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Abstract: For simple prospects routinely used for certainty equivalent elicitation, random 
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dependent probability weighting functions of the inverse-s shape discussed by Quiggin 
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Elicitation of certainty equivalents has become routine in laboratory measurement of 

preferences under risk and uncertainty (Tversky and Kahneman 1992; Tversky and Fox 

1995; Wu and Gonzales 1999; Gonzales and Wu 1999; Abdellaoui 2000; Abdellaoui, 

Bleichrodt and Paraschiv 2007; Halevy 2007; Bruhin, Fehr-Duda and Epper 2010; Vieider 

et al. 2015). While elicitation methods vary across such studies, formal empirical 

interpretations of elicited certainty equivalents are invariably the same. The subject is 

assumed to have a unique and fixed preference order, implying (under unchanged 

conditions of background wealth, risk and so forth) a unique and fixed certainty equivalent 

for each prospect. Elicited certainty equivalents are then interpreted as this unique and 

fixed certainty equivalent plus some error of banal origin with standard properties.  

Such added error, or something like it, is necessary: In repeated elicitations using 

exactly the same prospect, elicited certainty equivalents vary within subjects (Tversky and 

Kahneman 1992, p. 306-308; Krahnen, Rieck and Theissen 1997, p. 477; von Winterfeldt et 

al. 1997, p. 422; Gonzalez and Wu 1999, pp. 144-146; Pennings and Smidts 2000, p. 1342) 

and other evidence also suggests inherent variability of elicited certainty equivalents (e.g. 

Butler and Loomes 2007). Luce (1997, pp. 81-82) argued that theory and empirical 

interpretation need to take a position on such response variability. Adding mean zero error 

to an otherwise deterministic model of certainty equivalents is clearly one option here, and 

I call this the standard model of an elicited certainty equivalent. 

Random preference models are a well-known alternative to standard models. These  

models assume that an individual subject’s preference order is a random variable, and that 

each certainty equivalent elicited from that subject is fully determined by a single 

realization of that random variable. Random preference models are both old and 

contemporary, particularly in the realm of discrete choice (Becker, DeGroot and Marschak 

1963; Eliashberg and Hauser 1985; Hilton 1989; Loomes and Sugden 1995, 1998; 

Regenwetter and Marley 2001; Gul and Pesendorfer 2006; Regenwetter, Dana and Davis-

Stober 2011; Ahn and Sarver 2013; Apesteguia and Ballester 2016; Karni and Safra 2016).  

I examine implications of random preference models for elicited certainty equivalents 

and find a significant complication of their empirical interpretation. Random model 

expected utility preferences (or more simply random EU as Gul and Pesendorfer call it) 

imply expected certainty equivalents that can mimic those implied by standard model rank-
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dependent preferences (or more simply standard RDU). That is, a random EU subject can 

have expected certainty equivalents that appear to reveal rank dependent probability 

weighting functions of the inverse-s shape discussed by Quiggin (1982) and advocated by 

Tversky and Kahneman (1992) and other scholars. 

Section 1 develops a standard RDU model and a random EU model of observed certainty 

equivalents in formal econometric terms, separating both into a conditional expectation 

function and an error term. Section 2 then develops parametric examples of the random EU 

model that mimic standard RDU models: For example, Prelec (1998) weighting functions 

will be derived from certainty equivalents governed by a specific random EU model. 

Section 3 shows that a class of random EU models will display apparent underweighting of 

high probabilities and apparent overweighting of low probabilities—just that pattern 

implied by inverse-s probability weighting functions in a standard RDU model; and Section 

4 provides brief graphical intuition for all the results. Contra widespread suggestions to the 

contrary, I conclude that elicited certainty equivalents may not nonparametrically identify 

preferences, since their conditional expectation (and critically, the interpretation of it) 

depends on the source of their variability.  

 

1. Certainty equivalents of simple prospects under Standard RDU and Random EU 

 

Simple prospects (𝑊, 𝑝) deliver an outcome 𝑊 > 0 with probability 𝑝 and nothing with 

probability 1 − 𝑝. Many scholars believe that observed certainty equivalents of simple 

prospects reveal the probability weighting function of the rank-dependent preference 

family when the utility or value of outcomes is linear or nearly so (e.g. Tversky and 

Kahneman 1992; Prelec 1998). To see this, let the utility or value of outcomes 𝑧 have the 

power form 𝑣(𝑧) = 𝑧1/𝑥 where 𝑥 ∈ (0,∞): I write the power as 1/𝑥 for later convenience. 

The rank dependent utility or RDU of (𝑊, 𝑝) is then 𝜋(𝑝|𝜔) ∙ 𝑊1/𝑥 , where 𝜋(𝑝|𝜔) is a 

probability weighting function depending on preference parameters 𝜔. The certainty 

equivalent of (𝑊, 𝑝) is then 𝜋(𝑝|𝜔)𝑥 ∙ 𝑊, but one commonly divides this by 𝑊 to free it of 

dependence on 𝑊 and calls 𝐶𝑟𝑑(𝑝|𝑥, 𝜔) ≡ 𝜋(𝑝|𝜔)𝑥 the RDU relative certainty equivalent of 

a simple prospect. Notice that when 𝑥 = 1 (i.e. for a linear value of outcomes), one has 



3 

 

𝐶𝑟𝑑(𝑝|1, 𝜔) ≡ 𝜋(𝑝|𝜔), so relative certainty equivalents of simple prospects are thought to 

reveal RDU (or CPT) probability weighting functions when 𝑥 = 1. Expected utility or EU is 

the special case where 𝜋(𝑝|𝜔) ≡ 𝑝, so also define 𝐶𝑒𝑢(𝑝|𝑥) ≡ 𝑝𝑥  as the EU relative 

certainty equivalent of any simple prospect (given specific 𝑥). 

Let 𝑐𝑒 be the observed certainty equivalent for (𝑊, 𝑝) elicited from a subject, and let 

𝑐 = 𝑐𝑒/𝑊 ∈ [0,1] be the observed relative certainty equivalent. 𝐸(𝑐|𝑝) is the expected 

value of 𝑐 given the win probability 𝑝: Many econometricians call this the conditional 

expectation function or c.e.f. of 𝑐. Defining an error as 𝜀 = 𝑐 − 𝐸(𝑐|𝑝), rearrangement gives 

a general additive empirical specification for observed relative certainty equivalents, which 

is 𝑐 = 𝐸(𝑐|𝑝) + 𝜀. A standard RDU model then assumes that the c.e.f. 𝐸(𝑐|𝑝) is the 

theoretical one given by RDU, that is 𝐶𝑟𝑑(𝑝|𝑥, 𝜔) ≡ 𝜋(𝑝|𝜔)𝑥, yielding the specification 

𝑐 = 𝜋(𝑝|𝜔)𝑥 + 𝜀. Various estimations of (𝑥, 𝜔) may then proceed: Bruhin, Fehr-Duda and 

Epper (2010) use maximum likelihood, while Tversky and Kahneman (1992) use nonlinear 

least squares. In this model the error term 𝜀 is thought to arise from banal sources such as 

“carelessness, hurrying, or inattentiveness” (Bruhin, Fehr-Duda and Epper p. 1383).  

Before continuing to the specification of a random EU model, note the following 

important fact about standard RDU models of certainty equivalents. For many weighting 

functions 𝜋(𝑝|𝜔), 𝑥 and 𝜔 cannot be wholly identified solely from the relative certainty 

equivalents of simple prospects. For instance suppose 𝜋(𝑝|𝜔) is the 2-parameter Prelec 

(1998) weighting function 𝑒𝑥𝑝(−𝛽[− 𝑙𝑛(𝑝)]𝛼) where 𝛼 and 𝛽 are strictly positive 

parameters. Relative certainty equivalents of simple prospects will then be 𝐶𝑟𝑑(𝑝|𝑥, 𝛼, 𝛽) =

𝑒𝑥𝑝(−𝑥𝛽[− 𝑙𝑛(𝑝)]𝛼), so clearly only 𝛼 and the product 𝑥𝛽 can be estimated from simple 

prospects alone. Scholars know this quite well, so experimental designs meant to 

separately estimate all three parameters from certainty equivalents must (and typically do) 

contain at least some non-simple prospects (those containing at least two possible nonzero 

outcomes). I focus on simple prospects because of their tractability and their simple 

interpretation under standard RDU: 𝐶𝑟𝑑(𝑝|1, 𝜔) ≡ 𝜋(𝑝|𝜔), so relative certainty equivalents 

of simple prospects reveal weighting functions at linear 𝑣(𝑧) (Tversky and Kahneman 

1992; Prelec 1998). The Monte Carlo study in my appendix employs an experimental 
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design (that of Gonzalez and Wu 1999) containing both simple and non-simple prospects, 

and results of that study will echo the analytical results I show here for simple prospects. 

 In the general RDU case, a random preference model could take both 𝑥 and 𝜔 to be 

realizations of nondegenerate random variables 𝑋 and 𝛺 within a subject. However, 

existing random preference estimations (e.g. Loomes, Moffatt and Sugden 2002; Wilcox 

2008, 2011) treat weighting function parameters 𝜔 as fixed within a subject, and 

contemporary random preference theory seems to be confined to treatment of 𝑋 as 

random only (e.g. Gul and Pesendorfer 2006; Apesteguia and Ballester 2016). Therefore, all 

of my random preference analysis treats only 𝑥 as the realization of a random variable 𝑋; 

and in any case, my random model analysis is mostly confined to the random EU case.  

 In any distinct elicitation trial, an independent random EU model, or simply random EU 

for short, assumes that an independent and identically distributed realization 𝑥 of 𝑋 occurs 

and fully determines the relative certainty equivalent 𝐶𝑒𝑢(𝑝|𝑥) =  𝑝𝑥 . Assume that a 

probability density function 𝑓(𝑥|𝜓) of 𝑋 with support (0,∞) lies within a subject, with 

parameters 𝜓 governing moments, location and/or scale. Then define ℂ𝑒𝑢(𝑝|𝜓) as 

 

(1)  ℂ𝑒𝑢(𝑝|𝜓) ≡ 𝐸𝑋[𝐶
𝑒𝑢(𝑝|𝑥)] = ∫ 𝑝𝑥𝑓(𝑥|𝜓)𝑑𝑥

∞

0
= ∫ 𝑒𝑥𝑝(−𝑥𝜏)𝑓(𝑥|𝜓)𝑑𝑥

∞

0
. 

 

The final integral in eq. 1 (which becomes useful later in Section 2) simply defines 

𝜏 = −𝑙𝑛(𝑝) and rewrites 𝑝𝑥 as 𝑒𝑥𝑝(−𝑥𝜏). The function ℂ𝑒𝑢(𝑝|𝜓) is the expected relative 

certainty equivalent of a random EU subject for simple prospects (𝑊, 𝑝), given her 

underlying p.d.f. 𝑓(𝑥|𝜓). We will have an empirical model 𝑐 = 𝐸(𝑐|𝑝) + 𝜉 of the same form 

as the standard RDU model. However, the random EU c.e.f. is 𝐸(𝑐|𝑝) = ℂ𝑒𝑢(𝑝|𝜓) as given 

by eq. 1, and the error 𝜉 is simply defined as 𝑝𝑥 − ℂ𝑒𝑢(𝑝|𝜓). The eq. 1 definition implies 

that these new errors 𝜉 also satisfy the usual properties (𝐸(𝜉) = 𝐸(𝜉|𝑝) = 0), so we have a 

close resemblance between the random EU model 𝑐 = ℂ𝑒𝑢(𝑝|𝜓) + 𝜉 and the standard RDU 

model 𝑐 = 𝐶𝑟𝑑(𝑝|𝑥, 𝜔) + 𝜀 and can estimate both using the same variety of estimators. 

 To conclude this section, allow a brief digression on elicitation methods. There is 

another way of thinking about the p.d.f. 𝑓(𝑥|𝜓) of 𝑋 in the Random EU model. Suppose an 

experimenter uses some method 𝑀 to elicit certainty equivalents 𝑐𝑒 from a subject, figures 
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the relative certainty equivalents 𝑐 = 𝑐𝑒/𝑊, and computes 𝑥(𝑐, 𝑝) to solve 𝑝𝑥 = 𝑐; that is, 

let 𝑥(𝑐, 𝑝) ≡ 𝑙𝑛(𝑐)/𝑙𝑛(𝑝). Suppose that in repeated elicitations using method M, across 

various values of 𝑝, the empirical c.d.f. of 𝑥(𝑐, 𝑝) is observed to be �̂�𝑀(𝑥|𝑝) which converges 

to 𝐹𝑀(𝑥|𝑝) as the sample of observations grows. If 𝐹𝑀(𝑥|𝑝) is in fact independent of 𝑝 and 

so just 𝐹𝑀(𝑥), the variability of the relative certainty equivalents observed by the 

experimenter could be interpreted as arising from a random EU model of the kind assumed 

here, where a p.d.f. 𝑓𝑀(𝑥|𝜓) is derived from 𝐹𝑀(𝑥). This suggests ways in which one might 

test versions of the random EU model (or versions of a random RDU model, and later I will 

return to this), but also shows that the results here only require that elicitation methods 

satisfy two key assumptions: (1) repeated trials using the method yield variability in 

elicited certainty equivalents; and (2) this variability is consistent with the assumptions of 

a random EU model—namely, that 𝐹𝑀(𝑥) is independent of 𝑝. Neither assumption rules out 

dependence of 𝑓(𝑥|𝜓) on the elicitation method 𝑀; and debates about the relative merits of 

various elicitation methods need not impinge on these assumptions in any necessary way. 

 

2. Parametric examples of random EU mimicry of standard RDU 

 

The close resemblance between the standard RDU and random EU models suggests 

two possible types of mimicry. First, since 𝐶𝑟𝑑(𝑝|1, 𝜔) ≡ 𝜋(𝑝|𝜔) in standard RDU, it will be 

troubling if ℂ𝑒𝑢(𝑝|𝜓) can “look like” a stereotypical 𝜋(𝑝|𝜔), that is, can have properties like 

those that many scholars believe are empirically characteristic of RDU weighting functions. 

I will refer to this as weak mimicry (of standard RDU by random EU). Second, it may happen 

that for some well-known and specific 𝜋(𝑝|𝜔), there exists a specific 𝑓(𝑥|𝜓) such that 

ℂ𝑒𝑢(𝑝|𝜓) is a re-parameterization of 𝐶𝑟𝑑(𝑝|𝑥, 𝜔). To formally define what that means, let 𝐷 

be the set of possible parameter vectors (𝑥, 𝜔), and let Ψ be the set of possible parameter 

vectors 𝜓. Then suppose that, for some specific 𝑓(𝑥|𝜓), there exists a function 𝐻𝑓: 𝐷 → Ψ 

such that ℂ𝑒𝑢[𝑝|𝐻𝑓(𝑥, 𝜔)] ≡ 𝐶𝑟𝑑(𝑝|𝑥, 𝜔) ≡ 𝜋(𝑝|𝜔)𝑥: Then one may say there is strong 

mimicry (of standard RDU by random EU) for 𝑓(𝑥|𝜓). Notice that strong mimicry implies 

weak mimicry but not vice versa. 



6 

 

Since −𝑙𝑛(𝑝) > 0 ∀ 𝑝 ∈ (0,1), so that 𝜏 > 0 too, the final integral in eq. 1 is the one-

sided Laplace transform ℒ{𝑓}(𝜏) of the p.d.f. 𝑓(𝑥|𝜓)—provided it exists; and below I only 

use p.d.f.s for which the existence and form of ℒ{𝑓}(𝜏) have been demonstrated and 

derived by others. In such instances, these known Laplace transforms ℒ{𝑓}(𝜏) of a p.d.f. 

𝑓(𝑥|𝜓) make it simple to derive various parametric examples of ℂ𝑒𝑢(𝑝|𝜓), using the 

relationship ℂ𝑒𝑢(𝑝|𝜓) = ℒ{𝑓}[−𝑙𝑛(𝑝)]. Two examples follow. 

 

Example 1.  Suppose X has the Gamma p.d.f. 
 

 𝑓(𝑥|𝑘, 𝜃) =  
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒𝑥𝑝(−𝑥 𝜃⁄ ) for 𝑥, 𝑘, and 𝜃 ∈ (0,∞),  

 where Γ is the Gamma function. 
 
It’s widely known that this has the Laplace transform ℒ{𝑓}(𝜏) = (1 + 𝜃𝜏)−𝑘, implying that  
 
(2)  ℂ𝑒𝑢(𝑝|𝑘, 𝜃) = (1 − 𝜃𝑙𝑛 (𝑝))−𝑘. 
 

Figure 1-A shows this Gamma c.e.f. for 𝑘 = 0.75 and 𝜃 =2.79. At these parameter 

choices, it has the “inverse-s” shape many believe is characteristic of weighting functions 

𝜋(𝑝|𝜔) and the fixed point 𝑝 ≈ 𝑒−1 which is characteristic of Prelec’s (1998) 1-parameter 

weighting function; so this is an instance of weak mimicry. One needs to say that this 

Gamma c.e.f. can (not must) weakly mimic this characteristic shape. Figure 1-B shows the 

Gamma c.e.f. for 𝑘 = 0.75 and 𝜃 =0.9: Here we see the “optimist” shape discussed by 

Quiggin (1982), and also the plurality shape of individually estimated weighting functions 

in Wilcox (2015). Such shape flexibility is also characteristic of 2-parameter weighting 

functions found in the literature on RDU and CPT estimation where such flexibility is 

usually regarded as a strength rather than a weakness (for estimation).  

Similar examples may be given for any other parametric distribution with a Laplace 

transform, but the next specific example leads to a particularly interesting result.   

 

Example 2. Suppose 𝑋 has the (unshifted) Lévy p.d.f. 
 

 𝑓(𝑥|𝜆) =  
𝜆

2√𝜋
𝑥−3 2⁄ 𝑒𝑥𝑝 (

−𝜆2

4𝑥
) for 𝑥 and 𝜆 ∈ (0,∞). 
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Figure 1-A. An Inverse-s Shaped Gamma Conditional Expectation Function 

 

 

Figure 1-B. An “Optimist” Shaped Gamma Conditional Expectation Function 
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This has the Laplace transform ℒ{𝑓}(𝜏) = 𝑒𝑥𝑝(−𝜆𝜏1 2⁄ ) (González-Velasco 1995, p. 537), 

implying that 

 
(3)  ℂ𝑒𝑢(𝑝|𝛿) = 𝑒𝑥𝑝(−𝜆[−𝑙𝑛(𝑝)]1 2⁄ ).  

 

Earlier I noted that in the case of the Prelec (1998) 2-parameter weighting function, 

𝐶𝑟𝑑(𝑝|𝑥, 𝛼, 𝛽) = 𝑒𝑥𝑝(−𝑥𝛽[− 𝑙𝑛(𝑝)]𝛼). Clearly, this is identical to eq. 3 if we set 𝜆 = 𝑥𝛽 and 

require that 𝛼 = 1  ⁄ . This is very close to being a case of strong mimicry, but not quite, 

since eq. 3 can only mimic Prelec weighting functions when 𝛼 just happens to be 1  ⁄ . 

Empirically, estimates of 𝛼 have a wider range than a small neighborhood of 1  ⁄ . 

However, this result provides a strong and fruitful hint. The Lévy distribution is a 

specific instance of the Lévy Alpha-Stable distributions, also known simply as the Stable 

distributions. Except for special cases (Normal, Cauchy and Lévy), Stable random variables 

𝑋 have no p.d.f. expressible in terms of elementary functions. However, their Laplace 

transforms exist as relatively simple expressions. For Stable random variables with support 

(0,∞), Nolan (2018, p. 109) shows that the Laplace transform exists and is ℒ{𝑓}(𝜏) = 

𝑒𝑥𝑝 {−𝛾𝛿 (𝑠𝑒𝑐
𝛿𝜋

2
) 𝜏𝛿}, where 𝛾 > 0 is a scale parameter and 𝛿 ∈ (0,1) is called the index of 

stability or characteristic exponent (see Feller 1971 and Hougaard 1986 for similar forms 

parameterized differently). Therefore, for Stable distributions of 𝑋 on (0,∞), we have 

 

(4)  ℂ𝑒𝑢(𝑝|𝛿, 𝛾) = 𝑒𝑥𝑝 {−𝛾𝛿 (𝑠𝑒𝑐
𝛿𝜋

2
) [−𝑙𝑛 (𝑝)]𝛿}. 

 

Eq. 4 is identical to 𝐶𝑟𝑑(𝑝|𝑥, 𝛼, 𝛽) = 𝑒𝑥𝑝(−𝑥𝛽[− 𝑙𝑛(𝑝)]𝛼) when we set 𝛿 = 𝛼 and set 

𝛾 = [𝛽𝑥 (𝑐𝑜𝑠
𝛼𝜋

2
)]

1/𝛼

, so a random EU model based on a Stable distribution of 𝑋 strongly 

mimics standard RDU with the 2-parameter Prelec (1998) function—provided that 𝛼 < 1. 

Since this is both characteristic of most empirical estimates of 𝛼 and indeed yields the 

characteristic inverse-s shape, this is strong mimicry of a well-known and widely used 

probability weighting function in the relevant part of the parameter space. 
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3. A general result  

 

 A general result can be proved for a class of random EU models. Return to the more 

usual way of writing the power utility or value function, specifically 𝑣(𝑧) = 𝑧𝜎, thinking 

now of the power 𝜎 as having some probability distribution within the subject, and make 

the following two assumptions.  

 

Assumption One. The subject’s distribution of 𝜎 is non-degenerate and has a bounded 

support Σ ⊂ (0,∞). Specifically, 𝜎 = 𝑖𝑛𝑓(Σ) > 0  and  𝜎 = 𝑠𝑢𝑝 (Σ) is finite.  

 

Assumption Two. The expected value of 𝜎 exists and is unity, that is 𝐸(𝜎) = 1.  

 

Assumption Two is meant to reflect a frequent (but by no means universal) finding when 

standard RDU or standard CPT models are estimated from certainty equivalents, namely, 

that estimated utility or value functions 𝑣(𝑧) are very nearly linear or at best very mildly 

concave (see e.g. Tversky and Kahneman 1992; Bruhin, Fehr-Duda and Epper 2010).  

 Under Expected Utility, the relative certainty equivalent of a simple prospect (given 

any value of 𝜎) will be 𝑝1 𝜎⁄ , whose second derivative with respect to 𝜎 is  

 

(5)  
𝜕2

𝜕𝜎2
 𝑝1 𝜎⁄ =

−𝑙𝑛 (𝑝)𝑝1 𝜎⁄

𝜎4
[− 𝑙𝑛(𝑝) −  𝜎] > 0  for all  𝑝 < 𝑒𝑥𝑝(− 𝜎). 

 

Define 𝑝 = 𝑒𝑥𝑝(− 𝜎). By Assumption One, 0 < 𝑝 < 𝑒𝑥𝑝(− 𝜎)∀ 𝜎 ∈ Σ. Therefore, eq. 5 

shows that for any 𝑝 < 𝑝, 𝑝1 𝜎⁄  is strictly convex in 𝜎 ∀ 𝜎 ∈ Σ. Jensen’s Inequality then 

implies that 𝐸(𝑝1 𝜎⁄ ) > 𝑝1 𝐸(𝜎)⁄ . Since 𝐸(𝜎) = 1 by Assumption Two, we have 𝐸(𝑝1 𝜎⁄ ) > 𝑝 

for sufficiently small 𝑝. That is: If Σ is bounded above and 𝐸(𝜎) = 1 (the mean value 

function 𝑣(𝑧) is linear), mean relative certainty equivalents of simple prospects will exceed 

𝑝 when 𝑝 is low enough. We have apparent overweighting of low enough probabilities.  

 Similarly, define 𝑝 = 𝑒𝑥𝑝(− 𝜎). By Assumption One, 1 > 𝑝 > 𝑒𝑥𝑝(− 𝜎)∀ 𝜎 ∈ Σ. 

Therefore, eq. 5 shows that for any 𝑝 > 𝑝, 𝑝1 𝜎⁄  is strictly concave in 𝜎 ∀ 𝜎 ∈ Σ. Jensen’s 
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Inequality then implies that 𝐸(𝑝1 𝜎⁄ ) < 𝑝1 𝐸(𝜎)⁄ . Since 𝐸(𝜎) = 1 by Assumption Two, we 

have 𝐸(𝑝1 𝜎⁄ ) < 𝑝 for sufficiently high 𝑝. That is: If Σ is bounded below away from zero and 

𝐸(𝜎) = 1 (the mean value function 𝑣(𝑧) is linear), mean relative certainty equivalents of 

simple prospects will be less than 𝑝 when 𝑝 is high enough. We have apparent 

underweighting of high enough probabilities. The following proposition has been proved. 

 

Proposition: Suppose that a subject’s utility or value of money is 𝑣(𝑧) = 𝑧𝜎, that this 

subject’s behavior is described by an independent random EU model where the 

subject’s distribution of 𝜎 satisfies Assumptions One and Two. Then: 

(1)  ∃ 𝑝 > 0 | 𝐸(𝑝1 𝜎⁄ ) > 𝑝 ∀ 𝑝 < 𝑝 (apparent overweighting of sufficiently low 

probabilities); and 

(2)  ∃ 𝑝 < 1 | 𝐸(𝑝1 𝜎⁄ ) < 𝑝 ∀ 𝑝 > 𝑝 (apparent underweighting of sufficiently high 

probabilities). 

 

Notice that the assumptions behind the proposition are only sufficient conditions: The 

parametric examples of Section 2 involve p.d.f.s with support (0,∞) (neither bounded 

above nor bounded below away from zero, as Assumption One requires).  

 

4. Graphical intuition 

 

 Figure 2 provides some graphical intuition behind . Assume that the random EU 

subject has a binomial distribution of 𝜎 such that 𝐸(𝜎) = 1: Specifically she has 𝜎 = 1/3 

with probability 3 4⁄  and 𝜎 = 3 with probability 1 4⁄ . Figure 2 shows the function 𝑝1 𝜎⁄  for 

𝜎 ∈ (0,3], given two values of 𝑝. The upper heavy curve is for 𝑝 = 0. 5 and, as can be seen, 

this curve is overwhelmingly and strongly concave: In this case, 𝐸[0. 5(1 𝜎)⁄ ] < 0. 5, so this 

subject appears to underweight the high probability 0.95.  The lower heavy curve is for 

𝑝 = 0.05 and, as can be seen, this curve is first convex and, for 𝜎 beyond about 1.5, very 

gently concave: Here, 𝐸[0.05(1 𝜎)⁄ ] > 0.05, so this subject also appears to overweight the 

low probability 0.05. This graphical intuition suggests why one may easily derive the 

characteristic inverse-s shape from many p.d.f.s 𝑓(𝑥|𝜓) underlying a random EU model.  
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Figure 2. Behavior of relative certainty equivalents as 𝜎 varies, at low and high 𝑝 

 

 

 

5. Discussion and conclusions 

 

 My results complicate interpretation of elicited certainty equivalents. However, I say 

‘complicate’ rather than ‘undermine’ for several reasons. First, I have not shown that 

random preference EU and standard RDU certainty equivalents are indistinguishable. The 

formal results are entirely about conditional expectations and say nothing about 

conditional medians or conditional variances and other moments; and one might test both 

random EU and random RDU on the basis of these other characteristics.  

For instance, recall that 𝐶𝑟𝑑(𝑝|𝑥, 𝜔) ≡ 𝜋(𝑝|𝜔)𝑥 and suppose we now assume that 𝑥 is a 

realization of a random variable 𝑋, giving the simplest version of a random RDU model. Let 

𝐶𝑉 denote coefficient of variation; then under random RDU, assuming that any weighting 

function parameters are fixed (not themselves random variables), we have  

0.95

0.05

C = (0.95)(1/σ)

C = (0.05)(1/σ)

σ

p, C, E(C)

1/3

1/3

E(σ) = 1 3

3E(σ) = 1

E [(0.95)(1/σ)] < 0.95...
"underweighting of
high probabilities"

E [(0.05)(1/σ)] > 0.05...
"overweighting of
low probabilities"
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(6)    𝐶𝑉(− 𝑙𝑛(𝑐)) ≡
√𝑉(− 𝑙𝑛(𝑐))

𝐸(− 𝑙𝑛(𝑐))
=

√𝑉(𝑋)[−𝑙𝑛 (𝜋(𝑝|𝜔))]2

𝐸(𝑋)[−𝑙𝑛 (𝜋(𝑝|𝜔))]
= 

√𝑉(𝑋)

𝐸(𝑋)
= 𝐶𝑉(𝑋) 

 

This says that for any given subject, the coefficient of variation of −𝑙𝑛(𝑐) will be equivalent 

to the coefficient of variation of 𝑋 and, moreover, independent of the particular W and 𝑝 of 

any simple prospect (𝑊, 𝑝), regardless of whether the weighting function is an identity 

function (EU) or not (RDU). This immediately suggests a test of both random preference EU 

and RDU based on multiple (more than two) certainty equivalent elicitation trials for 

several different simple prospects. To my knowledge, such data are scarce but more could 

be gathered with appropriate experimental designs. The key point, however, is that for 

certainty equivalents, the random preference hypothesis can make strong refutable 

predictions about moments (here, a ratio of moments) that are independent of the form or 

even the presence of any rank-dependent weighting function.  

 Second, discrete choice experiments already suggest that random EU cannot be a 

complete model of discrete choices (e.g. Loomes and Sugden 1998). Under the random 

preference hypothesis, much of what EU predicts concerning pairs of related discrete 

choice problems remains unchanged relative to what EU predicts in its deterministic form 

(Loomes and Sugden 1995; Gul and Pesendorfer 2006; Wilcox 2008). This implies that 

many well-known discrete choice violations of EU also violate random EU. Here I showed 

once more (see Hilton 1989) that certainty equivalents are a different matter: Under 

random EU, the expected values of certainty equivalents can mimic predictions of standard 

RDU and CPT. The upshot of this fact is that when one estimates risk models from certainty 

equivalents, part of the estimates (perhaps substantial parts) may reflect random 

preference heterogeneity as well as any underlying mean preference. 

Third, my results only complicate estimation based on conditional expectation 

functions. While this is the overwhelmingly common basis for estimation, some of the 

empirical literature on RDU and CPT uses pooled sample conditional medians of certainty 

equivalents for description (Tversky and Kahneman 1992, pp. 309-311; Gonzalez and Wu 

1999, p. 144-145). It may be that conditional median estimation (that is, least absolute 

deviation or LAD estimators) can solve the problem uncovered here. Recall the key role 

played by Jensen’s Inequality in Section 3’s general result: There is no counterpart of 
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Jensen’s Inequality for medians. No subject-level conditional median estimations (based on 

elicited certainty equivalents, using LAD estimation) of either RDU or CPT models are 

available. (Tversky and Kahneman 1992 do estimate a pooled sample weighting function 

from pooled sample conditional medians, but using a nonlinear least squares estimator.) 

My appendix looks at a LAD estimator and finds encouraging results for random EU data, 

but not for standard model EU data. I know of no estimator that correctly identifies 

weighting functions regardless of the true probabilistic model generating the data; finding 

such an estimator would be a nice contribution to decision research.   

 However, meaningful preference measurement may not be possible without strong 

assumptions concerning the random part of decision behavior (Wilcox 2008; Blavatskyy 

and Pogrebna 2010; Wilcox 2011; Apesteguia and Ballester 2016). Some say that elicited 

certainty equivalents permit “nonparametric” (or “parameter-free”) identification and 

estimation of preferences (Gonzales and Wu 1999; Abdellaoui 2000; Bleichrodt and Pinto 

2000; Abdellaoui, Bleichrodt and Paraschiv 2007) and many others repeat it (e.g. Prelec 

1998; Luce 2000; Nielson 2003; Fox and Poldrack 2009; Wakker 2010). “Nonparametric” 

means many different things, but many econometricians divide discussion of models in two 

parts: (1) a conditional expectation function, or perhaps a conditional median function, and 

(2) the error, the random part that remains once such a function has been removed in a 

way that makes the expectation (or median) of the error zero. In the preference 

measurement literature, scholars who say their estimation is “nonparametric” (or 

“parameter-free”) mean they are making few or no assumptions about the form of 

preference entities (utilities or values, and probability weights, and so forth) that appear in 

standard model conditional expectation functions. However, they routinely make the 

strong assumption of the standard model itself, and an old and well-developed alternative 

(the random preference model) has complicating consequences. 

 The essence of the standard model assumption is that the c.e.f. has an obvious 

interpretation—the intended interpretation being that of algebraic (deterministic) decision 

theory. Hendry and Morgan (2005, p. 23) argue that when we speak of model identification, 

we have things in mind beyond the original Cowles Foundation meaning—including 

“correspondence to the desired entity” and “satisfying the assumed interpretation (usually 

of a theory model).” Estimation of preferences from elicited certainty equivalents is 
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complicated in just these senses. The standard model is but one probabilistic model 

assumption, and under a venerable and contemporary alternative—the random preference 

model—the c.e.f. in part reflects the underlying distribution of preferences within the 

subject, in ways that can mimic “the desired entity,” the preference entity called the 

probability weighting function. I do not know whether certainty equivalents can 

nonparametrically identify such entities: This question needs a good answer. However, at 

this time there is certainly no rigorous reason to think elicited certainty equivalents free 

scholars of critical interpretive assumptions. As is true of discrete choices, it seems we 

choose a probabilistic model the moment we interpret certainty equivalents. 
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Appendix: A brief Monte Carlo illustration of the problem 

  

  Simulated data sets for this brief Monte Carlo analysis of several estimation methods 

are based on the experimental design of Gonzalez and Wu (1999). Certainty equivalents 

were elicited from their subjects for 𝑡 = 1,  , … , 165 distinct two-outcome prospects 

(𝑝𝑡, ℎ𝑡; 1 − 𝑝𝑡, 𝑙𝑡). These were constructed by fully crossing fifteen distinct pairs of high and 

low outcomes (ℎ𝑡, 𝑙𝑡) with eleven distinct probabilities 𝑝𝑡 of receiving the high outcome ℎ𝑡  

(and corresponding probabilities 1 − 𝑝𝑡 of receiving the low outcome 𝑙𝑡). The eleven 

probabilities are 𝑝𝑡 ∈ {.01, .05, .10, . 5, .40, .50, .60, .75, . 0, . 5, .  }; and the fifteen high and 

low outcome pairs are (ℎ𝑡, 𝑙𝑡) ∈ {( 5,0), (50,0), (75,0), (100,0), (150,0), ( 00,0), (400,0), 

(800,0), (50, 5), (75,50), (100,50), (150,50), (150,100), (  00,100), ( 00,150)}. These 

same 165 prospects (88 simple prospects and 77 non-simple prospects) are the “input” to 

the simulated subjects I create in the Monte Carlo data sets. Let 𝑍 = {0,  5, 50,… ,800} 

denote the set of the nine distinct outcomes found in these 165 prospects. 

 Each simulated subject 𝑠 = 1,  , … 1000 in the first data set is given a random EU 

certainty equivalent for each of the 165 prospects. Each subject 𝑠 is endowed with 

parameters 𝑘𝑠 and 𝜃𝑠 of the Gamma distribution p.d.f. as given in Example 1 of Section 2. 

The parameter 𝑘𝑠 is drawn once for each subject from a Lognormal distribution with mean 

𝐸(𝑘) = 0.75 and variance V(𝑘) ≈ 0.16. The parameter 𝜃𝑠 is then chosen (given the drawn 

𝑘𝑠) so that ℂ𝑒𝑢(𝑒−1|𝑘𝑠, 𝜃𝑠) = (1 + 𝜃𝑠)−𝑘
𝑠
= 𝑒−1. This endows each simulated subject 𝑠 with 

a random EU c.e.f. having the fixed point 𝑒−1, as is characteristic of the 1-parameter Prelec 

(1998) weighting function, but also creates heterogeneity in the degree of curvature of 

subjects’ c.e.f.s. Then for each subject 𝑠, 𝑡 = 1, , … ,165 values 𝑥𝑡
𝑠  are independently drawn 

from the Gamma distribution with that subject’s parameters 𝑘𝑠 and 𝜃𝑠. These create the 

165 simulated elicited certainty equivalents 𝑐𝑒𝑡
𝑠 = [𝑝𝑡ℎ𝑡

1/𝑥𝑡
𝑠

+ (1 − 𝑝𝑡)𝑙𝑡
1/𝑥𝑡

𝑠

]
𝑥𝑡
𝑠

 for each 

subject s. Repeating this 1000 times yields the “random EU” data set. 

 For comparison, I create a second data set of 1000 simulated subjects who are given 

standard EU certainty equivalents for each of the 165 prospects. Each simulated subject s is 

endowed with a fixed value 𝑥𝑠 , drawn once for each subject from a Gamma distribution 

with the parameters 𝑘 = 0.75 and 𝜃 =  .7 . For each subject 𝑠, this 𝑥𝑠  then creates 165 
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expected certainty equivalents 𝐸(𝑐𝑒𝑡
𝑠) = [𝑝𝑡ℎ𝑡

1/𝑥𝑠 + (1 − 𝑝𝑡)𝑙𝑡
1/𝑥𝑠]

𝑥𝑠

: These are standard 

EU c.e.f.s, and one must somehow add standard model errors to them. To do this, notice 

that each expected certainty equivalent may be rewritten as a proportion of the interval 

[𝑙𝑡, ℎ𝑡], that is as ∆𝑡
𝑠= (𝐸(𝑐𝑒𝑡

𝑠) − 𝑙𝑡) (ℎ𝑡 − 𝑙𝑡)⁄ . One may then interpret this proportion as the 

mean of a Beta distribution on the interval (0,1) and define parameters of that Beta 

distribution as 𝛼𝑡
𝑠 = 𝜛∆𝑡

𝑠 and 𝛽𝑡
𝑠 = 𝜛(1 − ∆𝑡

𝑠). (Beta distributions may be parameterized in 

terms of their mean ∆ ∈ (0,1) and an inverse dispersion parameter 𝜛 > 0, from which their 

more usual parameterization 𝛼 ≡ 𝜛∆ and 𝛽 ≡ 𝜛(1 − ∆) may be had. I chose 𝜛 = 6 to give 

the resulting simulated certainty equivalents 𝑐𝑒𝑡
𝑠 in this simulated Standard EU data 

conditional variances resembling those found in the simulated Random EU data.) Then one 

may draw a beta variate 𝑦𝑡
𝑠 on (0,1) using these parameters, and the simulated certainty 

equivalents with their standard model error become 𝑐𝑒𝑡
𝑠 = 𝑙𝑡 + (ℎ𝑡 − 𝑙𝑡)𝑦𝑡

𝑠. 

  I consider four estimation methods. The first two methods use a standard RDU model 

of the c.e.f. of the 𝑐𝑒𝑡
𝑠, that is 𝐸(𝑐𝑒𝑡

𝑠|𝑣𝑠, 𝑤𝑠) = (𝑣𝑠)−1[𝑤𝑠(𝑝𝑡)𝑣
𝑠(ℎ𝑡) + (1 − 𝑤𝑠(𝑝𝑡))𝑣

𝑠(𝑙𝑡)]; 

the corresponding empirical model is then 𝑐𝑒𝑡
𝑠 = 𝐸(𝑐𝑒𝑡

𝑠|𝑣𝑠 , 𝑤𝑠) + 𝜀𝑡
𝑠 . I make the standard 

assumptions about the error, those being 𝐸(𝜀𝑡
𝑠) = 𝐸(𝜀𝑡

𝑠|𝑝𝑡, ℎ𝑡 , 𝑙𝑡) = 0, but also adopt the 

assumption of Bruhin, Fehr-Duda and Epper (2010) that 𝑉𝑎𝑟(𝜀𝑡
𝑠) is proportional to 

(ℎ𝑡 − 𝑙𝑡)
2 for each subject. (This assumption happens to be true for the simulated Standard 

EU data.) This implies a “weighted error” 𝜖𝑡
𝑠 = [𝑐𝑒𝑡

𝑠 − 𝐸(𝑐𝑒𝑡
𝑠|𝑣𝑠, 𝑤𝑠)] (ℎ𝑡 − 𝑙𝑡)⁄ , and the first 

two estimation methods optimize a function of these weighted errors.  

The first estimation method combines a nonlinear least squares estimator with lean 1-

parameter forms of the functions 𝑤𝑠 and 𝑣𝑠, 𝑤𝑠(𝑝) = 𝑝𝛾
𝑠
[𝑝𝛾

𝑠
+ (1 − 𝑝)𝛾

𝑠
]
1/𝛾𝑠

⁄  and 

𝑣𝑠(𝑧) = 𝑧𝜎
𝑠
. This is the estimation method of Tversky and Kahneman (1992): I’ll call it 

NLS-M-L (for “nonlinear least squares, money errors, lean parameterization”). The second 

estimation method combines a maximum likelihood estimator with the same 𝑣𝑠(𝑧) = 𝑧𝜎
𝑠
, 

but a more expansive 2-parameter weighting function 𝑤𝑠(𝑞) = 𝛿𝑠𝑝𝛾
𝑠
[𝛿𝑠𝑝𝛾

𝑠
+ (1 − 𝑝)𝛾

𝑠
]⁄ . 

The weighted error 𝜖𝑡
𝑠 is assumed to have a Normal distribution with zero mean and 

constant variance. This estimation method is inspired by Bruhin, Fehr-Duda and Epper 

(2010), but I will always estimate at the individual subject level whereas they estimated 
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finite mixture models of the subject population and included prospect-specific error 

variance terms (which cannot be done in the case of subject-level estimation). I’ll call this 

method ML-M-C (for “maximum likelihood, money errors, common parameterization”). 

The power utility function, combined with some 2-parameter weighting function, is quite 

common in the literature on risk preference estimation. 

The third method writes an estimating equation in utility rather than money terms, 

and the parameterizations of 𝑣𝑠 and 𝑤𝑠 are maximally expansive. There are nine distinct 

outcomes in 𝑍, so there are nine distinct values of 𝑣𝑠(𝑧). Since the RDU value function is an 

interval scale, one can choose 𝑣𝑠(0) = 0 and 𝑣𝑠(800) = 1, leaving seven unique and 

distinct values of 𝑣𝑠(𝑧) as seven parameters to estimate. Similarly, the eleven distinct 

probabilities in the experiment become eleven distinct parameters 𝑤𝑠(𝑝𝑡) to estimate. Now 

linearly interpolate 𝑣𝑠(𝑐𝑒𝑡
𝑠) from the parameters 𝑣𝑠(𝑧) in the following manner. Let 

𝑙𝑢𝑏(𝑐𝑒𝑡
𝑠) = mi 𝑧∈𝑍 𝑧 | 𝑧 ≥ 𝑐𝑒𝑡

𝑠  and 𝑔𝑙𝑏(𝑐𝑒𝑡
𝑠) = max𝑧∈𝑍 𝑧 | 𝑧 ≤ 𝑐𝑒𝑡

𝑠 be the least upper bound 

and greatest lower bound (among the nine outcomes in the experiment) on 𝑐𝑒𝑡
𝑠, with values 

given by the parameter values 𝑣𝑠(𝑙𝑢𝑏(𝑐𝑒𝑡
𝑠)) and 𝑣𝑠(𝑔𝑙𝑏(𝑐𝑒𝑡

𝑠)). Then define 

�̃�𝑠(𝑐𝑒𝑡
𝑠) =

[𝑙𝑢𝑏(𝑐𝑒𝑡
𝑠)−𝑐𝑒𝑡

𝑠]𝑣𝑠(𝑔𝑙𝑏(𝑐𝑒𝑡
𝑠))+[𝑐𝑒𝑡

𝑠−𝑔𝑙𝑏(𝑐𝑒𝑡
𝑠)]𝑣𝑠(𝑙𝑢𝑏(𝑐𝑒𝑡

𝑠))

𝑙𝑢𝑏(𝑐𝑒𝑡
𝑠)−𝑔𝑙𝑏(𝑐𝑒𝑡

𝑠)
, 

a linear interpolation of 𝑣𝑠(𝑐𝑒𝑡
𝑠). This estimation method then assumes that the c.e.f. of 

�̃�𝑠(𝐶𝑡
𝑠) is the RDU of prospect 𝑡, that is 𝐸(�̃�𝑠(𝑐𝑒𝑡

𝑠)|𝑣𝑠, 𝑤𝑠) = 𝑤𝑠(𝑝𝑡)𝑣
𝑠(ℎ𝑡) + (1 −

𝑤𝑠(𝑝𝑡))𝑣
𝑠(𝑙𝑡), and one may then think of �̃�𝑠(𝑐𝑒𝑡

𝑠) − 𝐸(�̃�𝑠(𝑐𝑒𝑡
𝑠)|𝑣𝑠, 𝑤𝑠) as a “utility error.” 

Following Wilcox (2011), assume the variance of these utility errors is proportional to 

[𝑣𝑠(ℎ𝑡) − 𝑣𝑠(𝑙𝑡) ]
2. Then 𝜁𝑡

𝑠 = [�̃�𝑠(𝐶𝑡
𝑠) − 𝐸(�̃�𝑠(𝐶𝑡

𝑠)|𝑣𝑠, 𝑤𝑠)] [𝑣𝑠(ℎ𝑡) − 𝑣𝑠(𝑙𝑡) ]⁄  is a weighted 

utility error that becomes the object of nonlinear least squares estimation. I call this the 

NLS-U-E estimation (for “nonlinear least squares, utility errors, expansive 

parameterization”). It is inspired by Gonzalez and Wu’s (1999) estimation method, though 

there are several differences between their method and this one (see Gonzalez and Wu 

1999, pp.146-148, for details). 

Finally, I consider an estimation method that may sidestep the issue identified in the 

text. Rather than taking (𝑣𝑠)−1[𝑤𝑠(𝑝𝑡)𝑣
𝑠(ℎ𝑡) + (1 − 𝑤𝑠(𝑝𝑡))𝑣

𝑠(𝑙𝑡)] to be the conditional 

mean of 𝑐𝑒𝑡
𝑠, this last estimation method takes this to be the conditional median of 𝑐𝑒𝑡

𝑠: 
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That is, let 𝑀𝑒𝑑(𝑐𝑒𝑡
𝑠|𝑣𝑠, 𝑤𝑠) = (𝑣𝑠)−1[𝑤𝑠(𝑝𝑡)𝑣

𝑠(ℎ𝑡) + (1 − 𝑤𝑠(𝑝𝑡))𝑣
𝑠(𝑙𝑡)], and let 

weighted money errors be 𝜖𝑡
𝑠 = [𝐶𝑡

𝑠 −𝑀𝑒𝑑(𝐶𝑡
𝑠|𝑣𝑠, 𝑤𝑠)] (ℎ𝑡 − 𝑙𝑡)⁄ . Although these errors 

have exactly the same form as the errors in the first two methods, the fact that we wish to 

estimate a conditional median function (rather than a c.e.f.) implies that least squares is not 

the appropriate estimator: Rather, we want a least absolute deviation or LAD estimator. 

Combined with the same lean parameterization used for the first method, I call this the 

LAD-M-L estimation (for “least absolute deviation, money errors, lean parameterization”). 

With the exception of the NLS-U-E estimation method, the well-known simplex 

algorithm of Nelder and Mead (1965) was used to optimize objective functions. For the 

NLS-U-E estimation method, I imposed monotonicity constraints on the estimated 𝑣𝑠(𝑧) 

and 𝑤𝑠(𝑝𝑡) (one difference versus Gonzalez and Wu 1999) and this requires a different 

optimization algorithm: Powell’s (1992) COBYLA algorithm is used for this estimation 

instead. All estimations were performed using the SAS procedure “NLP” (nonlinear 

programming) in the SAS 9.4 version of the SAS/OR software. 

Rather than providing tabular results of these four estimation methods as applied to 

the two data sets, I provide a sequence of eight figures. The features of each figure are 

identical. Estimated weighting functions for the first 250 subjects in each data set are 

plotted as quite thin, light greyscale lines on a black background: This has the effect of 

representing the behavior of each method as a light cloud of lines. A heavy light grey 

identity line shows the (linear, identity) weighting function of an EU subject; deviations 

from this line represent both sampling variability and possible bias in the estimations. 

Finally, a heavy dashed white line plots the mean estimated probability weight (across all 

1000 subjects in each simulated data set) at each of the eleven values of 𝑝𝑡 in the 

experimental design: Since all simulated subjects in both data sets are EU subjects with 

identity weighting functions, deviations of this heavy dashed white line from the identity 

line illustrate the bias of each estimation method in each data set. 

The figures come in pairs on each page that follows. Each page presents the results for 

one estimation method, with the top and bottom figures showing results for the Standard 

EU and Random EU data sets, respectively. The pair of Figures A1-a and A1-b show results 

for the NLS-M-L estimation method; Figures A2-a and A2-b show results for the ML-M-C 
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method; Figures A3-a and A3-b show results for the NLS-U-E method; and Figures A4-a and 

A4-b show results for the LAD-M-L method.  

None of these four estimation methods are bias-free for both the Standard EU and 

Random EU data sets, and this is the primary finding of this appendix. The method NLS-U-E 

is biased towards finding inverse-s probability weighting for both data sets: In the case of 

the Standard EU data I suspect this is because this method is just too parametrically 

expansive for the sample size. By contrast, the NLS-M-L and ML-M-C methods are virtually 

unbiased for Standard EU data, while they show the predicted bias when applied to the 

Random EU data. As speculated, the LAD-M-L method provides unbiased (and 

astonishingly tight) estimates for the Random EU data, but displays a quite noticeable bias 

in the Standard EU data in a direction opposite to inverse-s probability weighting. The 

latter finding (unexpected by me) may occur because the standard EU errors are drawn 

from Beta distributions: Though those errors have a zero mean by construction, beta 

distributions are generally skewed so that these errors would not usually have zero median 

(as required for proper LAD estimation). In sum, none of these four estimation methods are 

robust to the underlying source of randomness in the data generating process.  
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Figure A1-a: NLS-M-L Weighting Estimates, Standard EU Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
st

im
at

ed
 W

ei
gh

t 
o

n
 H

ig
h

 O
u

tc
o

m
e

Probability of High Outcome

Figure A1-b: NLS-M-L Weighting Estimates, Random EU Data
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Figure A2-a: ML-M-C Weighting Estimates, Standard EU Data
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Figure A2-b: ML-M-C Weighting Estimates, Random EU Data
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Figure A3-a. NLS-U-E Weighting Estimates, Standard EU Data
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Figure A3-b. NLS-U-E Weighting Estimates, Random EU Data
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Figure A4-a: LAD-M-L Weighting Estimates, Standard EU Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
st

im
at

ed
 W

ei
gh

t 
o

n
 H

ig
h

 O
u

tc
o

m
e

Probability of High Outcome

Figure A4-b: LAD-M-L Weighting Estimates, Random EU Data
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