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Abstract

This article examines behavior in two-person constant-sum Colonel Blotto games in which each player

maximizes the expected total value of the battlefields won. A lottery contest success function is employed

in each battlefield. Recent experimental research on such games provides only partial support for Nash

equilibrium behavior. We hypothesize that the salience of battlefields affects strategic behavior (the salient

target hypothesis). We present a controlled test of this hypothesis – against Nash predictions – when the

sources of salience come from certain asymmetries in either battlefield values or labels (as in Schelling

(1960)). In both cases, subjects over-allocate the resource to the salient battlefields relative to the Nash

prediction. However, the effect is stronger with salient values. In the absence of salience, we replicate

previous results in the literature supporting the Nash prediction.
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1 Introduction

This article experimentally examines the influence of ”focality” or ”salience”1 on individual behavior in

a class of multi-battle contests known as the Colonel Blotto game with a lottery contest success function.

In this game, two players simultaneously allocate their respective endowments, or ”budgets”, of a one

dimensional resource (such as effort, money, time, or troops) across a set of ”battlefields”. Each player’s

allocation to a given battlefield determines the likelihood that the player wins the battlefield, with the

probability of winning given by the player’s own expenditure divided by the sum of the two players’

expenditures (hence, the term ”lottery”).2

Colonel Blotto games and other closely related multi-battle contests are widely applied in the formal mod-

eling of strategic behavior in the context of military operations, network and infrastructure security, and

anti-terrorism defense.3 In these environments, the salience of specific battlefields or targets often influ-

ences the strategic allocation of resources in the conflict. We call this observation the salient target hypothesis

(STH). For instance, during the US military invasion of Iraq in 2003, the capture of high profile targets such

as Saddam Hussein and the killing of his sons, Uday and Qusay were viewed as having significant sym-

bolic value. Similarly, the killing of Abu Musab al-Zarqawi was viewed as having higher symbolic than

tactical benefit. In the context of terrorism, Nemeth (2010, p.30) argues that the 2000 suicide attack on the

USS Cole in the Yemeni port of Aden involved a well-defended target that had high symbolic value de-

spite the relatively few casualties involved. More well-known attacks on salient targets include the Black

September terrorist attack on the Israeli Olympic team at the 1972 Munich Olympics and the September 11,

2001 al-Qaeda terrorist attacks on the World Trade Center and the Pentagon. In the context of information

network security, young hackers often gain fame by attacking salient targets. In 1999, Jonathan James be-

came notorious for his hack of NASA and The US Department of Defense. In 2000, Michael Calce (a.k.a.

MafiaBoy) became famous for his distributed denial of service attacks on Amazon, CNN, eBay and Yahoo!.

In each of these cases it is clear that the salience of a target by itself induces a higher value to successful

attack than less salient targets. For instance, in the case of military campaigns a high profile victory may

have positive implications for morale at home and induce an enemy population to become discouraged.

High profile terrorist attacks may induce fear in the intended target population, place pressure on the

1The terms focality, salience, prominence are used almost interchangeably in the literature. There is a tendency to refer to focal
points or focality when referring to behavior and salience or prominence when describing an aspect or element of the game that
generates that behavior. In this paper we will conform to this usage.

2Randomization is independent across battlefields and in the event of zero aggregate expenditure to a battlefield, the probability
that each player wins is 1

2
.

3See, for instance, Shubik and Weber (1981), Powell (2007a,b, 2009), Powers and Shen (2009), Kovenock et al. (2010), Chia and
Chuang (2011), Arce et al. (2011), Fuchs and Khargonekar (2012), Nikoofal and Zhuang (2012), Arce et al. (2012), Bachrach et al. (2013),
Gupta et al. (2014a,b), Hausken (2014), Goyal and Vigier (2014). Other applications include the optimal allocation of advertising bud-
gets across markets or marketing budgets across channels (Friedman, 1958), the allocation of political campaign funds across different
primaries or state races (Snyder, 1989; Laslier, 2002; Klumpp and Polborn, 2006; Kovenock and Roberson, 2009a), redistributive politics
(Myerson, 1993; Lizzeri and Persico, 2001; Roberson, 2008; Kovenock and Roberson, 2008, 2009b; Crutzen and Sahuguet, 2009), and
the allocation R&D budgets across several potential classes of innovations or projects(Clark and Konrad, 2008). See Kovenock and
Roberson (2012b) for a review.
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target governments, and aid in both fundraising and recruiting among potential supporters. Despite this

perceived positive association between the salience of a target and higher value, it is not clear whether the

levels of resources allocated to attack such targets are optimal given the induced value of the target, or

whether the salience of the target itself has an influence independent of its induced value. In fact, it appears

very difficult to even address this question with case studies or other data from the field, since real-world

combatants actual target values are unobservable. The purpose of this article is to investigate the salient

target hypothesis by carrying out a laboratory experiment that separates out the positive effects of target

value and salience in the determination of resource allocation in multi-battle contests. To our knowledge,

this article is the first to examine the joint role that value and salience play in influencing strategic behavior

in such games.

The theoretical origin of the Colonel Blotto game traces back to Borel (1921), who anticipated its future

application, particularly to military strategy.4 McDonald and Tukey (1949) refer to the use of Colonel Blotto

games in military research at Princeton during World War II and a substantial amount of work on the game

was undertaken in the late 40s and 50s in the context of military operations research (Gross and Wagner,

1950; Gross, 1950; Blackett, 1953, 1954, 1958). Since that time, work on the problem has been sporadic

(including Bellman, 1969; Shubik and Weber, 1981), until very recently, when a resurgence of interest has

taken place.5

In addition to this extensive theoretical literature, there is a young and rapidly growing experimental lit-

erature on Blotto games. Several existing contributions employ an auction contest success function to de-

termine the winner of each battlefield. Some of these reward subjects based on the total number or value

of battlefields won (Avrahami and Kareev, 2009; Arad and Rubinstein, 2012; Cinar et al., 2012; Chowdhury

et al., 2013). Others reward subjects who win either a majority of the battlefields or more than half of the

total value of battlefields (Arad, 2012; Montero et al., 2016; Mago and Sheremeta, 2012). Experimental ev-

idence on multi-battle contests employing a lottery CSF is still limited. Chowdhury et al. (2013) examine

Colonel Blotto games with a lottery CSF in which subjects are rewarded based on the number of battle-

fields won. Irfanoglu et al. (2013) carry out an analysis of the case where the reward is based on attaining

a majority of the battlefields. Duffy and Matros (2013) examine Colonel Blotto games with values that are

heterogeneous across battlefields but symmetric across players and treat both a reward structure linear in

the value of battlefields won and one that rewards winning a critical value of more than half of the total

value of the battlefields.6

4The original problem posed by Borel was not solved until Borel and Ville (1938).
5See, for instance, Robson (2005), Roberson (2006), Clark and Konrad (2007), Kvasov (2007), Powell (2007a,b), Hart (2008), Roberson

(2008), Golman and Page (2009), Adamo and Matros (2009), Kovenock et al. (2010), Kovenock and Roberson (2011), Hortala-Vallve and
Llorente-Saguer (2012), Kovenock and Roberson (2012a), Roberson and Kvasov (2012), Rinott et al. (2012), Thomas (2012), Weinstein
(2012), Rietzke and Roberson (2013), Hernández and Zanette (2013), Washburn (2013), Osorio (2013), McBride and Hewitt (2013), Sela
and Erez (2013), Dziubiński (2013), Barelli et al. (2014), Gupta et al. (2014a,b), Goyal and Vigier (2014), Hart (2015), Schwartz et al.
(2014), Macdonell and Mastronardi (2015), and Kovenock and Roberson (2015).

6Kovenock et al. (2010) also examine, under both the auction and lottery CSFs, the case in which players have asymmetric objec-
tives; one player has a best-shot objective and the other a weakest-link objective.

3



In this article we examine two-person, four-battlefield, constant-sum Colonel Blotto games in which each

player earns the sum of the values of the battlefields that he wins, budgets are use-it-or-lose-it, and a lottery

contest success function (Tullock, 1980) is employed in each battlefield. In this class of games, the unique

Nash equilibrium is for the allocation to each battlefield to be proportional to the value of the battlefield

and for the sum of the allocations to exactly exhaust the player’s budget (Friedman, 1958). The recent

experimental research on such games provides substantial support for Nash equilibrium behavior in games

with values that are symmetric across both players and battlefields. Chowdhury et al. (2013) find support

for the equilibrium prediction that each player should divide his budget equally across battlefields.7 Duffy

and Matros (2013) claim qualitative but not quantitative support for the Nash equilibrium prediction in

games in which battlefield values are symmetric across players, but not across battlefields. In light of

this previous work, we believe that support for the equilibrium prediction in these studies, to the extent

that it exists, arises from the absence of asymmetries in the battlefields that yields focal behavior. In line

with the salient target hypothesis, deviations from the Nash prediction may arise in the presence of certain

asymmetries in the primitives or visual representation of the game, such as battlefield values or labels.

We test this hypothesis by employing an experimental design in which subjects are randomly matched and

face such asymmetries in each of these features, while keeping the other features symmetric. In the case

of an asymmetric label, a single battlefield is colored differently from the others (black instead of white).

In the case of an asymmetric value, one battlefield has a higher value than the others. We single out one

battlefield (target) from the others to address a concern that arises in the econometric analysis of the game:

because of the constraint that the sum of battlefield allocations must equal the subjects budget, a negative

correlation of bids is induced across battlefields. In our experimental setting, all of the information about

bidding behavior in the Blotto game collapses into statements about the bidding behavior in the target

battlefield. This avoids the improper assumption of independence of allocations across battlefields.

In the completely symmetric case, we find strong support for Nash behavior. However, consistent with

the salient target hypothesis, subjects deviate from Nash behavior in the presence of asymmetries in labels

and battlefield values. With asymmetries, subjects over-allocate relative to the Nash equilibrium prediction

in the saliently labeled and high value battlefields. Moreover, as might be expected given its payoff irrel-

evance, asymmetry in labels has a weaker effect than in values. With asymmetric values, the high value

battlefield receives a significantly higher allocation than in the unique Nash equilibrium, even though the

Nash allocation for that battlefield is already substantially higher than the allocation to the other battle-

fields. Finally, we explore the robustness of our results supporting the salient target hypothesis along two

dimensions. The first dimension deals with a lower asymmetric value and its implication that, under the

salient target hypothesis, we should find – and actually find – a lower allocation than in the Nash equi-

7Aberrations from the normative recommendations are explained by behavioural anomalies. A subset of these may disappear with
a more controlled design (e.g., order effects due to the graphical representation of the battlefields) while others represent a minor
but intrinsic tendency (e.g., natural inclination to choose round numbers). Our experimental design provides a tighter test removing
successfully the first subset of anomalies and controlling for the second.
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librium prediction. In the second dimension, we replicate the main treatments but include an asymmetry

in budgets. High and low budget subjects follow the same pattern of allocations as subject pairs with

symmetric budgets. Allocations are consistent with Nash equilibrium in the case of symmetric battlefields

but not with asymmetric battlefields; and the deviation from equilibrium is more pronounced in the case

of asymmetric values. Thus, the major results in the main treatments appear robust to an asymmetry in

budgets.

Our results also provide further evidence of the power of salience outside of the restricted domain of co-

ordination games. Schelling (1960) explains successful coordination in games with multiple equilibria by

conjecturing that players beliefs go through a process of ”mutual accommodation” anchored by the focality

of some equilibria (e.g., Grand Central Station seems a natural place to meet in New York). This mutual

accommodation is partially supported by experimental evidence (see Mehta et al., 1994; Bardsley et al.,

2010; Crawford et al., 2008; Dugar and Shahriar, 2012; Isoni et al., 2013). Schelling (1960, p.84) claims that

a lack of common interest should prevent such mutual accommodation in games of pure conflict. But the

empirical question of whether salience actually has an impact in pure conflict games has received limited

attention, and exclusively in the context of simple hide-and-seek games (Rubinstein and Tversky, 1993; Ru-

binstein et al., 1996; Rubinstein, 1999; Hargreaves Heap et al., 2014). Unfortunately, the evidence from this

game may not adequately address the empirical question, as there is some controversy about the ability of

subjects to follow equilibrium recommendations in such games even when there is no salience (Palacios-

Huerta and Volij, 2008; Levitt et al., 2010; Wooders, 2010). The evidence in Colonel Blotto games appears

to support equilibrium behavior in games without salience, providing a solid baseline for analysis. Minor

deviations from this baseline have previously been rationalized in terms of salience. For instance, salience

has been invoked to explain a preponderance of allocations to battlefields that are multiples of ten (Arad

and Rubinstein, 2012) and a higher allocation to far left-hand battlefields (Chowdhury et al., 2013). We per-

form a controlled examination of salience as an explanation for deviations from Nash behavior in Colonel

Blotto games and, as in the literature on coordination games and hide-and-seek games, we control ex-ante

for different aspects of salience (see footnote 7). This article does so with respect to labels and values, under

both symmetric and asymmetric budgets.

The rest of the paper is organized as follows. Section 2 presents the basic model examined and the un-

derlying theoretical predictions. Section 3 describes the experimental design and concrete hypotheses; and

section 4 presents the results. Section 5 discusses implications for the examination of multi-battle contests

and concludes.
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2 Basic model and theoretical predictions

The Colonel Blotto game is a two-player constant-sum game. Two players, A and B, simultaneously al-

locate their corresponding budget XA and XB of a continuous (sunk) resource across the n independent

battlefields, such that the allocation to each battlefield is non-negative. Any part of the budget not allo-

cated is lost, so we will assume that each player i’s pure strategy space is the set of non-negative n-tuples

xi = (xi1, xi2, . . . , xin) satisfying
∑n

j=1 xij = Xi. For the purposes of our experiment we set n = 4 and as-

sume that each battlefield j has a symmetric value across players vj that may differ across battlefields (see

Figure 1).8 Each player’s objective is to maximize the sum of the values of battlefields won. The winner in

Figure 1: Colonel Blotto game

each battlefield j is determined by a lottery contest success function (Tullock, 1980) and, in the event that

both players i = A,B allocate xij = 0 to a battlefield, a random draw determines the winner:

pij(xij , x−ij) =


xij

(xij+x−ij) if xij + x−ij 6= 0

1
2 if xij = x−ij = 0

The solution to this problem can be found in a result due to Friedman (1958).

8We chose n = 4 because it is the smallest number of battlefields that allows us to define the salience of a single battlefield with
respect to its larger complement within the set of battlefields and at the same time assures that there is one non-salient battlefield that
is interior whenever the salient battlefield is interior in the horizontal positioning of battlefields illustrated in Figure 1. (The former
requirement rules out n = 2 and the latter rules out n = 3.) Both Arad and Rubinstein (2012) and Chowdhury et al. (2013) raise the
possibility that allocations may be influenced by the horizontal positioning of battlefields.
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Theorem. The pair of n-tuples x∗
A and x∗

B is a Nash equilibrium of the Colonel Blotto game with a linear count objec-

tive, battlefield valuations {vj}nj=1 symmetric across players, budget-constrained use-it-or-lose-it costs with budget

constraints XA and XB , and a lottery CSF in each battlefield, if ∀j x∗
Aj = XA

vj∑n
k=1 vk

and x∗
Bj = XB

vj∑n
k=1 vk

.

The equilibrium expected payoff of player i is Xi

XA+XB

∑n
j=1 vj .

For the purposes of this study, two special cases of this theorem are especially relevant. In the case where

battlefields are symmetric in value, so that vj = v for every j, the optimal allocation across the four battle-

fields is to set xij = Xi
v
4v = Xi

4 . That is, the optimal allocation requires that each player spread his budget

equally across the battlefields. In the case where all battlefields have identical values except battlefield j,

the optimal allocation of player i to battlefields j and m 6= j are xij = Xi
vj
V and xim = Xi

vm
V , where

V =
∑4

k=1 vk. If the value of battlefield j is higher, xij

xim
=

vj
vm

> 1, so that battlefield j receives a propor-

tionally higher allocation than the common allocation to the other battlefields. Alternatively, if the value of

battlefield j is lower, battlefield j receives a proportionally lower allocation than the common allocation to

the other battlefields.

2.1 Robustness of predictions to out-of-equilibrium behavior

It is also of interest in the examination of our experimental data to understand the optimal allocation of

player i, xi = (xi1, . . . , xin), in the event that player −i chooses, or is expected to choose, an allocation,

x−i = (x−i1, . . . , x−in), that is not an equilibrium allocation. Friedman (1958, p.703) demonstrates that, for

each feasible vector of allocations of player −i, x−i � 0, player i’s best response to x−i is to set for each

battlefield j = 1, . . . , n.

xij = rij(x−i) ≡
(x−ijvj)

1
2∑n

k=1(x−ikvk)
1
2

[Xi + X−i]− x−ij (1)

Note that player i’s best response has the property that the best response in battlefield j to the n-tuple

x−i depends on the allocations of player −i to battlefields other than battlefield j. This arises because the

opportunity cost of a unit allocated by player i to battlefield j depends upon −i’s allocations to the other

battlefields.

In understanding out of equilibrium behavior in this game, one special case of the rival player −i’s alloca-

tion that is of specific interest for illustrative purposes is that in which the allocation of −i to battlefield j,

x−ij , varies, holding the other (n − 1) battlefield allocations equal to 1
n−1 of the remaining budget. In this

case, for a given x−ij and x−ik =
X−i−x−ij

(n−1) for all k 6= j, equation (1) above may be written as

xij = r̃ij(x−ij) ≡
(x−ijvj)

1
2

(x−ijvj)
1
2 + (n− 1)[vk(

X−i−x−ij

n−1 )]
1
2

[Xi + X−i]− x−ij (2)

This formulation of the best response of player i in battlefield j, obtained by equating player −i’s allo-

cations to all battlefields k 6= j, yields xij as a function of x−ij and the parameters of the game XA,XB ,

7



and (v1, . . . , vn). We refer to the function r̃ij(x−ij) as i’s conditional best response to x−ij in battlefield

j. Two combinations of parameters are relevant for our main experimental design. Both involve n = 4

and XA = XB = 200. The first combination, that of symmetric valuations, has vk = 15 for every k. The

other combination, that of asymmetric valuations, sets the value of the salient battlefield vj = 16.5 and the

remaining battlefields vk = 14.5, k 6= j.

Figures 2a and 2b below indicate these two conditional best response functions for the symmetric case and

asymmetric case with a single high value battlefield.9 For both configurations of valuations, r̃ij(x−ij) is

initially increasing in x−ij (holding −i’s allocations to the remaining battlefields equal) up to the equilib-

rium levels of x−ij and xij for the corresponding parameters. In the symmetric case, this is x−ij = xij = 50

and, in the asymmetric case, this is x−ij = xij = 55. After these values of x−ij , player i’s conditional best

response to x−ij decreases slowly in both configurations until x−ij reaches approximately 118.1 (at which

the optimal response r̃ij(x−ij) is approximately 45.675) in the symmetric case and 116 (at which the opti-

mal response r̃ij(x−ij) is approximately 51.947) in the asymmetric case. For larger values of x−ij , r̃ij(x−ij)

increases in x−ij , approaching 200 as x−ij approaches the complete budget X−i = 200. For values of x−ij

close to 200, player −i is placing so little on the other battlefields k 6= j that player i is able to win those

battlefields with near certainty with a very small allocation. Consequently, his optimal response is to place

almost all of his budget in battlefield j.

(a) Symmetric case (b) Asymmetric case

Figure 2: Best response functions

An important implication of this analysis of out-of-equilibrium behavior is that the optimal allocation of

player i to battlefield j depends on the complete vector of battlefield allocations of the rival player, x−i.

However, if as x−ij changes player −i maintains identical allocations across all battlefields other than bat-

tlefield j (so that −i’s total expenditure equals X−i), we may examine the optimal response r̃ij(x−ij) of

9The asymmetric case with a low value battlefield can be found in Appendix A.
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player i in battlefield j as a function of x−ij alone. From (2), deviations of x−ij away from the equilibrium

level, but still in a relatively large neighborhood about the equilibrium level (x−ij ∈ (0, 118.1) in the sym-

metric case and x−ij ∈ (0, 116) in the asymmetric case) lead to a reduction in the optimal response r̃ij(x−ij).

As a consequence, a player anticipating a rival’s over or under allocation to a battlefield relative to equi-

librium (due, perhaps, to the salience of that battlefield) will best respond by reducing his own allocation,

albeit possibly very slightly. An increase in the allocation xij is not a best response to a deviation from the

equilibrium level of x−ij for a substantial neighborhood about the equilibrium level of x−ij .10

Finally, because equilibrium allocations are proportional to a player’s budget, in the remainder of the paper,

equilibrium and observed allocations are normalized with respect to the player’s budget, so that we will

refer to the share of a players budget allocated to a battlefield. The allocation share of player i ∈ {A,B} to

battlefield j ∈ {1, 2, 3, 4} is defined as sij =
xij

Xi
.

3 Experimental design and hypotheses

3.1 Experimental design

We have three main treatments: the symmetric treatment, the focal treatment and the asymmetric treatment.

In the symmetric treatment, subjects play 20 periods of a Colonel Blotto game with the same parameters

throughout the session. Both subjects have a budget of Xi = 200 tokens that they are required to allo-

cate across the different battlefields.11 The four battlefields are represented by a row of four boxes, each

containing a white circle. Every box is valued at vj = 15 points.

The other two treatments present alternative methods to single out one box (the target box) from the others.

In the focal treatment, the game is identical to the symmetric treatment except that a label asymmetry is
10Our discussion of player i’s optimal response to out of equilibrium behavior by player−i in a salient battlefield j assumes that in

increasing x−ij above its equilibrium level, the allocations x−ik , k 6= j, are reduced symmetrically. Similarly, in decreasing x−ij below
its equilibrium level, the x−ik , k 6= j, are increased symmetrically. Due to our symmetric treatment of the non-salient battlefields,
this seems a reasonable benchmark. However, note that in the non-salient battlefields k 6= j, vk is constant and the allocations x−ik ,
k 6= j, appear in the best response function xij = rij(x−i) in (1) only in the denominator, where (x−ik)

1/2 is concave in x−ik . As
a result, for a fixed x−ij , from Jensens inequality, the denominator in (1) is maximized over all x−ik , k 6= j, satisfying player −i’s
budget constraint by setting x−ik =

X−i−x−ij

3
. Consequently, setting x−ik =

X−i−x−ij

3
minimizes the value of xij = rij(x−i) for

a fixed value of x−ij . Nonetheless, it is possible to show that if one perturbs x−i in a neighborhood of its equilibrium level by raising
the allocation to the salient battlefield x−ij and symmetrically reducing the allocations of only a subset of the remaining battlefields
(while holding the allocations to the other battlefields constant at the equilibrium levels) one obtains a qualitatively similar results
– player i’s optimal response to the deviation from equilibrium behavior is to reduce his allocation xij = rij(x−i). This includes
the extreme case, in which the allocation to only one of the battlefields k 6= j is reduced with the increase in x−ij (while the others
at kept constant at the equilibrium level). Similarly, if one perturbs x−i in a neighborhood of its equilibrium level by lowering the
allocation to the salient battlefield x−ij and symmetrically increasing the allocations of only a subset of the remaining battlefields
(while holding the allocations to the other battlefields constant at the equilibrium levels), player i’s optimal response to the deviation
from equilibrium behavior is again to reduce his allocation xij = rij(x−i). Consequently, the best response behavior of player i to a
range of deviations from the equilibrium that involve misallocation of −i to the salient battlefield j and misallocation in (weakly) the
opposite direction for battlefields k 6= j yields a reduction of i’ s allocation xij to the salient battlefield j. It is, however, possible to
obtain an increase in the best response xij = rij(x−i) to a perturbation of x−i in a neighborhood of its equilibrium level if an increase
in x−ij is accompanied by an increase in x−ik , for some k 6= j.

11Because we employ a lottery CSF and budgets are use-it-or-lose-it, any optimal allocation must exhaust the budget. In addition,
continuity in the space of allocations is approximated by allowing subjects to include one decimal in their allocations. Actually, only
5.71% of all allocation decisions included decimals.
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added: one box contains a black circle and the remaining boxes a white circle. Thus, we induce the salience

of a target while maintaining minimal asymmetry to test the salient target hypothesis. In the asymmetric

treatment, the game is identical to the symmetric treatment but a value asymmetry is induced: one box is

assigned a value of vT = 16.5 points while the others are valued at v−T = 14.5 points. Although there is no

compelling reason why one specific asymmetric configuration of values should be selected, we chose these

specific values because they represent the (common) subjective values of each battlefield that are implied

if the mean bid across all subjects in the focal treatment is generated by equilibrium behavior. That is,

subjects conforming to equilibrium behavior in the asymmetric treatment generate the same mean bid in

each battlefield as arises in the data in the focal treatment.

An inherent characteristic of multi-battle contests with a fixed budget is the negative correlation between

a players allocations to individual battlefields. In contrast, most attempts to analyze data in multi-battle

experimental contests have implicitly assumed independence between battlefields.12 To deal with the de-

pendence of allocations arising from the budget constraint, we collapse all of the information concerning

a subject’s allocation into one single number: the allocation share to the target box (siT ). To justify this

approach, note that our games have the following features. First, subjects can only distinguish the boxes ei-

ther by position or by being the target box.13 Second, the positions of the boxes are randomized across pairs

every period; and subjects are informed of this. This randomization allows potential position effects of the

boxes to be controlled. If the position of the box has no significant effect, the implication is that subjects

can only distinguish the target box from the others. In that case, all relevant information about a subject’s

allocation is divided into the allocation share to the target box (siT ) and the remaining joint share that the

other boxes receive 1− siT . If successful, this method addresses the concern about dependence in our data.

In section 4.1., we report the absence of evidence for position effects and proceed under the understanding

that the relevant information to test our hypotheses resides in the allocation share to the target box.

In addition, we design four other treatments to check for the validity and robustness of our results. First,

the motivating applications in the introduction suggest a positive relationship between salience and allo-

cations to the target box. For an increased external validity of the experiment, the parameters in the main

treatments are selected to be informative about the potential positive relationship between salience and

allocations. However, salience can also affect allocations negatively. For example, in a game with a target

box valued at 13.5 and others at 15.5, we should expect that, contrary to the case with a single high value,

salience will induce negative psychological payoffs and, therefore, an under-allocation to the target box.

We investigate this game in our low value asymmetry treatment. Second, we examine the same three main

treatments implementing a budget asymmetry: one subject (the strong player) receives a budget of Xs = 200

tokens and the other one (the weak player) receives a budget of Xw = 160 tokens. Thus, we have 7 treat-

ments. Each treatment is represented by a two letter acronym. The first letter indicates whether budgets
12An exception is Arad and Rubinstein (2012), who present exclusively summary statistics.
13The experimenter, however, can identify each box by an ID number from 1 to 4. The box with ID 1 is always the target box in each

treatment (even in the symmetric treatment where boxes cannot be distinguished otherwise).
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are identical (I) or asymmetric (A) and the second letter indicates whether boxes are symmetric (S), focal

(F) or asymmetric in values – with the case in which the target has higher value labeled (V) and the case

in which it is of low value labeled (L). For example, IF means identical budgets and a focal box. For treat-

ments with identical (asymmetric) budgets, we run two (four) sessions with a total of 32 subjects with 200

tokens (and 32 subjects with 160 tokens) – see Table 1 for a summary. Each subject is allowed to take part

Table 1: Experimental design

Treatment Budget (P1; P2) Label (target; others) Value (target; others) # Sessions # Subjects

Main treatments
IS (200; 200) (White; White) (15; 15) 2 32
IF (200; 200) (Black; White) (15; 15) 2 32
IV (200; 200) (White; White) (16.5;14.5) 2 32

Robustness checks
IL (200; 200) (White; White) (13.5; 15.5) 2 32
AS (200; 160) (White; White) (15; 15) 4 64
AF (200; 160) (Black; White) (15; 15) 4 64
AV (200; 160) (White; White) (16.5;14.5) 4 64

in only one session. Within a session, two groups are formed; and, in every period, subjects are matched

randomly and anonymously with a subject from the other group. Each subject is informed of their own

allocations, their opponent’s allocations, the winner of each box and earnings at the end of each period. To

show how a winner is determined in each battlefield, subjects are shown a roulette wheel divided into two

portions corresponding to each player’s proportional allocation for that battlefield. An animated spinning

arrow determines the winner randomly by stopping in one of the subjects’ portions (see the supplementary

material for screenshots). At the end of the experiment, subjects receive a payment based on the points they

accumulate in five randomly selected periods, with an exchange rate of $1 for every 20 points.

The experiment was conducted at the Economic Science Institute Laboratory at Chapman University. Sub-

jects were recruited from the common subject pool – excluding subjects who had previous experience in

contest experiments – and participated anonymously at computer workstations. The show-up fee was $7.

Instructions (reproduced in Appendix B) were presented on a separate piece of paper and subjects were in-

formed that the same instructions were given to every subject in the session. After reading the instructions,

subjects were required to complete a quiz (see supplementary material). Sessions lasted for approximately

65 minutes – including 10 minutes for instructions. By design, subjects receive an average earnings of $14.5.

3.2 Hypotheses

First, we restrict our attention to the treatments with identical budgets. The null hypothesis across treat-

ments is that behavior is consistent with the Nash Equilibrium (NE). The NE prediction is different in games
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with battlefields with symmetric values (treatments IS and IF) and games with a battlefield of asymmet-

ric value (IV and IL). The prediction in the former treatments should not change the optimal allocation of

the NE because labels are payoff irrelevant. For the values selected in our experimental design, the null

hypothesis of NE produces two statements:

H1 (NE-symmetry): In the IS and IF treatments, the mean share allocated to the target box T is s̄iT = 0.25.

In games with asymmetric values, the NE prediction changes slightly:

H2 (NE-asymmetry): In the IV and IL treatments, the mean shares allocated to the target box T are s̄iT = 0.275

and s̄iT = 0.225, respectively.

The salient target hypothesis leads to a different behavioral pattern across treatments. In the completely

symmetric battlefield case (treatment IS), this hypothesis and Nash behavior should produce the same

results, as there is no salient target. In treatments with battlefield asymmetries, however, a difference in

behavior should arise according to the salient target hypothesis. Looking at the evidence in hide-and-

seek games, Crawford and Iriberri (2007) have suggested that the salient connotations of the labels affect

psychological payoffs (e.g., a label of a happy face will translate into a positive payoff). In line with that

suggestion, we expect that our connotations in the main treatments should induce positive payoffs. As

a consequence, subjects should increase correspondingly their allocations in the salient target. Thus, the

corresponding alternative prediction is:

H3 (Label salience): In the IF treatment, the mean share allocated to the target box T is s̄iT > 0.25.

A similar argument implies that positive (psychological) payoffs are derived from winning the target box

with the highest value in the IV treatment and, therefore, higher allocations than the NE prediction are

expected:

H4 (Value salience): In the IV treatment, the mean share allocated to target box T is s̄iT > 0.275.

A natural question arises regarding the relative salience of labels and values. The payoff irrelevance of

labels, and the payoff relevance of a higher value, implying that the NE allocation is higher in the latter

case, suggest that the effect of value salience should be stronger. We examine this empirical question in the

next section.

To check how general the salient target hypothesis is, we move beyond the positive relationship between

salience and allocations and test if a lower value of the target box will induce under-allocation. A mirror ar-

gument of the one leading to H4 implies that negative (psychological) payoffs are derived from winning the

target box with the lowest value in the IL treatment and, therefore, lower allocations than the NE prediction

are expected:

H5 (Low value salience): In the IL treatment, the mean share allocated to target box T is s̄iT < 0.225.

Finally, we check the robustness of our main results by including asymmetric budgets. Determining the pre-

dictions for the treatments with a budget asymmetry is straightforward. Because optimal allocation shares
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are invariant to the size of the budgets, each treatment with a budget asymmetry should produce the same

NE prediction as its counterpart with identical budgets. Thus, if our results supporting the salient target

hypothesis were considered just a spurious coincidence, finding the same results with budget asymmetries

would be unlikely. Alternatively, budget asymmetries could induce more awareness about equilibrium rec-

ommendations. For example, Avrahami and Kareev (2009, p.948) find that, especially, the weaker players

”approximate the sophisticated game-theoretic solution”. Given this prior in favor of equilibrium in the

presence of budget asymmetries, if we find evidence for the salient target hypothesis in treatments with

identical budgets as well as asymmetric budgets, we can claim strong support for our results.

H6 (Robust results): In each of our main treatments, the pattern in the identical budget version (either s̄IiT = s̄NE

or s̄IiT > s̄NE) should be the same as in the asymmetric budget version (s̄AiT = s̄NE or s̄AiT > s̄NE), where superscript

I and A refer to the identical budget version of the treatment and the asymmetric budget version, respectively, and

s̄NE refers to the equilibrium share.

A summary of the predictions for each treatment by the two competing hypotheses is presented in Table 2.

This summary makes clear that our design separates the Nash Equilibrium and the salient target hypothe-

sis.

Table 2: Summary of predictions

s̄iT in Treatments

Predictions IS IF IV IL AS AF AV

Nash Equilibrium hypothesis = 0.25 = 0.25 = 0.275 = 0.225 = 0.25 = 0.25 = 0.275
Salient Target hypothesis = 0.25 > 0.25 > 0.275 < 0.225 = 0.25 > 0.25 > 0.275

4 Results

4.1 Data overview

Our variable of interest is the within-subject mean share allocated to the target box (siT ). As noted in sec-

tion 3.1., the share allocated to the target box is a better measure of the effect of salience if the position of

the boxes has no significant effect. A Friedman-test reveals that the individual average allocation is not sig-

nificantly different across locations (p-value= 1.00). This result is also robust across treatments. To support

our claim of lack of position effects and the assumption of equal allocation to the non-salient battlefields

in the out-of-equilibrium analysis, we also test whether the distribution of the remaining budget allocates

one third to each of the non-salient boxes. One out of 21 Wilcoxon signed rank tests (7 treatments x 3 non-

salient boxes) appears significant at the 5% level (the far right box in treatment IV). Table 3 provides the
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corresponding summary statistics of the within-subject mean share allocated to the target box by players

with 200 tokens.14

Table 3: Summary statistics

Statistic Periods Within-subject mean share

IS IF IV IL AS AF AV
All

N 32 32 32 32 32 32 32
Mean 0.257 0.273 0.317 0.193 0.248 0.261 0.33

std. dev. 0.029 0.053 0.076 0.05 0.021 0.025 0.121
25% 0.244 0.244 0.269 0.159 0.238 0.242 0.276

50%(median) 0.255 0.262 0.3 0.203 0.249 0.255 0.332
75% 0.267 0.296 0.356 0.239 0.261 0.272 0.402

1-10
N 32 32 32 32 32 32 32

Mean 0.257 0.282 0.316 0.194 0.244 0.262 0.32
std. dev. 0.056 0.062 0.085 0.054 0.036 0.03 0.142

25% 0.219 0.244 0.26 0.15 0.222 0.243 0.269
50%(median) 0.261 0.266 0.308 0.197 0.244 0.258 0.322

75% 0.275 0.307 0.359 0.237 0.264 0.279 0.39
11-20

N 32 32 32 32 32 32 32
Mean 0.256 0.264 0.317 0.191 0.252 0.26 0.339

std. dev. 0.027 0.063 0.086 0.073 0.025 0.036 0.115
25% 0.236 0.242 0.266 0.143 0.24 0.245 0.265

50%(median) 0.251 0.254 0.299 0.191 0.25 0.255 0.344
75% 0.275 0.286 0.372 0.235 0.263 0.27 0.404

Unit of observation is the within-subject mean share sit,u allocated by subject i to the target box over periods t to u.

The summary statistics shown in Table 3 reveal sufficient variation across the different treatments that can

address our hypotheses.15 First, H1, the NE-symmetry prediction, requires that the within-subject means

equal 0.25 in treatments IS and IF. This hypothesis seems to receive support in the treatment with completely

symmetric battlefields (IS). In the IF treatment, H3, the alternative prediction of label salience, appears to

be supported. Second, H2, the NE-asymmetry prediction, seems to be rejected in favor of H4 and H5, the

value salience and the low value salience predictions, respectively. Furthermore, our data suggests that the

effect of value salience is higher than that of label salience. All of this suggests support for the salient target

hypothesis. Moreover, this pattern appears to be robust in comparing IS to AS, IF to AF, and IV to AV in

line with H6. We test H1-H6 formally in section 4.2.

Before proceeding, we address a confounding factor that could potentially affect the interpretation of these

tests. By using the within-subject mean share allocation as the unit of observation, we abstract away from

potential time trends. The data appear to support this position. For each treatment, we test whether changes

14Summary statistics in which the unit of observation is the allocation can be found in the supplementary material.
15We employ one-way Anova to test the joint null hypothesis that all treatments have the same mean share to the target box. Results

show that the averages are not the same across treatments (1-10 periods p-value: .0001; 11-20 periods p-value:< .0001; all periods
p-value:< .0001). Similar results are obtained using a Kruskal-Wallis test to address concerns about normality.
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in the within-subject mean and standard deviation between periods 1-10 and 11-20 are different from zero

(see Table 4 for the results). The repeated nature of our experiment does not affect the mean allocation share

though it reduces the dispersion in most treatments.

Table 4: Individual changes between first and second half of the session

Treatments: IS IF IV IL AS AF AV

change between periods 1-10 and 11-20 in means

mean -.0019 -.019 0.001 -.0033 0.008 -.0027 0.0189
median 0.0005 -.023 -.0086 -.0025 0.0112 0 0.0287

t-test of zero difference 0.871 0.117 0.939 0.821 0.356 0.723 0.226
signed rank test of zero difference 0.575 0.058 0.41 0.282 0.135 0.808 0.071

change between periods 1-10 and 11-20 in standard deviations

mean -.006 -.0286 -.04 -.0175 -.017 -.0076 -.0164
median -.002 -.0122 -.018 -.0148 -.017 -.013 -.0149

t-test of zero difference 0.468 .04** .003*** .026** .022** 0.236 0.275
signed rank test of zero difference 0.531 .025** .007*** .029** .013** 0.137 0.175

Note: the values in the cells corresponding to rows of the statistical tests are p-values. *** and ** denotes statistical significance at 1% and 5%,

respectively.

4.2 Main results

Figure 3 illustrates the within-subject mean share allocated to the target box by players with a budget of

200 tokens with the corresponding 95% confidence interval. The formal comparison across treatments can

be examined visually.

Figure 3: Mean individual allocation share
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First, in the IS and IF treatments, H1, the NE prediction, requires s̄iT = 0.25. In Figure 3, checking whether

0.25 is within the 95% confidence interval for the within-subject mean allocation share to the target box in

treatments IS and IF, we obtain result 1.

Result 1: In IS, the mean allocation share is consistent with H1, the NE-symmetry prediction. In IF,

the mean allocation share is consistent with H3, the label salience prediction. Therefore, our results

in the IS and IF treatments support the salient target hypothesis.

Our results in the IS treatment are reassuring. Because our experimental design controls for some of the

sources of minor deviations from equilibrium play in previous studies,16 we replicate previous evidence

in support of equilibrium play under a more demanding test. In the IF treatment, the Nash equilibrium

hypothesis would require again a share of 0.25 in the target box, while the salient target hypothesis requires

a finding of label salience. The lower bound of the confidence interval of the IF treatment does not reach

0.25, consistent with H3, the label salience prediction. From the perspective of equilibrium play this result

is interesting because the game is ex-ante formally the same as in the completely symmetric case. But the

salience of the label appears to be sufficient to trigger over-allocation to the target box.

Second, in examining the effect of value asymmetry in the IV treatment, H2, the NE-asymmetry prediction,

requires that 0.275 lie within the 95% confidence interval of the within-subject mean allocation share to the

target box. In contrast, H4, the value salience prediction, requires that 0.275 lie below the lower bound of

the 95% confidence interval for that treatment. The latter is clearly observed in Figure 3.

Result 2: In IV, the mean allocation share is inconsistent with H2, the NE-asymmetry prediction,

and consistent with H4, the value salience prediction. Therefore, our results in IV support the

salient target hypothesis.

Results 1 and 2 suggest that the support for equilibrium found in the literature disappears as soon as

small asymmetries are introduced in the boxes through labels (a change of color) or values (a change in

1.5 points: roughly 7 cents on the dollar). Fortunately, deviation from equilibrium behavior occurs in a

systematic direction that is predicted by the salient target hypothesis. In addition, our results also suggest

that asymmetry in values is more prominent than asymmetry in labels. With asymmetric values, the mean

allocation share deviates from the equilibrium prediction by 0.047, or 17.4% of the equilibrium level. With

asymmetric labels the mean allocation share deviates from the equilibrium prediction by 0.023, or 9.2% of

the equilibrium level. This result is expected as labels are payoff irrelevant aspects of the game.

We now evaluate the robustness of these results. Although our motivating examples and main treatments

focus on the positive relationship between salience and allocations, one implication of the salient target

hypothesis is that lower values in the target box should lead to under-allocation. We evaluate this statement

16Arad and Rubinstein (2012) find that people tend to under-allocate in the first and last battlefields in a row while Chowdhury
et al. (2013) find that people tend to over-allocate in the battlefields to the left and under-allocate in the ones to the right.
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by comparing the mean share allocated to the target box in IL to the prediction in H2 – requiring that 0.225

lie within the 95% confidence interval of the within-subject mean allocation share to the target box. In

contrast, H5 suggests that 0.225 lies above the 95% confidence interval. This is clearly observed in Figure 3.

Result 3: In IL, the mean allocation share is inconsistent with H2, the NE-asymmetry prediction,

and consistent with H5, the low value salience prediction. Therefore, our results in IL support the

salient target hypothesis in both the positive and negative domains of the relationship between

salience and allocations.

Finally, we compare the mean share allocated to the target box in treatments with identical budgets and

asymmetric budgets. This comparison tests H6, that our results are robust. This comparison is restricted to

players with 200 tokens, the only common type between treatments with identical and asymmetric budgets.

Before stating the result of this comparison, we report how different the mean share allocated to the target

box by weak players, those with 160 tokens in the asymmetric budget treatments, is from that of players

with 200 tokens in both the identical and asymmetric budget treatments. We first run t-tests and rank sum

tests comparing the within-subject mean allocation share between weak players and players in treatments

with identical budgets. The corresponding p-values appear in Table 5. The results show that every p-value

is higher than 0.10. Thus, there is no significant difference between the means of weak players and players

with a symmetric budget of 200 tokens.

Table 5: p-values tests within-subject mean allocation between symmetric and weak players

Treatments Tests Periods
1 - 10 11 - 20 All

IS t-test 0.46 0.66 0.38
rank sum 0.79 0.72 0.25

IF t-test 0.4 0.83 0.57
rank sum 0.85 0.82 0.82

IA t-test 0.7 0.98 0.87
rank sum 0.44 0.74 0.6

Unit of observation is the within-subject mean share x̄s
t,u allocated by

subject s to the target box over periods t to u.

These tests are based on thirty two observations.

More importantly, as the behavior of strong players is a strategic response to the behavior of weak players,

we compare weak players to strong players. We perform t-tests and signed rank tests with the null hypoth-

esis that the difference of paired observations is not different from zero. Results in Table 6 show that there

is no significant difference. Thus, we are confident that any potential difference in the behavior of subjects

with a budget of 200 tokens between treatments with identical budgets and asymmetric budgets is due to

the difference in budgets.
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Table 6: Share difference between strong and weak players

Periods 1-10 11-20 All

Mean -0.0053 0.0073 0.00099
Median -0.0062 0.0055 -0.00047
standard deviation 0.025 0.04 0.03
t-test of zero difference (p-value) 0.48 0.54 0.91
signed rank test of zero difference (p-value) 0.53 0.75 0.69

Unit of observation is the within-session difference ∆x̄t,u = x̄strong
t,u − x̄weak

t,u , where x̄type
t,u is the mean

of the share allocated by all type players to the target box over periods t to u (”first 10” = 1 to 10, ”last 10”

= 11 to 20, ”all” = 1 to 20). The within-session differencing will remove a linear treatment effect for each of

the three treatments. As there are four sessions per treatment, these tests are based on twelve observations

of ∆x̄t,u.

In examining the effect of budget asymmetry across treatments, H6 requires that Results 1 and 2 extend to

asymmetric budgets. So, we compare allocations in AS, AF and AV to the Nash predictions in H1 and H2.

The same patterns arise in the asymmetric condition, as shown in Figure 3.

Result 4: In AS , AF, and AV the same pattern arises as in Results 1 and 2: 0.25 and 0.275 lie below

the confidence interval of the mean allocation share in AF and AV, respectively; whereas, 0.25 lies

within the confidence interval in AS. This is consistent with H6.

This indicates that our Results 1 and 2 supporting the salient target hypothesis are robust.

5 Discussion

Our experiment provides the first controlled evidence for the salient target hypothesis, which asserts that

the strategic allocation of a players budget in a multi-battle contest is influenced by salient battlefields. In

our experiment, salience arises from a particular asymmetry of one of the battlefields with respect to the

others. We examine asymmetries of values and labels. Our results suggest that saliently labeled and high

value battlefields receive higher allocations in comparison to both the Nash equilibrium prediction and the

case in which labels and values are symmetric. This over-allocation is larger when the asymmetry involves

a higher value.

One implication of this result is that it suggests a reinterpretation of recent experimental evidence on

Colonel Blotto games providing partial support for Nash equilibrium behavior. Previous studies have in-

dicated that positional effects may lead to small deviations from equilibrium play. Our design controls for

positional effects and equilibrium behavior in fact arises in the symmetric case. In stark contrast, subjects

deviate from equilibrium behavior in the presence of asymmetries in battlefields. More concretely, subjects

over-allocate to saliently labeled or high value battlefields. Duffy and Matros (2013) also study Colonel

Blotto games with a lottery contest success function and heterogeneous battlefield values, but where all
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battlefields have different values. In their treatment in which subjects maximize the sum of values of battle-

fields won, they claim qualitative, but not quantitative, support for the equilibrium prediction.17 Qualita-

tive support is equated with higher valued battlefields receiving higher allocation shares or, more formally,

the coincidence of the ranks of battlefield values and allocation shares. Our results also preserve the identity

of battlefield value and share rankings. However, qualitative support for equilibrium behavior is difficult

to reconcile in light of our results on label asymmetry. These results suggest an unambiguous quantitative

and qualitative rejection of equilibrium behavior in the presence of a salient battlefield.18

To rationalize our result of over-allocation to the salient battlefield as a best-response to an opponent’s

anticipated or actual allocation, one would have to expect the opponent to allocate an implausibly large

share of his budget to the salient battlefield. In particular, assuming symmetric allocations across the non-

salient battlefields (as suggested by the experimental evidence that subjects do not distinguish positions),

the realized mean share of at least 0.275 in the IF treatment is supported only with the expectation that the

opponent places at least slightly above 0.8 of his budget in the salient battlefield (see Figure 2). Similarly,

in the IV treatment, the realized mean share of at least 0.31 is supported only with the expectation that the

opponent places at least slightly above 0.82 of his budget in the salient battlefield. In our data, less than 0.5%

of the observations are consistent with this possibility in both treatments. And, feedback between games

should provide enough information for subjects to adjust their allocations according to best responses. This

does not appear to be the case. This apparent inconsistency between observed behavior and best responses

in treatments with salience but support for equilibrium behavior in treatments without salience is a novel

result. Previously reported evidence, in hide-and-seek games with salience, did not support equilibrium

but appeared consistent with best responses (Rubinstein and Tversky, 1993; Crawford and Iriberri, 2007).

This contrast suggests that our evidence makes a stronger case for the role of salience outside of the narrow

confines of coordination games. Subjects in our experiment over-allocate to saliently labeled and high value

battlefields, while both hiders and seekers choose non-salient options. In our treatment with a unique

battlefield with a lower value subjects under-allocate to the low value battlefield.

The results of our laboratory experiments supporting the salient target hypothesis suggest some lessons for

the field. First, for the given objective functions and contest success functions examined, when salience is

induced through labels or a higher value there is a tendency for the opponent to over allocate resources to

the salient target relative to the Nash equilibrium level. The extent that this tendency can be exploited will

vary across contexts, but in the models examined here the behavior exhibited would suggest an optimal

response that involves reducing the allocation to the salient battlefield below the equilibrium level. Of

course, this prescription will generally depend on the nature of the multi-battle contest and may differ

when other objective functions and contest success functions are employed. Second, to the extent that
17Duffy and Matros (2013) also include treatments in which players maximize the probability of winning battlefields yielding more

than one-half the total value of all battlefields.
18In light of our evidence, a reinterpretation of the Duffy and Matros (2013) data suggests some support for the salient target

hypothesis. In their treatment with heterogeneous values and a value maximization objective, subjects appear to over-allocate relative
to equilibrium in the two highest valued battlefields and under-allocate in the two lowest valued battlefields.
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salience or focality can be manipulated ex ante, there may be a strong incentive to do so. Because the salient

targets we have studied in our main treatments attract resources, pre-play expenditures by a player to make

an existing target salient may prove useful in causing the rival to sub-optimally divert resources. Again,

the extent that this may be exploited will vary with the nature of the multi-battle contest. Exploring these

issues under alternative assumptions on contest structure remains a topic for future experimental work.

20



References

ADAMO, T. AND A. MATROS (2009): “A Blotto game with incomplete information,” Economics Letters, 105,

100–102.

ARAD, A. (2012): “The tennis coach problem: a game-theoretic and experimental study,” The BE Journal of

Theoretical Economics, 12, Article 10.

ARAD, A. AND A. RUBINSTEIN (2012): “Multi-dimensional iterative reasoning in action: the case of the

Colonel Blotto game,” Journal of Economic Behavior & Organization, 84, 571–585.

ARCE, D. G., R. T. CROSON, AND C. C. ECKEL (2011): “Terrorism experiments,” Journal of Peace Research,

48, 373–382.

ARCE, D. G., D. KOVENOCK, AND B. ROBERSON (2012): “Weakest-link attacker-defender games with mul-

tiple attack technologies,” Naval Research Logistics (NRL), 59, 457–469.

AVRAHAMI, J. AND Y. KAREEV (2009): “Do the weak stand a chance? Distribution of resources in a com-

petitive environment,” Cognitive Science, 33, 940–950.

BACHRACH, Y., M. DRAIEF, AND S. GOYAL (2013): “Contagion and observability in security domains,”

in Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton Conference on, IEEE, 1364–

1371.

BARDSLEY, N., J. MEHTA, C. STARMER, AND R. SUGDEN (2010): “Explaining focal points: cognitive hier-

archy theory versus team reasoning,” The Economic Journal, 120, 40–79.

BARELLI, P., S. GOVINDAN, AND R. WILSON (2014): “Competition for a majority,” Econometrica, 82, 271–

314.

BELLMAN, R. (1969): “On ”Colonel Blotto” and analogous games,” Siam Review, 11, 66–68.

BLACKETT, D. (1953): “Blotto-type games,” in Proceedings Fourth Annual Logistics Conference (Part II-

Restricted Session), General Services Administration, Washington DC, 31–41.

BLACKETT, D. W. (1954): “Some Blotto games,” Naval Research Logistics Quarterly, 1, 55–60.

——— (1958): “Pure strategy solutions of Blotto games,” Naval Research Logistics Quarterly, 5, 107–109.

BOREL, E. (1921): “La theorie du jeu les equations integrales a noyau symetrique. Comptes Rendus del

Academie. 173, 1304–1308; English translation by Savage, L. (1953). The theory of play and integral equa-

tions with skew symmetric kernels,” Econometrica, 21, 97–100.

21



BOREL, E. AND J. VILLE (1938): Application de la theorie des probabilities aux jeux de hasard, reprinted in Borel

E., Cheron, A.: Theorie mathematique du bridge a la portee de tous, Paris: Gauthier-Villars: Paris: Editions J.

Gabay, 1991 ed.

CHIA, P. H. AND J. CHUANG (2011): “Colonel Blotto in the phishing war,” in Decision and Game Theory for

Security: Second International Conference, GameSec 2011, College Park, MD, Maryland, USA, November 14-15,

2011, ed. by J. S. Baras, J. Katz, and E. Altman, Springer, 201–218.

CHOWDHURY, S. M., D. KOVENOCK, AND R. M. SHEREMETA (2013): “An experimental investigation of

Colonel Blotto games,” Economic Theory, 52, 833–861.
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Verlag, 394–402.

SCHELLING, T. C. (1960): The strategy of conflict, Harvard university press.

SCHWARTZ, G., P. LOISEAU, AND S. SASTRY (2014): “The heterogeneous Colonel Blotto Game,” in NETG-

COOP 2014, International Conference on Network Games, Control and Optimization, October 29-31.

SELA, A. AND E. EREZ (2013): “Dynamic contests with resource constraints,” Social Choice and Welfare, 41,

863–882.

SHUBIK, M. AND R. J. WEBER (1981): “Systems defense games: Colonel Blotto, command and control,”

Naval Research Logistics Quarterly, 28, 281–287.

SNYDER, J. M. (1989): “Election goals and the allocation of campaign resources,” Econometrica, 57, 637–660.

THOMAS, C. (2012): “N-dimensional Colonel Blotto games with asymmetric valuations. University of

Texas,” Tech. report. University of Texas.

TULLOCK, G. (1980): “Efficient rent seeking,” in Toward a theory of the rent-seeking society, ed. by J. M.

Buchanan, R. D. Tollison, and G. Tullock, College Station, TX: Texas A&M University Press, 97–113.

WASHBURN, A. (2013): “OR Forum-Blotto Politics,” Operations Research, 61, 532–543.

WEINSTEIN, J. (2012): “Two notes on the Blotto game,” The BE Journal of Theoretical Economics, 12, Article 7.

WOODERS, J. (2010): “Does experience teach? Professionals and minimax play in the lab,” Econometrica, 78,

1143–1154.

26



Appendices

Appendix A: Out of equilibrium behavior with a single low value battlefield

As in the other two cases, the combination of parameters involves n = 4 and XA = XB = 200, but sets

the value of the salient battlefield vj = 13.5 and the remaining battlefields vk = 15.5, k 6= j. Figures A1

below indicate the corresponding conditional best response function. For this configuration of valuations,

r̃ij(x−ij) is initially increasing in x−ij (holding −i’s allocations to the remaining battlefields equal) up to

the equilibrium levels x−ij = xij = 45. After these values of x−ij , player i’s conditional best response

to x−ij decreases slowly until x−ij reaches approximately 120.3 (at which the optimal response r̃ij(x−ij)

is approximately 39.023). For larger values of x−ij , r̃ij(x−ij) increases in x−ij , approaching 200 as x−ij

approaches the complete budget X−i = 200. For values of x−ij close to 200, player −i is placing so little

on the other battlefields k 6= j that player i is able to win those battlefields with near certainty with a very

small allocation. Consequently, his optimal response is to place almost all of this budget in battlefield j.

Figure A1: Best response

The function follows a pattern similar to the symmetric and asymmetric high value case. Thus, a player

should under-allocate as a response to other players under-allocating. The average allocation to the target

box in our IL treatment is 38.55. This represents the best response to a common opponent’s allocation of

16.5 to the target box. It appears unlikely that this accurately reflects the expectations of opponent behavior,

as only 2% of the observations are consistent with this possibility.
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Appendix B: Instructions

The instructions below were distributed in the completely symmetric case (IS). Instructions for other treat-

ments are just variations highlighted between brackets in the text.

GENERAL INSTRUCTIONS

Thanks for taking part in this experiment.

You are requested not to communicate during the experiment. If you are not sure about what you are

being asked to do, raise your hand and the experimenter will come to your desk to help you. You will be

paid $7 for turning up plus whatever you earn in the experiment. You will be presented with 20 decision

problems. At the end of the experiment, five of these problems will be randomly picked and you will be

paid accordingly. You will be paid at the end of the experiment in private and in cash.

YOUR DECISION

You will be assigned as either participant 1 or participant 2 throughout the experiment. In each decision

problem, you will be paired with a randomly selected person whose participant number is different from

yours. You will never be told who you have been paired with. Everyone in this room is reading the same

set of instructions.

In each decision problem, both participants will receive 200 tokens [budget asymmetry treatments: In each

decision problem, participant 1 will receive 200 tokens and participant 2 will receive 160 tokens]. Each

participant will choose how to allocate their tokens among four boxes. The four boxes are labelled and

shown in a row. The position of the boxes is determined randomly and their labels are white circles [focal

treatments: The position of the boxes is determined randomly and one box is labelled with a black circle

and the others with a white circle]. You and the participant you have been paired with in that decision

problem see the same display of boxes.

Each participant must allocate every token before proceeding to the next decision problem. You do that by

writing the number of tokens you want to allocate to certain box in the slot below. You can use decimal

numbers.

YOUR EARNINGS

In every decision problem, each box is worth 15 points [high value asymmetry treatments: In every de-

cision problem, one box is worth 16.5 points and the other three 14.5 points each] [low value asymmetry

treatments: In every decision problem, one box is worth 13.5 points and the other three 15.5 points each].

If that decision problem is selected at the end of the experiment, you will earn the points of the boxes you

win, which will be converted into cash at a rate of $1 per 20 points. Your objective is to earn as many points

as possible.

How do you win a particular box?
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Your chances of winning a particular box are given by the number of tokens that you allocated divided by

the total number of tokens allocated by you and the other participant. In case both participants allocate

zero to the same box, each participant has 50% chance of winning that box. After allocating the tokens,

these proportions are shown in a roulette below each box and the computer will spin an arrow. You win if

the arrow finishes in your part of the roulette.

After every decision problem, you will see the allocation of your tokens, the allocation of the other partici-

pant’s tokens, which boxes you win and your possible earnings in that decision problem.

Before starting the experiment, a questionnaire will check that the instructions were clear. Please complete

the questionnaire and raise your hand. The experimenter will come to pick it up and clarify any doubt.
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Supplementary material

Supplementary material 1 [not intended for publication]: Screenshots

Screenshot 1: Decision screen (example of IF treatment)
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Screenshot 2: Animated spinning arrow (example of SF treatment)

Screenshot 3: Final outcome and feedback (example of SF treatment)
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Supplementary material 2 [not intended for publication]: Questionnaire

The questionnaire below was distributed in the completely symmetric case (IS). Questionnaires for other

treatments are just variations highlighted between brackets in the text.

QUESTIONNAIRE (Circle the number of the correct one)

Q1) If you are assigned as participant 1 in the first decision problem, 1 = ”you will be assigned as partici-

pant 2 in the next decision problem” 2 = ”you will be assigned as participant 1 throughout the experiment

[budget asymmetry treatments: (with 200 tokens)] and you will be matched to random participants 2

[budget asymmetry treatments: (with 160 tokens)]” 3 = ”you will be assigned as participant 2 [budget

asymmetry treatments: (with 160 tokens)] in the next decision problem and you will be matched to the

same participant [budget asymmetry treatments: (with 200 tokens)]” 4 = ”you will be assigned as par-

ticipant 1 throughout the experiment [budget asymmetry treatments: (with 200 tokens)] and you will be

matched to the same participant 2 [budget asymmetry treatments: (with 160 tokens)]”

Q2) How do you win a particular box? 1= ”2 and 3 are correct” 2= ”I win a particular box if the spinning

arrow ends up on my part of the roulette” 3= ”I might win a particular box with probability 50% when the

other participant and I allocate 0 tokens” 4= ”I will win a particular box by allocating more tokens than the

other participant”

Q3) If you win 4 boxes in a certain decision problem, 1 = ”you will win $4 at the end of the experiment”

2 = ”you will win 80 points that will be converted into $3 at the end of the experiment” 3 = ”you will win

60 points that will be converted into $3 at the end of the experiment” 4 = ”you will win 60 points that will

be converted into $3 at the end of the experiment only if that decision problem is one of the five problems

picked at the end of the experiment”

Q4) boxes are allocated randomly in a row and 1 = ”2 and 3 are correct” 2 = ”labelled with a white circle

[focal treatment: except one box which is labelled with a black circle]” 3 = ”both participants see the same

row”
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Supplementary material 3 [not intended for publication]: Summary Statistics

Table SM1: Summary statistics

Statistic Periods Allocation shares

IS IF IV IL AS AF AV
1-10

N 320 320 320 320 320 320 320
Mean 0.257 0.282 0.316 0.194 0.244 0.262 0.32

std. dev. 0.126 0.134 0.134 0.098 0.102 0.093 0.182
25% 0.2 0.225 0.25 0.125 0.2 0.225 0.25

50% (median) 0.25 0.25 0.3 0.217 0.25 0.25 0.334
75% 0.3 0.35 0.375 0.25 0.3 0.3 0.4

11-20
N 320 320 320 320 320 320 320

Mean 0.256 0.264 0.317 0.191 0.252 0.26 0.339
std. dev. 0.112 0.113 0.104 0.097 0.095 0.096 0.156

25% 0.2 0.2 0.25 0.125 0.225 0.218 0.25
50% (median) 0.25 0.25 0.308 0.222 0.25 0.25 0.35

75% 0.3 0.3 0.375 0.25 0.3 0.3 0.4
All

N 640 640 640 640 640 640 640
Mean 0.257 0.273 0.317 0.193 0.248 0.261 0.33

std. dev. 0.119 0.124 0.119 0.097 0.098 0.094 0.17
25% 0.2 0.2 0.25 0.125 0.2 0.22 0.25

50% (median) 0.25 0.25 0.3 0.22 0.25 0.25 0.35
75% 0.3 0.325 0.375 0.25 0.3 0.3 0.4

Unit of observation is xs
t , the allocation made by subject s to the target box in period t.
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