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DUAL PROCESS UTILITY THEORY: 

A MODEL OF DECISIONS UNDER RISK AND OVER TIME* 

 

BY  MARK SCHNEIDER 

    This Version: January 25, 2018  

ABSTRACT. The Discounted Expected Utility model has been a major workhorse 

for analyzing individual behavior for over half a century. However, it cannot 

account for evidence that risk interacts with time preference, that time interacts 

with risk preference, that many people are averse to timing risk and do not discount 

the future exponentially, that discounting depends on the magnitude of outcomes, 

that risk preferences are not time preferences, and that risk and time preferences are 

correlated with cognitive reflection. Here we address these issues in a decision 

model based on the interaction of an affective and a reflective valuation process. 

The resulting Dual Process Utility theory provides a unified approach to modeling 

risk preference, time preference, and interactions between risk and time 

preferences. It also provides a unification of models based on a rational economic 

agent, models based on prospect theory or rank-dependent utility, and dual system 

models of decision making. We conclude by demonstrating that a simple extension 

of the model provides a unified approach to explaining empirical violations of 

‘dimensional independence’ across the domains of risk, time, and social 

preferences. Such violations of dimensional independence challenge the leading 

normative and behavioral models of decision making.  
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I. INTRODUCTION 

Many decisions in life involve uncertain outcomes that materialize at different points in time. 

For example, the struggle to kick an addiction involves a tradeoff between short term 

gratification and an increased risk of future health problems. Saving for retirement involves 

consideration of preferences for immediate consumption and uncertainty about future income. 

Whether to pursue a long-term project involves consideration of the time the project is expected 

to take and the likelihood of project success. The decision to purchase a warranty on a television 

or appliance involves a higher immediate cost, but reduced product breakdown risk. The decision 

to take a ‘buy-it-now’ option on eBay or wait until the auction ends for the chance of a better 

deal, the decision to purchase a laptop today or wait for a potential Black Friday sale, and the 

decision to take out a mortgage on a home or wait for a possibly lower interest rate each involve 

a tradeoff between a certain, immediate payoff and a risky, delayed payoff.  

As these examples illustrate, decisions often involve both risk and time delays. Yet the 

domains of risk and time have traditionally been studied separately. In cases where risk and time 

preferences are both considered, the discounted expected utility (DEU) model remains a major 

workhorse for analyzing individual behavior. There are, however, a variety of important 

shortcomings of DEU. For instance, it implies that introducing risk has no effect on time 

preference, that introducing delays has no effect on risk preference, that risk and time 

preferences are generated by the same utility function, that people are risk-seeking toward 

lotteries over uncertain payment dates, that people discount the future exponentially, and that 

discounting does not depend on the magnitude of outcomes. All of these predictions have been 

contradicted by experimental evidence.  

In this paper, we introduce a dual process model of choices under risk and over time that 

naturally resolves each of these limitations of the DEU model. The model generalizes both rank-

dependent utility theory (Quiggin, 1982), and Mukherjee’s (2010) dual system model of choices 

under risk to develop a unified model that accounts for attitudes toward risk, attitudes toward 

time, and a variety of interaction effects between risk and time preferences. The proposed model 

also provides a unification of three classes of decision models – rank-dependent utility theory, 

expected utility, and dual process (or dual selves) theories. We refer to the model developed here 

as Dual Process Utility (DPU) theory.   
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The DPU theory introduces a new parameter into the analysis of economic decision models 

which represents the decision maker’s ‘cognitive type’ or ‘cognitive skills’. Essentially, an 

agent’s ‘cognitive type’ identifies whether a person naturally engages in more intuitive and 

feeling-based processing or relies on more analytical and calculation-based processing. While 

cognitive skills have been found to correlate with a wide variety of economic behaviors 

including risk and time preferences (e.g., Frederick, 2005; Burks et al., 2009), saving behavior 

(Ballinger et al., 2011), strategic sophistication (Carpenter et al., 2013), and efficiency in 

experimental asset markets (Corgnet et al., 2015), they appear nowhere in the conventional 

economic models of individual choice.   

In addition to introducing the DPU model, we provide DPU with a strong theoretical 

foundation, motivated by plausible psychological assumptions regarding the properties of dual 

systems in decision making, as well as by a simple axiomatic approach in which the convex 

combination functional form of DPU and the existence and uniqueness of the parameter 

representing the decision maker’s ‘cognitive type’ are implied by the axioms.   

We subsequently show that DPU predicts a variety of the major empirical findings regarding 

risk and time preferences. After providing some background in §II, the model is introduced in 

§III. In §IV we demonstrate that DPU explains present bias and that DPU resolves a long-

standing paradox in decision theory by simultaneously predicting both the magnitude effect for 

choice over time and peanuts effect for choice under risk. In §V, we show that DPU explains 

empirically observed interaction effects between risk and time preferences (time affects risk 

preference, risk affects time preference, subendurance). In §VI we demonstrate that DPU permits 

a separation between risk and time preferences, it predicts a preference for diversifying payoffs 

across time, it predicts risk aversion toward timing risk, and it predicts observed correlations 

between risk preference, time preference, and cognitive reflection. The behaviors implied by the 

model are summarized in §VII. Related literature is discussed in §VIII. A simple extension to 

social preferences is considered in §IX - §XI. Concluding remarks are provided in §XII. An 

application of the model to consumer behavior is illustrated in Appendix A. Proofs are provided 

in Appendix B.    

II. BACKGROUND 

The study of risk preferences and time preferences, both analytically and empirically, has 

been the primary focus of research on individual choice for over half a century. However, 
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although expected utility theory was axiomatized by von Neumann and Morgenstern in 1947, 

and discounted utility theory was axiomatized by Koopmans in 1960, it was not until 1991 when 

researchers identified remarkable parallels between the major anomalous behaviors across both 

domains – such as a common ratio effect in choice under risk and a common difference effect in 

choice over time (Prelec and Loewenstein, 1991). However, even in pointing out parallel 

behaviors between risk and time, Prelec and Loewenstein also presented a kind of impossibility 

result, indicating that no model that simultaneously applied to risk and time could resolve both 

the peanuts effect in choice under risk (Markowitz, 1952) and the magnitude effect in choice 

over time (Prelec and Loewenstein, 1991). Prototypical examples of both of these effects are 

illustrated in Table I. In the example of the peanuts effect, preferences switch from risk-seeking 

at small stakes (e.g., preferring a 1% chance of winning $100 to $1 for certain) to risk-averse at 

larger stakes (preferring $100 for certain over a 1% chance of winning $10,000). In the example 

of the magnitude effect, behavior switches from impatient at small stakes (e.g., preferring $7 

now to $10 in one year) to more patient at larger stakes (preferring $1,000 in one year over $700 

now). Note that both effects involve scaling outcomes up by a common factor. The peanuts 

effect is not explained by the most widely used specification of cumulative prospect theory due 

to Tversky and Kahneman (1992) with a power value function, even when allowing for any 

probability weighting function. A more fundamental challenge when relating risk and time 

preferences is that the peanuts effect seems to reveal decreasing sensitivity to payoffs at larger 

stakes, while the magnitude effect seems to reveal increasing sensitivity to payoffs at large 

stakes. Thus, any conventional approach to explaining the peanuts effect should predict the 

opposite of the magnitude effect (and vice versa). Prelec and Loewenstein could not explain both 

effects, and this challenge has remained unresolved over the subsequent twenty-five years, 

posing an apparent impossibility result that no common approach to modeling risk and time 

preferences can capture both of these basic behaviors. Somewhat surprisingly, we will 

demonstrate that the model presented here simultaneously predicts both effects.  

Since the ‘common approach’ to risk and time preferences pioneered by Prelec and 

Loewenstein (1991), other models have been developed to explain behaviors across both 

domains. For instance, models of similarity judgments apply the same cognitive process to 

explain anomalies under risk and anomalies over time (Rubinstein 1988; Leland 1994; Leland 
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2002; Rubinstein, 2003). However, this approach does not address another basic question of how 

risk and time preferences interact.   

It has been only fairly recently that attention has shifted to explaining interactions between 

risk and time preferences. This research direction was partially spurred by experimental studies 

from Keren and Roelofsma (1995) and Baucells and Heukamp (2010) who each observed 

different and systematic interactions between risk and time preferences. For instance, Keren and 

Roelofsma (1995) observed that uncertainty induces more patient behavior. Baucells and 

Heukamp (2010) and Abdellaoui et al. (2011) both observed that time delays induce more risk-

taking behavior. Andersen et al. (2011) and Miao and Zhong (2015) observed a preference for 

diversifying risks across time. Onay and Onculer (2007) and DeJarnette et al. (2015) observed 

risk aversion to lotteries over uncertain payment dates. These behaviors are illustrated in Table I. 

Table I. Choices between Options A and B involving Risk and Time 
 

Observation 
 

 

Option A                     vs. 
 

Option B 
 

 

Peanuts Effect*** 

(Markowitz, 1952) 

 

(100, with 1%, now) 

(10,000, with 1%, now) 

 

(1, for sure, now) 

(100, for sure, now) 

 

Magnitude Effect*** 

(Prelec and Loewenstein, 1991) 

 

(7, for sure, now) 

(700, for sure, now) 

 

(10, for sure, 1 year) 

(1,000, for sure, 1 year) 

 

Common Ratio Effect* 

(Baucells and Heukamp, 2010) 
 

 

(9, for sure, now) 
 

(12, with 80%, now) 

(12, with 8%, now) (9, with 10%, now) 

 

Common Difference Effect** 

(Keren and Roelofsma, 1995) 

 

(100, for sure, now) 
 

(110, for sure, 4 weeks) 

(100, for sure, 26 weeks) (110, for sure, 30 weeks) 
 

 

Time affects Risk Preference* 

(Baucells and Heukamp, 2010) 

 

(9, for sure, now) 
 

(12, with 80%, now) 

(9, for sure, 3 months) (12, with 80%, 3 months) 
 

 

 

Risk affects Time Preference** 

(Keren and Roelofsma, 1995) 

 

(100, for sure, now) 
 

(110, for sure, 4 weeks) 

(100, with 50%, now) (110, with 50%, 4 weeks) 
 

 

 

Subendurance* 

(Baucells et al., 2009) 

 

(100, for sure, 1 month) 

(5, for sure, 1 month) 

 

(100, with 90%, now) 

(5, with 90%, now) 

 

Diversification across Time*** 

(Miao and Zhong, 2015) 

 

 If Heads: 100, now 

 If Tails:    100, 1 week 

 

If Heads: 100 now, 100, 1 week 

If Tails:            0 now,     0, 1 week 

 

Aversion to Timing Risk*** 

(Onay and Onculer, 2007) 

 

 If Heads:  100,  5   weeks 

 If Tails:    100,  15 weeks 

 

If Heads: 100, 10 weeks 

If Tails:    100, 10 weeks 

Adapted from Baucells and Heukamp (2012). Complementary probabilities for all options correspond to payoffs of 

0. Sources of experimental results are in parentheses. Majority responses of experimental subjects are in bold font. 

*Currency in Euros; ** Currency in Dutch Guilders; *** Prototypical examples. 
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    An intuitive approach to modeling risky and intertemporal choices is to multiply a time 

discount function by a probability weighting function by a utility or value function. However, 

this general approach does not explain the finding that time affects risk preference (see Table I) 

since both alternatives in the example by Baucells and Heukamp (2010) are delayed by the same 

amount (e.g., three months) and so the discount weights cancel when comparing options A and 

B.  This approach also does not explain the finding that risk affects time preference, since both 

payoffs in the example by Keren and Roelofsma (1995) have the same probability (e.g., 50%), 

and so the probability weights cancel when comparing options A and B. In addition, this 

approach does not explain the finding of subendurance in the example by Baucells et al. (2009), 

since both options have the same payoffs (e.g., €100) and so the utilities cancel when comparing 

options A and B. It is then not obvious how to model such interaction effects between time 

delays, probabilities, and payoffs. It may be even less clear how to derive behaviors in the 

direction observed in experimental studies, or whether the same approach that might explain 

interaction effects for time delays can also explain interaction effects for probabilities, and 

payoffs. We will show that such a unified approach to these interaction effects is not only 

possible, but has a simple and intuitive interpretation.    

    After the peanuts and magnitude effects, the next five examples in Table I are adapted from 

Baucells and Heukamp (2012). The last two examples are prototypical illustrations of a 

preference for diversification across time and aversion to timing risk with outcomes determined 

by the toss of a fair coin. Further research on relations between risk and time preferences was 

spurred by Halevy (2008) and Saito (2011) who investigated formal equivalences between the 

Allais paradox and hyperbolic discounting, and by Andreoni and Sprenger (2012). 

 

II.A.      Dual Processes in Decision Making  
 

 Recent literature in cognitive science argues that people do not have a single mental 

processing system, but rather have two families of cognitive processes. Qualitatively similar 

distinctions have been made by many authors. Stanovich and West (2000), and Kahneman and 

Frederick (2002) label these families neutrally as System 1 processes and System 2 processes 

where System 1 includes automatic, intuitive and affective processes and System 2 includes 

more deliberative, logical, and reflective processes. Kahneman (2011) simply distinguishes 

between processes that are ‘fast’ and ‘slow.’ Rubinstein (2007, 2013) distinguishes between 
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“instinctive” and “cognitive” processes. Denes-Raj and Epstein (1994) distinguish between an 

‘experiential system’ and a ‘rational system’. Hsee and Rottenstreich (2004) posit two 

qualitatively different types of valuation processes – valuation by feeling and valuation by 

calculation1. Following Stanovich and West (2000), we adopt the neutral System 1/System 2 

distinction in our analysis.     

Concurrent with the dual process paradigm developing in the psychology literature, a 

plethora of dual process models have emerged recently in economics, each with similar 

distinctions between the types of processes involved. The relation between DPU and alternative 

dual system or dual selves models is discussed in §13. Despite their recent rise to theoretical 

prominence, two-system (dual process) theories date back to the early days of scholarly thought. 

The conflict between reason and passion, for instance, features prominently in Plato’s Republic 

and in Adam Smith’s Theory of Moral Sentiments.   

III. DUAL PROCESS UTILITY THEORY 

III.A.       Setup and Assumptions 

Our approach in this section builds on the variant of Harsanyi’s (1955) group decision theorem 

in Keeney and Nau (2011). Keeney and Nau adapted Harsanyi’s theorem for groups of agents 

with subjective expected utility preferences. We adapt the setting to decisions under risk and 

decisions over time in a model of individual choice. 

Formally, we proceed as follows: There is a finite set, T, of time periods, a finite set ℳ of 

outcomes, with ℳ ⊂ ℝ, and a finite set X of consumption sequences. We index consumption 

sequences by 𝑗 ∈ {1,2, … , 𝑛} and we index time periods by 𝑡 ∈ {0,1, … , 𝑚}. A consumption 

sequence 𝑥𝑗 ≔ [𝑥𝑗0, … , 𝑥𝑗𝑚] is a sequence of dated outcomes. A stochastic consumption plan is a 

probability distribution over consumption sequences. We denote a stochastic consumption plan 

by a function 𝑓: X → [0,1], with 𝑓(𝑥𝑗) denoting the probability it assigns to consumption 

sequence 𝑥𝑗. Denote the set of stochastic consumption plans by Ω.   

We first make assumptions about the risk and time preferences of Systems 1 and 2. We first 

assume that the preferences for each system are internally consistent. Viewing discounted 

expected utility (DEU) preferences as a model of consistent risk and time preferences, we 

 

1
We do not employ ‘calculation’ to mean the agent is necessarily calculating expected utilities consciously. Rather, 

‘calculation’ is meant in a broad sense to refer to reliance on logic and reasoning to make choices.  
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impose this structure on the risk and time preferences for each system. We will see that imposing 

consistent preferences for each system can nevertheless generate a variety of decision anomalies 

as emergent phenomena that arise through the interactions between systems. As a further 

restriction, we let System 1 be more risk-averse and more delay-averse (i.e., less patient) than 

System 2. The assumption that System 1 is more risk-averse than System 2 is broadly consistent 

with a range of evidence. Frederick (2005), Burks et al., (2009), Dohmen et al., (2010), and 

Benjamin et al. (2013) find that individuals with higher cognitive skills are less risk-averse (in 

particular, closer to risk-neutrality) than individuals with low levels of cognitive skills or 

cognitive reflection. Deck and Jahedi (2015) review evidence suggesting that increasing 

cognitive load (an experimental manipulation designed to increase reliance on System 1) leads to 

greater small-stakes risk aversion. The assumption that System 1 is less patient than System 2 is 

consistent with findings by Frederick (2005), Burks et al. (2009), Dohmen et al. (2010), and 

Benjamin et al. (2013) that decision makers with higher cognitive skills or cognitive reflection 

are more patient than individuals with lower levels of cognitive skills. In addition, Tsukayama 

and Duckworth (2010) find that decision makers are less patient for affect-rich outcomes.  Our 

Assumption 1 is thus consistent with empirical evidence regarding the relationship between the 

risk and time preferences of Systems 1 and 2. 

 Formally, let ≿𝑠 and ≻𝑠 denote weak and strict preference, respectively, between pairs of 

stochastic consumption plans for system 𝑠, 𝑠 ∈ {1,2} that satisfy the non-triviality conditions 

𝑓 ≻1 𝑔 and 𝑓′ ≻2 𝑔′ for some 𝑓, 𝑔, 𝑓′, 𝑔′ ∈ Ω. 

  Assumption 1 (Preferences2 of Systems 1 and 2): System s, 𝑠 ∈ {1,2} has discounted expected 

utility preferences, with System 1 more risk-averse and more delay-averse than System 2. That is, 

there exist utility functions 𝑢1, 𝑢2, with 𝑢1 more concave than 𝑢2, and  unique discount factors, 

𝛿1, 𝛿2 with 0 < 𝛿1 < 𝛿2 ≤ 1, such that for all 𝑓, 𝑔 ∈ Ω, 
 

(1) 𝑓 ≿𝑠 𝑔 ⟺ 𝑉𝑠(𝑓) ≥ 𝑉𝑠(𝑔), where 𝑉𝑠(𝑓) = ∑ ∑ 𝛿𝑠
𝑡 ∙ 𝑓(𝑥𝑗𝑡) ∙ 𝑢𝑠(𝑥𝑗𝑡),𝑗𝑡  

 

for 𝑠 ∈ {1,2}. All of our results continue to hold even in the more restrictive case where System 2 

is risk-neutral and delay-neutral. Mukherjee (2010) and Loewenstein et al. (2015) both argue that 

risk-neutrality is a plausible, and even natural, assumption for System 2. To the extent that 

 

2
 We avoid explicit preference axioms for Systems 1 and 2 to simplify the exposition and to focus on the novel 

parameter 𝜃 in our model which is derived from our assumptions in Proposition 1. See Traeger (2013) for an 

axiomatization of discounted expected utility.  
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System 2 characterizes an idealized rational agent, it appears at least plausible that it does not 

have a pure rate of time preference which some authors have argued to be irrational (e.g., 

Harrod, 1948; Traeger, 2013), and that it maximizes expected value. Formally, let (𝑐, 𝑝, 𝑡) ∈ Ω 

denote the stochastic consumption plan 𝑓 defined as 𝑓(x) = 𝑝 if x is the all zeros vector except 

at 𝑥𝑡 = 𝑐, and 𝑓(x) = 1 − 𝑝 if x is the all zeros vector, and 𝑓(x) = 0 for all other x ∈ X. By 

‘delay neutrality’ we mean (𝑐, 𝑝, 𝑡) ~2(𝑐, 𝑝, 𝑟) for all 𝑡, 𝑟 ∈ 𝑇. Hence, in this special case, 

System 2 still discounts the future for reasons of uncertainty, given the future is often more 

uncertain than the present, but not for reasons of impatience.  

Let ≿ and ≻ represent, respectively, weak and strict preferences of the decision maker over 

stochastic consumption plans. We minimally constrain the agent’s time preferences, and do not 

impose stationarity, nor do we impose that time preferences are multiplicatively separable into a 

discount function and a utility function, so that we do not rule out common behaviors such as 

present bias or the magnitude effect. But note that while not ruling out these behaviors, we do 

not assume them either. Present bias and the magnitude effect as well as some observed 

interactions between risk and time preferences will emerge as general properties implied by our 

representation. Formally, our Assumptions 2 and 3 can be viewed as special cases of 

Assumptions 2 and 3 in Harsanyi’s theorem, as presented in Keeney and Nau (2011).  

  Assumption 2 (Preferences of the Decision Maker): The decision maker has time-dependent 

expected utility preferences among stochastic consumption plans. That is, there exists a possibly 

time-dependent utility function, 𝑢𝑡(𝑥), such that for all 𝑓, 𝑔 ∈ Ω,  
 

 (2)  𝑓 ≿ 𝑔 ⟺ 𝑉(𝑓) ≥ 𝑉(𝑔), where  𝑉(𝑓) = ∑ ∑ 𝑓(𝑥𝑗𝑡) ∙ 𝑢𝑡(𝑥𝑗𝑡).𝑗𝑡    

 

  Assumption 3 (Pareto Efficiency): If both systems weakly prefer 𝑓 to 𝑔, then 𝑓 ≿ 𝑔, and if, in 

addition, one system strictly prefers 𝑓 to 𝑔 then 𝑓 ≻ 𝑔. 

Proposition 1 (Dual Process Utility Theorem I): Given Assumptions 1, 2, and 3, there exists a 

unique constant3 𝜃 ∈ (0,1), unique discount factors  𝛿1, 𝛿2 with 0 < 𝛿1 < 𝛿2 ≤ 1 and utility 

functions, 𝑢1 and 𝑢2, with 𝑢1 more concave than 𝑢2, such that for all 𝑓, 𝑔 ∈ 𝛺, the decision 

maker’s preferences are given by 𝑓 ≿ 𝑔 ⟺ 𝑉(𝑓) ≥ 𝑉(𝑔), where 

 

3 In Harsanyi’s theorem, the weights on individual member utilities are positive and unique up to a common scale 

factor. Without loss of generality, the weights can be scaled to sum to 1 in which case 𝜃 ∈ (0,1) is uniquely 

determined. We will also continue to discuss 𝜃 = 0 and 𝜃 = 1 as special cases of DPU since they are limiting cases 

of the model and 𝜃 can be arbitrarily close to 0 or 1.  
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(3)           𝑉(𝑓) = (1 − 𝜃)𝑉1(𝑓) +  𝜃𝑉2(𝑓) 

             = (1 − 𝜃)(∑ ∑ 𝛿1
𝑡 ∙𝑗𝑡 𝑓(𝑥𝑗𝑡) ∙ 𝑢1(𝑥𝑗𝑡)) +  𝜃(∑ ∑ 𝛿2

𝑡 ∙ 𝑓(𝑥𝑗𝑡) ∙ 𝑢2(𝑥𝑗𝑡)𝑗𝑡 ). 

    One could imagine many ways of aggregating preferences of Systems 1 and 2. Proposition 1 

provides a formal justification for the convex combination approach. Although including both 

risk and time, and applying Harsanyi’s theorem from social choice theory to model individual 

choice behavior are new, the proof for Proposition 1 follows straightforwardly from the proof of 

Theorem 1 in Keeney and Nau (2011). A related finding for decisions involving time but not risk 

was obtained in the context of group decision making by Jackson and Yariv (2015).      

 

III.B.   Aggregation of Non-expected Utility Preferences 
 

   The assumption of discounted expected utility preferences in Assumption 1 seems particularly 

appropriate for System 2 which may be intuitively thought to resemble the rational economic 

agent. However, in addition to differences in the content of risk and time preferences between 

systems (i.e., that the systems differ in their degrees of risk aversion and impatience), one might 

further propose that the two systems differ in the structure of their risk and time preferences, 

with System 2 having normative DEU preferences, and with System 1 having behavioral 

preferences based on prospect theory (PT) or rank dependent utility (RDU) theory. Supporting 

this, Rottenstreich and Hsee (2001) find that inverse S-shaped probability weighting (as assumed 

in RDU theory (Quiggin 1982) and PT4 (Tversky and Kahneman 1992)) is more pronounced for 

affect-rich outcomes. Support for assuming System 1 has PT preferences also comes from 

Barberis et al. (2013) who use PT to model “System 1 thinking” for initial reactions to changes 

in stock prices. Reflecting on PT three decades later, Kahneman (2011, pp. 281-282) remarks, 

“It’s clear now that there are three cognitive features at the heart of prospect theory…They 

would be seen as operating characteristics of System 1.”   

    Recent impossibility results (Mongin and Pivato, 2015; Zuber, 2016) have demonstrated 

difficulties in using axiomatic methods to aggregate non-expected utility preferences. For 

instance, Zuber (2016) considers a general class of non-expected utility preferences and 

concludes, “non-expected utility preferences cannot be aggregated consistently.” However, this 

 

4
Although this version is commonly called cumulative prospect theory, Peter Wakker has noted (personal 

communication, July 2, 2016) that it was Amos Tversky’s preference for this latter version to be called prospect 

theory. Following Tversky’s preference, we refer to the 1992 version as prospect theory. 
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conclusion applies to the approach in which the social planner (or, in our case, the decision 

maker) has preferences over the same stochastic consumption plans as the two systems. We next 

show how to derive a representation that generalizes (1) by allowing for the possibility that 

System 1 engages in non-linear probability weighting, as in RDU and PT. Such analysis is 

possible by assuming the agent cares about the payoffs to each system and has preferences over 

distributions of payoffs to Systems 1 and 2. While we employ RDU theory, the behaviors we 

study involve only positive outcomes, in which case PT coincides with RDU.   

    Our approach is based on the group decision theorem in Keeney and Nau (2011). If System 

𝑠, 𝑠 ∈ {1,2}, has DEU preferences, the function that is defined by the product of discount factor 

𝛿𝑠
𝑡 and utility function 𝑢𝑠 can be represented by a vector 𝒗𝒔 of length |T| × |X| in which 

𝑣𝑠(𝑡, 𝑥𝑗𝑡) = 𝛿𝑠
𝑡 ∙ 𝑢𝑠(𝑥𝑗𝑡). We denote stochastic consumption plans by 𝑓 and 𝑔, and denote their 

corresponding vector representations by 𝒇 and 𝒈. Similarly, we denote the rank-dependent 

probability weighting function of 𝑓 by 𝜋(𝑓) and the corresponding vector of probability weights 

by 𝝅𝒇. The discounted expected utility of 𝑓 to System 𝑠 can then be expressed as the inner 

product 𝒇 ⋅ 𝒗𝒔 = ∑ ∑ 𝑓(𝑥𝑗𝑡)𝑣𝑠(𝑡, 𝑥𝑗𝑡)𝑗𝑡  in which case 𝑓 ≿𝑠 𝑔 if and only if 𝒇 ⋅ 𝒗𝒔 ≥ 𝒈 ⋅ 𝒗𝒔. If 

instead System 𝑠 has discounted RDU preferences, it distorts cumulative probabilities by 

𝜋: [0,1] → [0,1], with 𝜋(0) = 0 and 𝜋(1) = 1, that takes the standard rank-dependent form with 

weighting function 𝑤: 

           𝜋(𝑓(𝑥𝑗𝑡)) = 𝑤(𝑓(𝑥𝑗𝑡) + ⋯ + 𝑓(𝑥1𝑡)) − 𝑤(𝑓(𝑥𝑗−1,𝑡) + ⋯ + 𝑓(𝑥1𝑡)), 

for 𝑗 ∈ {1,2, … , 𝑛}, where consumption sequences are ranked according to the discounted utility 

for System s for each sequence such that ∑ 𝛿𝑠
𝑡

𝑡 ∙ 𝑢𝑠(𝑥𝑛𝑡) ≤ ⋯ ≤ ∑ 𝛿𝑠
𝑡

𝑡 ∙ 𝑢𝑠(𝑥1𝑡). 

Note that the discounted rank-dependent utility of 𝑓 for System 𝑠 can be expressed as the 

product 𝝅𝒇 ⋅ 𝒗𝒔 in which case 𝑓 ≿𝑠 𝑔 if and only if 𝝅𝒇 ⋅ 𝒗𝒔 ≥ 𝝅𝒈 ⋅ 𝒗𝒔. The rank-dependent form 

for 𝜋 avoids violations of stochastic dominance, and the typical inverse S-shaped form often 

assumed for w reflects the psychophysics of probability perception as it exhibits diminishing 

sensitivity from the endpoints of the probability scale. This approach for ranking consumption 

sequences essentially collapses each sequence into its discounted utility and then rank-dependent 

probability weighting is applied to these discounted utilities for System 1. This effectively 

reduces outcomes to a single dimension to which RDU can be applied as it would be applied to 

lotteries with static outcomes. 
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    Assumption 1* (System 1 preferences): System 1 has discounted rank-dependent utility 

preferences: There exist a unique discount factor 𝛿1 ∈ (0,1), a unique, strictly increasing 

continuous rank-dependent probability weighting function 𝜋, and utility function 𝑢1: ℳ → ℝ, 

such that for all 𝑓, 𝑔 ∈ Ω, 𝑓 ≿1 𝑔 ⟺ 𝑉1(𝑓) ≥ 𝑉1(𝑔), where 
 

        𝑉1(𝑓) = ∑ ∑ 𝛿1
𝑡 ∙ 𝜋(𝑓(𝑥𝑗𝑡))𝑗𝑡 ∙ 𝑢1(𝑥𝑗𝑡), 

 

and consumption sequences are ranked  by System 1’s discounted utility for each sequence such 

that ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥𝑛𝑡) ≤ ⋯ ≤ ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥1𝑡) prior to applying the 𝜋 transformation. 

    Following the analogy between the rational agent of economic theory and System 2, we 

assume that System 2 has discounted expected utility preferences:       

   Assumption 2* (System 2 preferences): System 2 has discounted expected utility preferences: 

There exist a unique discount factor 𝛿2 ∈ (𝛿1, 1], and a utility function 𝑢2: ℳ → ℝ, such that for 

all 𝑓, 𝑔 ∈ Ω, 𝑓 ≿2 𝑔 ⟺ 𝑉2(𝑓) ≥ 𝑉2(𝑔), where: 
 

      𝑉2(𝑓) = ∑ ∑ 𝛿2
𝑡 ∙ 𝑓(𝑥𝑗𝑡) ∙ 𝑢2(𝑥𝑗𝑡).𝑗𝑡    

The main differences between System 1 and System 2 preferences as formalized in 

Assumptions 1 and 2 are that System 1 has behavioral risk preferences (given by rank-dependent 

utility or prospect theory), System 2 has normative risk preferences (given by expected utility 

theory), and System 2 is more patient than System 1.  

Since the set of outcomes, ℳ, is finite, the utility function for each system is bounded, and 

since 𝑉1 and 𝑉2 are each continuous and the set of stochastic consumption plans is compact, it 

follows that 𝑉1 and 𝑉2 are also bounded. Therefore, we can choose a constant 𝑘𝑠 > 0 for each 

system such that 𝑘𝑠𝑢𝑠 yields 𝑉𝑠(𝑓) ≤ 1 for all 𝑓 for 𝑠 ∈ {1,2}. One might also let 𝑢1 and 𝑢2 each 

be normalized to a 0-1 scale. 

Note that every 𝑓 ∈ Ω can be associated with the vector (𝝅𝒇 ⋅ 𝒗𝟏, 𝒇 ⋅ 𝒗𝟐) whose elements are 

the value of 𝑓 (the discounted rank-dependent utility of 𝑓) as evaluated by System 1 (𝝅𝒇 ⋅ 𝒗𝟏), 

and the value of 𝑓 (the discounted expected utility of 𝑓) as evaluated by System 2 (𝒇 ⋅ 𝒗𝟐). Every 

such vector is a point in the square [0,1] × [0,1]. In modeling the choices made by the decision 

maker, we let her consider the distribution of valuations that her decisions yield for each System. 

The set of all such vectors consists of the entire square, as if there are hypothetical alternatives 

available that yield all possible comparisons of the worst and best outcomes for System 1 and 

System 2 (all possible 0-1 profiles of discounted rank-dependent (System 1) utilities and 
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discounted expected (System 2) utilities, and their convex combinations).  The elements of the 

square will be referred to as ‘signal vectors’. Denote a signal vector by 𝐹 = (𝐹1, 𝐹2), where 𝐹𝑠 is 

a ‘reward value signal’ or a ‘reward prediction signal’ representing the value of that alternative 

transmitted by System 𝑠 ∈ {1,2}, measured on a scale of 0 to 1. If 𝐹 corresponds to some 𝑓 in the 

real choice faced by the agent, then 𝐹1 = 𝑉1(𝑓) and 𝐹2 = 𝑉2(𝑓). Let ℱ = {𝐹(1), … , 𝐹(𝑁)} denote 

a finite set of signal vectors and let (ℱ, 𝑝): = ((𝑝(1), 𝐹(1)), … , (𝑝(𝑁), 𝐹(𝑁))) denote a ‘lottery 

over signals’ with 𝑝(1) + ⋯ + 𝑝(𝑁) = 1 and 𝑝(𝑖) > 0 for all 𝑖, in which signal vector 𝐹(𝑖) is 

chosen with probability 𝑝(𝑖).  

  Let ≿ represent the agent’s preferences for lotteries over signals. To illustrate such a preference, 

let (𝑉1(𝑓), 𝑉2(𝑓)) = (0.5,0.5), (𝑉1(𝑔), 𝑉2(𝑔)) = (1,0) and (𝑉1(ℎ), 𝑉2(ℎ)) = (0,0). Then if 

(1, (𝑉1(𝑓), 𝑉2(𝑓))) ≿ (𝑞, (𝑉1(𝑔), 𝑉2(𝑔)); 1 − 𝑞, (𝑉1(ℎ), 𝑉2(ℎ))) for 𝑞 > 0.5, the agent prefers the 

equitable assignment of valuations (0.5,0.5) to an assignment with a chance of the highest 

valuation for System 1 and the lowest valuation for System 2. In Assumption 3* we assume the 

agent has preferences over assignments of values to System 1 and System 2 that maximize the 

agent’s expected utility with the agent’s utility defined over vectors of System 1 and System 2 

reward signals as if the utility function integrates the reward signals into a unifying utility value. 

Formally, Assumption 3* employs expected utility condition P2 from Fishburn (1965), and can 

be viewed as a special case of Assumption 4 in Keeney and Nau (2011).  

   An alternative (and simpler) interpretation of Assumption 3* is that the agent cares about the 

welfare of both systems and has preferences over distributions of payoffs to each system.  

  Assumption 3* (Preferences of the Decision Maker): The decision maker has expected utility 

preferences for lotteries over signals. That is, there exists a von Neumann-Morgenstern utility 

function 𝜇 on the set of signal vectors such that for any two lotteries over signals (ℱ, 𝑝) and 

(ℱ, 𝑞), (ℱ, 𝑝) ≿ (ℱ, 𝑞) if and only if 𝜇(ℱ, 𝑝) ≥ 𝜇(ℱ, 𝑞)  where 𝜇(ℱ, 𝑝) =

𝜇 ((𝑝(1), 𝐹(1)), … , (𝑝(𝑁), 𝐹(𝑁))) = 𝑝(1)𝜇(𝐹(1)) + ⋯ + 𝑝(𝑁)𝜇(𝐹(𝑁)). 

  Next, note that in a lottery over signals, it might be the case that System 𝑠 receives the same 

discounted rank-dependent utility or discounted expected utility in two or more stochastic 

consumption plans. In that case, we can compute a marginal probability for the assignment of a 

given payoff to System 𝑠. Let 𝐹1
(𝑛)

 and 𝐹1
(𝑛′)

 denote the discounted rank-dependent utilities 
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assigned to System 1 by two signal vectors 𝐹(𝑛) and 𝐹(𝑛′) that are among the signal vectors of a 

lottery (ℱ, 𝑝). If 𝐹1
(𝑛)

= 𝐹1
(𝑛′)

= 𝑢 and 𝐹1
(𝑛′′)

≠ 𝑢 for 𝑛′′ ≠ 𝑛, 𝑛′, then the marginal probability 

of discounted rank-dependent utility 𝑢 for System 1 is 𝑝(𝑛) + 𝑝(𝑛′). In Assumption 4*, the 

decision maker chooses in accordance with one system for choices affecting only that system’s 

marginal distribution of payoffs. Formally, this assumption is a special case of Assumption 5 in 

Keeney and Nau (2011): 

Assumption 4* (Relationship between preferences in Assumptions 1*, 2*, and 3*):   

(i) If two lotteries over signals yield identical marginal probabilities for the discounted 

rank-dependent utilities of System 1, the decision maker is indifferent between these 

lotteries if and only if System 2 is indifferent between them. 

(ii) If two lotteries over signals yield identical marginal probabilities for the discounted 

expected utilities of System 2, the decision maker is indifferent between these lotteries if 

and only if System 1 is indifferent between them.  

   Assumption 4* relates the preferences from Assumptions 1* - 3*, and essentially says that if it 

does not matter to one system (e.g., intuition) which alternative is selected, the other system 

(e.g., logic) gets to make the decision. This assumption implies the decision maker’s preferences 

satisfy Fishburn’s (1965) mutual independence condition. Assumption 4* is weaker than the 

Pareto assumption in Harsanyi (1955) and, together with Assumptions 1* – 3*, it permits the 

aggregation of non-expected utility preferences.  
 

Proposition 2 (Dual Process Utility Theorem II): Given Assumptions 1* through 4*, there 

exist a constant 𝜃 ∈ (0,1),  unique discount factors  𝛿1, 𝛿2 with 0 < 𝛿1 < 𝛿2 ≤ 1, a unique, 

strictly increasing continuous rank-dependent probability weighting function 𝜋, and utility 

functions, 𝑢1 and 𝑢2, each unique upon normalization to a 0-1 scale such that for all 𝑓, 𝑔 ∈ 𝛺, 

𝑓 ≿ 𝑔 ⟺ 𝑉(𝑓) ≥ 𝑉(𝑔), where 
 

(4)       𝑉(𝑓) = (1 − 𝜃)𝑉1(𝑓) +  𝜃𝑉2(𝑓) 

                   = (1 − 𝜃) (∑ ∑ 𝛿1
𝑡 ∙𝑗𝑡 𝜋(𝑓(𝑥𝑗𝑡)) ∙ 𝑢1(𝑥𝑗𝑡)) +  𝜃 ∑ ∑ 𝛿2

𝑡 ∙ 𝑓(𝑥𝑗𝑡) ∙ 𝑢2(𝑥𝑗𝑡)𝑗𝑡 . 

Moreover, if there exists 𝑓, 𝑔 ∈ 𝛺 with 𝑓 ~ 𝑔 and 𝑉1(𝑓) ≠ 𝑉1(𝑔) then 𝜃 is unique.  

    A proof of Proposition 2 is provided in the appendix. Proposition 2 extends (3) to the more 

general case of (4) where System 1 has behavioral preferences (given by prospect theory or 

RDU) and System 2 has normative preferences given by discounted expected utility theory. The 



 

15 

 

aggregation of non-expected utility preferences in Proposition 2 is new, and perhaps surprising 

given the recent impossibility results by Mongin and Pivato (2015) and Zuber (2016) which 

seem to suggest that non-expected utility preferences cannot be aggregated consistently under 

fairly general conditions.  

    We say an agent with preferences given by (4) has dual process utility (DPU) preferences. To 

simplify notation and to illustrate the model with the delay-neutrality and risk-neutrality 

assumptions for System 2, we will employ the specification in (5) in our analysis, where we drop 

the subscripts on System 1’s discount factor and utility function: 

(5)            𝑉(𝑓) = (1 − 𝜃) (∑ ∑ 𝛿𝑡 ∙𝑗𝑡 𝜋(𝑓(𝑥𝑗𝑡)) ∙ 𝑢(𝑥𝑗𝑡)) +  𝜃 ∑ ∑ 𝑓(𝑥𝑗𝑡) ∙ 𝑥𝑗𝑡𝑗𝑡 . 

      Our subsequent results are robust to the risk-neutrality and delay-neutrality assumptions for 

System 2 and continue to hold provided 𝑢2 is a monotonically increasing concave function with 

less curvature than 𝑢1 and System 2 is more patient than System 1.  

     Under the premise that System 1 attends to subjective and affective (“hot”) qualities of a 

stimulus and System 2 attends to the objective information (“cool” qualities) contained in a 

stimulus, one can interpret (5) as a weighted average of the subjective value of a stochastic 

consumption plan (the ‘stimulus’) as determined by System 1 and the objective value of the 

stochastic consumption plan as judged by System 2.  
 

III.C.   Interpretation of  𝜃 

The parameter  𝜃 may be interpreted as the degree to which an agent is ‘hard-wired’ to rely on 

System 2. Intuitive thinkers then have low values of 𝜃, whereas more analytical thinkers have 

higher values of 𝜃. We will refer to 𝜃 as the decision maker’s “cognitive type,” with one’s 

cognitive type becoming less based on feeling and intuition and more reliant on logic and 

calculation as 𝜃 increases. From a neuro-economic perspective, there are tight neural connections 

between the prefrontal cortex, a brain region implicated in planning, analytical thinking, and 

executive function and the limbic system, an evolutionarily older brain region involved in the 

generation of emotions and the experience of pleasure. One might view 𝜃 as indexing the 

strength of neural connections in the prefrontal areas relative to the strength of neural 

connections in the limbic areas. As noted, 𝑉1(𝑓) and 𝑉2(𝑓) may be viewed as reward value 

signals or reward prediction signals transmitted by Systems 1 and 2. When these signals conflict, 

the agent’s choice may be determined such that the agent chooses in favor of the system with the 
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stronger signal, where the product 𝜃𝑉2(𝑓) can then be interpreted as the strength of the System 2 

reward signal for any 𝑓 ∈ Ω, and (1 − 𝜃)𝑉1(𝑓) is the strength of the System 1 reward signal. 

Ceteris paribus, an agent with a high value of 𝜃 will exhibit more reflection and more self-

control (the agent is adapted to rely more on System 2), whereas an agent with a low value of 𝜃 

will have greater weight on the reward signals from System 1 and will find it more difficult to 

exert self-control in the presence of temptation. For instance, when choosing between a tempting 

alternative, 𝑓 (i.e., an alternative with a large System 1 reward signal 𝑉1(𝑓)), and a delayed 

alternative 𝑔 such that 𝑉1(𝑓) > 𝑉1(𝑔) and 𝑉2(𝑓) < 𝑉2(𝑔), a sufficiently large value of 𝜃 is 

needed for an agent to resist temptation. 

 Note that DPU adopts the view of cognitive sophistication implicit in the interpretation of the 

cognitive reflection test (Frederick, 2005) and models of level-k thinking (Camerer et al., 2004), 

namely that there are reflective thinkers or those with high levels of cognitive sophistication and 

there are intuitive thinkers or those with lower levels of cognitive sophistication. It is in this 

sense in which we view 𝜃 as reflecting a decision maker’s ‘cognitive type’ which allows for 

heterogeneity across agents. Within agents, DPU reflects a compromise between the System 1 

preference for immediate gratification and the more patient preferences of System 2. This 

‘compromise’ is consistent with the findings of Andersen et al. (2008) who “…observe what 

appears to be the outcome of a decision process where temptation and long-run considerations 

are simultaneously involved.” 

III.D.   Basic Properties of DPU 

Consider two stochastic consumption plans 𝑓 and 𝑔, where 𝑓(𝑥𝑗) and 𝑔(𝑥𝑗) are the 

probabilities which 𝑓 and 𝑔 assign to consumption sequence 𝑥𝑗 , respectively. Since a decision 

maker either receives one consumption sequence or another and so cannot interchange 

components of any arbitrary sequences, we first seek a means of objectively ranking different 

consumption sequences, analogous to how one would rank individual outcomes. We can then 

extend the standard definition of stochastic dominance from lotteries over outcomes to lotteries 

over consumption sequences. In particular, we say sequence 𝑥𝑗 dominates sequence 𝑥𝑘 if 𝑥𝑗𝑡 ≥

𝑥𝑘𝑡 for all 𝑡 ∈ {0,1, … , 𝑇}, with a strict inequality for at least one 𝑡. We say that consumption 

sequences 𝑥1, … . , 𝑥𝑛 are monotonically ordered if 𝑥𝑗 dominates 𝑥𝑗+1 for all 𝑗 ∈ {1, … , 𝑛 − 1}. 

For any monotonically ordered consumption sequences 𝑥1, … . , 𝑥𝑛, we say 𝑓 (first-order) 

stochastically dominates 𝑔 if 𝐹(𝑥𝑗𝑡) ≤ 𝐺(𝑥𝑗𝑡) for all  𝑗 ∈ {1, … , 𝑛}, and all 𝑡 ∈ {0,1, … , 𝑇}, 
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where 𝐹 and 𝐺 are the cumulative distribution functions for 𝑓 and 𝑔, respectively. Note that this 

reduces to the standard definition of stochastic dominance in an atemporal setting.  

Proposition 3: Let ≿ have a DPU representation as in (4). Then for any fixed  𝜃 ∈ [0,1],   

≿ satisfies the following properties over stochastic consumption plans: 

(i)   Weak order (≿ is transitive and complete) 

(ii)   Continuity  

(iii)      First order stochastic dominance.  

The proofs of properties (i) and (ii) in Proposition 3 are standard so we prove only (iii). Recall 

that 𝜋(∙) ranks sequences such that ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥1𝑡) ≥ ⋯ ≥ ∑ 𝛿1
𝑡

𝑡 ∙ 𝑢1(𝑥𝑛𝑡). Note that if 

consumption sequences 𝑥1, … . , 𝑥𝑛 are monotonically ordered, then 𝑢1(𝑥1𝑡) ≥ ⋯ ≥ 𝑢1(𝑥𝑛𝑡) for 

all 𝑡 ∈ {0,1, … , 𝑇}, and for any increasing function 𝑢1. Thus, 𝜋(∙) preserves the monotonic 

ordering of the sequences. If 𝑓 stochastically dominates 𝑔, then 𝛿𝑡 ∑ 𝜋(𝑓(𝑥𝑗))𝑢(𝑥𝑗𝑡𝑗 ) >

𝛿𝑡 ∑ 𝜋(𝑔(𝑥𝑗))𝑢(𝑥𝑗𝑡𝑗 ), for each period 𝑡 ∈ {0,1, … , 𝑇}, which implies that 𝑉1(𝑓) > 𝑉1(𝑔). Since 

𝑉2(𝑓) > 𝑉2(𝑔), the convex combination of 𝑉1 and 𝑉2 ranks 𝑓 higher than 𝑔 for all 𝜃 ∈ [0,1]. 
  

IV. EMPIRICAL VIOLATIONS OF DISCOUNTED UTILITY AND EXPECTED UTIILITY 
 

In this and the following sections, all propositions assume the decision maker has dual process 

utility preferences (given by (5)). Proofs of Propositions in §4 and §5 are given in the appendix. 

Notably, each of these results (Propositions 4, 5, 6, 7, 8, and 9) do not hold when  𝜃 = 0 or 𝜃 =

1, indicating the need for a dual process paradigm in our setup. First, we show that DPU resolves 

two empirical violations of discounted utility theory - present bias and the magnitude effect.  

IV.A. Present Bias 

Systematic empirical violations of the stationarity axiom of discounted utility theory 

(Koopmans, 1960), such as present bias, have been well-documented in experiments (Frederick 

et al., 2002), and are thought to reveal time-inconsistent preferences (Laibson 1997; 

O’Donoghue and Rabin 1999). Formal accounts of present bias and hyperbolic discounting have 

often directly assumed such behavior in the functional form of the agent’s preferences (e.g., 

Loewenstein and Prelec 1992; Laibson 1997). Surprisingly, present bias emerges as a general 

property of DPU without any explicit assumptions regarding hyperbolic discounting or 

diminishing sensitivity to delays. In fact, present bias is predicted by DPU even though each 

system has time consistent preferences.   
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As before, let (𝑐, 𝑝, 𝑡) denote a stochastic consumption plan which has one non-zero outcome 

𝑐, to be received with probability 𝑝 at time 𝑡. We have the following definition:   

Definition 1 (Present Bias): Present bias holds if for 𝑦 ∈ (0, 𝑐),  and 𝑡, ∆> 0,  

(𝑦, 𝑝, 0) ~ (𝑐, 𝑝, ∆) ⟹  (𝑦, 𝑝, 𝑡) ≺ (𝑐, 𝑝, 𝑡 + ∆)   

Proposition 4: Under DPU, present bias holds if and only if 𝜃 ∈ (0,1). 

Proposition 4 implies that DPU explains the example of the common difference effect in Table I 

demonstrated by Keren and Roelofsma (1995). In particular, a decision maker indifferent 

between 100 Dutch guilders for sure now and 110 Dutch guilders for sure in 4 weeks will strictly 

prefer 110 Dutch guilders for sure in 30 weeks over 100 Dutch guilders for sure in 26 weeks. It is 

also clear from the proof of Proposition 4 that present bias does not hold if  𝜃 = 0 or if 𝜃 = 1. 

Thus, under DPU, present bias arises due to the interaction between System 1 and System 2.  
 

IV.B.     The Magnitude Effect 

The DPU model also offers an explanation of the magnitude effect in intertemporal choice. 

The magnitude effect is the robust observation that behavior is more patient for larger rewards 

than for smaller rewards (Prelec and Loewenstein, 1991). Formally: 

Definition 2 (Magnitude Effect): We say the magnitude effect holds if for 𝑦 ∈ (0, 𝑐), 𝑠 > 𝑡, 

and 𝑟 > 1, (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝑝, 𝑠) ⟹  (𝑟𝑦, 𝑝, 𝑡) ≺ (𝑟𝑐, 𝑝, 𝑠) 

Proposition 5: For any concave power utility function 𝑢, the magnitude effect holds under 

DPU, if and only if 𝜃 ∈ (0,1). 

IV.C.     The Peanuts Effect 

While PT and RDU explain violations of expected utility theory (EU) such as the Allais 

paradoxes, standard specifications of PT or RDU do not explain the ‘peanuts’ effect. An example 

of this behavior is a willingness to pay $1 for a one-in-ten million chance of $1 million, but 

prefer a sure $1000 over a one-in-ten million chance of $1 billion. Under a power value function 

for PT, indifference in the former choice implies indifference in the latter for any probability 

weighting function and the peanuts effect does not hold. The problem is more challenging when 

incorporating both risk and time because, since Prelec and Loewenstein (1991), it has not been 

clear how the magnitude effect and the peanuts effect coexist. Yet DPU simultaneously predicts 

both effects. The peanuts effect holds since risk-seeking at small stakes is due to overweighting 

low probabilities (the domain where the peanuts effect is observed) while scaling payoffs up 
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shifts more weight on the System 2 value function (if 𝑢1 is more concave than 𝑢2) which shifts 

preferences toward risk neutrality (if 𝑢2(𝑥) = 𝑥) or risk aversion (if 𝑢2 is concave).  

Definition 3 (Peanuts Effect): We say the peanuts effect holds if for 𝑦 ∈ (0, 𝑐), 𝑝 > 𝑞, and 𝑟 >

1, (𝑐, 𝑞, 𝑡) ~ (𝑦, 𝑝, 𝑡) ⟹ (𝑟𝑐, 𝑞, 𝑡) ≺ (𝑟𝑦, 𝑝, 𝑡). 

Proposition 6: Let 𝔼[(𝑦, 𝑝, 𝑡)] > 𝔼[(𝑐, 𝑞, 𝑡)]. Then for any concave power function 𝑢, the 

peanuts effect holds under DPU if and only if 𝜃 ∈ (0,1). 

For both the magnitude and peanuts effects, power utility is sufficient, but not necessary. Also, 

if System 2 is even slightly risk-averse, the peanuts effect holds when 𝔼[(𝑦, 𝑝, 𝑡)] = 𝔼[(𝑐, 𝑞, 𝑡)]. 

In addition to resolving the peanuts and magnitude effects, DPU also explains the finding in 

Fehr-Duda et al. (2010) that probability weighting is stronger for low stakes than for high stakes. 

This observation holds naturally under DPU given the assumption that the System 2 value 

function is closer to risk-neutrality than the System 1 value function. However, this stake-size 

effect violates prospect theory which assumes probability weights and outcomes are independent. 

V. INTERACTIONS BETWEEN RISK AND TIME PREFERENCE 

In this section, we apply DPU to systematic interactions between risk and time preferences 

from Table I, identified in Baucells and Heukamp (2012).   

V.A.   Time Interacts with Risk Preference 

  We return now to the behaviors illustrated in Table I. As displayed in Table I, Baucells and 

Heukamp (2010) found most respondents in their study preferred a guaranteed 9 Euros 

immediately over an 80% chance of 12 Euros immediately, but chose the chance of receiving 12 

Euros immediately when the probabilities of winning were scaled down by a factor of 10. This 

behavior is an instance of the Allais common ratio effect (Allais, 1953). Baucells and Heukamp 

further observed that when the receipt of payment is delayed 3 months, most respondents 

preferred an 80% chance of 12 Euros over a guaranteed 9 Euros. This finding that people are less 

risk-averse toward delayed lotteries was also observed by Abdellaoui et al. (2011).  

       The common ratio effect example from Baucells and Heukamp (2010) holds under DPU if 

the probability weighting function is sub-proportional. Here we confirm that DPU explains the 

finding that ‘time interacts with risk preference’ which holds even if System 1’s utility function 

is linear in probabilities. Let 𝔼[𝑓] denote the (undiscounted) expected value of stochastic 
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consumption plan 𝑓. We consider the case where the riskier lottery has the higher expectation as 

was the case in Baucells and Heukamp (2010). 

       Definition 4: We say time interacts with risk preference if for 𝑦 ∈ (0, 𝑐), 𝛼 ∈ (0,1), and 

𝑠 > 𝑡 , (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝛼𝑝, 𝑡) ⟹ (𝑦, 𝑝, 𝑠) ≺ (𝑐, 𝛼𝑝, 𝑠). 

       Proposition 7: Let 𝔼[(𝑐, 𝛼𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)]. Then under DPU, time interacts with risk 

preference if and only if 𝜃 ∈ (0,1) 

V.B.   Risk Interacts with Time Preference 

   As displayed in Table I, Keren and Roelofsma (1995) found that most respondents in their 

study preferred a guaranteed 100 Dutch guilders immediately over a guaranteed 110 Dutch 

guilders in 4 weeks, but chose the guaranteed 110 when the receipt of both payments was 

delayed an additional 26 weeks. This behavior is an example of present bias. Keren and 

Roelofsma further observed that when the chance of receiving each payment was reduced, most 

respondents preferred a 50% chance of 110 Dutch guilders in 4 weeks over a 50% chance of 100 

now. That is, making both options risky leads to more patient behavior, analogous to the effect of 

adding a constant delay to both options. This finding that people wait longer when the alternative 

is risky was also observed by Luckman et al. (2017).  

    Definition 5: We say risk interacts with time preference if for 𝑦 ∈ (0, 𝑐), 𝑡, ∆> 0, and 𝑞 <

𝑝,  (𝑦, 𝑝, 𝑡) ~ (𝑐, 𝑝, 𝑡 + ∆) ⟹ (𝑦, 𝑞, 𝑡) ≺ (𝑐, 𝑞, 𝑡 + ∆).                                 

    Proposition 8: Under DPU, for any convex weighting function 𝑤, risk interacts with time 

preference if and only if 𝜃 ∈ (0,1).  

In the example by Keren and Roelofsma in Table I, convexity of the weighting function in 

Proposition 8 implies 𝑤(0.5) < 0.5, which implies 𝜋(0.5) < 0.5. This condition is a general 

feature of observed probability weighting functions (Starmer, 2000; Wakker, 2010) and 

represents a form of pessimism. Indeed this condition is implied by the assumption of pessimism 

in the rank-dependent utility framework. This condition holds for all convex probability 

weighting functions as well as for the familiar inverse-S-shaped weighting functions (such as 

those parameterized by Tversky and Kahneman (1992), Wu and Gonzalez (1996), Prelec (1998), 

and Gonzalez and Wu (1999)), Abdellaoui (2000), and Bleichrodt and Pinto (2000)). This 

condition is also a general property resulting from Prelec’s (1998) axiomatic characterization of 

his one-parameter probability weighting function. This condition (𝜋(0.5) < 0.5) will reappear in 

our analysis and is the only substantive property of the weighting function that is necessary for 
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DPU to explain the experimental observations studied here. The more general convexity 

condition is only necessary for the generalization of the behavior observed by Keren and 

Roelofsma to all 𝑞 < 𝑝 as formalized in Definition 5. 

V.C.    Payoffs Interact with Risk and Time Preferences 
 

    Baucells et al. (2009) found that 81% of respondents preferred €100 for sure in one month to 

€100 with 90% probability immediately, but 57% preferred €5, with 90% probability 

immediately over €5 for sure, in one month. Baucells and Heukamp (2012) refer to this behavior 

as subendurance and they define it more generally as follows: 

   Definition 6: Subendurance holds if for 𝑦 ∈ (0, 𝑐), 𝑡, ∆> 0 and 𝜆 ∈ (0,1),          (𝑐, 𝑝, 𝑡 +

∆) ~ (𝑐, 𝜆𝑝, 𝑡) ⟹  (𝑦, 𝑝, 𝑡 + ∆) ≺ (𝑦, 𝜆𝑝, 𝑡). 

   Proposition 9: For any concave utility function 𝑢 such that 𝑢(0) = 0, subendurance holds 

under DPU, if and only if 𝜃 ∈ (0,1).  

   The interaction effects in this section challenge a larger class of time preferences than DEU. 

Indeed, they cannot be explained by any model of discounting in which evaluation of payoffs, 

probabilities, or delays is multiplicatively separable. As Baucells and Heukamp (2012) note, 

when evaluating a stochastic consumption plan (𝑥, 𝑝, 𝑡), “One may be tempted to propose 

𝑉(𝑥, 𝑝, 𝑡) = 𝑤(𝑝)𝑓(𝑡)𝑣(𝑥). Unfortunately, this form is not appropriate because…probability 

and time cannot be separated. One may then propose the more general form 𝑉(𝑥, 𝑝, 𝑡) =

𝑔(𝑝, 𝑡)𝑣(𝑥), but this fails to accommodate subendurance.” Moreover, Ericson and Noor (2015) 

reject the assumption that discounting and utility functions are separable for nearly 70% of their 

participants. Given the necessity of a seemingly complex form for evaluating (𝑥, 𝑝, 𝑡) to explain 

the observations in Table I, the DPU functional form in (5) is surprisingly simple.  

V.D.     Variations in Risk and Time  

Figure I graphs (5) for different values of 𝜃 (within panels) and for different delays (across 

panels), as probabilities increase from 0 to 1. The figure employs Prelec’s (1998) probability 

weighting function and evaluates a stochastic consumption plan paying 𝑥 > 0 with probability 𝑝 

at time 𝑡 and 0 otherwise, under the simplified case where 𝑢1(𝑥) = 𝑢2(𝑥) ≔ 1 and 𝑢1(0) =

𝑢2(0) ≔ 0. This specification may be viewed as a time-dependent probability weighting 

function that becomes flatter as the time horizon increases. In general, DPU does not have a 

separable probability weighting function that is independent of outcomes or time, but we can see 
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how time affects the shape of the weighting function in the special case when 𝑢1(. ) = 𝑢2(. ). 

Figure I suggests people are less sensitive to variations in probability for longer time horizons. 

Also, relative to an event’s probability 𝑝, the function over-weights low probability events 

occurring over short horizons, such as drawings for state lottery tickets (if 𝛿𝑡𝑤(𝑝) > 𝑝), but 

under-weights low probability events over long horizons, such as natural disasters and health 

risks (if 𝛿𝑡𝑤(𝑝) < 𝑝). Epper and Fehr-Duda (2016) also argue that accounting for time delays 

permits the coexistence of overweighting and underweighting tail events.  

 

Figure I: Time Dependent Probability Weighting 

 

For stochastic consumption plan (𝑥, 𝑝, 𝑡) yielding $𝑥 with probability 𝑝 at time 𝑡 and 0 otherwise, Figure I plots (5) 

for different values of 𝜃, different time delays (0 to 10 periods), and different probabilities. The parameters were set 

to 𝛿 = 0.8,  and 𝑤(𝑝) = exp (−(−ln(𝑝))𝛼) (Prelec’s one-parameter probability weighting function), with 𝛼 = 0.5. 

These parameter values are arbitrary and chosen for rough plausibility. 
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    Figure II graphs the DPU function from (5) for different values of 𝜃 (within each panel) and 

for different probabilities (across panels), as the time horizon increases from 0 to 10 periods, 

using the same parametric specification as in Figure I. This specification may be viewed as a 

probability-dependent time discounting function for the special case where 𝑢1(. ) = 𝑢2(. ). In 

Figure II, the function becomes steeper at higher probabilities, suggesting people are less patient 

as the outcome becomes more likely to be received, possibly reflecting anticipation prior to a 

reward.  

 
Figure II. Probability Dependent Time Discounting 

 

 
For a simple stochastic consumption plan (𝑥, 𝑝, 𝑡) yielding outcome $𝑥 with probability 𝑝 at time 𝑡 and 0 otherwise, 

Figure II plots the function in (5) for different values of 𝜃, different time delays (0 to 10 periods), and different 

probabilities for the parameters 𝛿 = 0.8,  and 𝑤(𝑝) = exp (−(−ln(𝑝))𝛼) with 𝛼 = 0.5. 
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VI. OTHER RELATIONSHIPS BETWEEN RISK AND TIME PREFERENCE 

We next consider four other relationships between risk and time: risk preference and 

intertemporal substitution, a preference for diversifying risks across time, aversion to timing risk, 

and correlations between risk preference, time preference, and cognitive type.  

VI.A.   Risk Preference and Intertemporal Substitution 

The discounted expected utility model uses the same utility function in both risky and 

temporal contexts. However, risk preference and inter-temporal substitution are often observed 

to be distinct (e.g., Miao and Zhong, 2015). Consider the simple stochastic consumption plan, 𝑓, 

below, also considered by Miao and Zhong (2015), subject to (1 + 𝑟)𝑐1 + 𝑐2 = 100 and 

(1 + 𝑟)𝑐1
′ + 𝑐2

′ = 100, where 𝑟 ∈ (0,1) is an interest rate. 

Figure III. A Simple Stochastic Consumption Plan 

  𝑡1 𝑡2 

𝑝  𝑐1 𝑐2 

1 − 𝑝  𝑐1
′  𝑐2

′  

 

The present equivalents PE(𝑐1, 𝑐2) and PE′(𝑐1
′ , 𝑐2

′ ) of consumption (𝑐1, 𝑐2) and (𝑐1
′ , 𝑐2

′ ), 

respectively, are determined such that PE/PE′ at 𝑡1 is indifferent under V to receiving (𝑐1, 𝑐2)/

(𝑐1
′ , 𝑐2

′ ) on the time horizon. They are defined as 

𝑃𝐸(𝑐1, 𝑐2): = 𝑉−1( (1 − 𝜃)(𝑢(𝑐1) + 𝛿𝑢(𝑐2)) + 𝜃(𝑐1 + 𝑐2)). 

     𝑃𝐸′(𝑐1
′ , 𝑐2

′ ): = 𝑉−1((1 − 𝜃)(𝑢(𝑐′1) + 𝛿𝑢(𝑐′2)) + 𝜃(𝑐′1 + 𝑐′2)). 

Employing rank-dependent probability weighting to aggregate the certainty equivalent as in the 

Chew-Epstein-Halevy approach (see Miao and Zhong, 2015), the certainty equivalent (CE) 

under DPU can be expressed as 

CE(𝑓) = 𝑉−1 (𝑤(𝑝)𝑉(𝑃𝐸(𝑐1, 𝑐2)) + 𝑤(1 − 𝑝)𝑉(𝑃𝐸(𝑐1
′ , 𝑐2

′ ))) 𝑖𝑓 𝑃𝐸 ≥ 𝑃𝐸′ 

 CE(𝑓) = 𝑉−1 (𝑤(1 − 𝑝)𝑉(𝑃𝐸(𝑐1, 𝑐2)) + 𝑤(𝑝)𝑉(𝑃𝐸(𝑐1
′ , 𝑐2

′ ))) 𝑖𝑓 𝑃𝐸 ≤ 𝑃𝐸′. 

This approach permits a separation between risk attitude (which is partially determined by 𝑤) 

and inter-temporal substitution (which does not depend on 𝑤). 

VI.B.   Preference for Diversification across Time 

Miao and Zhong (2015) provide a variant of the example shown below: 
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     Figure IV. Preference for Diversification across Time (A Preferred to B) 
 

  Option A 𝑡 = 0 𝑡 = 1     Option B 𝑡 = 0 𝑡 = 1 

       𝑝 = 0.5 100 0         𝑝 = 0.5 100 100 

1 − 𝑝 = 0.5 0 100  1 − 𝑝 = 0.5 0 0 

 

We can think of the consumption sequences as being determined by the toss of a fair coin. 

Then Option A pays $100 in period 0 if the coin lands heads, and it pays $100 in period 1 if the 

coin lands tails. In contrast, Option B pays $100 in period 0 and $100 in period 1 if the coin 

lands heads, and it pays $0 in both periods if the coin lands tails. Miao and Zhong (2015) 

propose and find experimental support for the hypothesis that many people prefer Option A in 

which risks are diversified across time over Option B in which they are not. Such behavior has 

also been observed by Andersen et al. (2011) who refer to this preference pattern as ‘correlation 

aversion’ or ‘intertemporal risk aversion.’ 

Correlation aversion is simply explained by DPU. Note that, for Option A, System 1 will rank 

consumption sequence 𝑥 ≔ (100, 𝑡 = 0; 0, 𝑡 = 1) higher than the sequence 𝑦 ≔ (0, 𝑡 =

0; 100, 𝑡 = 1) in order of preference since 𝛿 < 1. Thus, DPU assigns weight 𝜋(0.5) to 𝑥 and 

(1 − 𝜋(0.5)) to 𝑦, with weights assigned analogously for Option B. In most experimental studies 

of rank-dependent probability weighting functions (see references in §5.2), it has been found that 

𝜋(0.5) < 0.5. Under DPU, with 𝑢(0) = 0: 

𝑉(𝑂𝑝𝑡𝑖𝑜𝑛 𝐴) = (1 − 𝜃) ((𝜋(0.5))𝑢(100) + (1 − 𝜋(0.5))𝛿𝑢(100)) + 𝜃(100) 

𝑉(𝑂𝑝𝑡𝑖𝑜𝑛 𝐵) = (1 − 𝜃) ((𝜋(0.5))(𝑢(100) + 𝛿𝑢(100))) + 𝜃(100) 

Since 𝛿 ∈ (0,1), 𝑢(100) > 𝛿𝑢(100).  Hence, A is preferred to B if 𝜋(0.5) < 0.5.     

VI.C.    Aversion to Timing Risk 

Onay et al. (2007) and DeJarnette et al. (2015) experimentally investigate preferences over 

lotteries that pay a fixed prize at an uncertain date. For instance, in choices such as receiving 

$100 in 10 weeks for sure (Option A), or receiving $100 in either 5 or 15 weeks with equal 

probability (Option B), they find that people are generally risk-averse toward timing risk, 

preferring Option A. However, DEU and the standard models of hyperbolic and quasi-hyperbolic 

discounting imply people will be risk-seeking toward timing risk.  
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 Consider a choice between receiving $100 at time 𝑡 (Option A), or $100 at either time 

𝑡 − 𝑟 or time 𝑡 + 𝑟 with equal probability (Option B).  Under DPU, the values are:  

𝑉(𝐴) = (1 − 𝜃)𝛿𝑡𝑢(100) + 𝜃(100).  

𝑉(𝐵) = (1 − 𝜃) (𝛿𝑡−𝑟𝜋(0.5)𝑢(100) + 𝛿𝑡+𝑟(1 − 𝜋(0.5))𝑢(100)) + 𝜃(100). 

For all 𝜃 ∈ [0,1), Option A is preferred to Option B if the following inequality holds: 

(6)        1 > [𝛿−𝑟𝜋(0.5) + 𝛿𝑟(1 − 𝜋(0.5))]. 

The above inequality can hold given 𝜋(0.5) < 0.5, a robust finding, noted in §5.2.  

VI.D.    Risk Preference, Time Preference, and Cognitive Type 

The DPU model also captures observed relationships between risk preference, time 

preference, and cognitive reflection. An agent’s ‘cognitive type’, as parameterized by 𝜃 can be 

interpreted as a measure of reliance on System 2 processing which may be correlated with 

cognitive reflection or cognitive skills. DPU accommodates a continuum of types - any 𝜃 ∈

[0,1]. Note that the DPU specification in (5) predicts the following:  

Proposition 10: For a decision maker with preferences given by (5): 

(i) The decision maker approaches risk-neutrality as 𝜃 increases. 

(ii)  The decision maker becomes more patient as 𝜃 increases. 

(iii) Expected value maximization is negatively correlated with impatience. 

Such correlations between risk neutrality, patience, and cognitive skills have been observed by 

Frederick (2005), Burks et al. (2009), Oechssler et al. (2009), Cokely and Kelley (2009), 

Dohmen et al. (2010), and Benjamin et al. (2013). Burks et al. (2009) report “those individuals 

making choices just shy of risk-neutrality have significantly higher CS [cognitive skills] than 

those making more either risk-averse or more risk-seeking choices” (p. 7747). However, 

Andersson et al. (2016) finds no correlation between risk preferences and cognitive skills.  

    The notion that System 2 is closer to risk-neutrality and is more patient than System 1 is also 

supported by studies which employ other means of manipulating System 1 versus System 2 

processing. Placing people under a high working memory load is one approach to inducing 

greater reliance on System 1. Studies have found that increased cognitive load (Deck and Jahedi, 

2015; Holger et al., 2016) increases deviations from risk-neutrality such as increased small-

stakes risk aversion and produces less patient and more impulsive behavior (Shiv and 

Fedorikhin, 1999). Leigh (1986), Anderhub et al. (2001), and Andersen et al. (2008) also find 
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that risk aversion is positively correlated with impatience. In a large study of response times to 

the common ratio effect choices of Kahneman and Tversky (1979), Rubinstein (2013) observed 

slow responders to be significantly more likely to choose the expected value maximizing 

alternatives in both decisions than fast responders.   

Finally, the notion that the population of agents is comprised largely of RDU types and risk-

neutral expected utility types is supported by Bruhin et al. (2010) who estimate a finite mixture 

model for three data sets and found that subjects could be classified with high probability as 

RDU decision makers or expected value maximizers. Similar heterogeneity was observed by 

Harrison and Rutstrom (2009) who also found the modal expected utility type to be risk-neutral. 

Since (5) reduces to risk-neutrality when 𝜃 = 1, and (5) reduces to RDU when 𝜃 = 0, it can 

capture the observed distribution of risk preferences. Rather than interpreting the mixture model 

as proportions of agents who are either RDU or EU types, DPU offers a unified perspective in 

which agents are a mixture of both RDU and EU types.    

VII. SUMMARY OF RESULTS 

Table II. Sufficient Conditions for DPU to Explain Observed Behaviors* 
 

 

 

Property                                                                                             Parameter Values        
 

 

Present bias (Laibson, 1997) 

 

𝜃 ∈ (0,1), 𝛿1 < 𝛿2     
 

 

Delay reduces risk aversion (Baucells & Heukamp, 2010) 
 

𝜃 ∈ (0,1), 𝛿1 < 𝛿2   
 
 

 

Cognitive type and time preference (Frederick, 2005) 
 
 

 

𝜃 ∈ [0,1],  𝛿1 < 𝛿2   

 

Cognitive type and risk preference (Frederick, 2005) 
 
 

 

𝜃 ∈ [0,1], 𝑢1 more concave than 𝑢2  

 

Subendurance (Baucells & Heukamp, 2012) 
 

𝜃 ∈ (0,1), 𝑢1 more concave than 𝑢2 
 
 

 

Magnitude effect (Loewenstein & Prelec, 1991)   

 

𝜃 ∈ (0,1), 𝑢1(𝑧) = 𝑧𝛼; 𝑢2(𝑧) = 𝑧𝛽 
 

 

Peanuts effect (Loewenstein & Prelec, 1991)   

 

𝜃 ∈ (0,1), 𝑢1(𝑧) = 𝑧𝛼; 𝑢2(𝑧) = 𝑧𝛽 
 
 

 

Risk reduces impatience (Keren & Roelofsma, 1995) 
 

 

𝜃 ∈ (0,1), 𝑤(0.5) < 0.5 
 
 

 

Diversifying risks across time (Miao & Zhong, 2015) 
 

 

𝜃 ∈ [0,1), 𝑤(0.5) < 0.5 
 
 

 

Aversion to timing risk (DeJarnette et al., 2015) 

 

𝜃 ∈ [0,1), 𝑤(0.5) < 0.5 
 
 

 

Separation of risk and time preference (Epstein & Zin, 1989) 
 

𝜃 ∈ [0,1), 𝑤(𝑝) ≠ 𝑝 
 

 
 

*The sufficient conditions for the magnitude effect and the peanuts effect further include 𝛼 < 𝛽 ≤ 1, ensuring 𝑢1 

is more concave than 𝑢2. Proposition 6 (the peanuts effect) also implicitly requires 𝑤(𝑝) > 𝑝 for the domain of 𝑝 in 

which it is observed. This condition holds naturally for small 𝑝 under a standard inverse-S-shape weighting function 

(as in prospect theory or RDU) for System 1. 
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     A summary of behaviors explained by DPU is provided in Table II which also displays 

sufficient conditions5 for (4) to generate the shifts in preference in Propositions 4 – 10. As noted 

in §5.2, the condition 𝑤(0.5) < 0.5 is a standard finding in the literature. Note also that present 

bias, the magnitude effect, the peanuts effect, and the three interaction effects between risk, time, 

and money are only explained if 𝜃 is strictly between 0 and 1. All properties hold while 

preserving transitivity, continuity, and stochastic dominance. 

VIII. RELATED LITERATURE 

Many models for decisions under risk and for decisions over time have been developed in the 

past five decades and it is not feasible to review them all here. Since models developed for only 

decisions under risk or for only decisions over time cannot account for the majority of our 

results, we focus on models which consider both risk and time. The standard discounted expected 

utility model motivated our analysis and it provides a natural benchmark with which to compare 

our predictions. Table II may be viewed as a summary of properties of DPU that are not shared 

by DEU. Prelec and Loewenstein (1991) noted parallels between anomalies for decisions under 

risk and decisions over time, and Loewenstein and Prelec (1992) provided a general model 

which accounts for observed violations of DEU such as hyperbolic discounting and the Allais 

paradox. Rubinstein (1988, 2003) and Leland (1994, 2002) provided models of similarity 

judgments which explain many of the key anomalies for decisions under risk and over time such 

as the Allais paradox and hyperbolic discounting as arising from the same cognitive process. 

However, all of these approaches treat risk and time independently, and thus cannot explain 

interaction effects between risk and time preferences.   

Classic approaches to studying interactions between risk and time preferences can be found 

in Kreps and Porteus (1978), Epstein and Zin (1989), and Chew and Epstein (1990). Kreps and 

Porteus consider preferences for the timing of the resolution of uncertainty, an issue not studied 

here. Epstein and Zin (1989) and Chew and Epstein (1990) provide models which can 

disentangle risk preferences from the degree of intertemporal substitution. Traeger (2013) 

introduces a model of intertemporal risk aversion in which a rational agent does not discount the 

future for reasons of impatience.  

 

5
 For aversion to timing risk, 𝑤(0.5) < 0.5 in Table II is necessary rather than sufficient. In the other cases,  

𝑤(0.5) < 0.5 is sufficient to explain the shifts in preference in the corresponding examples from Table I.  
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Recent models by Halevy (2008), Walther (2010) and Epper and Fehr-Duda (2015) focus on 

implications of rank-dependent utility theory when extended to an intertemporal framework. 

Halevy (2008) and Walther (2010) focus primarily on relationships between hyperbolic 

discounting over time and non-linear probability weighting under risk. Halevy notes that his 

model is also consistent with the experimental evidence of Keren and Roelofsma (1995). The 

observations of Keren and Roelofsma and Baucells and Heukamp (2010) are both explained by 

the probability-time tradeoff model of Baucells and Heukamp (2012). However, this model 

applies only to a restrictive class of prospects offering a single non-zero outcome to be received 

with probability 𝑝 at time 𝑡.  

Aside from extensions of RDU to intertemporal choice, one other major literature stream 

which has grown rapidly in recent years is the class of dual-selves models motivated to explain 

temptation and self-control as well as more general choices under risk and over time. In these 

models, the two families of processes have been characterized as controlled and automatic 

(Benhabib and Bisin, 2005), long-run and short-run (Fudenberg and Levine, 2006; 2011, 2012), 

hot and cold (Bernheim and Rangel, 2005), affective and deliberative (Mukherjee, 2010; 

Loewenstein et al., 2015), and rational and emotional (Bracha and Brown, 2012). In addition, 

Gul and Pesendorfer, (2001; 2004) model agents who have temptation preferences and 

commitment preferences. 

A leading example in the class of dual-selves models is that of Fudenberg and Levine (2006, 

2011, 2012) and Fudenberg et al. (2014) which can explain the Allais paradox as well as the 

interactions between risk and time preferences identified by Keren and Roelofsma and Baucells 

and Heukamp. However, Fudenberg et al. (2014) comment “Unfortunately the model of 

Fudenberg and Levine (2011) is fairly complex, which may obscure some of the key insights and 

make it difficult for others to apply the model.” (p. 56). In addition, a drawback of the model 

from both a normative and a descriptive viewpoint is that it violates transitivity (Fudenberg et al., 

2014), even though transitivity is rarely violated in experiments (Baillon et al., 2014; 

Regenwetter et al., 2011).    

     Aside from the work of Fudenberg and Levine, most dual-selves models in economics are 

restricted to either risk or time. For decisions involving only risk, (5) reduces to a variant of the 

dual system model (DSM) of Mukherjee (2010). The DPU model in (5) modifies the DSM by 
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employing a rank-dependent probability weighting function6 for System 1, and extends the 

model to encompass both risk and time preferences. Rank-dependent weighting for System 1 

eliminates the undesirable property that the DSM violates first order stochastic dominance. 

McClure et al. (2007) and van den Bos and McClure (2013) employ a two-system model of time 

preference with two discount factors but with a single utility function. Their approach can 

explain present bias, but not the magnitude effect or the interaction effects involving risk and 

time. Our results also relate to the finding in the social choice literature that group discount 

functions are present-biased (Jackson and Yariv, 2015). We show a similar phenomenon in a 

dual system model of individual choice. However, it should be clear that DPU does not capture 

all important behaviors for decisions over time. For instance, DPU is additively separable across 

time periods and so does not account for complementarities in consumption across time which is 

a hallmark of the classic model of habit formation (e.g., Constantinides, 1990). 

IX. EXTENSION TO SOCIAL PREFERENCES 

   Recent experimental work has identified systematic interaction effects across the domains of 

risk, time, and social preferences. Yet there is no unifying framework which simultaneously 

operates across all three domains. Jullien (2016) provides a survey of work demonstrating these 

interactions and proposes to ‘see rationality in 3D’. Jullien distinguishes behaviors ‘within’ 

dimensions from behaviors ‘across’ dimensions, and notes: 

“‘Within’ dimensions means that decision problems are of the form, e.g., ‘a consequence 

for sure vs. a bigger consequence with uncertainty’ or ‘a consequence now vs. a bigger 

consequence later’”, whereas decisions across dimensions include choices such as “‘a 

consequence for sure but later versus another consequence now but with uncertainty.’” 

Jullien argues: 

“‘The proposed distinction between challenges within and across dimensions is more than 

conceptual, it also delimits a historical rupture between two periods that are nontrivial 

regarding the debates between behavioral and standard economics. The classical challenges 

posed by Kahneman, Tversky, Thaler and others focused on interactions within dimensions, 

posing problems to standard models. The more recent challenges from interactions across 

dimensions are posing problems to both standard and behavioral economists’ models.’’  

 

6In the DSM of Mukherjee (2010), the affective system weights all outcomes in the support of a lottery equally 

which can produce violations of first order stochastic dominance. 
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Here we show that a natural extension of DPU predicts systematic interaction effects across 

the dimensions of risk, time, and social preferences. Given the preceding comments, we reach a 

surprising conclusion: A simple way to model the observed interaction effects across the three 

decision domains is to combine the standard normative and behavioral models. In particular, we 

propose a parametric dual system model in which System 1 is assumed to have prospect theory 

risk preferences7, and to be delay-averse and inequity-averse, whereas System 2 is assumed to 

have expected utility risk preferences and to be delay-neutral and inequity-neutral8. To the extent 

that issues of fairness are often emotionally charged, it seems plausible that System 1 cares about 

fairness. The social heuristics hypothesis (Rand et al., 2014, Rand, 2016) also provides a basis 

for predicting that intuitive responses are often more cooperative than deliberative responses.  

We can view the model developed here as representing non-separable rational-behavioral 

preferences, since choice alternatives are evaluated by the convex combination of a rational 

(System 2) value function and a behavioral (System 1) value function.  

    Formally, we update our notation as follows: There is a finite set, T, of time periods, a finite 

set ℳ of outcomes with ℳ ⊂ ℝ, a finite set, 𝐼, of individuals, and a finite set X of consumption 

allocations. Consumption allocations are indexed by 𝑗 ∈ {1,2, … , 𝑛}, time periods are indexed by 

𝑡 ∈ {0,1, … , 𝑚} and individuals are indexed by 𝑖 ∈ {1,2, … , 𝑘}. A consumption allocation 

consists of an outcome for each individual 𝑖 ∈ 𝐼 at each time period 𝑡 ∈ T. It can be written: 

𝑥𝑗 ≔ {(𝑥𝑗11, 𝑥𝑗21, … , 𝑥𝑗𝑘1), 1; … ; (𝑥𝑗1𝑚 , 𝑥𝑗2𝑚, … , 𝑥𝑗𝑘𝑚), 𝑚} 

where 𝑥𝑗𝑖𝑡 is the outcome assigned by consumption allocation 𝑥𝑗 to individual 𝑖 in period 𝑡. 

The decision maker is denoted 𝑖 = 1. A stochastic consumption allocation is a lottery over 

consumption allocations. It is a function 𝑝: X → [0,1], with 𝑝𝑗 the probability it assigns to 

consumption allocation 𝑥𝑗. Denote the set of stochastic consumption allocations by ∆(X).  

  Let 𝔼[𝑝] denote the undiscounted expected value of 𝑝 ∈ ∆(X) to the decision maker. We 

consider a simple extension of the DPU specification in (5) given by the parametric form in (6): 

(6)      𝑉(𝑝) = (1 − 𝜃) (∑ ∑ 𝛿𝑡 ∙𝑗𝑡 𝜋(𝑝𝑗𝑡) ∙ 𝑢(𝑥𝑗1𝑡 −
𝛼

𝑘
∑ |𝑥𝑗𝑖𝑡 − 𝑥𝑗1𝑡|)𝑖 ) +  𝜃𝔼[𝑝]. 

Note that (6) imposes a duality between Systems 1 and 2: System 1 preferences are non-linear in 

probabilities and payoffs, delay-averse, and inequity-averse, whereas System 2 preferences are 

 

7
 To avoid proliferation of parameters, we continue to model System 1 risk preferences with rank-dependent utility.  

8
 Our results in Propositions 11 - 16 also hold if System 2 cares about efficiency rather than being purely selfish. 
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risk-neutral, delay-neutral and inequity-neutral (None of these conditions on System 2 is 

necessary for our results; We only require that System 2 is closer to risk-neutrality, more patient, 

and less inequity-averse than System 1).  

In (6), 𝛼 ≥ 0 represents the degree of inequity aversion for System 1. One could instead use 

the two-parameter specification by Fehr and Schmidt (1999) or another model of social 

preferences. One might further simplify (6) by letting 𝑢(𝑥) = 𝑥, such that both systems have 

linear utility for choices involving only the decision maker. If 𝑢(𝑥) = 𝑥, then (6) has three 

domain-specific parameters (one each for the risk, time, and social preferences of System 1), 

plus the parameter 𝜃 representing the agent’s ‘cognitive type’ that operates across domains. 

X. APPLICATION TO VIOLATIONS OF DIMENSIONAL INDEPENDENCE 

We apply (6) to further study interactions between risk, time, and social preferences. One 

might consider six pairwise interactions across these domains: (i) risk affects time preference; 

(ii) time affects risk preference; (iii) risk affects social preferences; (iv) social context affects risk 

preferences; (v) time affects social preferences; (vi) social context affects time preferences. 

Additional interaction effects arise when one also considers changes in payoff magnitude as was 

illustrated with subendurance in Table I. Each of these interaction effects provides a test of the 

same general principle. This principle, called dimensional independence (Keeney & Raiffa, 

1993; Bhatia, 2016) states that two attribute dimensions 𝑥 and 𝑦 are independent if for all 

𝑥, 𝑦, 𝑥′, 𝑦′, an alternative (𝑥, 𝑦) is chosen over (𝑥′, 𝑦) if and only if (𝑥, 𝑦′) is chosen over 

(𝑥′, 𝑦′). This principle reflects the intuition that identical attribute values in a dimension across 

alternatives will cancel in the evaluation process and not affect decisions. This principle is so 

basic that it is a general feature of the leading normative and behavioral decision models.  

Table III reveals seven violations of dimensional independence.  For each example, the table 

makes the common dimension shared within each choice explicit. We have already seen that 

DPU predicts the violations that risk affects time preference, that time effects risk preference, 

and that payoffs interact with risk and time preferences (subendurance), each in the direction 

observed in prior experiments. We now observe that the extended DPU model in (6) predicts 

four additional violations of dimensional independence. The examples in the table are used to 

illustrate the effects predicted by DPU. Similar behaviors have been observed in experiments for 

three of these four cases. The fourth case – that allocations affect time preferences, has to our 

knowledge not yet been empirically tested, but we believe it has an intuitive appeal.  
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Table III. Violations of Dimensional Independence 
 

Behavior 

 

Choice 1                     

 

Choice 2 
 

Time affects Risk Preference 

(Baucells and Heukamp, 2010) 

 

A.  (9,   now, 100%) 

 

 A.   (9,   3 months, 100%) 

B.  (12, now, 80%)  B.   (12, 3 months, 80%) 
 

Risk affects Time Preference 

(Keren and Roelofsma, 1995) 

 

A.  (100,    now,    100%) 

 

 A.   (100,    now,    50%) 

B.  (110, 4 weeks, 100%)  B.   (110, 4 weeks, 50%) 
 

Allocation affects Risk Preference 

(Bolton and Ockenfels, 2010) 

 

A. (9   self, 100%) 

B. (16 self,  50%) 

 

A. (9   self, 16 other, 100%) 

B. (16 self, 16 other, 50%) 
 

Risk affects Social Preferences  

(Krawczyk & Le Lec, 2010)* 

 

A. (5  self, 5 other, 100%) 

B. (10 self, 0 other, 100%) 

 

 A.    (5 self, 5 other,    50%) 

 B.  (10 self, 0 other, 50%) 
 

 
 

Allocation affects Time Preferences* 

 

A. (9   self, now) 

B. (12 self, 3 months) 

 

 A.   (9     self, 12 other,  now) 

 B.   (12 self, 12 other, 3 months)  

 

Time affects Social Preferences 

(Kovarik, 2009)* 

 

A. (5 self,  5 other, now) 

B. (10 self, 0 other, now)  

 

 A.    (5 self, 5 other,    1 year) 

 B.  (10 self, 0 other, 1 year) 

 

Subendurance 

(Baucells et al., 2009) 

 

  A. (100, for sure, 1 month) 

  B. (100, with 90%, now) 

 

 A.  (5, for sure, 1 month) 

 B.  (5, with 90%, now) 
 

 

Modal choice patterns from experiments in bold font; * denotes a prototypical example.  

 

The new violations of dimensional independence predicted by (6) imply that both uncertainty 

and time reduce the propensity for giving in dictator games, and that distributional concerns can 

shift both risk and time preferences. Of the seven systematic violations of dimensional 

independence in Table III, five of them cannot be explained when either 𝜃 = 0 or 𝜃 = 1, 

requiring the interaction between systems within the model presented here.  Surprisingly, we 

observe that the same model explains each of the preference patterns in Table I and makes strong 

directional predictions as it does not predict the reverse preference patterns.  

We note that our modeling approach was merely intended to provide a formal representation of 

decision making that accounts for both System 1 and System 2 processes. We observe that a 

simple and even natural specification of this model has the additional property of providing a 

unified approach to predicting empirical violations of dimensional independence and to 

modeling interactions between risk, time, and social preferences. 

To analyze the examples from Table III that involve distributional concerns more generally, 

we consider choices over stochastic consumption allocations of the form 𝑝 ≔

{(𝑥1, 𝑦1), 𝑡1, 𝑝1; (𝑥2, 𝑦2), 𝑡2, 1 − 𝑝1} when payoffs of another person are also involved (who 



 

34 

 

receives 𝑦1 or 𝑦2). For choices involving only the decision maker, we will use the simpler 

notation (𝑥, 𝑡, 𝑝) for a stochastic consumption allocation yielding 𝑥 to the decision maker in 

period 𝑡 with probability 𝑝. In both cases, individuals receive 0 in all other periods or events. 

X.A.     Allocations Interact with Risk Preferences 

Bolton and Ockenfels (2010) observed a modal preference for 9 Euros with certainty over a 

50% chance of 16 Euros. However, they also observed a modal preference for a 50% chance that 

the decision maker and a passive recipient each receive 16 Euros (and a 50% chance they each 

receive nothing) over the decision maker receiving 9 Euros and the recipient receiving 16 Euros 

with certainty. This preference pattern can hold under (6), due to System 1’s inequity aversion 

even though neither system is risk-seeking toward gains of moderate or high probabilities. 

Similar behavior in which the social context shifts risk preferences toward less inequity has been 

observed by Leder and Betsch (2016). 

Definition 7 (Effect of allocation on risk preference): We say allocation interacts with risk 

preference if for 𝑥 > 𝑦 > 0, (𝑥, 𝑡, 𝑝) ~ (𝑦, 𝑡, 1) ⟹ ((𝑥, 𝑥), 𝑡, 𝑝; (0,0), 𝑡, 𝑝) ≻ ((𝑦, 𝑥), 𝑡, 1) 

Proposition 11 (Effect of allocation on risk preference): Let 𝔼[(𝑥, 𝑡, 𝑝)] > 𝔼[(𝑦, 𝑡, 1). Then 

allocation interacts with risk preference for all 𝜃 ∈ [0,1).  

X.B. Risk Interacts with Social Preferences 

A novel implication of DPU is that risk will interact with social preferences. Under DPU, a 

decision maker indifferent between splitting $10 evenly with a recipient or keeping all $10 will 

prefer a 50-50 chance of allocation ($10, $0) or ($0, $0) over a 50-50 chance of ($5, $5) or ($0, 

$0). That is, introducing risk into a dictator game is predicted to reduce inequity aversion. While 

we have not seen this precise example, ‘probabilistic’ dictator games have been conducted by 

Krawczyk and Le Lec (2010) and Brock et al. (2013). Both studies find that introducing risk into 

a dictator game decreases giving by the dictator. Exley (2016) also found less charitable giving 

under risk. Definition 8 provides a simple formalization of reduced dictator giving under risk.  

Definition 8 (Risk affects social preferences): Risk interacts with social preferences if for      

0 < 𝑦 < 𝑥, ((𝑥, 0), 𝑡, 1) ~ ((𝑥 − 𝑦, 𝑦), 𝑡, 1)  ⟹ ((𝑥, 0), 𝑡, 0.5) ≻ ((𝑥 − 𝑦, 𝑦), 𝑡, 0.5).  

Proposition 12 (Risk affects social preferences): Let 𝑤(0.5) < 0.5. Then risk interacts with 

social preferences if and only if 𝜃 ∈ (0,1).  
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X.C. Allocations Interact with Time Preferences 

The DPU model further predicts that the social context will affect time preference. An 

illustrative example from Table III is that a decision maker indifferent between receiving 100 

guilders today and 110 guilders in 4 weeks is predicted to strictly prefer an allocation in which 

he and another person each receive 110 guilders in 4 weeks over an allocation in which he 

receives 100 guilders today and the other person receives 110 guilders today. That is, changes in 

allocations shift preferences toward consumption sequences with less inequity.   

Definition 9 (Effect of allocation on time preference): We say allocations interact with time 

preference if for > 𝑦 > 0, (𝑥, 𝑡, 𝑝) ~ (𝑦, 0, 𝑝) ⟹ ((𝑥, 𝑥), 𝑡, 𝑝)  ≻ ((𝑦, 𝑥), 0, 𝑝). 

Proposition 13 (Effect of allocation on time preference): Allocations interact with time 

preference for all 𝜃 ∈ [0,1).  

X.D. Time Interacts with Social Preferences 

The DPU model also predicts that time will interact with social preferences. For instance, 

under DPU, a person indifferent between splitting $10 evenly today with a recipient or keeping 

all $10 for himself will strictly prefer to keep all $10 when the money is to be received after one 

year. That is, introducing delays into a dictator game reduces inequity aversion. In an 

experimental study on a ‘temporal’ dictator game, Kovarik et al. (2009) found that longer delays 

decrease giving by the dictator. This finding was also observed by Dreber et al. (2014).  

Definition 10 (Time affects social preferences): Time affects social preferences if for all     

0 < 𝑡 < 𝑟;  0 < 𝑦 < 𝑥, ((𝑥, 0), 𝑡, 𝑝) ~ ((𝑥 − 𝑦, 𝑦), 𝑡, 𝑝)  ⟹ ((𝑥, 0), 𝑟, 𝑝) ≻ ((𝑥 − 𝑦, 𝑦), 𝑟, 𝑝).  

Proposition 14 (Time affects social preferences): Time interacts with social preferences if 

and only if 𝜃 ∈ (0,1). 

Thus, DPU predicts all seven violations of dimensional independence illustrated in Table III. 

Note that in Propositions 4, 5, 6, 7, 8, 9, 12, and 14, it is necessary that 𝜃 ∈ (0,1) for the results 

to hold. Hence, these effects are not explained by rational or behavioral preferences alone.  

XI. COGNITIVE TYPE AND SOCIAL PREFERENCES 

The DPU model also makes novel predictions regarding the social preferences of agents with 

different levels of System 2 processing as parameterized by 𝜃. Consider two agents of type 𝜃1 

and 𝜃2, where 𝜃1 < 𝜃2, with preferences given by (6) and with the same System 1 preferences 

that have 𝛼 > 0. Let ≿𝜃1
 and≿𝜃2

 denote the preferences of these decision makers with analogous 
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notation for strict preference and indifference. Since agents with higher values of 𝜃 are less 

inequity-averse, DPU generates novel predictions for both the dictator game and the ultimatum 

game. In the dictator game, one participant (the dictator) decides how to allocate a fixed amount 

of money between himself and a passive recipient. In the dictator game, DPU predicts that agents 

with high cognitive types (higher 𝜃) give less than agents with lower values of 𝜃. Formally: 

Proposition 15 (Cognitive Type and Giving in the Dictator Game): As the dictator in a 

dictator game, the propensity to give money decreases with 𝜃: For any 0 < 𝑦 < 𝑥, if 

(𝑥, 0) ~𝜃1 (𝑥 − 𝑦, 𝑦) then (𝑥, 0) ≻𝜃2
(𝑥 − 𝑦, 𝑦). 

   Empirical support for Proposition 15 comes from an experimental study by Ponti and 

Rodriguez-Lara (2015) who administered the cognitive reflection test (CRT) due to Frederick 

(2005) to players that also participated in a dictator game. The CRT is a three-item measure 

where each question has an intuitive but incorrect answer, and a correct answer which requires a 

moment of reflection. The test is designed to identify decision makers who rely more on System 

1 versus System 2 processing, with higher scores relying more on reflective thinking (System 2). 

Consistent with Proposition 15, subjects with higher scores on the CRT gave less in the dictator 

game. Ponti and Rodriguz-Lara comment "Impulsive Dictators show a marked inequity aversion 

attitude," and that "Reflective Dictators show lower distributional concerns, except for the 

situations in which the Dictators’ payoff is held constant.” Cueva et al. (2016) and Capraro et al. 

(2017) also found low CRT subjects to be more inequity-averse than high CRT subjects in 

dictator game experiments. Schulz et al. (2014) likewise found that subjects under high cognitive 

load (a means to increase reliance on System 1) also gave more in a dictator game experiment.  

The ultimatum game, a close relative of the dictator game, involves two players who make 

sequential decisions. The first mover decides how much of a fixed sum to offer the other player. 

If the other player accepts, the proposed offer is implemented. If the other player rejects the 

offer, both players receive nothing. DPU makes the following prediction for the ultimatum game: 

Proposition 16: (Cognitive Type and Accepting in the Ultimatum Game): As a responder 

in the ultimatum game, acceptance of unfair offers increases with 𝜃: For any 0 < 𝑦 < 𝑥, if  

(𝑦, 𝑥 − 𝑦) ~𝜃1 (0,0), then (𝑦, 𝑥 − 𝑦) ≻𝜃2
(0,0). 

  That is, DPU predicts people who rely more on System 2 to be more likely to accept unfair 

offers (i.e., offers with a larger amount for the proposer) in the ultimatum game than those who 

rely more on System 1. Empirical support for Proposition 16 comes from experiments by Neys et 



 

37 

 

al. (2011) and Calvillo and Burgeno (2015) who each found that higher scoring participants on 

the cognitive reflection test were more likely to accept unfair ultimatum game offers.  

The extended DPU model in (6) is not a complete model of social preferences since it does not 

account for procedural fairness or preferences for efficiency9. Still, it offers novel predictions of 

how distributional preferences relate to risk and time preferences, and to the decision maker’s 

thinking style.  

XII. CONCLUSION  

Economic models of choice are great simplifications of the complexity of actual decisions, 

compressing all information about risk and time preferences into a utility function and a discount 

factor. In the present paper, an additional parameter is given to the decision maker: Everything 

that affects a person's thinking style (whether the agent relies more on feeling and intuition or 

logic and calculation) is summarized by the parameter 𝜃 representing one’s ‘cognitive type’, 

which is derived from our assumptions in Propositions 1 and 2. We saw that any 𝜃 ∈ (0,1) 

explains present bias, the magnitude effect, and the peanuts effect, as well as the observed 

interaction effects between risk and time preferences (risk reduces impatience, delay reduces risk 

aversion, and payoffs interact with risk and time preferences). Moreover, none of these effects is 

explained under DPU when either 𝜃 = 0 or 𝜃 = 1, motivating the need for a dual process model 

that involves both systems. We demonstrated that DPU also predicts a preference for 

diversification across time, aversion to timing risk, a separation between risk preference and 

intertemporal substitution and observed correlations between risk preferences, time preferences, 

and cognitive types. In addition, DPU makes strong predictions as it rules out the opposite 

preference patterns. Moreover, these observations hold while preserving transitivity, continuity, 

and stochastic dominance. As DPU is linear in 𝜃, the model may be analytically convenient, for 

instance, when allowing for heterogeneity in cognitive types. We provide a simple illustration of 

such an analysis in Appendix A.  

The DPU model was developed for the purpose of formalizing behaviors based on System 1 

and System 2 processes which are often discussed qualitatively. We have shown that one natural 

approach to constructing such a model (in which System 1 has behavioral preferences and 

 

9 For promising approaches to integrating procedural and distributional preferences, see for example Saito (2013).  
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System 2 has rational preferences) also predicts empirical violations of the dimensional 

independence axiom, as well as systematic interaction effects between risk, time, and social 

preferences and observed correlations between cognitive types and social preferences. Moreover, 

in Propositions 4, 5, 6, 7, 8, 9, 12, and 14, it is necessary to have the interaction between systems 

(𝜃 ∈ (0,1)) for the results to hold. Hence, these effects are not explained by rational or 

behavioral preferences alone. In addition to providing a unified approach to risk and time (and 

social) preferences, DPU provides a unification of models based on the rational economic agent, 

models based on prospect theory or rank-dependent utility and dual system or dual selves models 

of behavior.     

Three prominent types of tradeoffs in decision making are between risk and expected return, 

between immediate and delayed rewards, and between other-regarding and selfish behavior. 

Traditionally, these three tradeoffs have been studied separately with studies investigating risk 

preferences, or time preferences, or social preferences. The approach proposed here provides a 

unifying framework that accounts for these specific tradeoffs as well as how they interact. As the 

volume of research in these areas is fast expanding and it may be too early to identify ‘canonical’ 

effects, we view DPU as more of a theoretical framework for generating novel predictions and 

guiding new experiments than as a definitive theory. Theoretical approaches to integrating risk, 

time, and social preferences must start somewhere, and DPU provides a simple unifying 

approach to portray rationality in three dimensions.   

    Economic Science Institute, Chapman University 
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APPENDIX A: APPLICATION TO CONSUMER BEHAVIOR 

We provide a simple application of DPU from (5) which exploits the fact that DPU is linear in 

𝜃. We consider a setting studied in Baucells et al. (2016), in which consumers strategically 

determine their decision to buy a product today, or wait for a sale with the possibility that the 

product will be sold out. Baucells et al. formulate the problem as a Stackelberg-Nash game with 

a continuum of consumers in which a retailer, anticipating the best responses of consumers is the 

‘leader’, setting its equilibrium discount percentage, and the consumers, taking into account the 

actions of the other consumers and the resulting product availability risk are the ‘followers.’  

As in Baucells et al. (2016), we consider a game with one retail seller and a continuum of 

consumers with total mass 𝜆 > 0. Consumers have identical DPU parameters given by (4) except 

for 𝜃 which is private information and is drawn independently from a distribution with cdf 𝐹(𝜃) 

that is continuous with support [0,1]. That is, we allow for heterogeneity in cognitive types. Both 

𝜆 and 𝐹 are common knowledge. The retailer has an initial inventory 𝑄 of a homogeneous, 

perishable, and infinitely divisible product that cannot be replenished and must be depleted over 

two periods, where time 0 is the ‘retail price period’ (Period 1) and some 𝑡 > 0 is the ‘sale 

period’ (Period 2) in which all products unsold at the tag price, 𝑝 ∈ [0,1] before Period 2 are 

marked down by the retailer according to a discount percentage 𝑑 ∈ [0,1]. The quality10 of the 

product is 𝑥 ∈ [0,1] and the probability the product will be available11 in Period 2 is 𝑞 ∈ [0.5,1]. 

Let 𝜆1 and 𝜆2 denote the mass of consumers who prefer to buy in Period 1 or in Period 2, 

respectively. We consider the case where 𝜆1 < 𝑄 < 𝜆1 + 𝜆2 (there is enough inventory to meet 

the demand of all consumers who prefer to buy now, but not enough to additionally satisfy the 

demand of all consumers who prefer to wait). We also let 𝑥 > 𝑝 so that both buy now and wait 

are profitable strategies for consumers. If 𝜆1, 𝜆2 > 0, then the probability of obtaining the item in 

Period 2 is 𝑞 = min (𝑄 − 𝜆1)/𝜆2, 1). Under DPU, the values of ‘buy now’ and ‘wait’ are: 

𝑉(𝑏𝑢𝑦 𝑛𝑜𝑤) = (1 − 𝜃)𝑢1(𝑥 − 𝑝) + 𝜃𝑢2(𝑥 − 𝑝) 

𝑉(𝑤𝑎𝑖𝑡) = (1 − 𝜃)𝑢1(𝑥 − 𝑝(1 − 𝑑))𝑤(𝑞)𝛿1
𝑡 + 𝜃𝑢2(𝑥 − 𝑝(1 − 𝑑))𝑞𝛿2

𝑡                 

where 𝑤(𝑞) < 𝑞 for all 𝑞 ∈ [0.5,1].   

 

10
 As in Bordalo et al. (2013), we let quality and price be measured in the same units (e.g., money), but in our 

analysis, they are normalized to a 0-1 scale. We also let 𝑢1 and 𝑢2 each be normalized to a 0-1 scale. 
11 Setting 𝑞 ≥ 0.5 enables System 1 to be more risk-averse and more delay-averse than System 2 while being 

consistent with typical estimates of prospect theory weighting functions (𝑤(𝑞) < 𝑞 for all 𝑞 ≥ 0.5).   
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Excluding indifferences, there are four cases to consider: (i) Both systems prefer to buy now; 

(ii) Both systems prefer to wait; (iii) System 1 prefers to buy now and System 2 prefers to wait; 

(iv) System 1 prefers to wait and System 2 prefers to buy now. For all 𝑞 ≥ 0.5, case (iv) never 

arises given the correlations between risk and time preferences and cognitive type, since System 

2 is more patient and less risk-averse than System 1. In this case, for any level of delay and 

product availability risk such that System 1 prefers to wait, System 2 also prefers to wait. We 

will focus on case (iii) as it involves an interesting conflict between System 1 and System 2.  

In case (iii), 𝑉(𝑏𝑢𝑦 𝑛𝑜𝑤) and 𝑉(𝑤𝑎𝑖𝑡) are linear functions of 𝜃 with 𝑉(𝑏𝑢𝑦 𝑛𝑜𝑤) having 

smaller slope and higher intercept. This implies that there is a unique threshold 𝑟 ∈ [0,1] such 

that consumers will wait if 𝑟 ≤ 𝜃 ≤ 1, and buy now if 0 ≤ 𝜃 < 𝑟. 

Suppose there exists a symmetric equilibrium in pure strategies, in which all consumers use the 

same threshold, 𝑟 ∈ [0,1]. To identify this equilibrium we assume all consumers use this 

threshold, determine each consumer’s best response according to a threshold 𝑏(𝑟) ∈ [0,1], and 

employ the equilibrium condition 𝑏(𝑟) = 𝑟. Denote any solution by 𝑟∗. 

    Proposition 17 (Nash equilibrium strategy for consumers):  Let System 1 prefer to buy 

now and System 2 prefer to wait and assume all consumers use threshold 𝑟. Then, 𝜆1 = 𝜆𝐹(𝑟),  

and 𝜆2 = 𝜆(1 − 𝐹(𝑟)). The best response of each consumer is to wait if 𝑏(𝑟) ≤ 𝜃 ≤ 1 and buy 

now if  0 ≤ 𝜃 < 𝑏(𝑟), where 𝑏(𝑟) = 𝛾1/(𝛾1 + 𝛾2), and 

 𝛾1 = 𝑢1(𝑥 − 𝑝) − 𝑢1(𝑥 − 𝑝(1 − 𝑑))𝑤(𝑞)𝛿1
𝑡,  𝛾2 = 𝑢2(𝑥 − 𝑝(1 − 𝑑))𝑞𝛿2

𝑡 − 𝑢2(𝑥 − 𝑝). 

In Proposition 17, 𝑞 = min (𝑄 − 𝜆1)/𝜆2, 1), 𝛾1 is the net surplus to System 1 from buying 

now, 𝛾2 is the net surplus to System 2 from waiting, and 𝛾1, 𝛾2 > 0 since we are analyzing case 

(iii). A symmetric equilibrium in pure strategies exists since 𝑏(𝑟): [0,1] → [0,1] is a continuous 

mapping from a closed and convex set into itself and therefore admits at least one fixed point, 

𝑏(𝑟∗) = 𝑟∗. The equilibrium is not unique, but 𝑟∗ values can be Pareto-ranked since a higher 𝑞 

benefits consumers who wait, without affecting those who buy now. Thus, the equilibrium with 

the highest 𝑞 is Pareto dominant.  

As the Stackelberg leader, the retailer chooses the discount percentage, 𝑑, that maximizes 

expected revenue in equilibrium. The retailer’s objective function is given by: 

max
𝑑

𝑅(𝑑) = max
𝑑

{𝑝𝜆𝐹(𝜃∗) + 𝑝(1 − 𝑑)𝛽𝑡min {(𝜆(1 − 𝐹(𝜃∗)), 𝑄 − 𝜆𝐹(𝜃∗)}}.   

where the discount factor 𝛽 reflects the retailer’s time value of money.  
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Given the consumer equilibrium strategies and the retailer’s objective function in the 

Stackelberg-Nash game, for a fixed mass of consumers, 𝜆 > 0, we briefly consider two cases: 

(i) The case where the retailer attracts more ‘System 1’ consumers than ‘System 2’ 

consumers for the product (a larger mass of consumers have lower values of 𝜃).  

(ii) The case of advertisement framing where a firm decides between using an affectively 

appealing ad or a more cognitively appealing ad for the product.  

System 1 versus System 2 Customers 

Proposition 18: For a given (𝜆, 𝑥, 𝑄, 𝑝, 𝑑), if the distribution of 𝜃 is positively skewed (more 

mass at low 𝜃 values) then in equilibrium, relative to a symmetric distribution: 

(i) At least as many or more customers buy in Period 1. 

(ii) The firm receives weakly higher expected revenue. 

Observation (ii) indicates for a fixed (𝜆, 𝑥, 𝑄, 𝑝, 𝑑), System 1 customers (low 𝜃) are more 

profitable than System 2 customers (high 𝜃). This holds since the firm earns more revenue per 

purchase in Period 1 than in Period 2. 

Advertisement Framing 

A product can be advertised or framed by appealing more to System 1 (affective ads which 

promote positive feelings about the product), or by appealing more to System 2 (cognitively 

appealing ads which provide facts and justifications to promote the product).  

Proposition 19: For a given (𝜆, 𝑥, 𝑄, 𝑝, 𝑑), if the distribution of 𝜃 has greater mass at lower 

values for affective ads relative to cognitively appealing ads, then in equilibrium:  

(i) At least as many or more customers buy the product in Period 1 if the firm employs the 

affectively appealing ad than if it uses the cognitively appealing ad. 

(ii) Affective ads generate weakly higher expected revenue than cognitive ads. 

Implications (i) and (ii) can hold either if there is a framing effect in which affective ads 

reduce 𝜃 (by increasing reliance on feelings) for a given consumer, or if ad framing affects the 

distribution of 𝜃 such that affective ads attract a larger proportion of consumers with low 𝜃 

values and cognitive ads attract a larger proportion with high 𝜃 values. This latter case holds 

even if each consumer has a fixed 𝜃 and is consistent with experimental evidence that messages 

with affective appeals are more persuasive when the message recipient is affectively oriented, 

and that messages with cognitive appeals are more persuasive when the recipient is cognitively 

oriented (Mayer and Tormala, 2010).   
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APPENDIX B: PROOFS OF PROPOSITIONS 

Proof of Proposition 2: The proof follows straightforwardly from extending the argument in 

Keeney and Nau (2011), Theorem 2 (although they work in a context of group decisions under 

uncertainty). We provide a proof following their approach: Assumption 4* implies the decision 

maker is indifferent between any two lotteries over signals that yield, for each system, the same 

marginal distribution of expected payoffs. This means the decision maker’s preferences among 

lotteries over signals satisfy the assumption of mutual independence in the utility sense (Fishburn 

1965). Then Fishburn’s Theorem 2 implies the von Neumann-Morgenstern utility function 𝜇 that 

represents the agent’s preferences has the additive representation 𝜇(𝐹) = 𝜇1(𝐹1) + 𝜇2(𝐹2) for 

functions 𝜇1 and 𝜇2. Applying Assumption 4* again to choices among lotteries over signals 

which vary only the marginal distribution of payoffs to System s, it follows that 𝜇𝑠(𝐹𝑠) is a von 

Neumann-Morgenstern utility function that represents the preferences of System s among 

stochastic consumption plans. This means, up to the addition of an arbitrary constant, 𝜇1 is an 

increasing linear function of (𝝅𝒇 ⋅ 𝒗𝟏) and analogously, 𝜇2 is an increasing linear function of (𝒇 ⋅

𝒗𝟐). We can thus write 𝜇𝑠(𝐹𝑠) = 𝜃𝑠(𝐹𝑠) for some scalar 𝜃𝑠, and without loss of generality, given 

the non-triviality conditions 𝑓 ≻1 𝑔 and 𝑓′ ≻2 𝑔′ for some 𝑓, 𝑔, 𝑓′, 𝑔′ ∈ Ω, we can scale the 𝜃𝑠′𝑠 

so that 𝜃1 + 𝜃2 = 1 where 𝜃𝑠 > 0 for 𝑠 ∈ {1,2}. Next, write 𝜃2 ≡ 𝜃. Then for any 𝐹 that 

corresponds to the choice of some 𝑓 ∈ Ω, we have 𝜇(𝐹) = (1 − 𝜃)𝐹1 + 𝜃𝐹2 = (1 − 𝜃)𝑉1(𝑓) +

𝜃𝑉2(𝑓) = 𝑉(𝑓). ∎   

  Our last step is to prove the uniqueness of 𝜃 in Proposition 2. Write 𝑉(𝑓) from (5) as 𝑉(𝑓, 𝜃). 

Then 𝑓 ~ 𝑔 implies 𝑉(𝑓, 𝜃) = 𝑉(𝑔, 𝜃) = (1 − 𝜃)𝑉1(𝑓) + 𝜃𝑉2(𝑓) = (1 − 𝜃)𝑉1(𝑔) + 𝜃𝑉2(𝑔) 

which implies (1 − 𝜃)[𝑉1(𝑓) − 𝑉1(𝑔)] = 𝜃[𝑉2(𝑔) − 𝑉2(𝑓)]. Given 𝑉1(𝑓) ≠  𝑉1(𝑔), we can 

without loss of generality let 𝑉1(𝑓) > 𝑉1(𝑔). Then 𝑉(𝑓, 𝜃) = 𝑉(𝑔, 𝜃) implies 𝑉2(𝑔) > 𝑉2(𝑓). If 

there is another parameter 𝜃′, such that       𝑉(∙, 𝜃′) represents the same preferences as 𝑉(∙, 𝜃), 

then 𝑉(𝑓, 𝜃′) = 𝑉(𝑔, 𝜃′) implies (1 − 𝜃′)[𝑉1(𝑓) − 𝑉1(𝑔)] = (𝜃′)[𝑉2(𝑔) − 𝑉2(𝑓)]. Indifference 

between 𝑓 and 𝑔 as represented by 𝑉(∙, 𝜃) is broken in the direction of strict preference by 

𝑉(∙, 𝜃′) if 𝜃 ≠ 𝜃′.  Thus 𝑉(∙, 𝜃) and 𝑉(∙, 𝜃′) represent the same preferences only if  𝜃 = 𝜃′. ∎ 

    It is worth pointing out that the aggregation of non-expected utility preferences is possible 

here because the preferences are mapped to points in a square. Hence, it does not matter whether 

the individual value functions are linear in probabilities, provided their numerical values are 

normalized to a 0-1 scale. Consequently, this approach is general. It extends to arbitrary 
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(transitive) preference functionals and to an arbitrary number of agents (or systems), provided 

that the preferences of the 𝑛 group members or systems are mapped to points in the hypercube 

[0,1]𝑛.  

  In the proofs of Propositions 4 – 9, the agent is assumed to have DPU preferences in (5). 

Proposition 4: Present bias holds if and only if 𝜃 ∈ (0,1).   

Proof:  (Sufficiency) We need to show that (7) implies (8): 

(7)  𝑉(𝑦, 𝑝, 0) = (1 − 𝜃)𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = 𝑉(𝑐, 𝑝, ∆) = (1 − 𝜃)𝛿∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐             

(8)                       (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐    

Note that since 𝑐 > 𝑦, equation (8) implies that 𝑤(𝑝)𝑢(𝑦) > 𝛿∆𝑤(𝑝)𝑢(𝑐).     

Also note that (7) can be rewritten as: (1 − 𝜃) (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦) 

In addition, (8) can be rewritten as: (1 − 𝜃)𝛿𝑡 (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) < 𝜃𝑝(𝑐 − 𝑦) 

Thus, (1 − 𝜃)𝛿𝑡 (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)) < (1 − 𝜃) (𝑤(𝑝)𝑢(𝑦) − 𝛿∆𝑤(𝑝)𝑢(𝑐)). 

The above inequality holds since 𝑤(𝑝)𝑢(𝑦) > 𝛿∆𝑤(𝑝)𝑢(𝑐). 

(Necessity) Under DPU, the agent has a constant discount factor if 𝜃 = 0 or 𝜃 = 1. ∎ 

Proposition 5: For a concave power function 𝑢, the magnitude effect holds if and only if 𝜃 ∈

(0,1).  

Proof: (Sufficiency) We need to show that (9) implies (10): 

(9)    𝑉(𝑦, 𝑝, 𝑡) = (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = 𝑉(𝑐, 𝑝, 𝑠) = (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐         

(10)            (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑟𝑦) + 𝜃𝑝𝑟𝑦 < (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑟𝑐) + 𝜃𝑝𝑟𝑐                          

Note that since 𝑐 > 𝑦, equation (9) implies that 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑠𝑤(𝑝)𝑢(𝑐).  

Also note that (9) can be rewritten as 

(11)       (1 − 𝜃)𝑤(𝑝)(𝛿𝑡𝑢(𝑦) − 𝛿𝑠𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦)                  

Inequality (10) can be rewritten as: (1 − 𝜃)𝑤(𝑝)(𝛿𝑡𝑢(𝑟𝑦) − 𝛿𝑠𝑢(𝑟𝑐)) < 𝜃𝑝𝑟(𝑐 − 𝑦) 

For concave power utility, (i.e., 𝑢(𝑧) = 𝑧𝛼 , with  𝑧 > 0, 𝛼 < 1), this inequality  becomes 

(12)      (1 − 𝜃)𝑟𝛼(𝛿𝑡𝑤(𝑝)𝑦𝛼 − 𝛿𝑠𝑤(𝑝)𝑐𝛼) < 𝜃𝑝𝑟(𝑐 − 𝑦).                  

Note that by (11), we have  (1 − 𝜃)(𝛿𝑡𝑤(𝑝)𝑦𝛼 − 𝛿𝑠𝑤(𝑝)𝑐𝛼)/𝜃𝑝(𝑐 − 𝑦) = 1. 

Thus, (12) reduces to 𝑟 > 𝑟𝛼, which is satisfied since 𝑟 > 1 and 𝛼 < 1. 

(Necessity) If 𝜃 = 0 or 𝜃 = 1, the scaling constant factors out. ∎ 
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Proposition 6: Let 𝔼[(𝑦, 𝑝, 𝑡)] > 𝔼[(𝑐, 𝑞, 𝑡)]. Then for any concave power function 𝑢, the 

peanuts effect holds under DPU if and only if 𝜃 ∈ (0,1). 

Proof: (Sufficiency) We need to show that (13) implies (14): 

(13)  𝑉(𝑦, 𝑝, 𝑡) = (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = 𝑉(𝑐, 𝑞, 𝑡) = (1 − 𝜃)𝛿𝑡𝑤(𝑞)𝑢(𝑐) + 𝜃𝑞𝑐         

(14)            (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑟𝑦) + 𝜃𝑝𝑟𝑦 > (1 − 𝜃)𝛿𝑡𝑤(𝑞)𝑢(𝑟𝑐) + 𝜃𝑞𝑟𝑐                          

For 𝔼[(𝑦, 𝑝, 𝑡)] > 𝔼[(𝑐, 𝑞, 𝑡)], equation (13) implies that 𝛿𝑡𝑤(𝑞)𝑢(𝑐) > 𝛿𝑡𝑤(𝑝)𝑢(𝑦).  

Also note that (13) can be rewritten as 

(15)       (1 − 𝜃)𝛿𝑡(𝑤(𝑞)𝑢(𝑐) − 𝑤(𝑝)𝑢(𝑦)) = 𝜃(𝑦𝑝 − 𝑐𝑞)                  

In addition, the inequality in (14) can be rewritten as: 

(16)  (1 − 𝜃)𝛿𝑡(𝑤(𝑞)𝑢(𝑟𝑐) − 𝑤(𝑝)𝑢(𝑟𝑦)) < 𝜃𝑟(𝑦𝑝 − 𝑐𝑞) 

For a concave power utility function over gains, (i.e., 𝑢(𝑧) = 𝑧𝛼 , with 𝑧 > 0, 𝛼 < 1): 

(17)      (1 − 𝜃)𝛿𝑡𝑟𝛼(𝑤(𝑞)𝑐𝛼 − 𝑤(𝑝)𝑦𝛼) < 𝜃𝑟(𝑦𝑝 − 𝑐𝑞).                  

Note that by (15), we have  (1 − 𝜃)𝛿𝑡(𝑤(𝑞)𝑢(𝑐) − 𝑤(𝑝)𝑢(𝑦))/𝜃(𝑦𝑝 − 𝑐𝑞) = 1. 

Thus, (17) reduces to 𝑟 > 𝑟𝛼, which is satisfied since 𝑟 > 1 and 𝛼 < 1. 

(Necessity) If 𝜃 = 0 or 𝜃 = 1, the scaling constant factors out. ∎ 

Proposition 7: Let 𝔼[(𝑐, α𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)]. Then time interacts with risk preference if and 

only if 𝜃 ∈ (0,1). 

Proof:  (Sufficiency) We need to show that (18) implies (19): 

(18)  (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = (1 − 𝜃)𝛿𝑡𝑤(𝛼𝑝)𝑢(𝑐) + 𝜃𝛼𝑝𝑐                

(19)      (1 − 𝜃)𝛿𝑠𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑠𝑤(𝛼𝑝)𝑢(𝑐) + 𝜃𝛼𝑝𝑐.            

Note that since 𝔼[(𝑐, α𝑝, 𝑡)] > 𝔼[(𝑦, 𝑝, 𝑡)], we have 𝛼𝑐𝑝 > 𝑝𝑦, in which case equation (18) 

implies that 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑡𝑤(𝛼𝑝)𝑢(𝑐). Also note that (18) can be rewritten as  

(1 − 𝜃)𝛿𝑡(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) = 𝜃𝑝(𝛼𝑐 − 𝑦) 

In addition, note that the inequality in (19) can be rewritten as: 

(1 − 𝜃)𝛿𝑠(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) < 𝜃𝑝(𝛼𝑐 − 𝑦) 

Thus, (1 − 𝜃)𝛿𝑠(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)) < (1 − 𝜃)𝛿𝑡(𝑤(𝑝)𝑢(𝑦) − 𝑤(𝛼𝑝)𝑢(𝑐)). 

The above inequality holds since 𝑤(𝑝)𝑢(𝑦) > 𝑤(𝛼𝑝)𝑢(𝑐). 

(Necessity) If either 𝜃 = 0 or 𝜃 = 1, the discount factors in (18) and (19) each cancel. ∎ 

Proposition 8: For any convex weighting function 𝑤, risk interacts with time preference if and 

only if 𝜃 ∈ (0,1).   
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Proof:  (Sufficiency) We need to show that (20) implies (21): 

(20)       (1 − 𝜃)𝛿𝑡𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐               

(21)       (1 − 𝜃)𝛿𝑡𝑤(𝑞)𝑢(𝑦) + 𝜃𝑞𝑦 < (1 − 𝜃)𝛿𝑡+∆𝑤(𝑞)𝑢(𝑐) + 𝜃𝑞𝑐                                   

Note that since 𝑐 > 𝑦, equation (20) implies 𝛿𝑡𝑤(𝑝)𝑢(𝑦) > 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐), and therefore 

𝑢(𝑦) > 𝛿∆𝑢(𝑐). Also note that (20) can be rewritten as:  

(1 − 𝜃)𝛿𝑡𝑤(𝑝) (𝑢(𝑦) − 𝛿∆𝑢(𝑐)) = 𝜃𝑝(𝑐 − 𝑦) 

Note that (21) can be rewritten as: (1 − 𝜃)𝛿𝑡𝑤(𝑞) (𝑢(𝑦) − 𝛿∆𝑢(𝑐)) < 𝜃𝑞(𝑐 − 𝑦)  

Then by (20), ((1 − 𝜃)𝛿𝑡 (𝑢(𝑦) − 𝛿∆𝑢(𝑐))) /𝜃(𝑐 − 𝑦) = 𝑝/𝑤(𝑝).  

By (21), ((1 − 𝜃)𝛿𝑡 (𝑢(𝑦) − 𝛿∆𝑢(𝑐))) /𝜃(𝑐 − 𝑦) < 𝑞/𝑤(𝑞). Thus, if 𝑤(𝑞)/𝑤(𝑝) < 𝑞/𝑝 then (20) 

implies (21). Since 𝑞 ∈ (0, 𝑝), we can write 𝑞 = 𝑘𝑝, for 𝑘 ∈ (0,1). For any convex 𝑤 with 

𝑤(0) = 0, we have 𝑤(𝑘𝑝 + (1 − 𝑘)0) < 𝑘𝑤(𝑝) + (1 − 𝑘)𝑤(0), which implies 𝑤(𝑞)/𝑤(𝑝) <

𝑞/𝑝.   

(Necessity) If either 𝜃 = 0 or 𝜃 = 1, the probability weights cancel in (20) and (21).∎  

Proposition 9: For any concave utility function 𝑢, with 𝑢(0) = 0, subendurance holds if and 

only if  𝜃 ∈ (0,1). 

Proof:  (Sufficiency) We need to show that (22) implies (23): 

(22)        (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐) + 𝜃𝑝𝑐 = (1 − 𝜃)𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) + 𝜃𝜆𝑝𝑐                  

(23)        (1 − 𝜃)𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 < (1 − 𝜃)𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) + 𝜃𝜆𝑝𝑦       

Since 𝑝𝑐 > λ𝑝𝑐, equation (22) implies 𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) > 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐). Also note that (22) can 

be rewritten as (24) and (23) can be rewritten as (25): 

(24)        (1 − 𝜃) (𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐)) = 𝜃𝑝𝑐(1 − 𝜆)      

(25)    𝜃𝑝𝑦(1 − 𝜆) < (1 − 𝜃) (𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦)). From (24) and (25): 

 (1 − 𝜃)(𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑐) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑐))𝑦 < (1 − 𝜃)(𝛿𝑡𝑤(𝜆𝑝)𝑢(𝑦) − 𝛿𝑡+∆𝑤(𝑝)𝑢(𝑦))𝑐. 

For all 𝜃 ∈ (0,1), the above inequality reduces to, 𝑢(𝑐)/𝑐 < 𝑢(𝑦)/𝑦. Since 𝑦 ∈ (0, 𝑐), we can 

write 𝑦 = 𝑘𝑐, for 𝑘 ∈ (0,1). For any concave 𝑢 with 𝑢(0) = 0, we have      𝑘𝑢(𝑐) +

(1 − 𝑘)𝑢(0) < 𝑢(𝑘𝑐 + (1 − 𝑘)0) which implies 𝑢(𝑐)/𝑐 < 𝑢(𝑦)/𝑦. 

(Necessity) If 𝜃 = 0 or 𝜃 = 1, the utilities cancel in (22) and (23).  

In the proofs of Propositions 11 – 14, we assume DPU preferences as in (6). 
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Proposition 11: Let 𝔼[(𝑥, 𝑡, 𝑝)] > 𝔼[(𝑦, 𝑡, 1).  Then allocation interacts with risk preferences 

for all 𝜃 ∈ [0,1).  

Proof:  We need to show that (26) implies (27): 

(26)       (1 − 𝜃)𝛿𝑡𝑢(𝑦) + 𝜃𝑦 = (1 − 𝜃)𝑤(𝑝)𝛿𝑡𝑢(𝑥) + 𝜃𝑝𝑥               

(27)       (1 − 𝜃)(𝛿𝑡𝑢(𝑦 − 𝛼(𝑥 − 𝑦)) + 𝜃𝑦 < (1 − 𝜃)𝑤(𝑝)𝛿𝑡𝑢(𝑥) + 𝜃𝑝𝑥.                    

Note that since 𝑝𝑥 > 𝑦, equation (26) implies 𝑢(𝑦) > 𝑤(𝑝)𝑢(𝑥). Given (26), it is clear that (27) 

holds if (1 − 𝜃)(𝛿𝑡𝑢(𝑦 − 𝛼(𝑥 − 𝑦)) + 𝜃𝑦 < (1 − 𝜃)𝛿𝑡𝑢(𝑦) + 𝜃𝑦, which holds given System 1 

is inequity-averse (𝛼 > 0), and the result follows. ∎  

Proposition 12: Let 𝑤(0.5) < 0.5. Then risk interacts with social preferences if and only if      

𝜃 ∈ (0,1).  

Proof:  To prove sufficiency, we need to show that (28) implies (29): 

(28)  (1 − 𝜃)(𝛿𝑡𝑢(𝑥 − 𝛼|𝑥|)) + 𝜃𝑥 = (1 − 𝜃)(𝛿𝑡𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|)) + 𝜃(𝑥 − 𝑦)     

(29)  (1 − 𝜃)𝑤(0.5)(𝛿𝑡𝑢(𝑥 − 𝛼|𝑥|)) + 0.5𝜃𝑥 > (1 − 𝜃)𝑤(0.5)(𝛿𝑡𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) + 0.5𝜃(𝑥 − 𝑦))    

Note that (28) implies 𝛿𝑡𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) > 𝛿𝑡𝑢(𝑥(1 − 𝛼)).  

Note (28) can be written as 𝜃𝑦 = (1 − 𝜃)𝛿𝑡[𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) − 𝑢(𝑥(1 − 𝛼))]. 

Also (29) can be written: 0.5𝜃𝑦 > (1 − 𝜃)𝑤(0.5)𝛿𝑡[𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) − 𝑢(𝑥(1 − 𝛼))]. 

Since 0.5𝛿𝑡[𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) − 𝑢(𝑥(1 − 𝛼))] > 𝑤(0.5)𝛿𝑡[𝑢(𝑥 − 𝑦 − 𝛼|𝑥 − 2𝑦|) − 𝑢(𝑥(1 − 𝛼))], it 

follows that (29) holds and 𝜃 ∈ (0,1) is sufficient to generate the effect. Necessity that 𝜃 ∈ (0,1) 

follows since the probability weights cancel when evaluating the two alternatives in the special 

cases of 𝜃 = 0 and 𝜃 = 1 and risk does not affect social preferences in those cases. ∎  

Proposition 13: Allocation interacts with time preference for all 𝜃 ∈ [0,1).  

Proof:  We need to show that (30) implies (31): 

(30)       (1 − 𝜃)𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦 = (1 − 𝜃)𝑤(𝑝)𝛿𝑡𝑢(𝑥) + 𝜃𝑝𝑥               

(31)       (1 − 𝜃)𝑤(𝑝)𝑢(𝑦 − 𝛼(𝑥 − 𝑦)) + 𝜃𝑝𝑦 < (1 − 𝜃)𝑤(𝑝)𝛿𝑡𝑢(𝑥) + 𝜃𝑝𝑥                 

Since 𝑥 > 𝑦,  (30) implies 𝑢(𝑦) > 𝛿𝑡𝑢(𝑥). Given (30), it is clear that (31) holds if: 

(32)   (1 − 𝜃)𝑤(𝑝)𝑢(𝑦 − 𝛼(𝑥 − 𝑦)) + 𝜃𝑝𝑦 < (1 − 𝜃)𝑤(𝑝)𝑢(𝑦) + 𝜃𝑝𝑦, which holds given 

System 1 is inequity-averse, and the result follows. ∎ 

Proposition 14: Time interacts with social preferences if and only if  𝜃 ∈ (0,1).  

Proof:  To prove sufficiency, we need to show that (33) implies (34): 

(33)    (1 − 𝜃)𝑤(𝑝)(𝛿𝑡𝑢(𝑥 − 𝛼|𝑥|)) + 𝜃𝑝𝑦 = (1 − 𝜃)𝑤(𝑝)(𝛿𝑡𝑢(𝑥 − 𝑦 − 𝛼|(2y − x)|))    

(34)    (1 − 𝜃)𝑤(𝑝)(𝛿𝑟𝑢(𝑥 − 𝛼|𝑥|)) + 𝜃𝑝𝑦 > (1 − 𝜃)𝑤(𝑝)(𝛿𝑟𝑢(𝑥 − 𝑦 − 𝛼|(2y − x)|))     



 

47 

 

Note that since 𝑥 > x − 𝑦, equation (33) implies 𝑢(𝑥 − 𝑦 − 𝛼|2y − 𝑥|) > 𝑢(𝑥(1 − 𝛼)). Note 

that (33) can be rewritten as 𝜃𝑝𝑦 = (1 − 𝜃)𝑤(𝑝)𝛿𝑡[𝑢(𝑥 − 𝑦 − 𝛼|(2y − x)|) − 𝑢(𝑥(1 − 𝛼))]. 

Similarly, (34) can be written: 𝜃𝑝𝑦 > (1 − 𝜃)𝑤(𝑝)𝛿𝑟[𝑢(𝑥 − 𝑦 − 𝛼|(2y − 𝑥)|) − 𝑢(𝑥(1 − 𝛼))]. 

Note that (34) holds since 𝛿𝑟 < 𝛿𝑡 for all 𝛿 ∈ (0,1), and thus 𝜃 ∈ (0,1) is sufficient to generate 

the effect. Necessity that 𝜃 ∈ (0,1) follows since the discount factors of System 1 and System 2 

cancel when evaluating the two alternatives in the special cases of 𝜃 = 0 and 𝜃 = 1. ∎ 
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