𝑗
𝑊𝑎𝑙𝑑 =

𝑥𝑗𝑠

𝑟
. 

If the investor has linear utility, equilibrium prices from (20) reduce to (24): 

(24)            𝑝𝑗 =  (1/𝑟)(𝔼𝜋[𝑥𝑗𝑠] + (1 − 𝜃)[𝛼(𝑥𝑗𝑠 − 𝔼𝜋[𝑥𝑗𝑠]) + (1 − 𝛼)(𝑥𝑗𝑠 − 𝔼𝜋[𝑥𝑗𝑠])]). 

 

Formula (24) was derived in a setting with a single asset by Chateauneuf et al. (2007). We have 

derived the same formula as a special case of (20) for an arbitrary number of assets, and have 

highlighted the correlation assumption that makes this derivation possible. In (24), the positive 

skewness premium is (𝑥𝑗𝑠 − 𝔼𝜋[𝑥𝑗𝑠]), and the ambiguity robustness premium is (𝑥𝑗𝑠 − 𝔼𝜋[𝑥𝑗𝑠]).  

     Chateauneuf et al. (2007) noted that the equity premium under (24) when 𝛼 = 0 exceeds the 

equity premium under SEU. They defined the equity premium as the ratio of the expected return 

from the single risky asset in their economy to the price for that asset multiplied by the risk-free 
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rate. However, they did not provide a calibration indicating whether the magnitude of the equity 

premium is sufficient to account for the equity premium puzzle of Mehra and Prescott (1985).  

    Recently, Doeswijk et al. (2017) estimated the historical returns of what they termed the global 

market portfolio (GMP) for over half a century (from 1960 through 2015). They found (Doeswijk 

et al., Table 2) that the GMP had an average annual real return6 of 5.04%, a maximum annual real 

return of 33.64%, and a minimum annual real return of -25.25%. During their observation period, 

the real return on U.S. Treasury Bills was 1.13%. As a simple illustration, we apply the definition 

of the equity premium from Chateauneuf et al. to the data on the GMP from Doeswijk et al. (2017), 

using the support of real returns of the GMP from Doeswijk et al. as the support of real returns for 

the market portfolio held by the representative investor. We can calculate the equity premium as 

𝔼𝜋[𝑟𝑚𝑠]/(𝑝𝑚𝑟) where 𝔼𝜋[𝑟𝑚𝑠] is the expected return on the GMP, 𝑝𝑚 is the price per share of the 

GMP (from (24)) and 𝑟 is the risk-free rate. To illustrate, let 𝛿 = 1. Then if 𝜃 = 1, the equity 

premium is 0% (since all agents are risk-neutral and maximize expected return). However, for 𝜃 =

0.8 and 𝛼 = 0, (QRD model (2)), the equity premium is 6.12%. This is close to the 6.18% equity 

premium estimated by Mehra and Prescott (1985) and it obtains even when utility is linear. In 

contrast, Mehra and Prescott find that for EU with a power utility function, even a risk aversion 

coefficient of 10, far above typical empirical estimates, cannot produce an equity premium greater 

than 0.35%, far below the 6.18% premium they observed. For 𝜃 = 0.75 and 𝛼 = 0, the equity 

premium is 7.769%. If 𝛼 is small but positive (e.g., 𝛼 = 0.10), then for 𝜃 = 0.75, the equity 

premium is 6.17%. Thus, security bias can rationalize the equity premium puzzle.  

    Returning to the general formula in (20), we now seek to derive a formula for the expected 

return on asset 𝑗. Since returns satisfy 𝑟𝑗𝑠 = 𝑥𝑗𝑠/𝑝𝑗, they satisfy the relationship: 

 (25)  1 = 𝔼𝜋[𝛿𝑠]𝔼𝜋[𝑟𝑗𝑠]𝜃 + cov(𝛿𝑠, 𝑟𝑗𝑠)𝜃 + [𝛼(𝛿𝑠)(𝑟𝑗𝑠) + (1 − 𝛼)(𝛿𝑠)(𝑟𝑗𝑠)](1 − 𝜃), 

which is a special case of (19). For a risk-free asset (that pays the same return, 𝑟, in every state):  

 (26)  1 = 𝑟 (𝔼𝜋[𝛿𝑠]𝜃 + [𝛼(𝛿𝑠) + (1 − 𝛼)(𝛿𝑠)](1 − 𝜃)). 

For linear utility and 𝛿 = 1, the equilibrium risk-free rate from (26) is given by 𝑟 = 1. Thus, QRD 

can generate both a high equity premium and a low-risk free rate in equilibrium, a combination of 

predictions that has proved to be challenging in models of consumption-based asset pricing. 

                                                 
6 We used the arithmetic average real return from Doeswijk et al. of 5.04%. Similar results (approximately 6% equity 

premium) obtain with the same parameter values if one uses their reported compounded average real return of 4.38%. 
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   To derive a formula for expected returns, equating (25) and (26) and rearranging terms yields: 

(27)     𝔼𝜋[𝑟𝑗𝑠] − 𝑟 =
−cov(𝛿𝑠, 𝑟𝑗𝑠)𝜃 + [𝛼(𝛿𝑠)(𝑟 − 𝑟𝑗𝑠) + (1 − 𝛼)(𝛿𝑠)(𝑟 − 𝑟𝑗𝑠)](1 − 𝜃)

𝔼𝜋[𝛿𝑠]𝜃
 . 

Next, define the following notation: 

(28)      𝛽1,𝑗 ≔ (
𝔼𝜋[𝛿𝑠(𝑟𝑗𝑠 − 𝔼𝜋[𝑟𝑗𝑠])]

var(𝛿𝑠)
) ; 𝛽2,𝑗 ≔ (

𝛿𝑠(𝑟𝑗𝑠 − 𝑟)

var(𝛿𝑠)
) ; 𝛽3,𝑗 ≔ (

𝛿𝑠(𝑟𝑗𝑠 − 𝑟)

var(𝛿𝑠)
). 

Also, let 𝐷(𝛿𝑠) ≔ var(𝛿𝑠)/𝔼𝜋[𝛿𝑠] denote the index of dispersion associated with the stochastic 

discount factor. Then the relationship in (27) can be expressed as a beta asset pricing model:  

Proposition 8: In a representative agent economy with equilibrium price (20), the equilibrium 

expected return on any asset 𝑗 is given by (29) with 𝛽1,𝑗, 𝛽2,𝑗, and 𝛽3,𝑗 from (28):  

(29)         𝔼𝜋[𝑟𝑗𝑠] = 𝑟 − 𝛽1,𝑗[𝐷(𝛿𝑠)] − 𝛽2,𝑗[𝛼(1 − 𝜃)𝐷(𝛿𝑠)/𝜃] − 𝛽3,𝑗[(1 − 𝛼)(1 − 𝜃)𝐷(𝛿𝑠)/𝜃]. 

In (28), the risk factor 𝛽1,𝑗 can be written equivalently as 𝛽1,𝑗 = (
cov(𝛿𝑠,𝑟𝑗𝑠)

var(𝛿𝑠)
) which is the same 

as in the standard consumption-based asset pricing models. The interesting content of (29) is the 

emergence of two new asset pricing factors that come out of our analysis: 𝛽2,𝑗 can be viewed as a 

positive skewness factor that reduces the expected returns in equilibrium for assets with high 

potential (high maximum payoff); 𝛽3,𝑗 can be viewed as an ambiguity robustness factor that 

reduces the expected returns in equilibrium for assets that are more robust to model uncertainty (in 

the sense of having a higher minimum payoff). As a result, value stocks and small-cap stocks will 

tend to be underpriced in equilibrium since they are often thought to be vulnerable to bankruptcy 

(low minimum payoff). As a consequence, they will earn higher expected returns in equilibrium, 

consistent with the findings of Fama and French (1992). In contrast, growth stocks are viewed to 

have great potential (high maximum payoff) and so, will be priced higher by the market and will 

earn lower returns in equilibrium under (29). Thus, from (28, 29) in equilibrium, assets with greater 

risk (positive covariance with consumption implying negative covariance with the stochastic 

discount factor) earn a higher expected return, assets with greater positive skewness (higher 

maximum return 𝑟𝑗𝑠 > 𝑟 and thus higher 𝛽2,𝑗) earn lower expected returns, and assets with greater 

robustness to ambiguity (higher minimum return 𝑟𝑗𝑠 < 𝑟, and thus higher 𝛽3,𝑗) earn lower expected 

returns. In this respect, positive skewness factor, 𝛽2,𝑗, and ambiguity robustness factor, 𝛽3,𝑗, that 

emerge from our analysis may capture some of the information embedded in the Fama-French 

(1992) factors.  



25 

 

IX. A THREE-FACTOR MODEL OF BEHAVIORAL BIASES 

We have considered an intuitive analogy between quasi-rank dependent probability weighting 

and quasi-hyperbolic time discounting. We now show that there is a plausible formal relation 

between these models by extending QRD to incorporate both risk and time preferences. To do so, 

we assume three payoffs are particularly salient when evaluating an uncertain consumption stream: 

the worst possible outcome, the best possible outcome, and the ‘certain-immediate’ outcome – the 

most the agent can be guaranteed in the present period. This is consistent with the intuition that a 

person may focus on the worst-case scenario, the best-case scenario, and the ‘offer on the table’. 

A. Extension to Choice over Time 

Formally, let 𝑋 ⊂ ℝ denote a finite set of possible outcomes, and let 𝑇 = {0,1,2, … , T} denote 

a finite set of discrete time periods. A consumption sequence 𝑥𝑗 ≔ {𝑥𝑗1, … , 𝑥𝑗T} is a sequence of 

dated outcomes. An outcome in 𝑋 received in period 𝑡 from a consumption sequence 𝑥𝑗 is denoted 

𝑥𝑗𝑡. We index consumption sequences by 𝑗 ∈ {1,2, … , 𝑛}. Denote the set of consumption sequences 

by 𝐶. A stochastic consumption plan, 𝑓: 𝐶 → [0,1],  is a probability distribution on 𝐶, where 𝑓(𝑥𝑗) 

is the probability that the decision maker receives consumption sequence 𝑗 if he chooses 𝑓. Denote 

the set of stochastic consumption plans by Ω. The minimum outcome available from a stochastic 

consumption plan 𝑓 in period 0 is denoted 𝑥0 and the maximum and minimum outcomes that can 

be obtained from 𝑓 across all periods 𝑡 ∈ {0,1,2, … , T} are denoted by 𝑥 and 𝑥, respectively, where 

we omit the dependence on 𝑓 for notational convenience. Let ≿ denote a weak preference relation 

on Ω with ≻ and ~ denoting strict preference and indifference, respectively.  

We propose that three payoffs are particularly salient to a decision maker when evaluating a 

stochastic consumption plan, 𝑓: the best outcome, 𝑥, the worst outcome, 𝑥, and the ‘certain-

immediate’ outcome, 𝑥0, which combines two properties - certainty, and immediacy, and 

represents the most the agent can be guaranteed in the present period from 𝑓. We account for these 

payoffs by generalizing (2) and (10, 11) to encompass both risk and time preferences. In particular, 

we consider a decision maker who evaluates stochastic consumption plans such that for any 𝑓, 𝑔 ∈

Ω, 𝑓 ≿ 𝑔 if and only if 𝑉(𝑓) ≥ 𝑉(𝑔), where: 

(30)         𝑉(𝑓) = 𝜃 ∑ 𝛿𝑡
𝑡 [𝑈(𝑓)] + (1 − 𝜃)[𝛼𝑢(𝑥) + 𝛽𝑢(𝑥0) + 𝛾𝑢(𝑥)]  

where 𝑈(𝑓) = ∑ 𝑓(𝑥𝑗𝑡) ∙ 𝑢(𝑥𝑗𝑡)𝑗 , and 𝛼, 𝛽, 𝛾, 𝜃, 𝛿 ∈ [0,1].  
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      In (30), a decision maker exhibits a disproportionate preference for alternatives with higher 

minimum payoffs, higher maximum payoffs, and higher immediate payoffs. In particular, the 

decision maker maximizes a weighted average of discounted expected utility and ‘salient utility’ 

by overweighting the best, worst, and immediate outcomes.  

      Formula (30) provides a ‘three-factor model’ of behavioral biases, perhaps analogous in spirit 

to the five-factor model of personality traits in psychology. The three factors, 𝛼, 𝛽, and 𝛾, have 

intuitive interpretations as indexing the decision maker’s degree of (positive) skewness preference, 

present bias, and security bias, respectively. Security bias unifies a bias toward certainty in the 

Allais paradoxes, loss aversion for mixed gambles, the sign effect for choice over time, and a 

preference for robustness to ambiguity when probabilities are subjective. Skewness preference 

produces systematic deviations from risk aversion for choices under risk and produces systematic 

deviations from consumption smoothing for choices over time. When (𝛼, 𝛽, 𝛾) = (0,1,0), model 

(30) reduces to quasi-hyperbolic discounting for choices over time. When (𝛼, 𝛽, 𝛾) = (0,0,1), (30) 

reduces to QRD from (2) for choices under risk. By estimating 𝛼, 𝛽, and 𝛾, one can determine the 

relative strength of skewness preference, present bias, and security bias for a decision maker.  

When 𝜃 = 0.5, the three-factor model in (30) can be equivalently written as: 

(31)    𝑉(𝑓) = ∑ 𝛿𝑡
𝑡 [𝑈(𝑓)] + 𝛼𝑢(𝑥) + 𝛽𝑢(𝑥0) + 𝛾𝑢(𝑥).  

The three-factor model has the appealing feature that it is linear in behavioral biases and so 

should be convenient when investigating the effects of particular biases on economic behavior.   

      If the consumer’s true preferences satisfy the axioms of rational choice (i.e., are consistent with 

discounted expected utility theory), the parameter 𝜃 represents the degree to which the consumer 

deviates from the optimal dynamic programming solution to his preference maximization problem 

by systematically overweighting the best-case outcome, the worst-case outcome, and the certain-

immediate outcome. Under this interpretation, the three-factor model provides a coherent and 

general alternative to the neo-classical view of perfect optimizing behavior that applies to both risk 

and time preferences and can also be applied to a setting with purely subjective probabilities. When 

𝜃 = 1, the consumer perfectly optimizes. For lower values of 𝜃, the consumer increasingly focuses 

on the salient payoffs and places less weight on maximizing discounted expected utility. In the 

other extreme where 𝜃 = 0, the decision maker more closely resembles a ‘greedy algorithm’ that 

seeks to obtain the most that can be guaranteed immediately and neglects all future consequences 

and all uncertain outcomes except those yielding the best or worst payoff in the stochastic 
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consumption plan. This interpretation suggests the testable prediction that when two alternatives 

have the same best, worst, and immediate outcomes, behavior will conform more closely to 

discounted expected utility theory.  

      To illustrate the three-factor model, we will adopt a simple specification of (30) where 𝛼 =

𝛽 = 𝛾 = 1. Note that this specification still gives greater weight to security bias than to skewness 

preference since 𝑥0 = 𝑥 for decisions involving only risk. Fixing 𝛼, 𝛽, and 𝛾 to be equal, the only 

parameters in (30) are the agent’s discount factor, 𝛿, utility function, 𝑢, and bias parameter, 𝜃.  

      We will show that the three-factor model explains four parallels between risk and time 

preferences: (i) Present bias (Laibson, 1997) and the certainty effect (Kahneman and Tversky, 

1979); (ii) the finding that risk interacts with time preferences (Keren and Roelofsma, 1995) and 

that time interacts with risk preferences (Baucells and Heukamp, 2010; Abdellaoui et al., 2011); 

(iii) the fourfold pattern of risk attitudes (Tversky and Kahneman, 1992) and a bias toward 

concentration (Koszegi and Szeidl, 2013), and (iv) loss aversion (Kahneman and Tversky, 1979) 

and the sign effect (Prelec and Loewenstein, 1991). We will illustrate the three-factor model using 

the same simple specification. In addition to setting 𝛼 = 𝛽 = 𝛾 = 1, we let 𝑢(𝑥) = 𝑥, and set the 

agent’s annual discount factor at 𝛿 = 0.95. In our parametric specification, the classical examples 

of behaviors (i), (ii), and (iii) each hold for all 𝜃 ∈ [0.00, 0.90]. In addition, given any 𝜃 ∈ (0,1), 

a sufficient condition for both the sign effect and loss aversion is 𝛼 < 𝛾 (skewness preference is 

weaker than security bias). We assume in all propositions to follow that the decision maker has 

preferences given by the three-factor model in (30).  

B. Present Bias and the Certainty Effect 

Since Prelec and Lowenstein (1991), there has been an intuitive analogy between the certainty 

effect and present bias. In Section III, we saw that QRD provides a simple account of the Allais 

paradox and common ratio effect with a certain payoff.  Next, we consider present bias. For all the 

following analyses, we let preferences be given by the three-factor model (30). Let (𝑥, 𝑝, 𝑡) denote 

a stochastic consumption plan that pays 𝑥 > 0 with probability 𝑝 at time 𝑡 and pays 0 otherwise.  

Definition 5: (Present Bias):  Let 𝑓 ≔ (𝑦, 1,0), 𝑓′ ≔ (𝑦, 1, 𝑠), 𝑔 ≔ (𝑥, 1, 𝑡), 𝑔′ ≔ (𝑥, 1, 𝑡 + 𝑠), 

for any 𝑦 ∈ (0, 𝑥), 𝑎𝑛𝑑 𝑡, 𝑠 ∈ (0, ∞). Present bias holds if 𝑓 ~ 𝑔 implies 𝑓′ ≺ 𝑔′. 

Let 𝐷𝑈(𝑓) denote the discounted utility of 𝑓, and set the time horizon for the decision maker to 

span periods in the interval [0, 𝑡 + 𝑠]. For all periods not specified by each consumption plan, the 

plan yields a payoff of 0.  
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Proposition 9: Let 𝐷𝑈(𝑓) = 𝐷𝑈(𝑔). Then present bias holds for all 𝛼, 𝛽, 𝛾, 𝜃 ∈ (0,1).  

For the present bias example in Table 1, we have (𝑥, 𝑦, 𝑡, 𝑠) = (110, 100, 4 𝑤𝑒𝑒𝑘𝑠, 26 𝑤𝑒𝑒𝑘𝑠). 

Definition 5 implies an agent who is indifferent between A and B in Choice Set 5, will strictly 

prefer B from Choice Set 6. Under our parametric specification (𝛼 = 𝛽 = 𝛾 = 1, 𝑢(𝑥) = 𝑥, and 

an annual discount factor of 𝛿 = 0.95), the preference for A in Choice Set 5 and for B in Choice 

Set 6 holds for all 𝜃 ∈ [0.00, 0.90].   

C. Interaction Effects between Risk and Time Preferences 

Systematic interaction effects have also been documented for risk and time preferences. Table 

1 illustrates seven empirical phenomena of interest. We have already discussed the Allais paradox, 

common ratio effect and present bias. The fourth phenomenon in Table 1 captures an interaction 

between risk and time in which a delay is added to decisions under risk (Baucells and Heukamp 

2010). Since adding the three-month delay shifts preference toward the riskier lottery, we say ‘time 

affects choice under risk.’ The fifth phenomenon captures a different interaction effect in which 

uncertainty is introduced into decisions over time (Keren and Roelofsma 1995). Since introducing 

uncertainty shifts preference toward the delayed lottery, we say ‘risk affects choice over time.’ 

The sixth observation is that delaying all outcomes by the same amount reduces the common ratio 

effect. The seventh finding is that making all outcomes uncertain reduces present bias.  

Table 1. Choices between Options A and B involving Risk and Time 

 

Observation 
 

  CS 
 

 

Option A                     vs. 
 

Option B 
 

 

Allais paradox  

(Allais, 1953) 

 

1 
 

(1 M, for sure, now) 
 

(1 M, 89%; 5 M, 10%, now) 

2 (1 M, 11%, now) (5 M, 10%, now) 
 

Common ratio effect 

(Baucells & Heukamp, 2010) 
 

 

3 
 

(9, for sure, now) 

(9, 10%, now) 

 

(12, 80%, now) 

(12, 8%, now) 4 
 

Present bias 

(Keren & Roelofsma, 1995) 

 

5 
 

(100, for sure, now) 
 

(110, for sure, 4 weeks) 

6 (100, for sure, 26 weeks) (110, for sure, 30 weeks) 
 

 

Time affects choice under risk 

(Baucells & Heukamp, 2010) 

 

7 

     8 

 

(9, for sure, now) 

(9, for sure, 3 months) 

 

(12, 80%, now) 

(12, 80%, 3 months) 
 

 

Risk affects choice over time 

(Keren & Roelofsma, 1995) 

 

9 

10 

 

(100, for sure, now) 

(100, 50%, now) 

 

(110, for sure, 4 weeks)  

(110, 50%, 4 weeks) 
 

 

Common ratio depends on delay 

(Baucells & Heukamp, 2010) 
 

 

11 

12 

 

(9, for sure, 3 months) 

(9, 10%, 3 months) 

 

(12, 80%, 3 months) 

(12, 8%,  3 months) 

 

Present bias depends on risk  

(Keren & Roelofsma, 1995) 

 

13 

14 

 

(100, 50%, now) 
 

(110, 50%, 4 weeks) 

(100, 50%, 26 weeks) (110, 50%, 30 weeks) 
 

 

 Complementary probabilities correspond to payoffs of 0. Majority responses of experimental subjects are highlighted in bold. 

“CS” denotes “Choice Set”.  
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     As shown in Table 1, systematic interaction effects involving risk and time have been observed 

in which incorporating risk into intertemporal choices produces more patient behavior (Keren and 

Roelofsma, 1995) and incorporating delays into risky choices reduces risk aversion (Baucells and 

Heukamp, 2010; Abdellaoui et al., 2011). Such behaviors cannot be explained by any models in 

which probability weighting functions and time discount functions are multiplicatively separable. 

This results in a descriptive limitation of the quasi-hyperbolic model. As Levine (2012, p. 95) 

writes: “The only problem with the model is that it predicts that present bias should not depend on 

whether or not the reward is uncertain. Unfortunately this is not the case.”   

     The problem is naturally resolved in the more general setting presented here. In addition to 

predicting that present bias depends on whether the reward stream is uncertain, the three-factor 

model also predicts that the common ratio effect depends on whether or not the lotteries are 

delayed. Both of these predictions are supported experimentally. The first prediction concerns the 

effect of delaying outcomes in decisions under risk, which systematically reduces risk aversion 

(Baucells and Heukamp, 2010; Abdellaoui et al., 2011). We can formalize this effect as follows:  

Definition 6: (Time affects Choice under Risk): Let 𝑓 ≔ (𝑦, 1,0), 𝑓′ ≔ (𝑦, 1, 𝑡), 𝑔 ≔ (𝑥, 𝑝, 0),

𝑔′ ≔ (𝑥, 𝑝, 𝑡), for any 𝑦 ∈ (0, 𝑥), 𝑝 ∈ (0,1), 𝑎𝑛𝑑 𝑡 ∈ (0, ∞). Time reduces risk aversion  if 𝑓 ~ 𝑔 

implies 𝑓′ ≺ 𝑔′. 

Let 𝐷𝐸𝑈(𝑓) denote the discounted expected utility of 𝑓, and set the time horizon for the decision 

maker to span periods in the interval [0, 𝑡]. For all periods not specified by each stochastic 

consumption plan, the plan yields a payoff of 0.  

Proposition 10: Let 𝐷𝐸𝑈(𝑓) = 𝐷𝐸𝑈(𝑔). Then time reduces risk aversion for all 𝛼, 𝛽, 𝛾, 𝜃 ∈ (0,1)  

    In the experimental example in Table 1, (𝑥, 𝑦, 𝑝, 𝑡) = (12, 9, 0.8, 3 𝑚𝑜𝑛𝑡ℎ𝑠). Definition 6 

implies that an agent who is indifferent between A and B in Choice Set 7, will strictly prefer B 

from Choice Set 8. Under our running parametric specification (𝑢(𝑥) = 𝑥, and an annual discount 

factor of 𝛿 = 0.95), the preference for A in Choice Set 7 and for B in Choice Set 8 holds for all 

𝜃 ∈ [0.00, 0.90].  

     A second prediction of the three-factor model concerns how uncertainty affects choice over 

time. In particular, we consider the finding by Keren and Roelofsma that introducing risk into 

intertemporal decisions reduces impatience. This behavior can be defined as follows:  
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Definition 7: (Risk affects Choice over Time): Let 𝑓 ≔ (𝑦, 1,0), 𝑓′ ≔ (𝑦, 𝑝, 0), 𝑔 ≔ (𝑥, 1, 𝑡),

𝑔′ ≔ (𝑥, 𝑝, 𝑡), for any 𝑦 ∈ (0, 𝑥), 𝑝 ∈ (0,1), 𝑎𝑛𝑑 𝑡 ∈ (0, ∞). Risk reduces impatience if 𝑓 ~ 𝑔 

implies 𝑓′ ≺ 𝑔′. 

Proposition 11: Let 𝐷𝐸𝑈(𝑓) = 𝐷𝐸𝑈(𝑔). Then risk reduces impatience for all 𝛼, 𝛽, 𝛾, 𝜃 ∈ (0,1).  

In the experimental example in Table 1 (𝑥, 𝑦, 𝑝, 𝑡) = (110, 100, 0.5, 4 𝑤𝑒𝑒𝑘𝑠). Definition 7 

implies that an agent who is indifferent between A and B in Choice Set 9, will strictly prefer B 

from Choice Set 10. Under our running parametric specification (𝑢(𝑥) = 𝑥, and an annual discount 

factor of 𝛿 = 0.95), the preference for A in Choice Set 9 and for B in Choice Set 10 holds for all 

𝜃 ∈ [0.00, 0.90].   

The predictions that time affects choice under risk and that risk affects choice over time are less 

obvious than more familiar behaviors (certainty effect, present bias), but these interaction effects 

between risk and time are supported by the empirical data, as illustrated in Table 1. Moreover, the 

opposite preference patterns are not predicted, revealing these behaviors to be strong implications 

of the three-factor model.   

D. The Fourfold Risk Pattern and a Bias Toward Concentration 

A robust property of observed risk preferences is the fourfold pattern observed by Tversky and 

Kahneman (1992) and illustrated in Table 2. Under the fourfold pattern of risk preferences, a 

decision maker is risk-averse for gains of high probability and losses of low probability, but is 

risk-seeking for gains of low probability and losses of high probability. An example of the fourfold 

pattern from Tversky and Kahneman (1992) is provided in Table 2.  

Table 2. Choices illustrating the Fourfold Risk Pattern and a Bias Toward Concentration 

 

Observation 

 

 CS 

 

Option A              vs. 

 

Option B 

 

 

Fourfold Risk Pattern 

(Tversky and Kahneman, 1992) 

 

1 

 

( 95,   for sure) 

 

(  100, 95%;      0,         5%) 

2 (  -5,  for sure) (-100,         5%;       0,  95%) 

3 (-95,  for sure) 

(    5,  for sure) 

(-100, 95%;   0,   5%) 

(  100,    5%;   0,   95%) 4 

 

 

Bias Toward Concentration 

(Koszegi and Szeidl, 2013) 

 

 

5 

 

(100, 0, 0, …, 0, 0, 0) 

 

(0, 1, 1 ,… 1, 1, 1) 

6 (    0, 0, 0, …, 0, 0, 100) (1, 1, 1, … 1, 1, 0) 

      7 

8 

(-100, 0, 0,…, 0, 0, 0) 

(     0, 0, 0,…, 0, 0, -100) 

(0, -1, -1,…, -1, -1, -1)  

(-1,-1, -1,…, -1, -1, 0) 
                     

                  The prototypical response pattern is highlighted in bold. “CS” denotes “Choice Set”. 
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In the example, a person chooses $95 with certainty over a 95% chance of  $100 and a 5% chance 

of $0 (risk aversion for high probability gains), and chooses a guaranteed $5 loss over a 5% chance 

of losing $100 (risk aversion for low probability losses). However, the decision maker also prefers 

a 95% chance of losing $100 over a guaranteed loss of $95 (risk seeking for loses of high 

probability) and prefers a 5% chance of winning $100 over a $5 with certainty (risk seeking for 

gains of low probability).  

   Under (30) with 𝑢(𝑥) = 𝑥, the fourfold pattern illustrated in Table 2 holds for all 𝛼, 𝜃 ∈ (0,1). 

Formally, for decisions involving only risk (and no time) we have the following definition:  

Definition 8: When comparing lotteries 𝑓 ≔ (𝑥, 𝑝; 0,1 − 𝑝) and 𝐸(𝑓) ≔ (𝑥𝑝, 1), the fourfold 

pattern of risk attitudes holds if 𝐸(𝑓) ≻ 𝑓 for sufficiently high 𝑝 and 𝑓 ≻ 𝐸(𝑓) for sufficiently 

low 𝑝 when 𝑥 > 0, but 𝑓 ≻ 𝐸(𝑓) for sufficiently high 𝑝 and 𝐸(𝑓) ≻ 𝑓 for sufficiently low 𝑝 when 

𝑥 < 0.    

Proposition 12: Let 𝑢(𝑥) = 𝑥. Then the fourfold pattern of risk attitudes holds for all 𝛼, 𝛾, 𝜃 ∈

(0,1). 

 A related pattern of behavior in intertemporal choice referred to as a ‘bias toward concentration’ 

was identified by Koszegi and Szeidl (2013). They recognized that people often prefer 

consumption sequences with a few large advantages relative to consumption sequences with many 

small advantages and prefer consumption sequences with many small disadvantages relative to 

those with a few large disadvantages.  

       A ‘fourfold’ pattern of time preference due to a bias toward concentration is illustrated in the 

bottom panel of Table 2. In each of choices 5 – 8, a consumer chooses between gains or losses 

over a horizon of 100 periods. In Choice Set 5, a consumer prefers $100 in period 0 over a steady 

stream of $1 payoffs in periods 1 through 100. This behavior is reminiscent of a preference for a 

large lump-sum payment from winning a lottery instead of receiving an annuity. Indeed, people 

often prefer lump-sum gains instead of annuities (e.g., Brown, Casey, and Mitchell, 2007). In 

Choice Set 6, the consumer prefers $100 in period 100 over a stream of $1 payoffs in periods 0 

through 99, thereby exhibiting future bias for delayed concentrated gains. This behavior is 

consistent with goal-seeking behavior in which small short-term gains from leisure activities are 

foregone when working to achieve a personal or career goal. In Choice Set 7, the consumer prefers 

to make $1 payments in each of periods 1 through 100 than to pay $100 outright in period 0. This 

behavior reflects a preference for financing and making regular installment payments, such as on 
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a car or a mortgage or a consumer durable, rather than paying the full cost up front. In Choice Set 

8, the consumer prefers to pay $1 in each of periods 0 through 99 than to pay $100 in period 100, 

exhibiting future bias for delayed concentrated losses. This behavior is reminiscent of the decision 

to invest a small cost to exercise regularly to avoid large health costs in the future. Whether a 

consumer chooses to exercise may depend on whether the consumer adopts this ‘many period’ 

frame, or views each decision in isolation as a binary choice to exercise now or later. 

   The fourfold pattern of risk preferences and the bias toward concentration can each be described 

more succinctly as a twofold pattern: For risk, the fourfold pattern is equivalent to a preference for 

positively skewed probability distributions (producing a preference for state lottery tickets) and an 

aversion to negatively skewed distributions (producing a preference to purchase insurance). For 

time, the bias toward concentration is equivalent to a preference for positively skewed consumption 

sequences (producing a preference for large lump-sum gains over dispersed small gains) and an 

aversion to negatively skewed consumption sequences (producing a preference for small monthly 

payments over a single large payment). More formally, we have the following:   

Definition 9: Consider a choice between consumption sequences A≔ (𝑛𝑥, 0, … ,0) that yields 

payoff 𝑛𝑥 in period 0 and pays 0 in periods 1 through 𝑛, and B≔ (0, 𝑥, … , 𝑥) that pays 0 in period 

0 and yields payoff  𝑥 in each of periods 1 through 𝑛. Next, consider a choice between consumption 

sequences A′ ≔ (0, … ,0, 𝑛𝑥) that yields payoff 𝑛𝑥 in period 𝑛 and pays 0 in periods 0 through 

𝑛 − 1, and B′ ≔ (𝑥, … , 𝑥, 0) that pays 0 in period 𝑛 and yields  𝑥 in each of periods 0 through 

𝑛 − 1. A bias toward concentration holds if, for sufficiently large 𝑛, A ≻ B and A′ ≻ B′ for 𝑥 >

0, and B ≻ A and B′ ≻ A′ for 𝑥 < 0. 

We analyze the undiscounted case which may be viewed as an approximation.  

Proposition 13: Let 𝑢(𝑥) = 𝑥, and 𝛿 = 1. Then a bias toward concentration holds for all               

𝑛 > 1 + max (𝛽/𝛼, 𝛽/𝛾), for any 𝛼, 𝛽, 𝛾, 𝜃 ∈ (0,1).   

The quantity 𝛽/𝛼 in Proposition 13 reflects a tradeoff between the effect of present bias and a bias 

toward concentration. Higher values of 𝛽 imply greater present bias while higher values of 𝛼 imply 

greater concentration bias for gains. Similarly, higher values of 𝛾 imply greater concentration bias 

for losses. The three-factor model thus provides an approach to unify present bias and 

concentration bias. 
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E. Loss Aversion and the Sign Effect 

We close this section with a fourth striking parallel between risky and intertemporal choice – 

the gain-loss asymmetry of loss aversion (Kahneman and Tversky, 1979) for choice under risk, 

and the gain-loss asymmetry referred to as the sign effect (Prelec and Loewenstein, 1991) for 

choices over time. For any 𝜃 ∈ (0,1), a sufficient condition for loss aversion (aversion to 

symmetric mixed gambles) under the three-factor model is 𝛼 < 𝛾 (skewness preference is weaker 

than security bias). The sign effect for choice over time is the finding that people are more patient 

for losses than for gains. Prelec and Loewenstein (1991) define the sign effect as follows: 

Definition 10: The sign effect holds if for all 𝑦 > 𝑥 > 0, 𝑡 > 𝑟 ≥ 0, (𝑥, 𝑟) ~ (𝑦, 𝑡) implies 

(−𝑥, 𝑟) ≻ (−𝑦, 𝑡). 

Proposition 14:   Let 𝑢(𝑥) = 𝑥. Then for any 𝜃 ∈ (0,1), the sign effect holds if and only if 𝛼 < 𝛾.  

In contrast, the sign effect cannot be explained by a conventional behavioral approach that 

incorporates a loss aversion parameter into the value function of the decision maker. We 

demonstrate this in the appendix after the proof of Proposition 14.  

      In sum, the parametric restrictions 𝛾 > 𝛼, and 𝛼, 𝛽, 𝛾 ∈ (0,1) generate the certainty effect and 

present bias, the fourfold pattern of risk preferences and a bias toward concentration, loss aversion 

and the sign effect, and observed interaction effects between risk and time. Table 3 summarizes 

the predictions of the three-factor model from (30) for these eight robust behaviors in the literature 

on risk and time preferences for any 𝜃 ∈ (0,1) and indicates the parameters driving each behavior.  

 

 Table 3. Predictions of the Three-Factor Model of Behavioral Biases 
 

Risk 
 

 

Time 
 

Loss Aversion (𝛾) 
 

Sign Effect (𝛾) 
 

 

Time affects Risk Preference (𝛽) 
 

Risk affects Time Preference (𝛽) 
 

 

Certainty Effect (Allais, Common Ratio) (𝛾) 
 

 

Present Bias, Time Inconsistency (𝛽) 
 

Skewness Preference (Fourfold Pattern) (𝛼, 𝛾) 

 

 

Skewness Preference (Bias toward Concentration) (𝛼, 𝛽, 𝛾) 

(𝛼 represents (positive) skewness preference; 𝛽 represents present bias; 𝛾 represents security bias) 

 

  



34 

 

X.  RELATED LITERATURE 

 The QRD model is a simple one-parameter generalization of expected utility theory. It preserves 

three basic properties of expected utility analysis: transitivity, first-order stochastic dominance, 

and risk aversion, while accounting for the Allais paradoxes, loss aversion, and intuitive violations 

of continuity. Although the QRD model is simpler than leading models such as RDU and CPT, it 

is quite similar to earlier models in the literature which assumed that decision makers care about a 

‘security level’ (Lopes 1986; Gilboa 1988; Jaffray 1988; Cohen 1992). Schmidt (2000) appears to 

be the first to explicitly state the form in (1), although it can be viewed as a special case in Gilboa 

(1988). Kopylov (2009) axiomatizes an analogous model for ambiguity. Models which provide a 

special role for the best and worst outcomes are characterized by Chateauneuf et al. (2007) for 

ambiguity and by Webb and Zank (2011) for choice under risk. Despite its simplicity, the QRD 

model has received little application, although Chateauneuf et al. (2007) apply their model to 

simultaneous gambling and insurance purchase7 and to the equity premium puzzle.   

    It is peculiar that there is a large literature on non-expected utility models, but a relatively small 

literature on importing such models into applications. A possible reason is that leading descriptive 

models such as CPT are much less tractable than EU, whereas more tractable models of the 

certainty effect (e.g., Schmidt 1998) violate transitivity or stochastic dominance. In this respect, 

QRD may offer a compromise between descriptive adequacy and tractability8.   

  One alternative model of choice under risk that has gained popularity in applications is the 

Koszegi-Rabin model of reference-dependent preferences (Koszegi and Rabin, 2006; 2007). That 

model can also explain loss aversion and the Allais paradox. The loss-aversion parameter, 𝜆, in 

the Koszegi-Rabin model is consistent with rank dependent utility theory for 𝜆 < 2, but can violate 

stochastic dominance if 𝜆 > 2. The model also makes the strong assumption that agents have 

rational expectations regarding the reference point. In contrast, QRD does not violate stochastic 

dominance and makes no assumptions regarding rational expectations. Under QRD there is a 

natural reference point that is directly observable and well-specified for each lottery – the 

                                                 
7

 Chateauneuf et al. consider the decision of whether to purchase insurance and lottery tickets, but do not consider the 

optimality of purchasing full insurance.  
8 Throughout we have considered our analysis apart from CPT. But note that QRD (both in (2) and in (11)) is in fact 

a special case of rank-dependent utility theory, which itself is a special case of CPT for the domain of gains. Our 

analysis however makes no direct use of cumulative probability weighting functions or reference-dependent value 

functions, both of which are central components of CPT. However, given that QRD is technically a special case of 

CPT, our analysis highlights a simple approach to making prospect theory tractable in economic applications.  
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minimum outcome in the lottery’s support. In addition, QRD is naturally extended to a three-factor 

model of behavioral biases that provides a formal relationship between three important principles 

of behavior – present bias, security bias, and positive skewness preference. These three biases 

interact to predict eight parallels between choices under risk and over time that violate the standard 

discounted expected utility model (as summarized in Table 3).      

   The three factor model organizes a larger set of the leading anomalies than alternative models. 

It also provides an alternative way to formalize loss aversion. Of course the three-factor model 

does not explain all prominent behavioral anomalies. For instance, QRD does not generate the 

‘lives-saved’/’lives-lost’ framing effect of Tversky and Kahneman (1981), whereas this can be 

explained by prospect theory and salience theory (Bordalo et al., 2012b). Under additional 

assumptions, salience theory also can explain preference reversals between choice and pricing 

tasks (Lichtenstein and Slovic, 1971).  

     In the domain of intertemporal choice, the hyperbolic discounting model of Loewenstein and 

Prelec (1992) can explain present bias and the sign effect. The probability-time tradeoff model 

(Baucells and Heukamp, 2012) can explain the risk-time interaction effects, the certainty effect 

and present bias but does not explain other anomalies such as the sign effect or the bias toward 

concentration. Interestingly, two models which have been imported to a variety of economic 

applications – quasi-hyperbolic discounting (Laibson, 1997) and the focusing model of Koszegi 

and Szeidl (2013) each explain only one of the anomalies in Table 3. This demonstrates that data-

fitting is not the only important ingredient of a successful decision model. Mathematical 

tractability is also important. Variations of the salience model of Bordalo et al. (2012b) have also 

been widely applied, although that model has not been extended to choices over time. The three-

factor model proposed here has the appealing property that it accounts for many of the leading 

anomalies while being portable to economic applications. While it is true that model (30) has a 

large number of parameters, simpler versions of the model are sufficient to generate the main 

effects. For instance, quasi-hyperbolic discounting is a one-parameter extension of DU and the 

quasi-rank dependent model of security bias is a one-parameter extension of EU, and both are 

special cases of the three-factor model. In addition, we demonstrated that setting 𝛼 = 𝛽 = 𝛾 = 1 

in (30) still generates seven of the behavioral anomalies in Table 3 even though this specification 

has the same number of parameters as quasi-hyperbolic discounting.  
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XI.    DISCUSSION 

In this paper, we have motivated quasi-rank dependent (QRD) utility theory as a modeling tool for 

studying security biased agents in economic applications. The QRD model satisfies transitivity, 

stochastic dominance, and risk aversion, and is simpler than leading probability weighting models 

since it transforms individual rather than cumulative probabilities. The QRD model has an intuitive 

interpretation (i) as a pessimistic decision criterion that generalizes EU and Wald’s maximin rule, 

and (ii) as a natural risky choice analog to quasi-hyperbolic discounting. The model also provides 

a unified explanation of the Allais paradox and loss aversion (aversion to small mixed gambles) 

as well as expressing a preference for robustness to model uncertainty when probabilities are 

subjective.  

      The QRD model was generalized in Section IX to a three-factor model of behavioral biases 

(with factors of positive skewness preference, present bias, and security bias) that unifies quasi-

hyperbolic time discounting and quasi-rank dependent probability weighting. The three-factor 

model highlights three ways in which human decision making systematically deviates from 

maximizing discounted expected utility: by exhibiting a disproportionate preference for 

alternatives with higher minimum outcomes, higher maximum outcomes and higher immediate 

outcomes. We demonstrated that the three-factor model explains eight prominent behavioral 

anomalies and predicts close parallels between behaviors for decisions under risk and over time.  

      After describing the QRD model and the interpretations of security bias, we illustrated QRD 

in several economic applications. In the domain of insurance, we showed that the QRD model can 

explain the purchase of full insurance at actuarially unfair prices, which is not explained by EU. 

For prediction and betting markets, we demonstrated, somewhat surprisingly, that it is possible for 

a market to accurately aggregate traders’ beliefs and generate unbiased prices, even if all traders 

are systematically biased. We also demonstrated that QRD predicts gaps between buying prices 

and selling prices and that security bias can contribute to efficiency loss and market failure. With 

the extended model in (10, 11), we generalized the analysis of Chateauneuf et al. (2007) from one 

to many risky assets through a strong correlation assumption. We derived equilibrium asset prices 

and found them to depend on the asset’s fundamental value, a risk premium, a positive skewness 

premium, an ambiguity robustness premium, and the market’s level of optimism. We also provided 

a simple calibration of the model with empirical data on the global market portfolio and found that 

it can explain the magnitude of the observed equity premium while generating a low risk-free rate.    
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   We believe there are many novel questions and avenues for research that warrant further study. 

One promising research agenda may include work that addresses the basic question of ‘when’ do 

biases matter. These include questions like: What types of games or institutions are robust to 

systematically biased agents? Under what conditions do markets fail when traders are 

systematically biased? Under what conditions can biases produce Pareto efficient outcomes? 

Another promising line of research might address the question of ‘how’ do biases matter. How 

does behavior under different institutions change if agents are systematically biased? How does 

systematic bias affect the welfare of biased and unbiased agents?  

  A third line of research could apply QRD as a ‘robustness check’ on standard economic models. 

For instance, how do biases affect economic conclusions regarding behavior in games or markets 

with asymmetric information? We suspect in many cases, biases will result in simple 

generalizations that keep qualitative economic predictions intact as was the case for auctions in 

Section VI and for the aggregation of investor biases into market prices in Section V. But there 

may also be cases where biased agents produce qualitatively different economic outcomes than 

what EU predicts such as the optimal purchase of insurance at actuarially unfair prices in Section 

IV, gaps between buying prices and selling prices in equilibrium in Section V, and a large equity 

premium and the pricing of an asset’s skewness and robustness to ambiguity in Section VIII. As 

the preceding questions illustrate, there seems to be much room for applying QRD to perform 

economic analysis with security biased agents.   
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APPENDIX: PROOFS OF PROPOSITIONS  

Proposition 1: If 𝑢(−𝑥) = −𝑢(𝑥) for all 𝑥, loss aversion holds if and only if 𝜃 ∈ [0,1).  

Proof: Under QRD, loss aversion implies: (1 − 𝜃/2)(𝑢(−𝑦) − 𝑢(−𝑥))  > (𝜃/2)(𝑢(𝑥) − 𝑢(𝑦)). 

If 𝑢(−𝑥) = −𝑢(𝑥) for all 𝑥, the above inequality holds if and only if 𝜃 ∈ [0,1). ∎ 

Proposition 2: The common ratio effect holds if and only if 𝜃 ∈ (0,1)   

Proof: Note that for Definition 3, the QRD model implies: 

𝑓 ~ 𝑔 iff  𝑢(𝑦) = 𝜃(𝑝𝑢(𝑥) + (1 − 𝑝)𝑢(0)). 

𝑓′ ≺ 𝑔′ iff 𝜃(𝑞𝑢(𝑦) + (1 − 𝑞)𝑢(0)) < 𝜃(𝑞𝑝𝑢(𝑥) + (1 − 𝑞𝑝)𝑢(0)). 

Note 𝑓′ ≺ 𝑔′ holds if and only if  𝜃𝑢(𝑦) < 𝜃(𝑝𝑢(𝑥) + (1 − 𝑝)𝑢(0)) = 𝑢(𝑦). 

This inequality holds under QRD if and only if 𝜃 ∈ (0,1).  ∎ 

Proposition 3: The Allais paradox holds if and only if 𝜃 ∈ (0,1). 

Proof: Note that for Definition 2, the QRD model implies: 

 𝑓 ~ 𝑔 iff  𝑢(𝑦) = 𝜃(𝑝𝑢(𝑥) + (1 − 𝑞)𝑢(𝑦) + (𝑞 − 𝑝)𝑢(0)). 

 𝑓′ ≺ 𝑔′ iff 𝜃(𝑞𝑢(𝑦) + (1 − 𝑞)𝑢(0)) < 𝜃(𝑝𝑢(𝑥) + (1 − 𝑝)𝑢(0)).     

Note that 𝑓′ ≺ 𝑔′ holds if and only if 𝜃𝑞𝑢(𝑦) < 𝜃(𝑝𝑢(𝑥) + (𝑞 − 𝑝)𝑢(0)). Adding 

(1 − 𝑞)𝜃𝑢(𝑦) to both sides of this inequality yields:                                       

𝜃𝑢(𝑦) < 𝜃(𝑝𝑢(𝑥) + (1 − 𝑞)𝑢(𝑦) + (𝑞 − 𝑝)𝑢(0)) = 𝑢(𝑦). 

Since 𝑢(𝑦) = 0 if 𝜃 = 0, this inequality holds if and only if 𝜃 ∈ (0,1). ∎ 

Proposition 9: Let 𝐷𝑈(𝑓) = 𝐷𝑈(𝑔). Then present bias holds for all 𝛼, 𝛽, 𝜃 ∈ (0,1). 

Proof: Let 𝛼, 𝛽, 𝜃 ∈ (0,1). The value of each consumption plan is given by:  

𝑉(𝑓) = 𝜃(𝐷𝑈(𝑓)) + (1 − 𝜃)(𝛼 + 𝛽)𝑦 and 𝑉(𝑔) = 𝜃(𝐷𝑈(𝑔)) + (1 − 𝜃)𝛼𝑥. 

Note that 𝑓 ~ 𝑔 and 𝐷𝑈(𝑓) = 𝐷𝑈(𝑔) implies (1 − 𝜃)(𝛼 + 𝛽)𝑦 = (1 − 𝜃)𝛼𝑥. Next, note that 

𝐷𝑈(𝑓) = 𝐷𝑈(𝑔) implies 𝐷𝑈(𝑓′) = 𝐷𝑈(𝑔′), and so 𝑓′ ≺ 𝑔′ if and only if  (1 − 𝜃)𝛼𝑦 <

(1 − 𝜃)𝛼𝑥 which holds for all 𝛼, 𝛽, 𝜃 ∈ (0,1), given that (1 − 𝜃)(𝛼 + 𝛽)𝑦 = (1 − 𝜃)𝛼𝑥. ∎ 

Proposition 19: Let 𝐷𝐸𝑈(𝑓) = 𝐷𝐸𝑈(𝑔). Then time reduces risk aversion for all 𝛼, 𝛽, 𝜃 ∈ (0,1).  

The proof of Proposition 10 is analogous to the proof of Proposition 9 and so is omitted.  

Proposition 11: Let 𝐷𝐸𝑈(𝑓) = 𝐷𝐸𝑈(𝑔). Then risk reduces impatience for all 𝛼, 𝛽, 𝜃 ∈ (0,1).  

The proof of Proposition 11 is analogous to the proof of Proposition 9 and so is omitted.   

Proposition 12: Let 𝑢(𝑥) = 𝑥. Then the fourfold risk pattern holds for all 𝛼, 𝛾, 𝜃 ∈ (0,1). 
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Proof: Under the three-factor model, for 𝑥 > 0,  we have 𝐸(𝑓) ≻ 𝑓 if 𝑥𝑝 > 𝜃𝑥𝑝 + (1 − 𝜃)(𝛼𝑥). 

For 𝛼 < 1, there is sufficiently large 𝑝 such that this inequality holds. Similarly, we have 𝑓 ≻

𝐸(𝑓) if 𝜃𝑥𝑝 + (1 − 𝜃)(𝛼𝑥) > 𝑥𝑝. For 𝛼 > 0, there is sufficiently low 𝑝 such that this inequality 

holds. For 𝑥 < 0,  we have 𝐸(𝑓) ≻ 𝑓 if 𝑥𝑝 > 𝜃𝑥𝑝 + (1 − 𝜃)(𝛾𝑥). For 𝛾 > 0, there is sufficiently 

low 𝑝 such that this inequality holds. Similarly, we have 𝑓 ≻ 𝐸(𝑓) if 𝜃𝑥𝑝 + (1 − 𝜃)(𝛾𝑥) > 𝑥𝑝. 

For 𝛾 < 1, there is sufficiently high 𝑝 such that this inequality holds. ∎ 

Proposition 13: Let 𝑢(𝑥) = 𝑥, and 𝛿 = 1. Then a bias toward concentration holds if   

𝑛 > 1 + max (𝛽/𝛼, 𝛽/𝛾), for any 𝛼, 𝛽, 𝛾, 𝜃 ∈ (0,1).    

Proof: Given 𝑢(𝑥) = 𝑥, 𝛿 = 1, and 𝛼, 𝛽, 𝜃 ∈ (0,1), For 𝑥 > 0, 𝑉(𝐴) = 𝜃𝑛𝑥 + (1 − 𝜃)(𝛼 + 𝛽)𝑛𝑥 

and 𝑉(𝐵) = 𝜃𝑛𝑥 + (1 − 𝜃)𝛼𝑥. Thus, A ≻ B for 𝑥 > 0. For 𝑥 < 0, 𝑉(𝐴) = 𝜃𝑛𝑥 +

(1 − 𝜃)(𝛽 + 𝛾)𝑛𝑥 and 𝑉(𝐵) = 𝜃𝑛𝑥 + (1 − 𝜃)𝛾𝑥. Thus, B ≻ A for 𝑥 < 0 for all 𝑛 ≥ 1. Next, 

𝑉(𝐴′) = 𝜃𝑛𝑥 + (1 − 𝜃)𝛼𝑛𝑥 and 𝑉(𝐵′) = 𝜃𝑛𝑥 + (1 − 𝜃)(𝛼 + 𝛽)𝑥 for 𝑥 > 0. For 𝑥 < 0, 

𝑉(𝐴′) = 𝜃𝑛𝑥 + (1 − 𝜃)𝛾𝑛𝑥 and 𝑉(𝐵′) = 𝜃𝑛𝑥 + (1 − 𝜃)(𝛽 + 𝛾)𝑥. Then for all 𝑛 > 1 + 𝛽/𝛼 

A′ ≻ B′ for 𝑥 > 0 and for all 𝑛 > 1 + 𝛽/𝛾,  B′ ≻ A′ for 𝑥 < 0. ∎   

Proposition 14:   Let 𝑢(𝑥) = 𝑥. Then for any 𝜃 ∈ (0,1), the sign effect holds if and only if 𝛼 < 𝛾. 

Proof: We consider the case where 𝑟 > 0. The case where 𝑟 = 0 follows analogously. Under the 

three-factor model, (𝑥, 𝑟) ~ (𝑦, 𝑡) if and only if 𝑥𝜃𝛿𝑟 − 𝑦𝜃𝛿𝑡 = (𝑦 − 𝑥)(1 − 𝜃)𝛼. In addition, 

(−𝑥, 𝑟) ≻ (−𝑦, 𝑡) if and only if  𝑥𝜃𝛿𝑟 − 𝑦𝜃𝛿𝑡 < (𝑦 − 𝑥)(1 − 𝜃)𝛾. By substitution, (𝑥, 𝑟) ~ (𝑦, 𝑡) 

implies (−𝑥, 𝑟) ≻ (−𝑦, 𝑡) if and only if  𝛼 < 𝛾. ∎ 

Remark: As indicated in Footnote 8, the sign effect cannot be explained by a conventional 

behavioral approach that employs a loss aversion parameter in the agent’s value function. To 

illustrate, suppose instead of security bias, that the agent has loss-averse preferences given by:  

𝑢(𝑥) = {
𝑥, 𝑥 ≥ 0

𝜆𝑥, 𝑥 < 0
 

for 𝜆 > 1, but otherwise maximizes discounted utility. Then we have (𝑥, 𝑟) ~ (𝑦, 𝑡) if and only if 

𝑥𝛿𝑟 = 𝑦𝛿𝑡. In addition, we have (−𝑥, 𝑟) ≻ (−𝑦, 𝑡) if and only if  −𝑥𝜆𝛿𝑟 > −𝑦𝜆𝛿𝑡 if and only if 

𝑥𝛿𝑟 < 𝑦𝛿𝑡 which contradicts 𝑥𝛿𝑟 = 𝑦𝛿𝑡.    
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