
Chapman University
Chapman University Digital Commons
Mathematics, Physics, and Computer Science
Faculty Articles and Research

Science and Technology Faculty Articles and
Research

2009

A Kinship-Based Modification of the Armitage
Trend Test to Address Hidden Population
Structure and Small Differential Genotyping Errors
Cyril Rakovski
Chapman University, rakovski@chapman.edu

Daniel O. Stram
Univ So Calif

Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles

Part of the Genomics Commons

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital
Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized
administrator of Chapman University Digital Commons. For more information, please contact laughtin@chapman.edu.

Recommended Citation
Rakovski CS, Stram DO (2009) A kinship-based nodification of the Armitage trend test to address hidden population structure and
small differential genotyping errors. PLoS ONE 4(6): e5825. doi:10.1371/journal.pone.0005825

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/science_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


A Kinship-Based Modification of the Armitage Trend Test to Address
Hidden Population Structure and Small Differential Genotyping Errors

Comments
This article was originally published in PLOS One, volume 4, issue 6, in 2009. DOI:10.1371/
journal.pone.0005825

Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License.

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/202

http://dx.doi.org/10.1371/journal.pone.0005825
http://dx.doi.org/10.1371/journal.pone.0005825
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://digitalcommons.chapman.edu/scs_articles/202?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages


A Kinship-Based Modification of the Armitage Trend Test
to Address Hidden Population Structure and Small
Differential Genotyping Errors
Cyril S. Rakovski1*, Daniel O. Stram2

1 Department of Mathematics and Computer Science, Chapman University, Orange, California, United States of America, 2 Department of Preventive Medicine, University

of Southern California, Los Angeles, California, United States of America

Abstract

Background/Aims: We propose a modification of the well-known Armitage trend test to address the problems associated
with hidden population structure and hidden relatedness in genome-wide case-control association studies.

Methods: The new test adopts beneficial traits from three existing testing strategies: the principal components, mixed
model, and genomic control while avoiding some of their disadvantageous characteristics, such as the tendency of the
principal components method to over-correct in certain situations or the failure of the genomic control approach to reorder
the adjusted tests based on their degree of alignment with the underlying hidden structure. The new procedure is based on
Gauss-Markov estimators derived from a straightforward linear model with an imposed variance structure proportional to an
empirical relatedness matrix. Lastly, conceptual and analytical similarities to and distinctions from other approaches are
emphasized throughout.

Results: Our simulations show that the power performance of the proposed test is quite promising compared to the
considered competing strategies. The power gains are especially large when small differential differences between cases
and controls are present; a likely scenario when public controls are used in multiple studies.

Conclusion: The proposed modified approach attains high power more consistently than that of the existing commonly
implemented tests. Its performance improvement is most apparent when small but detectable systematic differences
between cases and controls exist.
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Introduction

In concept, the methods for analysis of case-control data with

regard to association between potential risk factors and the

probability of an event of interest are based on assessment of the

differences in covariate distributions between cases and controls.

However, the presence of such systematic differences could be

attributable to hidden unaccounted factors; that will result in

greatly inflated type I error rates as multiple tests are applied to the

data. Even though similar scenarios occur with environmental and

other common risk factors, the problem of analyzing case-control

data with inherent distributional differences is most readily seen in

genome-wide association scans. In these settings, the systematic

differences are driven by complex hidden population structure and

relatedness and the resulting increased rate of false-positive

individual marker tests can completely obfuscate the signal from

the true causal gene.

There have been several approaches that attempt to provide

solutions to this problem, for a recent comprehensive review see

[1]. The simplest but indirect way of addressing the effect of

hidden structure is to assess its effect on a random set of markers

tests and adjust all statistics by a common scaling factor chosen in

way that guarantees an adherence to the nominal type I error rates

[2]. However, the method is susceptible to power deficiency since

the implementation of the genomic control adjustment fails to

change the significance levels order of the analyzed tests. Other

more precise and direct methods involve actual modeling of the

underlying population complexity. Structured association [3] is an

alternative method that uses random SNPs to infer the hidden

population structure expressed through a matrix Q. This

information is incorporated in the subsequent stratified analysis

and its implementation results in desirable type I error rates and

improved power. This method has recently been implemented in a

computationally efficient way that addresses the intensity of whole

genome scans [4] but is highly sensitive to the way the elements of

Q are defined. The principal components approach modifies the

classical Armitage test for trend by adjusting the genotypes with

respect to the major axes of variation (eigenvectors) of the

empirical variance-covariance matrix [5]. Thus, this method

subtracts approximate effects of the underlying population
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structure from the original genotypes and the resulting adjusted

genotypes are considered to contain only the true associations. It

has been shown that principal components method possesses a

moderate power advantage over the genomic control. However,

the principal components approach can fail to recognize and

consequently adjust for complex population structures [6].

Further, a related generalized linear model approach has recently

been shown to provide an improved stratification correction [7].

Another commonly used approach for modeling correlated

quantitative trait observations while adjusting for population

structure is the mixed model [8]. It requires separate modeling of

the mean and the variance structure and both models reflect an

assessment of the detectable population structure. The model for

the mean incorporates a population structure matrix Q (this is the

same matrix used in structured association) and an explicit design

of the variance as a function of a kinship matrix K that reflects the

relatedness between all pairs of subjects. In work described by [6]

the mixed model approach provided improved type I error rates

and higher power compared to principal components and

structured association, in a highly structured example. However,

the complexity of the mixed model algorithms raise questions

about their practicality in the whole genome setting. Furthermore,

practical implementations of the mixed model extension to

appropriately address case-control data are not straightforward.

In this work we propose a method that combines advantageous

features of genomic control, principal components, and mixed

model strategies that reflects the idea that adjusting for a well-

defined variance covariance structure in a linear model with a

simple mean structure is the optimal testing strategy. Further, we

show that the new approach possesses a distinct advantage in

addressing a potential issue related to the use of public controls for

multiple associations studies that can result in the presence of

differential DNA preparation-related differences between cases

and controls [9]. We show that the effect of even small DNA

preparation differences adversely affects the performance of the

principal components method by inducing overcorrection and a

consequent decrease in power.

Methods

In case-control settings, testing strategies are usually based on

modeling the dichotomous affection status outcome variable.

Instead, we propose a series of models for the vectors of allele

counts at each SNP; we adopt the classical theory of linear models

for non-identically distributed outcome variables that follow an

unspecified general distribution [10].

Let M and N be the number of SNPs and Sj~

s1j ,s2j , . . . ,sNj

� �T
, j~1,2, . . . ,M denote the vector of genotypes

at the j{th marker for all N subjects. We assume that Sj follows

an unspecified multivariate distribution with mean vector mj (of

length N) and an (N6N) variance-covariance matrix Sj .

For example, consider the covariance matrix for Sj that is

imposed by the well-known beta-binomial model of Balding and

Nichols [11] which is often used to study the effects of hidden

structure [5,8]. This approach explicitly models current day

populations via their divergence from an ancestral population

specified by Wright’s Fst statistic. If there are L such populations

l~1,2, � � � , L with corresponding divergence coefficients Fl , the

covariance matrix for any marker Sj sampled from this model can

readily be shown to be of form 2pj(1{pj)KBN in which pj is the

frequency in the ancestral population of marker j and KBN is a

fixed matrix (for all markers) with diagonal terms equal to 1zFlð Þ
and off-diagonal terms equal to either zero (for subjects in different

modern-day populations) or 2Fl for subjects in the same

populations. Thus, the correlation between sn,j and sm,j for

subjects n and m who are both members of the lth modern day

population will equal 2Fl= 1zFlð Þ. In case-control studies

simulated using this model the true distribution of Sj is complex

and generally unknown due to hidden structure, hidden

relatedness and unknown SNP function.

Notice that in the Balding-Nichols model the matrix KBN

is common for all markers, which suggests estimating KBN using

rescaled genotype vectors S�j ~ s�1,j ,s
�
2,j , � � � ,s�N,j

� �T

with s�n,j~

sn,j{2p̂pj

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂pj 1{p̂pj

� �r
. If p̂pj is a consistent estimate of the

ancestral population allele frequency of the j th marker then each

of these s�n,j will have (approximately) constant variance 1zFlð Þ
and correlations between s�n,j and s�m,j either zero (for members of

different populations) or equal to 2Fl= 1zFlð Þ (for members of the

lth hidden population). Thus, a natural estimate of KBN will be the

average of the outer products of S�j ,

K̂KBN~
1

M

XM
j~1

S�j S�j T

 !
:

Unfortunately, this estimator is unrealizable in practice as it is

unlikely to obtain a consistent estimate for the ancestral population

allele frequency pj at each locus and therefore, one generally

substitutes K the sample mean �ssj~
PN

n~1

sn,j for p̂pj in the above-

mentioned expression. Actually, the same estimator was used by

Price et al.[5] for estimation of principal components. Clearly, this

substitution would be expected to have some deleterious effect on

our ability to estimate KBN and we explore this issue in our

simulations below.

Specifically, we propose the following model for the variance

structure: Sj~s2
j K, where s2

j is the variance of the j{th marker

in the pooled sample and K is an appropriately chosen kinship

matrix reflecting the relatedness between pairs of subjects. In our

notation K is a relatedness matrix of unknown form (to be

estimated from the full complement of genotype data) while KBN is

a specialization of K to the Balding-Nichols model. In our

analyses, we explored several versions of the kinship matrix K such

as the implementation of the SPAGeDi software package [12],

other identity by descent sharing based methods as well as the

adjusted correlation matrix of Price et al. Our results show that

there were not meaningful differences in our test performance

when different versions of K were implemented. Following the last

approach, the n,mð Þ element of K is the adjusted correlation

between the SNPs for subject n with the SNPs for subject m and is

estimated as, 1
M

PM
j~1 snj{2p̂pj

� �
smj{2p̂pj

� �.
2p̂pj 1{p̂pj

� �h i
,

where p̂pj is the frequency estimate defined above.

However, unlike Price et al., we propose a simple model for the

mean that avoids adjustment for the population structure in this

part of the model. Let C be a N|2 matrix containing a vector of

ones and a vector of zeros and ones denoting case-control status

and let bj denote a parameter vector with two elements (b1j,b2j)
T.

We implement the following model for the mean of the j-th SNP,

mj~Cbj : ð1Þ

Here b1j is (twice) the allele frequency of the j{th SNP for the

controls and b2j is (twice) the difference between the allele

frequencies for the cases and controls. Under this general model

Kinship-Adjusted Armitage Test
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for each SNP, we compute the Gauss-Markov best linear unbiased

(BLUE) estimates of s2
j and bj ,

ŝs2
j ~ 1= N{2ð Þ½ �ST

j K{1{K{1C CT K{1C
� �{1

CT K{1
h i

Sj and b̂j

~ CTK{1C
� �{1

CTK{1Sj :

Then, the corresponding variance estimate for b̂bj is given by,

V̂Vj ~ŝs2
j CT K{1C
� �{1

:

Finally, the chi-square test for association that we propose is given

by,

T~ b̂b2j

� �2
�

v̂v22
j , ð2Þ

where v̂v22
j is the 2,2ð Þ element of V̂Vj . Note that when using the

adjusted correlation matrix to estimate K the estimate is of rank at

most N{1 a consequence of the estimation of all allele

frequencies pj from the combined data for cases and controls.

Specifically, since the sum
PN

n~1 snj{2p̂pj

� �
equals zero for each

SNP the first column of C (i.e. the vector of ones) is in the null

space of K and mj becomes non-estimable. Therefore, we must

utilize a generalized inverse for K and CT K{1C
� �

throughout

when carrying out the necessary calculations. In fact, the latter

matrix has just one nonzero element, namely the (2,2)th but this

complication could be avoided by completely dropping mj from

model (1), removing the column of ones from C, and replacing Sj

with Sj{2p̂pj in the calculations. In our own computations,

however, we simply utilized a standard generalized inverse (easily

computed using the eigenvector/eigenvalue decomposition of K).

Note that this adjusted Armitage test is conceptually similar to

the genomic control method. The new method uses a common

adjusted correlation matrix for all SNPs which is analogous to the

correction by genomic control of chi-square statistics by a common

over-dispersion factor l. In fact, K may be more properly thought

of as an over-dispersion matrix than a correlation matrix since it

does not necessarily have diagonal elements equal to 1. In the

Balding-Nichols model with known ancestral allele frequencies it

would have diagonal elements equal to the corresponding values of

1zFl . Unlike genomic control, the new test reorders as well as

rescales the individual SNP statistics when structure is evident.

There are also close connections among the Armitage trend test,

principal components method and the modified Armitage test

proposed here. The first is equivalent to a chi-square test derived

from a linear model similar to the one used above with the

distinction of assuming i.i.d. error structure so that K is an N6N

identity matrix. The second is equivalent to a chi-square test

derived from the linear model of the unadjusted Armitage test with

the addition of the first few eigenvectors of K as covariates to the

model for the mean.

We also note that the new test is closely related to the quasi-

likelihood score (QLS) test of Bourgain et al. [13]. The authors

propose a QLS test that also utilizes a model for Sj in which the

mean depends upon case-control status and with a covariance

matrix for Sj that is proportional to a fixed kinship matrix. Given

this common starting point, it is not surprising that the resulting

QLS estimators are in practice similar to the Gauss-Markov

estimators described here. In Bourgain et al., the kinship matrix K

is assumed to be known from first principles based upon known

pedigree relationships among individuals. Our main innovation is

the substitution for K of an empirical estimate based upon the

availability of large scale genotyping data.

Next, we provide examples of the implementation of our

method using specific data.

In certain cases our adjusted Armitage test corresponds to other

well-known estimators. For example, consider a study in which

siblings are used as controls in a 1-1 matched (discordant sibpair)

design. In the special case of no hidden stratification the matrix K

will be block diagonal with blocks equal to
1 :5
:5 1

� �
. By carrying

out the matrix calculations we see that the estimate b̂bj is equal to

2

N

0 1 0 1 ::: 0 1

1 {1 1 {1 ::: 1 {1

	 

S1j

S2j

..

.

SN{1,j

SN,j

2
66666664

3
77777775

,

where subjects 1, 3, 5, …, N-1 are the cases and subjects 2, 4, 6,

…, N are the controls. Similarly, the estimated variance matrix for

b̂bj is easily shown to have (2, 2) element equal to

V̂Vj 2,2ð Þ~
2

N
ŝs2

j :

Thus, the test for b2,j = 0 will be just 2
Nŝs2

j

Si[casesSj,i{
�

Si[controlsSj,iÞ2 which is essentially the square of the paired t-test

for the mean of the number of copies of marker j in the cases being

equal to the mean of the number of copies of marker j in the

controls.

Consider next the case of family trios (parents and an affected

offspring) in the absence of hidden stratification and non-random

mating. Here, K will be block diagonal with blocks equal to

1 0 :5

0 1 :5

:5 :5 1

0
B@

1
CA:

We code the offspring as ‘‘cases’’, the parents as ‘‘controls’’ in the

second column of C and obtain the estimator b̂bj equal to

3
2N

1 1 0 1 1 0 ::: 1 1 0

1 1 {2 1 1 {2 ::: 1 1 {2

	 

S1j

S2j

S3j

..

.

SN{2,j

SN{1,j

SN,j

2
6666666664

3
7777777775

and its variance estimator equal to V̂Vj 2,2ð Þ~ 3
2N

ŝs2
j . Thus, the

adjusted Armitage test is simply 3
2Nŝs2

j

Si[parentsSij{
�

2Si[offspringSijÞ2 which compares the observed genotypes in the

offspring to their expectations given the genotypes of the parents.

The squared term in the numerator is the same as used in the

TDT test. The variance term is slightly different, and can readily

be shown to correspond to an estimate of the unconditional

Kinship-Adjusted Armitage Test
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expectation of the conditional variances used in the TDT.

Therefore, these tests will be asymptotically equivalent under the

assumptions made above (i.e. that this K correctly captures the

relatedness between subjects).

Next, we explore the performance of the new approach via

simulations.

Initially, we conducted two simulation studies focused on the

problem of dealing with distinct hidden population strata, one with

and one without differential genotyping error between the cases

and the controls. We simulated very severe population stratifica-

tion for illustrative purposes. In our preliminary analyses we varied

a multitude of parameters such as number of strata, distribution of

cases and controls among strata, number of SNPs, risk model for

the causal SNPs, and amount of DNA differentiation between

cases and controls. Since the essence of our conclusions remained

unchanged when these factors were repeatedly modified, we report

results under the assumption that there were 10 equally sized

populations and with baseline risks ratios r1 : r2 : . . . : r10

conforming to the following relations 1 : 2 : . . . : 10. Therefore,

mimicking the outcome of random sampling, the expected number

of cases from the i{th strata were assigned as 20i. In order to

speed up the simulations and as implemented in several other

studies including Price et al.1, we generated SNPs conditional on

case-control status (with genotype probabilities determined by true

allele frequencies, baseline risk ratios, and a ‘‘rare-disease’’

assumption) rather than sample cases and controls from a large

population. In a further simplification, we fixed the number of

cases and controls from each subpopulation to be equal to their

expected values (generating genotypes for exactly 110 controls and

20i cases from each). As mentioned, the results of the simulations

do not depend to any meaningful extent on this simplification.

In this manner, we simulated genetic data consisting of 100,000

SNPs for a total of 1100 cases and 1100 controls under two

different scenarios: with and without 1% random differential DNA

preparation difference. This DNA differentiation was random and

independently assigned to each SNP through a change to the allele

frequencies of the cases but was not assigned for the controls.

Thus, this was designed to reflect the scenario that could arise

when using the same controls for multiple association studies with

DNA from cases being prepared and/or genotyped using different

methods than the controls. Specifically, we first drew an ancestral

allele frequency p uniformly from 0:1,0:9½ � for each SNP. Then,

under the Balding-Nichols model [11] for allele differentiation

of distinct population strata as functions of the Wright’s

coefficients Fi~0:01 i, we drew the corresponding strata-specific

allele frequencies from a Beta distribution with parameters

p 1{Fið Þ=Fi and 1{pð Þ 1{Fið Þ=FiÞ.
Next, we set the relative risks of the 20 causal SNPs to be equal

to R~1:5 (as we found that the conclusions of the analyses are

consistent with respect to the values of R), the relative risks of the

non-causal SNPs to be equal to R~1 and computed the

conditional distributions of the genotypes for the cases and

controls for each population strata.

For the simulations under the second scenario, previous to the

final step of generating genotypes for the non-causal SNPs for the

cases, we changed their allele frequencies by a normal random

variable with mean 0 and standard deviation 0.01 in order to

represent ‘‘one percent’’ differential genotyping error between

cases and controls.

In a natural continuation of our study, we extended our

simulation design to include hidden relatedness. Further, in order

to test the ability of the new adjusted Armitage test to correct for

patterns of hidden relatedness as well as hidden stratification, we

considered for illustrative purposes a very extreme situation. We

simulated large nuclear families consisting of both parents and 8

offspring, the kinship relationships were regarded as hidden and

the families come from two distinct non-mixing hidden strata. In

particular, we implemented the following simulation algorithm:

1) We simulated genotypes for one causal SNP (of frequency 50

percent in the ancestral population) and 10,999 non-causal

SNPs, placing 500 SNPs on each of 22 independently

segregating diploid chromosomes. Ancestral allele frequencies

for the non-causal SNPs were simulated as uniform (0.1, 0.9)

and the Balding Nichols model was again used to provide the

present-day allele frequencies in the two subpopulations, with

F = 0.3 relative to the ancestral population.

2) Genotypes for a total of 460 subjects from 46 nuclear families

with 8 offspring each in which 23 families came from each of

the two different populations. We first sampled chromosomes

for the parents and we then computed offspring genotypes

assuming Mendelian inheritance.

3) We simulated disease status as a binary variable under a

logistic model with an OR of disease = 3 per copy of the

causal allele with the background prevalence of disease equal

to 10 percent in one population and 35 percent in the other.

In this simulation we computed two versions of the new test and

two versions of the principal components test as well as the

unadjusted Armitage test and the genomic control method. For

the new test we considered two kinship matrices, the empirically

estimated one (as described above) and the true kinship matrix

taking account of both hidden stratification and the hidden

relatedness of the simulated subjects. The true K matrix can

readily be shown to be equal to a matrix having within-family

block diagonal (10610) sub-matrices of the form

1zF 2F 1
2
z 3

2
F ::: 1

2
z 3

2
F

2F 1zF 1
2
z 3

2
F ::: 1

2
z 3

2
F

1
2
z 3

2
F 1

2
z 3

2
F ::: 1zF 1

2
z 3

2
F

1
2
z 3

2
F 1

2
z 3

2
F ::: 1

2
z 3

2
F 1zF

2
6664

3
7775,

where all other elements equal 2F for subjects within the same

population or 0 for subjects from different populations. With

F = 0.3 we find, numerically, that the eigenvalues of the true K

matrix (size 4606460) have their largest two values equal to 96.32,

the next 44 elements equal to 4.32, another 46 values equal to 0.8,

322 values equal to 0.40, and the remaining 46 values equal to

0.0740. Based on this pattern of the eigenvalues in the principal

components analysis, we considered using either just the 2 leading

eigenvectors (accounting for the marked stratification between

populations, and which will clearly be strongly significant as

predictors of disease status) or all 48 eigenvectors with eigenvalues

$0.8 as adjustment variables (in an effort to capture the

eigenvectors associated with the relatedness of family members

as well).

Results

In the first two simulations (one with and one without

differential genotyping error) we compared the performance of

the new test against three commonly used approaches, the

unadjusted Armitage test, genomic control and principal compo-

nents. In the principal components analysis the first 10

eigenvectors are easily found to be related to population

substructure and the 11th to differential genotyping error (for the

second of the two simulations). In order to capture this overall

Kinship-Adjusted Armitage Test
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structure we used a total of 14 eigenvectors in all calculations using

the PC method – while the number of eigenvectors actually used

was chosen somewhat arbitrarily, the results described below are

retained so long as at least 11 eigenvectors are consistently

included. Our results show that all eigenvectors except the last 4

were always strongly significant predictors of disease status and the

11th was always significant in the second scenario – thus we have

added (as eigenvectors 12, 13, and 14) three principal components

which are not generally related to disease status, dropping them

would have little effect on the results below.

First, we show the behavior of the type I error rates. A summary

of our results from the analysis of 100 simulated datasets under the

scenario of the described hidden stratification is presented in

Table 1. Figures 1 and 2 give results from a single but

representative simulation.

As expected, there is a large inflation of false positive outcomes

for the Armitage test due to lack of adjustment for the existing

population structure or over-dispersion due to genotyping error.

The genomic control and principal components approaches do a

reasonably precise correction and exhibit almost nominal levels of

false positives. However, for the new test the type I error rates

appear to be slightly better.

Table 1. Empirical Type I error rates for all tests: with hidden
stratification.

Armitage GC PC New test

No DNA differencea 0.255 0.048 0.052 0.050

1% DNA differencea 0.261 0.048 0.053 0.050

No DNA differenceb 0.01129 0.00005 0.00009 0.00008

1% DNA differenceb 0.02496 0.00007 0.00019 0.00012

anominal a= 0.05.
bnominal a= 0.0001.
doi:10.1371/journal.pone.0005825.t001

Figure 1. Deviations from uniformity under the null, no DNA differentiation. We show a plot of the distribution of the p-values of all non-
causal SNPs for each of the four competing tests when DNA differentiation between cases and controls is absent. The straight broken line represents
Uniform (0,1) distribution.
doi:10.1371/journal.pone.0005825.g001
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Next, we present a summary of our results regarding the power

of the analyzed tests in Table 2. The empirical power is calculated

as the fraction of the 20 causal SNPs that were detected at two

different significance levels and over all 100 replications. See

Figures 3 and 4 for a graphical depiction of a single but

representative simulation run.

Since we are only interested in the power of tests with close to

nominal type I error rates, the results for the Armitage test are

inconsequential. It is clear that when DNA preparation-related

allele frequency differences between cases and controls are not

present, the new test achieves power performance that is only

slightly better (0–5%) than the one achieved by the principal

component approach. However, when such a DNA difference

exists, the new test shows a clear performance advantage by

attaining a power gain as large as 58% over the second best testing

option. In contrast, the principal components strategy is impeded

by the fact that one of the eigenvectors (the 11th) is highly

correlated with the case-control status variable. Therefore, the

inclusion of such eigenvector in the subsequent genotype

adjustment completely obliterates the power of this method to

detect any remaining systematic differences between the allele

frequencies of the cases and the controls. Specifically, in our

simulation the 11th eigenvector was highly correlated with case

control status (average r~0:91). Interestingly, on average, the

Armitage test is no more powerful than the new adjusted version

despite the excessive over-dispersion under the null.

Simulations results under the scenario of hidden stratification

and hidden relatedness regarding the observed false positive error

rates of the methods described above are summarized in Table 3.

It is clear that in this example the unadjusted Armitage tests and

the genomic control method perform very poorly. The statistics of

the first are predictably highly over-dispersed while the second

approach employs a correction factor that is much too large for the

adjustment of the tail areas of the test. Specifically, by

manipulating the simulation scenarios (data not shown) we found

that the failure of the genomic control method was due to the

Figure 2. Deviations from uniformity under the null, 1% DNA differentiation. We show a plot of the distribution of the p-values of all non-
causal SNPs for each of the four competing tests when 1% DNA differentiation between cases and controls is present. The straight broken line
represents Uniform (0,1) distribution.
doi:10.1371/journal.pone.0005825.g002
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severe population stratification simulated here rather than to the

relatedness between families; the GC method would improve its

behavior considerably if stratification was not present. The two

methods utilizing principal components behave much better than

genomic control with respect to type 1 error rate, although they are

consistently between 1.5–3 times higher than the nominal type 1

error rates considered. When either the true or empirically estimated

K matrix is used in the adjusted Armitage test, the observed type 1

error rates are very close to their nominal rates. Note that each of the

100 simulations involved 10,999 non-causal markers so that that each

observed false positive probability is based on ,1.1 million simulated

SNPs and is therefore estimated very accurately.

Next, we present a summary of our results regarding the power

of the analyzed tests. Table 4 shows the power for detecting true

positive associations for the two nearly unbiased tests, namely, the

Table 2. Power comparison among all tests: with hidden
stratification.

Armitage GC PC New test

No DNA differencea 0.55 0.43 0.65 0.66

1% DNA differencea 0.75 0.46 0 0.40

No DNA differenceb 0.90 0.40 0.91 0.95

1% DNA differenceb 0.75 0.41 0 0.65

aa= 0.05.1025.
ba= 0.0001.
doi:10.1371/journal.pone.0005825.t002

Figure 3. Deviations from uniformity under the alternative, no DNA differentiation. We show a plot of the distribution of the p-values of
all SNPs (20 of them are causal) for each of the four competing tests when DNA differentiation between cases and controls is absent. The straight
broken line represents Uniform (0,1) distribution.
doi:10.1371/journal.pone.0005825.g003
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two versions of the adjusted Armitage test. It is clear there is a

moderate (between 7–14%) loss of power due to the use of the

estimated rather than the true kinship matrix.

Discussion

In this work we propose a new test for association in genome-

wide association scans with case-control data. While this test is

clearly related to that of Bourgain et al [13], it appears to be a

novel suggestion that empirically estimated kinship matrices can

be used in a similar statistical approach. Both the principal

components and the new methods can be thought of as adjusted

Armitage tests. The former adjusts for a selected set of eigenvectors

while the latter adjusts the test by assuming a simple and

apparently effective model for the variance of the vectors of

genotypes that takes into account the pairwise relatedness.

In part, we have focused on a scenario that showcases a

deficiency of the principal components approach: when there are

small differential genotype differences between cases and controls

which we consider to be due to DNA preparation dissimilarities.

One of our simulations highlights an example of overcorrection

that can occur with the principal components approach. In reality,

Figure 4. Deviations from uniformity under the alternative, 1% DNA differentiation. We show a plot of the distribution of the p-values of
all SNPs (20 of them are causal) for each of the four competing tests when 1% DNA differentiation between cases and controls is present. The straight
broken line represents Uniform (0,1) distribution.
doi:10.1371/journal.pone.0005825.g004

Table 3. Observed type 1 error rates: with both hidden
stratification and hidden relatedness between subjects.

Armitage GC PC (48) PC (2) K True K

P,0.05 .455 .023 .067 0.079 0.051 .051

P,0.01 .337 0.0005 0.016 0.021 0.010 0.010

P,0.005 .300 0.00015 0.0087 0.0116 0.0054 0.0055

P,0.001 0.23 1.4461025 0.0021 0.0032 0.0012 0.0013

doi:10.1371/journal.pone.0005825.t003
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the DNA preparation-related errors can explain only approxi-

mately 1 percent differences in allele frequencies between cases

and controls but with the principal components method even very

large differences (for the causal SNPs) are attributed to ‘‘hidden

structure’’. Because the new method (similar to genomic control)

uses the empirical variability of the SNPs to estimate features of

the dispersion of the SNPs, this overcorrection does not occur. The

genomic control method assumes a common factor of over-

dispersion for all SNPs, whereas the new method assumes a

common overdispersion matrix K for all SNPs. Thus, the new

method may be regarded as an extension of the original genomic

control idea that seems to correct for both overdispersion and

hidden structure.

We verified our conclusions by studying the performance of the

new test in three scenarios: a highly stratified population, a

stratified population with additional difference in allele frequencies

between cases and controls and a complex population consisting of

closely related study participants sampled from two different non-

mixing groups. Regarding the first scenario, our results show that

the new test and the principal components approach possess

desirable type I error rates and offer the best performance with a

0–5% power advantage for the new test. In the second scenario,

we conclude that the new test has outstanding properties

compared to the other approaches considered. In the third

scenario, we show the promising performance of the proposed test

for dealing with hidden relatedness. Some loss of power was

observed in this scenario due to using an estimated rather than a

true kinship matrix, this may be due to using only 11,000 markers

(and not 100,000 as in the first two simulations) where we found

little differences using the true or estimated K (data not shown).

Genome-wide association studies of course involve even more

markers (from 500,000 to 1 million) which may alleviate this

problem further or completely.

The issue of overcorrection for laboratory errors possible with

the principal components method has been noted by Price et al. in

supplementary materials provided online for their 2006 article.

They specifically point out in a section on ‘‘assay effects’’ that

eigenvectors can align with plate differences and that if these

effects differ between cases and controls (because of plate layout)

naı̈ve application of the principal components method can lead to

severe power loss. Their solution of removing SNPs with higher

than normal missingness is certainly reasonable but further work

with real or simulated data illustrating such plate effects would

help to determine if our test would still perform better than the

principal components methods after removal of the most obvious

genotyping problems. In our example with differential genotyping

error we simulated a situation that lead to a very sharp difference

between cases and controls on one of the leading eigenvectors

(#11). It is clear that this would easily be detected and ‘‘not

believed’’ and therefore attributed to differential genotyping error.

However does one then drop analysis of the data altogether? If the

only problem was differential genotyping error then the genomic

control method would work very well because for any individual

SNP the difference between cases and controls would be very small

(and would not swamp differences for a strong causal SNP).

However, if there is also hidden stratification, the genomic control

method tends to lose power (because it does not ‘‘reorder’’

associations). We are providing a way forward in cases where both

problems (genotyping differences and hidden stratification) are

present. It is possible that a combination of GC + principal

components (dropping the offending eigenvector but not other

ones less strongly related to case control status) would work in the

example simulated. However, this approach would be contradic-

tory to the conventional wisdom that one should drop principal

components that are NOT related to case-control status, rather

than principal components that are so related!

Going beyond the issue of DNA preparation errors, as other

authors have noted, in the genome-wide association settings we

have enough SNPs to be able to detect small differences in

ancestry. With the increasingly large amounts of publicly available

genome-wide SNP data it is worth considering the various

methods for correction for hidden stratification in the context of

studies that only genotype disease cases and which rely upon the

controls from other studies to complete the case control analysis.

For instance, a study in which all controls were to come from

Scandinavia but all cases were from other European regions would

have eigenvectors highly correlated with descent and hence with

case-control status. Thus, a naive application of the PC method

will be subject to severe loss of power since this would be

analogous to the DNA preparation-related differences scenario

that we simulated. Again, the problem with the principal

components approach is that it tends to overcorrect for small

differences due to slightly different ancestry between cases and

controls, differences which could be very small compared to allele

frequency differences for a strongly causal SNP. Further work on

this problem is clearly warranted given the increasing availability

of whole genome SNP data for ‘‘normal’’ subjects.

Our estimation of K in the simulations used ‘‘unlinked’’ markers

(i.e. markers that were independent conditional both upon the

allele frequencies simulated in the Balding-Nichols model and

upon the genotyping error). The inclusion of markers illustrating

LD would tend to increase the variability of the estimates of the

kinship matrix but we suggest (as does Price et al., see

supplementary materials) that if most pairs of markers are not

linked to each other (as in a genome wide study) that all markers

can be used to estimate kinship.

We used 100,000 SNPs in our first two simulations. While this is

less than a typical genome-wide association study, it is more than

what typically would be genotyped in the 2nd stage of a multistage

study which would also require correction for ancestry differences

between cases and controls. Our third simulation showed some

loss in power when a kinship matrix estimated using 11,000 SNPs

was used (relative to using the true K matrix). While this was an

especially complicated simulated study (with both very close

relations between subjects as well as severe hidden stratification),

the third simulation clearly raises the question of whether or not a

typical stage 2 of a genome–wide association scan will genotype

enough markers to adequately estimate K. Additional simulations

will be needed to settle this important question.

An obvious issue for our approach is the inclusion of other

variables in the analysis. These covariates could be related to case-

control status either in addition to genetic causes or could be

modifiers of genetic causes. Although we have not yet done

Table 4. Observed power to detect the true positive marker:
with both hidden stratification and hidden relatedness
between subjects.

Significance Criteria K True K

P,0.01 0.86 0.93

P,0.005 0.79 0.91

P,0.001 0.64 0.78

P,0.0001 0.46 0.60

P,0.00005 0.42 0.54

doi:10.1371/journal.pone.0005825.t004
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extensive simulation work to check, we suspect that adding such

variables to columns of the matrix C described above will allow for

the effect of additional variables or potential confounders to be

estimated or adjusted for. Interactions between genetic and non-

genetic variables could certainly be considered in (an extension of)

case/only analyses [14] in which kinship among the cases is now

adjusted for in an examination of whether the genotypes of the

cases are correlated with potential effect modifiers (i.e. G6E

interactions).

Other observations
As noted in the methods section, some special designs such as

sibling-matched case-control studies and parent-offspring trios

yield a K matrix for which the proposed test produces familiar and

appropriate analyses. We are not proposing that this approach be

taken in the analysis of such a designed study, but it is interesting

to compare the result of the new test with either the principal

components or genomic control method. If the only issue to be

dealt with is close relatedness between cases and controls from the

same family, then our other experience is that the genomic control

method works very well and is certainly competitive with our

proposal. On the other hand, analysis of either sibling-matched or

parent-offspring pairs by the principal components method

produces poor results compared to genomic control and the

results can swing wildly from severe under-correction to over-

correction depending upon the number of eigenvectors chosen for

the adjustments. If both hidden population stratification and

strong family relationships are present, genomic control will no

longer be as effective (as in our 3rd simulation) as the proposed test.

We have pointed out the similarities between this test and that

of Bourgain et al. There are several other papers that consider

similar use of kinship matrices when pedigrees are known. Slagger

and Schaid [15] propose an approach that modifies the variance of

the classical Armitage trend test to handle the scenario of sampling

related subjects from extended pedigrees. The variance adjustment

that accounts for relatedness is done in a fashion very similar to the

genomic control variance inflation estimation. This test has been

proposed in candidate gene studies and requires estimation of IBD

probabilities (done by an implementation of the Lander-Green

algorithm via a separate run of the GENEHUNTER software

[16]) for each pair of subjects and at each SNP making its natural

extension to genome-wide studies computationally intensive. Our

method provides a more computationally efficient way while

having a simple model-based derivation. Chen and Abecasis [17]

propose an approach for detecting association between quantita-

tive traits and genotypes. The method implements a simple model

for the mean of the phenotypes (we model the mean of the

genotypes). The conceptual similarity to our method can be seen

in the imposed model for the variance that reflects the relatedness

between each pair of subjects, although again, the emphasis in

Chen and Abecasis was upon known pedigree relationships.

Lastly, Amin et al. [18] propose a two-stage approach for

association between quantitative traits and genotypes that

implements a heritability estimation step and SNP testing step

that is based on the residuals obtained from step one. While this

method uses the same empirical correlation matrix that we

employ, it uses this matrix in order to estimate the pedigree

structure which is needed for the heritability estimation.

Therefore, it is not clear whether the Amin et al. method would

be applicable to genetic association studies with population

substructure but otherwise little close relatedness between subjects.

Statistical software
A self-contained R and C++ implementations of the proposed

test will soon be available at: www-rcf.usc.edu/,stram.
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