
Chapman University
Chapman University Digital Commons

ESI Working Papers Economic Science Institute

2016

Ambiguity Framed
Mark Schneider
Chapman University

Jonathan W. Leland
National Science Foundation

Nathaniel Wilcox
Chapman University, nwilcox@chapman.edu

Follow this and additional works at: http://digitalcommons.chapman.edu/esi_working_papers

Part of the Econometrics Commons, Economic Theory Commons, and the Other Economics
Commons

This Article is brought to you for free and open access by the Economic Science Institute at Chapman University Digital Commons. It has been
accepted for inclusion in ESI Working Papers by an authorized administrator of Chapman University Digital Commons. For more information, please
contact laughtin@chapman.edu.

Recommended Citation
Schneider, M., Leland, J., & Wilcox, N. (2016). Ambiguity framed. ESI Working Paper 16-11. Retrieved from
http://digitalcommons.chapman.edu/esi_working_papers/189/

http://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/esi_working_papers?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/esi?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.chapman.edu/esi_working_papers?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/344?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/353?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu


Ambiguity Framed

Comments
Working Paper 16-11

This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/esi_working_papers/189

http://digitalcommons.chapman.edu/esi_working_papers/189?utm_source=digitalcommons.chapman.edu%2Fesi_working_papers%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

 

 

 

Ambiguity Framed 

 

Mark Schneider, Jonathan Leland, and Nathaniel T. Wilcox 

 

In his exposition of subjective expected utility theory, Savage (1954) proposed that the Allais 

paradox could be reduced if it were recast into a format which made the appeal of the 

independence axiom of expected utility theory more transparent. Recent studies consistently find 

support for this prediction. We consider a salience-based choice model which explains this 

frame-dependence of the Allais paradox and derive the novel prediction that the same type of 

presentation format which was found to reduce Allais-style violations of expected utility theory 

will also reduce Ellsberg-style violations of subjective expected utility theory since that format 

makes the appeal of Savage’s “sure thing principle” more transparent. We design an experiment 

to test this prediction and find strong support for such frame dependence of ambiguity aversion 

in Ellsberg-style choices. In particular, we observe markedly less ambiguity-averse behavior in 

Savage’s matrix format than in a more standard ‘prospect’ format. This finding poses a new 

challenge for the leading models of ambiguity aversion. 
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1.   Introduction 

Expected utility (EU) theory (Von Neumann and Morgenstern, 1947) and subjective 

expected utility (SEU) theory (Savage, 1954) are widely recognized as the standard models of 

rational decision making under risk and uncertainty. Both models have also been applied as 

descriptive theories of actual behavior, although persistent empirical challenges were raised soon 

after the models were introduced. Allais (1953) devised pairs of choices, one involving a certain 

outcome and a risky prospect and the other a choice between two risky prospects where people 

frequently violate the independence axiom of EU. Ellsberg (1961) presented pairs of choices 

each involving a risky prospect (whose probabilities are given) and an uncertain prospect (whose 

probabilities are unknown) where people frequently violate the ‘sure-thing’ principle of SEU.   

In his exposition of subjective expected utility, Savage (1954) digressed to address the 

Allais-type violations of the independence axiom. He conjectured that these violations might be 

reduced if the choice situations were reframed in a transparent format. Tests of this prediction, 

discussed below, have consistently found that the Allais paradox is susceptible to framing, with 

significantly fewer violations in Savage’s proposed presentation format. Since the Ellsberg 

paradox also violates an independence condition, we ask whether applying Savage’s presentation 

format to Ellsberg-style choices leads to fewer violations of SEU. To our knowledge, this 

question has not been investigated. Section 2 provides a motivating example and reviews a small 

existing literature. Section 3 introduces the model which inspired our experiment and derives the 

main prediction that we test. Section 4 describes our experimental design and protocol. Section 5 

presents our results, and Section 6 concludes. Further econometric analysis is provided in 

Appendix A. A sufficient condition for the motivating model to be incentive compatible with our 

experimental design is presented in Appendix B. All materials from the experiment are 

accessible from a link in Appendix C.  

 

2.   Motivation 

Consider the example of the Allais paradox discussed in Savage (1954) shown in the left 

panel of Figure 1 (where the payoffs are in thousands of dollars) presented in what we refer to as 

a minimal or efficient frame.
1
 In this version, a decision maker chooses between lotteries 𝑝 and 𝑞 

                                                            
1 A minimal frame, as described in Leland and Schneider (2016), is a matrix presentation of choice alternatives 

which has the smallest dimension (e.g., fewest number of columns) necessary to represent those alternatives.    
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and then chooses between lotteries 𝑝′ and 𝑞′. Lottery 𝑝 offers $500,000 with certainty, whereas 𝑞 

offers a 10% chance of $2.5 million, an 89% chance of $500,000, and a 1% chance of $0.  The 

independence axiom (and Savage’s sure-thing principle) imply that a decision maker with strict 

preferences will choose either 𝑝 and 𝑝′ or 𝑞 and 𝑞′ (in accord with the decision maker’s attitude 

toward risk). Yet Savage himself reports expressing a preference for 𝑝 over 𝑞 and for 𝑞′ over 𝑝′ 

(Savage, 1954), in violation of his own theory! 

 

Figure 1. The Allais Paradox in Minimal and Transparent Frames  

The Allais Paradox in Minimal Frames              The Allais Paradox in Transparent Frames 

 
 

 

Troubled by his own expressed preferences, Savage (1954) invites consideration of an 

alternative representation of the same choices similar to the presentation in the right panel of 

Figure 1. In this presentation, it is clear that 𝑝 and 𝑞 each offer an 89% chance of $500,000 and 

that 𝑝′ and 𝑞′ each offer an 89% chance of $0. Savage proposes that this change in framing may 

enhance the appeal of the independence axiom and produce more consistent choices. 

We refer to the type of presentation in the right panel of Figure 1 as a transparent frame 

since it makes the normative appeal of the independence axiom transparent. In particular, a 

transparent frame isolates the common consequences of the lotteries under consideration and 

focuses attention on the differences between lotteries as prescribed by the independence axiom.  

A number of recent studies (Leland, 2010; Bordalo et al., 2012; Incekara-Hafalir and Stecher, 

2012; Birnbaum and Schmidt, 2015; Harman and Gonzalez, 2015) have investigated whether 

observed behavior is more consistent with Savage’s theory when the Allais paradox choices are 

presented to subjects in transparent frames. All of these studies find support for Savage’s 

conjecture. Incekara-Hafalir and Stecher (2012) conclude that “given a transparent presentation, 

expected utility theory performs surprisingly well.” 

     (x1,y1)    (p1,q1)    (x2,y2)    (p2,q2)    (x3,y3)    (p3,q3)             (x1,y1)   (p1,q1)    (x2,y2)    (p2,q2)   (x3,y3)    (p3,q3) 

p 500 0.10 500 0.89 500 0.01 p 500 0.10 500 0.89 500 0.01 
q 2500 0.10 500 0.89 0 0.01 q 2500 0.10 500 0.89 0 0.01 

              
       (x1,y1)    (p1,q1)    (x2,y2)    (p2,q2)                                          (x1,y1)   (p1,q1)    (x2,y2)    (p2,q2)   (x3,y3)    (p3,q3) 

p′ 500 0.11 0 0.89   p′ 500 0.10 0 0.89 500 0.01 
q′ 2500 0.10 0 0.90   q′ 2500 0.10 0 0.89 0 0.01 
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The matrix presentation format for lotteries used by Savage has been formalized by Leland 

and Schneider (2016) who also develop a salience-based decision algorithm that operates over 

frames. We will show that a novel and general prediction of the model in Leland and Schneider 

(2016) is that ambiguity aversion is also susceptible to framing. In particular, the same type of 

frame that reduces Allais-style violations of EU is predicted to reduce Ellsberg-style violations 

of SEU.  To illustrate, consider the pairs of choices in Figure 2 that were used in our experiment. 

The top pair is a choice between two state-dependent lotteries shown in minimal frames, where 

the lottery the decision maker plays depends on her choice (A or B) and the realization of an 

ambiguous state of the world (a ‘red ticket’ state or a ‘blue ticket’ state). The decision maker 

does not know the probability that the true state is red or blue. As in Ellsberg’s classical paradox, 

one option (A) is risky (it yields the same lottery regardless of the state), whereas the other 

option (B) is ambiguous (it yields different lotteries in different states). The decision maker is 

also given a similar choice in which the lotteries assigned to the red and blue ticket states are 

reversed. This construction resembles that in Ellsberg’s (1961) two-color paradox.  

 

Figure 2. Ellsberg’s Paradox in Minimal Frames (top) and Transparent Frames (bottom) 

 

 

The SEU model predicts that a decision maker who strictly prefers A to B in Figure 2 will 

also strictly prefer B to A when the lotteries assigned to red and blue states are reversed—acting 

as if that agent assigns a subjective probability distribution over states. However, in similar types 

of choices, Ellsberg (1961) found that many people preferred A to B regardless of whether the 

assignment of lotteries to states is reversed. Since A offers a known probability of winning a 

$ N/12 $ N/12 $ N/12 $ N/12

A $25   6/12 $0   6/12 $25   6/12 $0  6/12

B $25   9/12 $0   3/12 $25   3/12 $0  9/12

$ N/12 $ N/12 $ N/12 $ N/12 $ N/12 $ N/12

A $25  6/12 $0  3/12 $0  3/12 $25  3/12 $25  3/12 $0  6/12

B $25  6/12 $25  3/12 $0  3/12 $25  3/12 $0  3/12 $0  6/12

You Draw a Red Ticket You Draw a Blue Ticket

You Draw a Red Ticket You Draw a Blue Ticket
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prize, whereas the probability of winning in option B is ambiguous, the strict preference for A is 

termed ambiguity aversion.  

 The choices between A and B could, like the Allais lotteries, be presented in the ‘transparent’ 

frames shown in the bottom of Figure 2. In this ‘Savage’ presentation, for the choice between A 

and B, the common consequences in each state-contingent lottery are isolated, encouraging the 

decision maker to focus on the differences between A and B (the 3/12 chance of A paying $0 and 

B paying $25 in the red state and the 3/12 chance of A paying $25 and B paying $0 in the blue 

state).  A decision maker who focuses only on these differences and assigns a uniform prior over 

states will then be indifferent between A and B, regardless of whether the assignment of lotteries 

to states is reversed. Thus, a transparent frame of the Ellsberg paradox is predicted to produce 

behavior closer to ambiguity neutrality. In the next section we show that such behavior is indeed 

predicted by the model of Leland and Schneider (2016) under fairly general conditions. 

However, such frame-dependence of ambiguity aversion is not consistent with any of the leading 

models of ambiguity aversion in the literature. We test this prediction in a new experiment and 

find strong support for the predicted framing effect. 

 There is but a small and very recent literature on the possibility that ambiguity attitudes are 

susceptible to framing effects. Chew et al. (2016) examine whether presentation of choice 

alternatives as text description versus payoff tables (so as to make the ambiguity inherent in the 

choices more or less explicit) influences the degree of ambiguity aversion observed. They find 

that for subjects who do not recognize ambiguity in some tasks, emphasizing ambiguity produces 

greater ambiguity aversion in others. However, subjects that recognized the ambiguity 

independent of presentation format tended to be more ambiguity-averse regardless of whether the 

ambiguity is emphasized. Trautmann and van der Kuijlen (2014) examine attitudes toward 

ambiguity for gains versus losses.  They report results suggesting that ambiguity aversion varies 

according to whether the outcomes are gains or losses, as has been observed for attitudes toward 

risk.  Finally, Voorhoeve et al., (2016) test the findings in Chew et al. (2016) and in Trautmann 

and van der Kuijlen (2014), and fail to find significant support for the hypotheses that 

emphasizing ambiguity, or reframing gains as losses, alters the prevalence of ambiguity aversion. 

With these mixed findings, we think there is room for more experimental work. Additionally, the 

next section provides a highly focused theoretical motivation for our new experiment. 
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3.  A Model of Salience based Choice under Uncertainty 

As in Leland and Schneider (2016), we employ a matrix representation of the attributes (i.e., 

payoffs and probabilities) of a pair of lotteries. A generic frame for simple Ellsberg-style choices 

which encompasses the basic pairs of alternatives used in our experiment is shown in Figure 3 in 

which there are two possible states – a “red ticket” state and a “blue ticket” state. The underlying 

state is unknown to the decision maker. Option A in Figure 2 offers lottery {𝑥1
𝑟 , 𝑝1

𝑟; … ; 𝑥𝑛𝑟
𝑟 , 𝑝𝑛𝑟

𝑟 } 

if the state is red and offers lottery {𝑥1
𝑏 , 𝑝1

𝑏; … ; 𝑥𝑛𝑏
𝑏 , 𝑝𝑛𝑏

𝑏 } if the state is blue. Likewise, Option B 

offers lottery {𝑦1
𝑟 , 𝑞1

𝑟; … ; 𝑦𝑛𝑟
𝑟 , 𝑞𝑛𝑟

𝑟 } if the state is red and lottery {𝑦1
𝑏 , 𝑞1

𝑏; … ; 𝑦𝑛𝑏
𝑏 , 𝑞𝑛𝑏

𝑏 } if the state is 

blue. All frames in the experiment were presented to be monotonically decreasing in outcomes 

for each state-contingent lottery. For the frame in Figure 3, this entails that 𝑥1
𝑟 ≥ ⋯ ≥ 𝑥𝑛𝑟

𝑟  and 

𝑥1
𝑏 ≥ ⋯ ≥ 𝑥𝑛𝑏

𝑏  for Option A and analogous monotonicity for Option B. Note that the index 

𝑖 ∈ {1,2, … , 𝑛𝜔} in Figure 3 denotes the location of the i
th

 column vector in the frame in state 𝜔.   

 

Figure 3. A Generic Frame under Ambiguity  

 
 

 

 

 

 

 

 

 

Given the notion of a frame as a matrix representation of state-contingent lotteries, we can 

model the behavior of a frame-sensitive decision maker by developing a computational decision 

algorithm which operates over frames. To do so, following Leland and Schneider (2016), we 

start with the SEU model of Anscombe and Aumann (1963).  

Index the possible states of the world by 𝜔 ∈{1,2, … , 𝑚}. Denote ambiguous prospects by 

ℎ and 𝑔, where ℎ assigns lottery ℎ(𝜔) with corresponding payoff and probability vectors 

(𝐱𝝎, 𝒑𝝎) to each state. Likewise, 𝑔 assigns lottery 𝑔(𝜔) with payoff and probability 

vectors (𝐲𝝎, 𝒒𝝎) to each state. In the classic alternative-based evaluation model, there is a unique 

subjective probability distribution 𝜋 over states (Anscombe and Aumann, 1963) such that ℎ is 

chosen over 𝑔 if and only if (1) holds: 

 

  
  

Red Ticket State 
 

Blue Ticket State 

A 𝑥1
𝑟 𝑝1

𝑟 … 𝑥𝑖
𝑟 𝑝𝑖

𝑟 … 𝑥𝑛𝑟
𝑟  𝑝𝑛𝑟

𝑟   𝑥1
𝑏 𝑝1

𝑏 … 𝑥𝑖
𝑏 𝑝𝑖

𝑏 … 𝑥𝑛𝑏
𝑏  𝑝𝑛𝑏

𝑏  

B 𝑦1
𝑟 𝑞1

𝑟 … 𝑦𝑖
𝑟 𝑞𝑖

𝑟 … 𝑦𝑛𝑟
𝑟  𝑞𝑛𝑟

𝑟   𝑦1
𝑏 𝑞1

𝑏 … 𝑦𝑖
𝑏 𝑞𝑖

𝑏 … 𝑦𝑛𝑏
𝑏  𝑞𝑛𝑏

𝑏  
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(1) ∑ ∑ 𝜋𝜔[𝑝𝑖
𝜔𝑢(𝑥𝑖

𝜔)]𝑛𝜔

𝑖
𝑚
𝜔 >  ∑ ∑ 𝜋𝜔[𝑞𝑖

𝜔𝑢(𝑦𝑖
𝜔)]𝑛𝜔

𝑖
𝑚
𝜔  

Note that (1) can be written equivalently as an attribute-based evaluation model in (2): 

(2) ∑ ∑ 𝜋𝜔[(𝑝𝑖
𝜔 − 𝑞𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) + 𝑢(𝑦𝑖

𝜔))/2 + (𝑢(𝑥𝑖
𝜔) − 𝑢(𝑦𝑖

𝜔))(𝑝𝑖
𝜔 + 𝑞𝑖

𝜔)/2]𝑛𝜔

𝑖
𝑚
𝜔 > 0. 

Leland and Schneider (2016) note that this “attribute-based evaluation computes probability 

differences associated with outcomes weighted by the average utility of those outcomes plus 

utility differences of outcomes weighted by their average probability of occurrence.” An agent 

who chooses according to (2) will make the same choices as an agent who chooses according to 

the SEU model in (1). But drawing on recent work which highlights the role of salience 

perception in decision making (e.g., Bordalo et al., 2012; Koszegi and Szeidl, 2013), suppose 

that when comparing lotteries, the decision maker systematically focuses on large differences in 

payoffs or probabilities and systematically overweights them as a consequence. To formalize this 

intuition, Leland and Schneider place weights 𝜓Ρ(𝑝𝑖
𝜔, 𝑞𝑖

𝜔) on probability differences and 

𝜓Χ(𝑥𝑖
𝜔, 𝑦𝑖

𝜔) on payoff differences, yielding a model in which ℎ is strictly preferred to 𝑔 if and 

only if inequality (3) holds: 

(3) ∑ ∑ 𝜋𝜔[ 𝜓Ρ(𝑝𝑖
𝜔, 𝑞𝑖

𝜔)(𝑝𝑖
𝜔 − 𝑞𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) + 𝑢(𝑦𝑖

𝜔))/2 𝑛𝜔

𝑖
𝑚
𝜔   

   + 𝜓Χ(𝑥𝑖
𝜔, 𝑦𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) − 𝑢(𝑦𝑖

𝜔))(𝑝𝑖
𝜔 + 𝑞𝑖

𝜔)/2]  >  0.  

Leland and Schneider (2016) refer to the model in (3) as “salience weighted utility over 

presentations” (SWUP). In (3), the weights 𝜓Ρ(𝑝𝑖
𝜔, 𝑞𝑖

𝜔) and 𝜓Χ(𝑥𝑖
𝜔, 𝑦𝑖

𝜔) are “salience functions” 

satisfying two critical properties of salience perception noted in Bordalo et al. (2012; 2013): 

 

Definition 1 (Salience Function): A salience function 𝜓(𝑤, 𝑧) is any (non-negative), symmetric 

and continuous function that satisfies the following two properties: 

1. Ordering: If  [𝑤′, 𝑧′] ⊂ [𝑤, 𝑧]   then 𝜓(𝑤′, 𝑧′) < 𝜓(𝑤, 𝑧).
 
 

2. Diminishing Sensitivity: for any 𝑤, 𝑧, 𝜖 > 0, 𝜓(𝑤 + 𝜖, 𝑧 + 𝜖) < 𝜓(𝑤, 𝑧). 

 

         The model in (3) can explain the Allais paradox framing effect conjectured by Savage. In 

the transparent frame in Figure 1, a decision maker who acts in accordance with (3) chooses p 

over q if and only if she chooses p′ over q′, consistent with the independence axiom. In contrast, 
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the salience evaluations in the two choice pairs can differ under minimal frames, enabling the 

model to accommodate the Allais paradox. The model in (3) not only explains the Allais framing 

effect but also predicts a novel framing effect in the context of Ellsberg’s paradox. We can now 

apply the SWUP model to demonstrate this prediction. 

 

3.1    The Ellsberg Paradox in Minimal and Transparent Frames 

We illustrate the SWUP model with basic pair 1 from our experiment which is shown in minimal 

frames in Figure 4. Normalize 𝑈($25) = 1, 𝑈($0) = 0, and let 𝜋𝑟 denote the subjective 

probability that the true state is red. Then inequality (3) predicts that A is chosen over B if  

𝜋𝑟𝜓Ρ(0.5,0.75)(−0.25) + (1 − 𝜋𝑟)𝜓Ρ(0.5, 0.25)(0.25) > 0. 

As observed by Leland and Schneider (2016), symmetry and diminishing sensitivity of 𝜓Ρ imply 

that 𝜓Ρ(0.5, 0.25) >  𝜓Ρ(0.5,0.75). Thus, under a uniform prior, the decision maker whose 

behavior is characterized by (3) chooses risky lottery A over ambiguous option B, and likewise 

chooses A′ over B′ for any salience function 𝜓Ρ. Hence, SWUP predicts ambiguity aversion in 

minimal frames. In the minimal frames of Figure 4, all payoff differences within each column 

vector are zero, so that behavior under SWUP depends solely on the subjective prior over states 

and the probability salience function. 

 

Figure 4. The Ellsberg Paradox in Minimal Frames 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

  Red Ticket State   Blue Ticket State 

A $25 0.50 $0 0.50  $25 0.50 $0 0.50 

B $25 0.75 $0 0.25  $25 0.25 $0 0.75 
 

 

  Red Ticket State   Blue Ticket State 

A′ $25 0.50 $0 0.50  $25 0.50 $0 0.50 

B′ $25 0.25 $0 0.75  $25 0.75 $0 0.25 
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Next, consider transparent frames of the same two pairs, shown in Figure 5. Notice that here 

it is the probability differences within each column vector that are zero, so that behavior is 

determined solely by the subjective prior and the payoff salience function. In particular, 

inequality (3) now predicts that A is chosen over B if   

 

𝜋𝑟𝜓Χ(0,25)(−25) + (1 − 𝜋𝑟)𝜓Χ(25,0)(25) > 0. 
 

Clearly, under a uniform prior over states and by symmetry of 𝜓Χ, the decision maker is 

predicted to be indifferent between A and B (and is likewise predicted to be indifferent between 

A′ and B′). Thus, SWUP predicts ambiguity aversion in minimal frames and ambiguity-

neutrality in transparent frames under very general conditions (for any utility function, and any 

salience functions)
2
. We designed and conducted an experiment to test the comparative statics 

prediction of SWUP that subjects will be closer to ambiguity neutrality in transparent frames 

than in minimal frames, which we describe in the following sections. 

 

Figure 5. The Ellsberg Paradox in Transparent Frames 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                            
2 SWUP can also be generalized to endow each agent with a parameter 𝜗 ∈ [0,1] which is the probability the agent 

naturally re-frames a transparent presentation into a minimal one. This is particularly plausible if people naturally 

think in minimal frames. In this sense, 𝜗 indexes the strength of the framing effect for that agent (agents with 𝜗 = 1 

are frame insensitive and agents with 𝜗 = 0 conform to SEU in transparent frames but exhibit ambiguity aversion in 

minimal frames). Under this generalization, SWUP accommodates a reduction in ambiguity aversion without 

necessarily implying a shift all the way to ambiguity neutrality in transparent frames. The estimations presented in 

Appendices A suggest that the bulk of observed framing effects are due to a widespread weakening of ambiguity 

aversion, rather than its wholesale disappearance. 

  Red Ticket State 
 

Blue Ticket State 

A $25 0.50 $0 0.25 $0 0.25  $25 0.25 $25 0.25 $0 0.50 

B $25 0.50 $25 0.25 $0 0.25  $25 0.25 $0 0.25 $0 0.50 
 

  Red Ticket State 
 

Blue Ticket State 

A′ $25 0.25 $25 0.25 $0 0.50  $25 0.50 $0 0.25 $0 0.25 

B′ $25 0.25 $0 0.25 $0 0.50  $25 0.50 $25 0.25 $0 0.25 
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4.   Design of Experiment 

Our experiment consists of 𝑗 = 1, 2, . . . , 11 “basic pairs” of options, where each pair involved 

a choice between a more ambiguous and a less ambiguous prospect. After subjects made their 

choices, the uncertainty surrounding each ambiguous prospect was resolved in two stages. In the 

first stage, the state (either a 'red ticket' state or a 'blue ticket' state) was realized and, conditional 

on that state, the decision maker then received an objective lottery to be played in the second 

stage. The state is determined by a draw at the end of the experiment from an opaque bag 

containing an unknown combination of 10 lottery tickets, where each ticket is either red or blue. 

There are repeated choice trials of all eleven choice pairs, with variations of presentation, to 

create a total of 𝑠 =  1, 2, . . . , 60 choice situations encountered by each subject. Table 1 

summarizes all variations of the basic pairs, making up the sixty situations in the experiment. 

 

Table 1. Summary of Experimental Design Pair Variations  

 

Notes: The fractions below each outcome are probabilities of that outcome. The true state (red or blue) is 

determined by the draw of a ticket from an opaque bag of ten tickets, some or all of which may be either red or blue. 

Every trial of every pair has a corresponding trial in which the assignment of lotteries to ticket colors is reversed, all 

else held constant. In most trials, option A is the top row of the table displayed to subjects (as shown in Figure 5 for 

basic pair 1) but this is reversed in twelve trials. The probabilities within the state-contingent lotteries are resolved 

by the roll of a twelve-sided die. 

  

$25 $0 $25 $0 $25 $0 $25 $0 A B A B

1 1/2 1/2 1/2 1/2 3/4 1/4 1/4 3/4 2 1 2 1

2 1/2 1/2 1/2 1/2 1 0 0 1 1 0 1 0

3 2/3 1/3 2/3 1/3 1 0 1/3 2/3 2 1 2 1

4 1/3 2/3 1/3 2/3 2/3 1/3 0 1 2 0 2 0

5 1/2 1/2 1/2 1/2 1 0 1/4 3/4 2 1 2 1

6 1/2 1/2 1/2 1/2 1 0 1/3 2/3 3 0 3 0

7 1/3 2/3 1/3 2/3 1/2 2/3 0 1 2 1 2 1

8 2/3 1/3 1/3 2/3 1 0 0 1 2 0 2 0

9 2/3 1/3 1/2 1/2 1 0 1/3 2/3 1 0 1 0

10 1/2 1/2 1/3 2/3 1 0 0 1 2 1 2 1

11 1/2 1/2 1/3 2/3 3/4 1/4 0 1 1 1 1 1

0 0

0 0

0 0

0 0

0 0

1 1

0 0

0 0

1 1

Blue Ticket 

State

Red Ticket 

State

Blue Ticket 

State

Assignment of 

Lotteries to 

States       as 

Shown; top 

option is:

Assignment of 

Lotteries to 

States 

Reversed; top 

option is:

Assignment of 

Lotteries to 

States       as 

Shown; top 

option is:

A A

Assignment of 

Lotteries to 

States 

Reversed; top 

option is:

1 1

1 1

                Option pairs: States and state-contingent lotteries Number of trials of each pair

Basic 

Pair (j)

Option A Option B Minimal frame Transparent frame

Red Ticket 

State
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For every choice situation with the assignment of lotteries to states as shown in Table 1, there 

was a corresponding choice situation with this assignment of lotteries to states reversed. This 

counter-balancing serves two purposes. First, it helps neutralize any suspicion a subject might 

have that the contents of their ticket bag is ‘rigged’ to minimize payoffs from the experiment. 

Second, it also permits a direct test of SEU in a setup similar to Ellsberg’s two-color paradox, 

where the counter-balancing of lotteries to states is necessary to infer whether a subject acts as if 

she assigns coherent probabilities to the red ticket and blue ticket states. For Basic Pair 1, for 

example, this implies that if an SEU agent prefers B to A when the preferred lottery in Option B 

(the 75% chance of winning $25) is assigned to the red ticket state, the agent is acting as-if the 

probability that the state is red is greater than 0.50. The same agent should then prefer A to B 

when the preferred lottery in Option B is assigned to the blue ticket state.  

In Table 1, basic pairs 𝑗 =  1, 2, 3 and 4 are Ellsberg-style choices in that (i) they involve a 

choice between a risky lottery (which yields the same lottery regardless of the state) and an 

ambiguous lottery (which assigns different lotteries to different states) and (ii) both options in 

each of these pairs have the same expected payoff if the decision maker assigns a coherent 

uniform prior over states. These four basic pairs are our focus: 26 of the 60 situations 𝑠 are trials 

of these pairs (18 minimal frame trials and 8 parallel frame trials). Choice pairs 5 through 11 are 

only presented in minimal frames: these provide extra information needed for estimation of 

models
3
 (as in our Appendices A) and act as spacing trials between repeated trials of the central 

pairs 1 to 4. As shown in Table 1, there were two possible outcomes for each subject: They could 

receive either $25 or $0. Restricting payouts to two possible outcomes, as in Ellsberg’s 

paradoxes, permits analysis of ambiguity attitudes that is not contaminated by risk attitudes.   

Figure 2 (from Section 2) shows Basic Pair 1 in minimal and transparent frames, exactly as 

these were presented to subjects in the experiment. As shown in the figure, both minimal and 

transparent frames were monotonic in that payoffs decreased (weakly) monotonically from left to 

right. The frames were also standardized so that minimal and transparent frames were presented 

in the same table format with the column “N/12” denoting the number of die rolls from a twelve-

sided die yielding the payoff in the column to the left. Subjects were informed that the die rolls 

                                                            
3 Transparent frames “align” probabilities in a manner such that by definition, 𝜓Ρ ≡ 0 for all transparent frame 

trials. Therefore, such trials produce no useful information for any kind of estimation of 𝜓Ρ. For this reason, the 

experimental design includes many more minimal frame trials than transparent frame trials. Estimations of the 

SWUP model, based on all of this data, will appear in another paper. 
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corresponding to each payoff increased from left to right. For instance, in Option B in Basic Pair 

1, any die roll between 1 and 9 paid $25 and any die roll between 10 and 12 paid $0 if a red 

ticket was drawn. Likewise, any die roll between 1 and 3 paid $25 and any die roll between 4 

and 12 paid $0 if a blue ticket was drawn.  

For each choice situation, subjects had the opportunity of selecting “I prefer Option A,” “I 

prefer Option B,” or “I am indifferent between Option A and Option B.” If a subject selected “I 

am indifferent” in a particular choice situation and that choice situation was selected for 

payment, the choice between Option A and Option B was resolved by the toss of a fair coin 

(which subjects were informed of in the instructions).  

Especially in Basic Pairs 1, 2, 3 and 4, we wish to interpret the indifference response, which 

is a 50:50 randomization between options A and B, as actual indifference between them. To do 

so, we need the “certainty betweenness” property described by Grant and Polak (2013). We can 

state this property as follows. Let Ω denote the set of states 𝜔 and let 𝑋 denote the set of 

outcomes. An objective lottery is a known probability distribution 𝑝 on 𝑋. Denote the set of 

objective lotteries by 𝒫(𝑋). A subjective lottery or act, ℎ, is a mapping ℎ: Ω → 𝒫(𝑋) which 

assigns an objective lottery to each state. Denote the set of acts by ℋ. A constant act assigns the 

same objective lottery to every state. Essentially, certainty betweenness assumes that 

indifference between an objective lottery and a subjective lottery implies indifference between 

the objective lottery and any probabilistic mixture of the objective lottery and the subjective 

lottery. Formally, the certainty betweenness axiom says the following: 

 

Axiom (Certainty Betweenness): For any ℎ ∈ ℋ, any constant act 𝜅 ∈ ℋ, and any 𝛼 ∈

(0,1): ℎ ~ 𝜅 ⇒ 𝛼ℎ + (1 − 𝛼)𝜅 ~ 𝜅.  

 

In the presence of their other axioms, Certainty Betweenness is implied by the weak certainty 

independence axiom of Gilboa and Schmeidler (1989) assumed in their multiple priors model. 

The subset of  Grant and Polak’s monotone mean-dispersion preferences which satisfy certainty 

betweenness and Gilboa and Schmeidler’s (1989) uncertainty aversion axiom is the class of 

multiple priors preferences (Grant and Polak (2013), Corollary 3).  

Certainty betweenness can be applied to basic pairs 1 through 7 in Table 1 since they involve 

a choice between an ambiguous act (option B) and a constant act (option A). Since our focus is 
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on basic pairs 1 through 4, we will treat certainty betweenness as a maintained hypothesis 

throughout our study. In our data analyses, we are therefore restricting attention to theories of 

ambiguity aversion which satisfies certainty betweenness. In particular, in Appendix A we 

employ the mean-standard deviation preferences described in Grant and Kajii (2007) and Grant 

and Polak (2013). Since the standard deviation dispersion function is non-negative, convex, 

symmetric, and satisfies certainty betweenness, these preferences have a corresponding 

representation in the vector expected utility model (Siniscalchi, 2009), the invariant biseparable 

representation (Ghirardato et al., 2004), and the multiple prior representation (Gilboa and 

Schmeidler, 1989) provided that the mean-standard deviation preferences are monotone—a 

hypothesis we do not reject in our Appendix A analysis. In Appendix B we demonstrate that 

SWUP satisfies certainty betweenness if the salience functions exhibit homogeneity of degree 0, 

a property that Bordalo et al. (2013) argue is plausible for a salience function and which they 

invoke in their analysis of salience effects in consumer choice. Since the framing effect between 

minimal and transparent frames is predicted under general conditions by SWUP (for any salience 

function) it also holds for the class of salience functions exhibiting homogeneity of degree 0.  

 

4.1 Materials and Payment 

The sixty choice situations were distributed across three booklets of twenty situations each, 

with one situation displayed on each page. These booklets are available in a link in Appendix C, 

which also includes the experimental instructions. The experiment was conducted over a total of 

five sessions: The first session had 24 subjects; the second, third and fourth sessions each had 14 

subjects; and the fifth session had 13 subjects. The order of the three booklets was counter-

balanced across sessions: In the first session, subjects received booklets 1, then 2, and then 3 (the 

booklet numbering as presented in the link in Appendix C); In the second and third sessions, 

subjects received booklet 3 first, followed by booklet 1 and then booklet 2; and in the fourth and 

fifth sessions, subjects received booklet 2 first, followed by booklet 3 and then booklet 1. 

From the beginning to the end of each experimental session, each subject had an opaque bag 

hanging in the corner of his or her carrel. Subjects were truthfully told that each bag contained an 

unknown mixture of ten red and/or blue raffle tickets, and that the mixture could differ between 

bags. Subjects were not allowed to look in or draw from the bag at their carrels until the end of 
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the experiment.
4
 After all subjects had made all sixty choices, payments to subjects were 

determined as follows: For each subject, a numbered card was drawn (with replacement) from a 

deck of 60 cards, numbered from 1 to 60. The number drawn determined which of the 60 choice 

situations would count for payment for that subject. Each subject would then have the 

opportunity to draw a ticket from his or her bag and roll a twelve-sided die. The subject's  

payment was determined by the state (red or blue), the number rolled, the choice situation 

selected for payment, and the option (A, B, or indifferent) selected by the subject in that choice 

situation. This payment was either $25 or $0, which was added to a flat $15 participation fee. 

Average earnings from the experiment (including the participation fee) were $26.01. 

 

4.2    Subjects and Protocol  

Seventy-nine
5
 undergraduate students at a private Western university were recruited to 

participate in a study on economic decision making requiring less than two hours of their time
6
. 

Subjects were read the experimental instructions aloud while they followed along in their own 

copies of the instruction booklet. After explaining the nature of the choices in the experiment, 

subjects were quizzed for their understanding of the types of decisions they would be making. 

Two attendants checked subjects’ answers and explained answers in the event of errors. Then 

subjects were quizzed once more, and any remaining errors (very rare at that point) were 

corrected and explained. An attendant then read a final overview of the events that would take 

place during the session, and subjects were handed their first (of three) booklets containing the 

choice situations. Subjects proceeded through the first booklet at their own pace. When all 

subjects had completed their first booklet, they were given a short booklet of unrelated and 

unpaid filler tasks.
7
 Once all subjects completed this, they were handed their second booklet of 

choice situations and, once all subjects completed it, they were given another booklet of 

unrelated and unpaid filler tasks. Upon completing those tasks, subjects were given their third 

                                                            
4 In our estimations in Appendices A, we assume that any prior probabilities subjects place on the red and blue ticket 

states are constant across the choice situations. Our placement of the bags with the subjects, from the start to the 

finish of their session, is meant to make this estimation assumption most plausible. If this design feature does 

enhance subjects’ perception of the bag’s composition as fixed across trials, this also makes the interpretation of 

“ambiguity-averse choices” clearer (given other features of the design mentioned earlier).    
5 The planned sample was 80 subjects. One subject failed to show in the final session.  
6 Each of the five experimental sessions lasted approximately 90 minutes.  
7 Repetition of the choice situations across the three booklets is masked somewhat by the insertion of filler tasks 

between booklets, which encourages forgetting of earlier situations and choices made in them. 
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and final booklet of choice situations. Payments were determined and distributed once all 

subjects had completed this final booklet.  

 

5.  Results  

Our experimental design varies the assignment of ticket colors to objective lotteries to better 

test SEU; additionally, for standard experimental reasons, we also vary whether the more 

ambiguous act is in the top or bottom row of the choice table displayed to subjects, and the order 

in which the choice situations are presented to subjects. We begin by asking whether any of these 

variations have any significant effect on observed choices. Estimations meant to examine this 

matter appear in Appendix A.1. We find no significant evidence of any such “nuisance variance” 

so we proceed with our analysis, ignoring ticket color assignment, top-bottom position, and task 

order variations. 

In Section 5.1 we plot the raw data which enables us to compare deviations from ambiguity 

neutrality in minimal and transparent frames. Section 5.2 presents a simple interpretive 

framework (not tied to a particular theory) to organize aggregated choice data across pairs 1, 2, 3 

and 4. Within-subject results are discussed further in Section 5.3. On occasion we also refer to 

the more theory-driven estimation results that appear in Appendix A.2. 

 

5.1 Comparing Deviations from Ambiguity Neutrality in Minimal and Transparent Frames 

To motivate our measure of the framing effect, we first introduce some notation. Define the 

following function:  

𝑐𝑙𝑗
𝑒 = {

1         𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑒 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑡ℎ𝑒 𝑟𝑖𝑠𝑘𝑦 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡𝑟𝑖𝑎𝑙 𝑙 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑗             
0.5     𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑒 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑖𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡𝑟𝑖𝑎𝑙 𝑙 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑗                              
0        𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑒 𝑐ℎ𝑜𝑜𝑠𝑒𝑠 𝑡ℎ𝑒 𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑖𝑛 𝑡𝑟𝑖𝑎𝑙 𝑙 𝑜𝑓 𝑝𝑎𝑖𝑟 𝑗  

 

Let 𝑀𝑗 denote the set of minimal frame trials 𝑙 of pair 𝑗, and let 𝑇𝑗 denote the set of transparent 

frame trials 𝑙 of pair 𝑗. Then, 𝑐𝑇̅
𝑒: = ∑ ∑ 𝑐𝑙𝑗

𝑒 /8𝑙∈𝑇𝑗

4
𝑗=1  is the proportion of (eight) transparent frame 

trials in which subject 𝑒 makes an ambiguity-averse choice, and 𝑐𝑀̅
𝑒 : = ∑ ∑ 𝑐𝑙𝑗

𝑒 /18𝑙∈𝑀𝑗

4
𝑗=1  is the 

proportion of (eighteen) minimal frame trials in which subject 𝑒 makes an ambiguity-averse 
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choice.  Taking 𝑐𝑀̅
𝑒 = 𝑐𝑇̅

𝑒 = 0.5 to be ambiguity neutrality, define the following primary 

dependent measure of the framing effect for each subject 𝑒: 

𝐹𝑒 = |𝑐𝑀̅
𝑒 − 0.5| − |𝑐𝑇̅

𝑒 − 0.5| > 0. 

When 𝐹𝑒 > 0, subject 𝑒’s behavior is closer to ambiguity neutrality in transparent frames than in 

minimal frames (the subject deviates more from ambiguity neutrality in minimal frames). Note 

that 𝐹𝑒 ≤ 0 would be contrary to our predictions. Of the 79 subjects in our experiment, we 

observe 46 subjects with 𝐹𝑒 > 0, 9 with 𝐹𝑒 = 0, and 24 with 𝐹𝑒 < 0. In addition, the magnitude 

of  𝐹𝑒 values is frequently larger for positive values than for negative values. For instance, we 

observe 7 subjects with 𝐹𝑒 < −0.10 but 27 subjects with  𝐹𝑒 > 0.10. We observe just one 

subject with 𝐹𝑒 < −0.20, but 18 subjects with 𝐹𝑒 > 0.20. Table 2 displays the value of 𝐹𝑒 for 

each of the 79 subjects in our experiment. 

 

Table 2. Distribution of 𝑭𝒆 Across All 79 Subjects 

Cumulative Frequency 𝐹𝑒 Cumulative Frequency 𝐹𝑒 

1 1 -0.208 49 4 0.083 

2 1 -0.167 50 1 0.090 

3 1 -0.139 52 2 0.097 

4 1 -0.125 54 2 0.139 

7 3 -0.111 55 1 0.146 

8 1 -0.097 58 3 0.153 

9 1 -0.083 59 1 0.160 

11 2 -0.069 61 2 0.167 

12 1 -0.049 62 1 0.201 

14 2 -0.042 63 1 0.208 

17 3 -0.035 64 1 0.250 

19 2 -0.028 66 2 0.264 

22 3 -0.014 67 1 0.271 

24 2 -0.007 68 1 0.306 

33 9 0.000 71 3 0.319 

35 2 0.014 74 3 0.333 

38 3 0.028 75 1 0.354 

41 3 0.042 76 1 0.361 

42 1 0.049 78 2 0.375 

45 3 0.069 79 1 0.444 

The “Cumulative” columns display the cumulative number of subjects exhibiting the corresponding value or a lower 

value of 𝐹𝑎. The “Frequency” column displays the number of subjects corresponding to each observed value of 𝐹𝑎. 
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Figure 6 graphs 𝑐𝑀̅
𝑒  and 𝑐𝑇̅

𝑒  on the horizontal and vertical axes, respectively. The shaded 

regions in the figure are the set of points inconsistent with the hypothesis that 𝐹𝑒 > 0. Note that 

a large majority of points are in the unshaded regions, and the points that do fall in the shaded 

regions are close to the boundary. The graph thus provides strong initial support that most 

subjects exhibited the predicted framing effect. We also conducted a variety of two-tailed 

statistical tests against the null hypothesis of no effect (𝐹𝑒 = 0) at the aggregate level and 

consistently find strong support for the predicted framing effect (t-test: 𝑝 < 0.0001; sign test: 

𝑝 = 0.0115; signed ranks test: 𝑝 < 0.0001). 

 

 
Notes. Bubble sizes denote the number of subjects at each location. The smallest bubbles are a single subject, while 

the largest bubble (at the upper right in the figure) is six subjects. 
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Distribution across 79 subjects
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5.2 An Aggregate Interpretation of the Data: A World with Two Types of Agents 

We consider a simple descriptive framework for aggregate-level interpretation of our data, 

confining our attention here to the basic pairs 1, 2, 3 and 4 that were presented in both minimal 

and transparent frames. We view this framework as a ‘lens’ for interpreting our results, but not as 

a formal test of particular hypotheses. Our approach here does not commit to any ambiguity 

model but is based on a behavioral definition of ambiguity aversion and ambiguity neutrality in 

our experiment. The primary assumption of this framework is that our sampled population is 

composed of just two types of agents – those who are ambiguity-averse (defined as agents who 

always choose the risky lottery over the ambiguous one) and those who are ambiguity-neutral 

(those who either report indifference or randomize equally between choosing the risky and the 

ambiguous lottery). 

The observed distribution of responses for the four basic pairs employed in both minimal and 

transparent frames are shown in Table 3, below. Recall that there are more responses in minimal 

frames since these pairs were repeated more often during the course of the experiment. 

  

      Table 3.  Aggregate Distribution of Responses in Basic Pairs 1 – 4. 
 

                                     Risky       Ambiguous    Indifference        Total 

Minimal Frames 1072 255 95 1422 

Transparent Frames 393 158 81 632 

 

 

Denote the type of frame under consideration by 𝑓 ∈ {𝑚, 𝑡}, where 𝑚 is a minimal frame and 𝑡 is 

a transparent frame. Let 𝜃𝑓 denote the proportion of ambiguity-neutral agents in the population 

given type 𝑓 frames for choice situations. In a world with only ambiguity-averse and ambiguity 

neutral agents, the proportion of ambiguity-averse agents will then be 1 − 𝜃𝑓 given type 𝑓 

frames. Let 𝜉𝑓 denote the probability that ambiguity-neutral subjects report indifference given 

type 𝑓 frames and, when they do not, assume they randomize equally between choosing the risky 

or ambiguous option. This implies that the probabilities that ambiguity-neutral agents choose 

either the risky option or the ambiguous option given type 𝑓 frames are equal to (1 − 𝜉𝑓)/2.    
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Let 𝑟𝑓, 𝑎𝑓, and 𝑖𝑓 denote the number of observed choices of the risky option, the ambiguous 

option and the indifference option given type 𝑓 frames. Denote the total number of choices made 

across all four basic pairs in frames of type 𝑓 by 𝑁𝑓 ≔ 𝑟𝑓 + 𝑎𝑓 + 𝑖𝑓 . Note that under this 

framework, the choice of a risky option could be generated by either an ambiguity-averse agent 

or an ambiguity neutral agent. That is, 

𝑟𝑓 = (1 − 𝜃𝑓)𝑁𝑓 + 𝜃𝑓 (
1 − 𝜉𝑓

2
) 𝑁𝑓 . 

Also note that in this setup, choices of the ambiguous lottery could only be generated by 

ambiguity-neutral subjects according to the formula: 

𝑎𝑓 = 𝜃𝑓 (
1 − 𝜉𝑓

2
) 𝑁𝑓 . 

In addition, the number of indifference choices are given by the formula: 

𝑖𝑓 = 𝜃𝑓 ∙ 𝜉𝑓 ∙ 𝑁𝑓 . 

From Table 3, we have 𝑟𝑚 = 1072,  𝑎𝑚 = 255, and 𝑖𝑚 = 95 for minimal frames and  𝑟𝑡 = 393,

𝑎𝑡 = 158, and 𝑖𝑡 = 81 for transparent frames. For both minimal and transparent frames, there 

are unique values for 𝜃𝑓 and 𝜉𝑓 which exactly fit the distribution of observed choices.
8
 In 

particular, it is straightforward to verify that 𝜃𝑚 = (
605

1422
) ≈ 0.425, 𝜉𝑚 = (

95

605
) ≈ 0.157, 

𝜃𝑡 = (
397

632
) ≈ 0.628, and 𝜉𝑡 = (

81

397
) ≈ 0.204. These distributions of ambiguity-averse and 

ambiguity-neutral agents in the population (implied by this framework) are presented in Table 4. 

The framework implies that a fifth of our sampled population (62.8% − 42.5%) switches from 

ambiguity aversion to ambiguity neutrality when framing changes from minimal to transparent.   

 

Table 4. Derived Distributions of Ambiguity-Averse and Ambiguity-Neutral Agents 

 

% Ambiguity-Averse % Ambiguity-Neutral 

Minimal Fames 57.5 42.5 

Transparent Frames 37.2 62.8 

 
                                                            
8 Note that while this simple model fits the observed data exactly, it would not do so if the proportion of ambiguity-

seeking choices had been much higher (in particular, if 𝑎𝑓 > 𝑁𝑓 2⁄ ). 
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5.3 Index of Ambiguity Aversion 

For each subject, we computed an ambiguity aversion index over the four basic pairs 

separately for transparent and minimal frames. For transparent frames, the ambiguity aversion 

index was constructed by computing the proportion of the four basic pairs for which a subject 

made consistent ambiguity-averse responses (choosing the risky lottery regardless of whether the 

red and blue states were switched). For minimal frames, since some of the basic pairs were 

repeated, the ambiguity aversion index was constructed by first computing, for each pair, the 

proportion of consistent ambiguity-averse responses in all possible combinations of paired 

choices for that pair. For example, Basic pair 1 was repeated three times in minimal frames and 

the corresponding version with the red-blue states switched was also repeated three times, 

resulting in nine paired choice combinations. The index was constructed by first computing the 

proportion of consistent ambiguity-averse responses for each pair out of these nine pairs. Given 

this index value for each basic pair, we can construct the ambiguity-averse index for each subject 

in minimal frames by summing these index values over all four basic pairs.  

We found that 76% of subjects (60 of 79) had higher ambiguity aversion indices in minimal 

frames than in transparent frames and an additional 11% had the same index values in minimal 

and transparent frames. In addition, the average ambiguity aversion index value (with possible 

values varying from 0 to 4) was 2.58 in minimal frames and 1.71 in transparent frames. 

 

6.  Conclusions 
 

Motivated by a new model of ambiguity aversion and by the success of Savage’s conjecture 

in predicting the frame-dependence of the Allais paradox for choice under risk, we tested for an 

influence of framing on Ellsberg’s paradox in decisions under uncertainty.  We observed a 

highly significant effect framing effect in the direction predicted by the SWUP model in Leland 

and Schneider (2016). One important question warranting further investigation concerns the 

precise “locus” of the treatment effect. The econometric analysis in Appendix A enables us to 

test two competing hypotheses about this locus. The hypothesis that motivated our analysis is 

that subjects want to behave in an ambiguity neutral manner and do so when shown choices in 

transparent frames because in that frame the common consequences of all options are clearly 

visible, making the normative appeal of the sure-thing principle transparent. 
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An alternative hypothesis, based on Chew et al. (2016), is that subjects do not want to behave 

in an ambiguity neutral manner (i.e., they are truly ambiguity-averse) and only do so in 

transparent frames because they have a harder time recognizing the presence of ambiguity in 

such frames. Put differently, it might be that our framing effect does not move preferences closer 

to ambiguity neutrality, but rather increases the noise inherent in the decisions of subjects who 

are still ambiguity-averse. In Appendix A, we estimate a theory-driven econometric model based 

on the mean-dispersion preferences of Grant and Polak (2013). The model enables us to examine 

the locus of the observed treatment effect due to switching between minimal and transparent 

frames. In particular, the treatment effect may be due to a change in a preference parameter 

across frames (a decrease in ambiguity aversion), or the effect may be due to a change in a 

precision parameter across frames (an increase in decision noisiness).  

Table A.3 in Appendix A provides four tests of these hypotheses, where each test is based on 

a specification allowing for a different kind of subject heterogeneity. In all four cases, we 

observe a significant reduction in the preference parameter representing ambiguity aversion due 

to the switch from minimal to transparent frames. In each case the effect is quite noticeable 

(roughly a 30% reduction in the ambiguity aversion parameter). In contrast, we find a significant 

decrease in a precision parameter (an increase in decision noise) under just one of the four 

specifications (and it is not the best-fitting specification). For these reasons, we believe our data 

provides stronger evidence that our observed framing effect reflects a genuine reduction in 

ambiguity aversion rather than a decreased ability to recognize ambiguity in such frames. 

As noted in Section 2, a variety of fairly recent studies have investigated whether the Allais 

paradox is susceptible to framing. All of these studies (Leland, 2010; Bordalo et al., 2012; 

Incekara-Hafalir and Stecher, 2012; Birnbaum and Schmidt, 2015; Harman and Gonzalez, 2015) 

find significantly fewer violations of the independence axiom of expected utility theory, when 

the lotteries are recast from minimal frames (i.e., the standard ‘prospect’ presentation format) to 

transparent frames (i.e., the Savage matrix format). While the Ellsberg paradox violates a similar 

independence postulate, no such experiment has been conducted for ambiguity attitudes. In the 

present experiment, we find that the same types of frames which reduce Allais-type violations of 

objective expected utility theory also reduce Ellsberg-type violations of subjective expected 

utility theory.  
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Appendix A. Econometric Analysis  

 

Our econometric analyses are summarized in this appendix. In Appendix A.1, we conduct 

some analyses to investigate the impact of the experimentally induced sources of variance 

(changing the ticket color, switching the rows in which options were displayed, and reversing the 

order in which the pairs were presented) to determine whether they systematically influenced 

choices. Finding no evidence for such ‘nuisance variance,’ we proceed to a theory-driven 

econometric model in Appendix A.2.  

 

Appendix A.1. Estimation of Experimentally Induced Sources of Variance 

 

In this section we conduct a simple econometric analysis which does not rely on any 

particular theory of ambiguity preferences, to check whether any of the experimental 

manipulations had an impact on choices across all eleven pairs in Table 1. 

Recall from Section 3 that in each choice situation 𝑠 = 1 to 60, subjects can choose either 

Option A or Option B from a pair shown in Table 1, or may report indifference (which is 

resolved by a coin flip). Denote these three alternatives in situation 𝑠 by 𝑠𝑘, 𝑘 ∈ {𝐴, 𝐵, ~} and let 

𝑣𝜏
𝑠𝑘 ∈ {𝑣𝜏

𝑠𝐴, 𝑣𝜏
𝑠𝐵, 𝑣𝜏

𝑠~} denote their values according to some theory, 𝜏. A Luce model 

(McFadden’s conditional logit) of choice probabilities 𝑃𝜏
𝑠𝑘 is  

   𝑃𝜏
𝑠𝐴 = 𝑒𝑥𝑝(𝜆𝑣𝜏

𝑠𝐴)/𝐷𝜏, 𝑃𝜏
𝑠~ = 𝑒𝑥𝑝(𝜆𝑣𝜏

𝑠~)/𝐷𝜏 , and 𝑃𝜏
𝑠𝐵 = 𝑒𝑥𝑝(𝜆𝑣𝜏

𝑠𝐵)/𝐷𝜏, where 

 
𝐷𝜏  =  𝑒𝑥𝑝(𝜆𝑣𝜏

𝑠𝐴) + 𝑒𝑥𝑝(𝜆𝑣𝜏
𝑠~)  + 𝑒𝑥𝑝(𝜆𝑣𝜏

𝑠𝐵). 
 

and 𝜆 is a scale parameter, sometimes called “precision” or “sensitivity” (as 𝜆 → ∞ the decision 

maker chooses the highest value alternative with certainty, and as 𝜆 → 0 the decision maker 

chooses each of the three alternatives with a one-third probability). Dividing all terms by 

𝑒𝑥𝑝(𝜆𝑣𝜏
𝑠𝐵), the choice probabilities can be rewritten as: 

 

𝑃𝜏
𝑠𝐴 = 𝑒𝑥𝑝[𝜆(𝑣𝜏

𝑠𝐴 − 𝑣𝜏
𝑠𝐵)]/𝐷𝜏,   𝑃𝜏

𝑠~ = 𝑒𝑥𝑝[𝜆(𝑣𝜏
𝑠~ − 𝑣𝜏

𝑠𝐵)]/𝐷𝜏, and 𝑃𝜏
𝑠𝐵 = 1/𝐷𝜏, where 

 

𝐷𝜏  =  𝑒𝑥𝑝[𝜆(𝑣𝜏
𝑠𝐴 − 𝑣𝜏

𝑠𝐵)] + 𝑒𝑥𝑝[𝜆(𝑣𝜏
𝑠~ − 𝑣𝜏

𝑠𝐵)]  +  1. 
 

 

In all of our estimations, we will assume that subjects’ preferences obey the certainty 

betweenness axiom (and the experimental design was predicated on this too, as noted in Section 

4). In basic pairs 1 through 7, where option A is an objective lottery while option B is 
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ambiguous, this assumption by itself, and the experimental design, imply that the value of the 

indifference response is (𝑣𝜏
𝑠𝐴 + 𝑣𝜏

𝑠𝐵)/2. However, in pairs 8 through 11, options A and B are 

both ambiguous, so in those pairs there is a diversification motive giving the indifference 

response an increase in value. In our first estimation we will assume we can approximately 

capture that diversification utility by a quantity common to pairs 8 through 11. Let the parameter 

𝛿 denote this quantity for pairs 8 through 11 (𝛿 is zero for all other pairs). The diversification 

motive implies that we expect positive estimates of 𝛿 in our first estimation (in the Appendix 

A.2.1 estimations, the diversification motive is modeled in an explicit theoretical way without 𝛿). 

The Luce choice axiom may break down when some alternatives are more similar to each 

other than to other alternatives in a decision set. Because the indifference response is a mixture 

of options A and B, it might be deemed more similar to either of the options than they are similar 

to each other. Therefore, we also posit another quantity 𝜙 that will be added to the indifference 

value in all of our estimations, which we expect is negative (making indifference responses less 

probable than they would be if the choice axiom applied with no modifications). It is possible 

that 𝜙 could be positive if the coin flip makes the indifference response distinctive (or for other 

reasons), but our estimates of 𝜙 are always significantly negative in our data. 

The preceding discussion entails that in our first estimation, we assume that 

𝑣𝜏
𝑠~ = (𝑣𝜏

𝑠𝐴 + 𝑣𝜏
𝑠𝐵)/2 + 𝜙 + 𝛿 (with 𝛿 = 0 for pairs 1 through 7). This in turn implies that 

𝑣𝜏
𝑠~ − 𝑣𝜏

𝑠𝐵 =  (𝑣𝜏
𝑠𝐴 − 𝑣𝜏

𝑠𝐵)/2 + 𝜙 + 𝛿. Defining Δ𝑣𝜏
𝑠 ≡ 𝑣𝜏

𝑠𝐴 − 𝑣𝜏
𝑠𝐵, this modified conditional 

logit model becomes  

 

𝑃𝜏
𝑠𝐴 = 𝑒𝑥𝑝(Δ𝑣𝜏

𝑠)/𝐷𝜏, 𝑃𝜏
𝑠~ = 𝑒𝑥𝑝[𝜆(Δ𝑣𝜏

𝑠/2 + 𝜙 + 𝛿)]/𝐷𝜏, and 𝑃𝜏
𝑠𝐵 = 1/𝐷𝜏, 

where 𝐷𝜏  =  𝑒𝑥𝑝(𝜆Δ𝑣𝜏
𝑠) + 𝑒𝑥𝑝[𝜆(Δ𝑣𝜏

𝑠/2 + 𝜙 + 𝛿)]  +  1. 

 

The above formulation is appealing in that Δ𝑣𝑠 has a straightforward interpretation as the 

difference between the values of Option A and Option B. The estimation in this section simply 

makes Δ𝑣𝑠 a linear function of pair indicators and all the other experimentally induced sources 

of variance in responses—along with a random effect for subject-specific heterogeneity. The 

results of the first estimation are summarized in Table A.1.  
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  Table A.1. Analysis of Effects of Experimentally Induced Sources of Variance 
 

Meaning of estimated parameters Estimates Std. Error p-value 

    Variance of subject-specific deviations from pair indicators 1.0 0.32 ma 

A. effect of transparent frames (pairs 1, 2, 3, and 4) −0.73 0.15 < 0.0001 

B. effect of switching ambiguous states  0.074 0.12 0.55 

C. effect of switching top and bottom row assignment −0.073 0.13 0.57 

D1. order effect—first twenty choice situations −0.048 0.081 0.56 

D3. order effect—last twenty choice situations 0.010 0.081 0.94 

pair 1 indicator effect 1.8 0.84 0.039 

pair 2 indicator effect 2.0 0.90 0.03 

pair 3 indicator effect 1.7 0.83 0.045 

pair 4 indicator effect 1.7 0.89 0.065 

pair 5 indicator effect −0.36 0.87 0.68 

pair 6 indicator effect −1.9 0.86 0.029 

pair 7 indicator effect 3.3 0.82 0.0002 

pair 8 indicator effect 2.3 0.95 0.017 

pair 9 indicator effect −0.0031 0.81 0.99 

pair 10 indicator effect 0.98 0.87 0.27 

pair 11 indicator effect 3.4 0.88 0.0003 

Indifference parameter 𝜙 (all pairs) −1.5 0.25 < 0.0001 

Indifference parameter 𝛿 (pairs 8, 9, 10, and 11) −0.38 0.23 0.11 
Notes: aThe “m” means that a p-value would be misleading in this case, since the natural null hypothesis (that the 

parameter equals zero) lies on the boundary of the parameter’s allowable space (in this instance, the parameter is a 

variance).  

 

The model estimated is close to a very standard one: A multinomial logit over three 

alternatives in each situation. The dependent variable is three-valued (𝑐 ∈ {1,0.5,0}) where c = 1 

is the choice of Option A, c = 0 is the choice of option B and c = 0.5 is the indifference response. 

However, there are some special additions to that basic model: These include the two 

“indifference parameters” 𝜙 and 𝛿 at the bottom of Table A.1 where 𝜙 < 0 means that 

indifference responses are less common than an unmodified conditional logit predicts, and the 

diversification motive in pairs 8 through 11 implies an expectation that 𝛿 > 0 (but this is not 

borne out by the estimation). Second, to control for the correlation between the choices of each 

individual subject, a random effects specification (a normal distribution of subject-specific 

deviations from the pair indicator estimates) is included which helps to reduce Type I error. The 

estimated variance of these effects is presented in the first line in Table A.1. We next provide 

some interpretation of the other results in Table A.1: 
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Row A. This row presents the estimated deviation from the pair indicators (restricted to basic 

pairs 1 through 4) due to transparent versus minimal framing. It is negative and highly 

significant: Transparent frames reduced ambiguity aversion as predicted. 

Row B. Every pair was presented in two ways, with either the red ticket or the blue ticket being 

the better state in the relatively ambiguous option. The insignificance of this effect says that there 

is no mean effect on ambiguous choices of this manipulation, suggesting, on average, subjects 

may have equal priors of the red and blue ticket states (see Appendix A.2 for further discussion). 

Row C. In the presentations of the choice situations it is usually true that the top row of each 

presentation is option A while the bottom row is option B, but in twelve of the sixty choice 

situations this was reversed. The insignificance of this effect says that there is no mean effect on 

ambiguous choices of this manipulation, which suggests that we have no empirically important 

“response set” issue in our experiment.  

Rows D1 and D3. We grouped our sixty choice situations into three booklets of twenty 

situations each and systematically varied the order in which subjects encountered the three 

booklets, so that each booklet was either the first, second or third booklet subjects encountered. 

The insignificance of these two effects suggests that we have no appreciable order effects. 

All the effects described above, except the framing effect, are parameterized as deviations 

from the estimated pair indicator effects. So estimated pair-specific indicator effects in the table 

are interpreted as Δ𝑣𝜏
𝑠 ≡ 𝑣𝜏

𝑠𝐴 − 𝑣𝜏
𝑠𝐵 under minimal framing. A significantly positive (negative) 

value of a pair intercept means that, on average, subjects prefer Option A (Option B) in that pair 

when presented in a minimal frame. The only pairs (5, 6 and 9) with negative estimates are pairs 

where Option B, which is usually the relatively ambiguous option, has an appreciably higher 

subjective expected value under the assumption of equal prior probabilities assigned to states.  

Pair 9 is particularly interesting in that it is the only pair in which the pair-specific effect is 

not significantly different from zero. We can interpret that to mean that “the average subject” is 

indifferent between the two options in pair 9 under minimal framing. In pair 9, under the 

assumption of equal prior probabilities of the red and blue ticket draws, the relatively more 

ambiguous option’s subjective expected value exceeds that of the relatively less ambiguous 

option by about $2.08. We can think of this as one measure of an ambiguity premium in this 

particular pair (under minimal framing). 
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Appendix A.2.  A Theory-driven Empirical Model  

 

In this appendix, we analyze our data under the lens of a theory-driven empirical model of 

ambiguity attitudes. We first present an overview of our approach and then proceed with a more 

detailed analysis. Let ℳ = {𝑠 | situation 𝑠 is minimal framed}, let T = {𝑠 | situation 𝑠 is 

transparent framed}, and note that 𝑠 ∈ 𝒮 = {1,2, . . . ,60} ≡ ℳ ∪ T. Also, let   

 

(A.1)                   𝐿𝜏(𝑠)(𝑐𝑠) = 1(𝑐𝑠 = 1)𝑃𝜏
𝑠𝐴 + 1(𝑐𝑠 = 0)𝑃𝜏

𝑠𝐵 + 1(𝑐𝑠 = 0.5)𝑃𝜏
𝑠~ 

 

be the likelihood of observation 𝑐𝑠, given a conditional logit model of choice probabilities as 

introduced generally in Section 4, eq. (1), and given a particular theory 𝜏(𝑠) governing choice in 

situation 𝑠. (Recall that a theory 𝜏 is a specification of 𝑣𝜏
𝑠𝑘 for each choice situation 𝑠, in the 

conditional logit model). The likelihood in eq. (A.1) is actually conditioned on all of the 

parameters that govern the probabilities 𝑃𝜏
𝑠𝑘, but these are suppressed for readability.  

The framework allows two different theories to govern choices, with just one theory 

governing choice in each situation 𝑠. In the theory-driven empirical model developed here, we 

choose subjective expected utility or 𝑆𝐸𝑈 (indexed as theory 𝜏 = 𝛼) as an ambiguity-neutral 

theory, and a special case of Grant and Polak’s (2013) “mean dispersion preferences” or 𝑀𝐷 

(indexed as theory 𝜏 = 𝛽) as a theory permitting ambiguity aversion and other ambiguity 

attitudes, depending on its special parameter as introduced below. We imagine four potential 

types of subjects in our subject population: 

 (1) 𝛼𝛼 type: 𝜏(𝑠) = 𝛼 ∀ 𝑠; 

 (2) 𝛽𝛼 type: 𝜏(𝑠) = 𝛽 ∀ 𝑠 ∈ ℳ, 𝜏(𝑠) = 𝛼 ∀ 𝑠 ∈ T;  

 (3) 𝛼𝛽 type: 𝜏(𝑠) = 𝛼 ∀ 𝑠 ∈ ℳ, 𝜏(𝑠) = 𝛽 ∀ 𝑠 ∈ T; and 

 (4) 𝛽𝛽 type: 𝜏(𝑠) = 𝛽 ∀ 𝑠. 

There are four possible likelihoods for our observations, depending on these types: 

(1) Type 𝛼𝛼 subjects act as 𝑆𝐸𝑈 agents regardless of frame: We expect them to be rare. 

(2)  Type 𝛽𝛼 subjects are one potentially important locus for our treatment effect: These subjects 

act as 𝑀𝐷 agents in minimal frames and 𝑆𝐸𝑈 agents in transparent frames.  

(3) We expect the type 𝛼𝛽 to be very rare: These are subjects who act as 𝑆𝐸𝑈 agents in minimal 

frames and 𝑀𝐷 agents in transparent frames, the opposite of our hypotheses. 
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(4) Type 𝛽𝛽 subjects act as 𝑀𝐷 agents regardless of frame. They are the second potentially 

important locus for our treatment effect since we may also allow the degree of ambiguity 

aversion to be frame-dependent: It could happen that some subjects are ambiguity-averse 

overall, but less so in transparent frames than in minimal frames. 

To complete the big picture of the framework, we let  𝜃𝜏𝜏′ ∈ {𝜃𝛼𝛼, 𝜃𝛽𝛼 , 𝜃𝛼𝛽, 𝜃𝛽𝛽} be the 

proportions of our subject population that are of each type noted above. Then our complete 

likelihood function for a randomly selected subject is: 

 

(A.2)               𝐿 = 𝜃𝛼𝛼 ∏ 𝐿𝛼(𝑐𝑠)𝑠 + 𝜃𝛼𝛽 ∏ 𝐿𝛼(𝑐𝑠)𝑠∈ℳ ∏ 𝐿𝛽(𝑐𝑠)𝑠∈𝒫 + 

 

𝜃𝛽𝛼 ∏ 𝐿𝛽(𝑐𝑠)𝑠∈ℳ ∏ 𝐿𝛼(𝑐𝑠)𝑠∈𝒫 + 𝜃𝛽𝛽 ∏ 𝐿𝛽(𝑐𝑠)𝑠 . 
 

 

To employ this model, we need to specify the 𝑣𝛼
𝑠𝑘 and 𝑣𝛽

𝑠𝑘 formulas for 𝑆𝐸𝑈 and 𝑀𝐷, 

respectively. This is done in the following section. 

 

A.2.1  A theory-driven empirical framework: Details of the two theory specifications 

 

As noted in Section 3, since indifference responses were resolved by the toss of a coin, we 

have implicitly assumed the certainty betweenness property formalized in Grant and Polak 

(2013). We thus restrict our analysis to models of ambiguity attitudes which satisfy certainty 

betweenness. In particular, we adopt a type of mean-dispersion preferences from Grant and 

Polak (2013). The mean-dispersion class of preferences characterizes ambiguity attitudes which 

can be expressed in the form: 

𝜇(ℎ, 𝜋) − 𝜌(𝑑) 

where 𝜇(ℎ, 𝜋) is the mean utility of act ℎ with respect to a vector probability distribution 𝜋, and 

𝜌 is a dispersion function which aggregates the vector 𝑑 of state-by-state deviations from the 

mean utility (i.e., 𝑑 has representative element 𝑑𝜔 ≔ 𝑈(ℎ(𝜔)) − 𝜇(ℎ, 𝜋), where 𝑈(ℎ(𝜔)) is the 

expected utility of ℎ in state 𝜔).  

 We consider the particular case where the dispersion function is the standard deviation: That 

is, 𝜌(𝑑) ≔ 𝛾 [∑ 𝜋𝜔 (𝑈(ℎ(𝜔)) − 𝜇(ℎ, 𝜋))
2

𝜔 ]
0.5

. These preferences are monotone over the 

domain 0 < 𝛾2 < min𝜔∈Ω̅(𝜋𝜔/(1 − 𝜋𝜔)), where Ω̅ ≔ {𝜔 ∈ Ω: 𝜋𝜔 > 0}. Over this domain, the 

dispersion function is also non-negative, convex, linearly homogeneous (which follows from 
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certainty betweenness) and symmetric. Therefore, these preferences also have a vector expected 

utility representation (Siniscalchi, 2009), an invariant biseparable representation (Ghirardato et 

al., 2004) and a multiple priors representation (Gilboa and Schmeidler, 1989) (see Grant and 

Polak, 2013 for a discussion of these preferences and their properties). In this respect, our 

analysis is robust to some other well-known characterizations of ambiguity attitudes.   

 Let 𝑢($25) = 1 and 𝑢($0) = 0. Let 𝑟 and 𝑏 denote the red and blue ticket states, 

respectively. Also let 𝑝𝑟
𝑠𝑘 and 𝑝𝑏

𝑠𝑘 denote the objective (twelve-sided die roll) probabilities of 

receiving $25, conditional on drawing a red or blue ticket, respectively, in options 𝑠𝑘 ∈ {𝑠𝐴, 𝑠𝐵}. 

Then the subject’s two possible objective expected utilities in the options 𝑠𝑘, conditional on the 

ticket color drawn from the ticket bag, are simply 𝑝𝑟
𝑠𝑘 and 𝑝𝑏

𝑠𝑘.   

 Assume further that 𝜋𝜏 denotes a subject’s subjective probability of drawing a red ticket in 

situations where her choice behavior is governed by theory 𝜏. We take 𝜋𝜏 to be constant across 

all options in those situations, and the experimental design encourages subjects to have that view 

since their individual ticket bags remain with them at all times during an experimental session. 

We might even argue that the design encourages subjects to view 𝜋𝜏 as constant regardless of the 

theory 𝜏, but the econometric framework will allow it to vary with the theory. Then write 𝜇𝜏
𝑠𝑘, 

the subjective mean utility in alternative 𝑠𝑘, given 𝜋𝜏, as  

 

𝜇𝜏
𝑠𝑘 =  𝜋𝜏𝑝𝑟

𝑠𝑘 + (1 − 𝜋𝜏)𝑝𝑏
𝑠𝑘. 

 

For 𝑆𝐸𝑈, that is for 𝜏 = 𝛼, we simply have 𝑣𝛼
𝑠𝑘 = 𝜇𝛼

𝑠𝑘 = 𝜋𝛼𝑝𝑟
𝑠𝑘 + (1 − 𝜋𝛼)𝑝𝑏

𝑠𝑘. For 𝑀𝐷, that is 

for 𝜏 = 𝛽, we have (from the mean-standard deviation preferences in Grant and Polak 2013), 

 

𝑣𝛽
𝑠𝑘  =  𝜇𝛽

𝑠𝑘 − 𝛾𝛽𝜌𝛽
𝑠𝑘, where 

 

𝜌𝛽
𝑠𝑘 = √𝜋𝛽(𝑝𝑟

𝑘 − 𝜇𝛽
𝑠𝑘)2 + (1 − 𝜋𝛽)(𝑝𝑏

𝑘 − 𝜇𝛽
𝑠𝑘)2 =  |𝑝𝑟

𝑘 − 𝑝𝑏
𝑘|√𝜋𝛽(1 − 𝜋𝛽). 

 

The probabilistic model is almost the same one used previously for the estimation reported in 

Table 2, except that we now can drop the diversification motive parameter 𝛿 for indifference 

responses since this will be represented explicitly in 𝜌𝛽
𝑠~, the dispersion term for the indifference 

response. The linear combination of the values of options 𝑠𝐴 and 𝑠𝐵 suggests a value of the 

indifference response, 𝑣𝜏
𝑠~, equal to (𝑣𝜏

𝑠𝐴 + 𝑣𝜏
𝑠𝐵)/2. When 𝑆𝐸𝑈 governs behavior (𝜏 = 𝛼) this is 
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always correct; and because 𝑀𝐷 preferences satisfy certainty betweenness it will also be correct 

for pairs 1 through 7 when 𝑀𝐷 governs behavior (𝜏 = 𝛽). But in general (and specifically, in 

pairs 8 through 11), this is not quite right when 𝑀𝐷 governs behavior. In general, we have 

 

(𝑣𝛽
𝑠𝐴 + 𝑣𝛽

𝑠𝐵)/2 =
1

2
(𝑆𝐸𝑈𝛽

𝑠𝐴 + 𝑆𝐸𝑈𝛽
𝑠𝐵) − 𝛾𝛽

1

2
(|𝑝𝑟

𝑠𝐴 − 𝑝𝑏
𝑠𝐴| + |𝑝𝑟

𝑠𝐵 − 𝑝𝑏
𝑠𝐵|)√𝜋𝛽(1 − 𝜋𝛽). 

 

However, when 𝑀𝐷 governs behavior, the actual value of the indifference response is 

 

𝑣𝜏
𝑠~ =  

1

2
(𝑆𝐸𝑈𝛽

𝑠𝐴 + 𝑆𝐸𝑈𝛽
𝑠𝐵) − 𝛾𝛽

1

2
|(𝑝𝑟

𝑠𝐴 − 𝑝𝑏
𝑠𝐴) + (𝑝𝑟

𝑠𝐵 − 𝑝𝑏
𝑠𝐵)|√𝜋𝛽(1 − 𝜋𝛽). 

 

In terms of 𝑀𝐷 preferences, then, the former parameter 𝛿 was representing the difference 

 

𝛾𝛽
1

2
[|𝑝𝑟

𝑠𝐴 − 𝑝𝑏
𝑠𝐴| + |𝑝𝑟

𝑠𝐵 − 𝑝𝑏
𝑠𝐵| − |(𝑝𝑟

𝑠𝐴 − 𝑝𝑏
𝑠𝐴) + (𝑝𝑟

𝑠𝐵 − 𝑝𝑏
𝑠𝐵)|]√𝜋𝛽(1 − 𝜋𝛽) ≥ 0, 

 

which is the diversification motive for an indifference response in situation 𝑠. Notice that this is 

zero whenever 𝑝𝑟
𝑘 − 𝑝𝑏

𝑘 = 0 for either 𝑘 = 𝑠𝐴 or 𝑘 = 𝑠𝐵 (as is the case in pairs 1 through 7 for 

option A), so the construction of 𝑣𝜏
𝑠~ above also satisfies certainty betweenness where it should.  

With explicit expressions for the 𝑣𝜏
𝑠𝑘, as given above for 𝑠𝑘 equal to 𝑠𝐴, 𝑠𝐵, or 𝑠~, the new 

modified conditional logit model for each theory 𝜏 will be 

 

𝑃𝜏
𝑠𝐴 = 𝑒𝑥𝑝(𝜆𝜏𝑣𝜏

𝑠𝐴)/𝐷𝜏, 𝑃𝜏
𝑠~ = 𝑒𝑥𝑝[𝜆𝜏(𝑣𝜏

𝑠~ + 𝜙𝜏)]/𝐷𝜏, and 𝑃𝜏
𝑠𝐵 = 𝑒𝑥𝑝(𝜆𝜏𝑣𝜏

𝑠𝐵)/𝐷𝜏, where 

 

𝐷𝜏 = 𝑒𝑥𝑝(𝜆𝜏𝑣𝜏
𝑠𝐴) + 𝑒𝑥𝑝[𝜆𝜏(𝑣𝜏

𝑠~ + 𝜙𝜏)]  + 𝑒𝑥𝑝(𝜆𝜏𝑣𝜏
𝑠𝐵). 

 

Notice that we still include the parameter 𝜙𝜏 to account for the indifference response being less 

(or more) common than is predicted by the unmodified conditional logit, and allow it to depend 

on the theory governing behavior.  

The framework outlined above is a finite mixture model with four types of agents. This 

model has ten parameters, summarized as follows: 

 𝜋𝛼 and 𝜋𝛽 (subjective probabilities assigned to red tickets, under theories 𝛼 and 𝛽); 

 𝜆𝛼 and 𝜆𝛽, precision parameters of subjects, for theories 𝛼 and 𝛽; 

 𝛾𝛽, disutility of mean utility dispersion when theory 𝛽 governs behavior; 

 𝜙𝛼 and 𝜙𝛽 indifference response probability modifiers, for theories 𝛼 and 𝛽; and 

 𝜃𝛼𝛼, 𝜃𝛽𝛼, and 𝜃𝛽𝛽, population proportions of three of the four subject types (𝜃𝛼𝛽 =  

1 − 𝜃𝛼𝛼 − 𝜃𝛽𝛼 − 𝜃𝛽𝛽, and so is not another independent parameter).  
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Table A.2 shows results from this estimation. First, we see that neither 𝜋𝛼 nor 𝜋𝛽 are 

significantly different from 0.5, which indicates that, at the aggregate level, subjects have a 

uniform prior over the ticket colors; and both 𝜋𝛼 and 𝜋𝛽 are estimated with high precision. This 

implies that 𝜋𝛽/(1 − 𝜋𝛽) ≈ 1, and any conventionally-sized confidence interval for the estimate 

of 𝛾𝛽 is well within the interior of [0,1]. As mentioned previously, Grant and Polak’s (2013) 

work shows that when 𝛾𝛽
2 < 1 ≈ 𝜋𝛽/(1 − 𝜋𝛽) and there are just two states, the MD preference 

model will be monotone. Since 𝛾𝛽is significantly positive, ambiguity aversion is the norm when 

MD governs behavior. The parameter 𝜙𝜏 is negative for both SEU and MD:  indifference 

responses are less common than expected from an unmodified conditional logit model. The 

estimates for 𝜃𝛼𝛼 and 𝜃𝛽𝛽 imply that 17% of subjects are ambiguity-neutral (SEU agents) in both 

minimal and transparent frames and that 55% of subjects are MD agents in both types of frames.  

The estimate 𝜃𝛽𝛼 implies that 27% of subjects switch from ambiguity aversion to ambiguity 

neutrality when framing changes from minimal to transparent, with only about 1% of subjects 

switching in the opposite direction. Given the estimated standard error of 𝜃𝛽𝛼, this does not 

differ significantly from the 20% increase in ambiguity-neutral behavior from transparent 

framing inferred from the simple descriptive framework discussed in Section 5.1. 

Table A.2. Parameter Estimates for Mixture Model 

Parameter Estimates Std. Error p-value 

𝜋𝛼 0.49 0.0075 0.30
a 

𝜋𝛽 0.51 0.0036 0.11
a 

𝜆𝛼 24 4.6 m
b 

𝜆𝛽 18 1.6 m
b 

𝛾𝛽 0.32 0.021 < 0.0001
c 

𝜙𝛼 −0.031 0.0079 0.0002
c 

𝜙𝛽 −0.12 0.014 < 0.0001
c 

𝜃𝛼𝛼 0.17 0.047 m
b 

𝜃𝛽𝛼 0.27 0.09 m
b 

𝜃𝛽𝛽 0.55 0.098 m
b 

Notes: 
aAgainst the null 𝜋𝜏 = 0.5, two-tailed. 
bm means “misleading.” The problem is that the natural values for nulls are boundary points of the parameter spaces 

and t-statistics against boundary points are not statistically sound.  
cAgainst the zero null, two-tailed. 
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A.2.2   Alternative sources for the treatment effect 

 

Aside from switching between MD and SEU preferences when moving from minimal to 

transparent frames, there are two other plausible ways in which frames might yield the treatment 

effect, both having to do with our most common type according to the estimates above—the 𝛽𝛽 

type. One possibility is that many subjects are always MD types, but their ambiguity aversion is 

lessened under transparent frames. We examine this by letting there be two values of the 𝛾𝛽 

parameter, 𝛾𝛽𝑚 and 𝛾𝛽𝑡, ambiguity attitudes given minimal and transparent frames, respectively. 

For estimation and hypothesis-testing, we parameterize this differently, as  

 

𝛾𝛽 = 𝛾𝛽𝑚 − 1(𝑠 ∈ T )∆𝛾𝛽𝑡, where ∆𝛾𝛽𝑡  ≡  𝛾𝛽𝑡 − 𝛾𝛽𝑚, 

 

and estimate 𝛾𝛽𝑚 and ∆𝛾𝛽𝑡. Then the sign and significance (or lack of it) of the estimate of ∆𝛾𝛽𝑡 

tells us whether this possibility has empirical support.  

As discussed in Sections 7 and 8, there is a second possibility suggested to us by the Chew et 

al. (2016) working paper titled “You Need to Recognize Ambiguity to Avoid It.” Under this 

possibility, although transparent frames make the common components of each option 

transparent, such frames may dampen subjects’ ability to “recognize ambiguity” and hence to 

avoid it. In terms of model parameters, this would be manifested in the precision parameter 𝜆𝛽 

taking on lower values under transparent framing—that is, noisier decision making given 

transparent framing. This possibility is a quite different kind of explanation as to why transparent 

framing might reduce observed ambiguity aversion.  

We investigate this latter possibility by letting there be two values of the 𝜆𝛽 parameter, 𝜆𝛽𝑚 

and 𝜆𝛽𝑡, precision parameters given minimal and transparent frames, respectively. Again, for 

estimation and hypothesis-testing purposes, we parameterize this differently, as  

 

𝜆𝛽 = 𝜆𝛽𝑚 − 1(𝑠 ∈ T )∆𝜆𝛽𝑡, where ∆𝜆𝛽𝑡  ≡  𝜆𝛽𝑡 − 𝜆𝛽𝑚, 

 

and estimate 𝜆𝛽𝑚 and ∆𝜆𝛽𝑡. Then the significance (or lack of it) of the estimate of ∆𝜆𝛽𝑡 tells us 

whether this possibility has empirical support.  

Table A.3 shows our estimates after we add these two ways in which the change to 

transparent frames might affect behavior. In Table A.3, subjective probabilities continue to be 

tightly estimated as indistinguishable from uniform priors for both SEU and MD agents. The two 
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standard errors confidence interval for the coefficient of aversion to dispersion, 𝛾𝛽𝑚, is still well 

inside the interior of [0,1], suggesting that MD preferences are both monotone and ambiguity-

averse. Given the p-value for ∆𝜆𝛽𝑡, there is no evidence that transparent frames make choices 

noisier when the MD theory governs behavior. The p-value for ∆𝛾𝛽𝑡 provides weak evidence that 

ambiguity aversion decreases with transparent framing when the MD theory governs behavior. 

The proportion of subjects now estimated to switch from ambiguity aversion in minimal frames 

to ambiguity neutrality in transparent frames is about 14%, and within a standard error of the 

20% estimate from the simple saturated model in the text.  

Table A.3. Parameter Estimates when 𝜸𝜷 and 𝝀𝜷 may be frame-dependent 

Parameter Estimates Std. Error p-value 

𝜋𝛼 0.49 0.0078 0.39
a 

𝜋𝛽 0.5 0.0033 0.19
a 

𝜆𝛼 25 5.4 m
b 

𝜆𝛽𝑚 19 1.6 m
b 

∆𝜆𝛽𝑡 1.7 8.0 0.83
c 

𝛾𝛽𝑚 0.32 0.020 < 0.0001
c 

∆𝛾𝛽𝑡 −0.15 0.083 0.067
c 

𝜙𝛼 −0.023 0.0068 0.0013
c 

𝜙𝛽 −0.11 0.013 < 0.0001
c 

𝜃𝛼𝛼 0.16 0.046 m
b 

𝜃𝛽𝛼 0.14 0.066 m
b 

𝜃𝛽𝛽 0.70 0.077 m
b 

Notes: 
aAgainst the null 𝜋𝜏 = 0.5, two-tailed. 
bm means “misleading.” The problem is that the natural values for nulls are boundary points of the parameter spaces 

and t-statistics against boundary points are not statistically sound.  
cAgainst the zero null, two-tailed. 

 

 

A.2.3 Accounting for Other Sources of Heterogeneity 

 

Thus far, the only heterogeneity we have allowed for is the finite mixture of the four 

discrete subject types—through the 𝜃𝜏𝜏′ parameters. It is worthwhile to add in some allowance 

for continuously distributed heterogeneity of the subjects within each of the four subject 

classes—mainly to see whether the results above are robust to such heterogeneity. Really, any of 

the parameters could have that kind of heterogeneity, and the framework can be generalized to 

include this. However, given that we have just 79 subjects, we think adding in continuously 
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distributed heterogeneity of more than one parameter at a time pushes the between-subjects 

variational information we have too hard. Therefore, we have introduced heterogeneity of a 

single parameter, one parameter at a time, to check for changes in the estimates of our three key 

parameters 𝜃𝛽𝛼, ∆𝛾𝛽𝑝, and ∆𝜆𝛽𝑝, and to see which most likely drives the treatment effect.   

Generally, let 𝜑 stand in for any parameter in our model, and suppose we knew that this 

parameter followed some distribution 𝐹(𝜑|𝜂) within each of our subject types (each viewed as a 

subpopulation of the whole subject population), where 𝜂 is the vector of parameters (e.g. the 

location and scale of 𝜑 viewed as a random variable) governing the distribution 𝐹. Then we can 

modify eq. (A.1) to make the dependence of the likelihoods on 𝜑 explicit. 

 

 (A.3)          𝐿𝜏(𝑠)(𝑐𝑠|𝜑) = 1(𝑐𝑠 = 1)𝑃𝜏
𝑠𝐴(𝜑) + 1(𝑐𝑠 = 0)𝑃𝜏

𝑠𝐵(𝜑) + 1(𝑐𝑠 = 0.5)𝑃𝜏
𝑠~(𝜑) 

 

We may then integrate out explicit dependence on 𝜑, substituting for it the dependence on the 

parameters 𝜂 of 𝜑’s distribution 𝐹(𝜑|𝜂), to obtain a  generalization of eq. (A.2): 

 

(A.4)                            𝐿(𝜂)  = 𝜃𝛼𝛼 ∫ ∏ 𝐿𝛼(𝑐𝑠|𝜑)𝑠 𝑑𝐹(𝜑|𝜂) + 

 

 𝜃𝛼𝛽 ∫ ∏ 𝐿𝛼(𝑐𝑠|𝜑)𝑠∈ℳ ∏ 𝐿𝛽(𝑐𝑠|𝜑)𝑠∈𝒫 𝑑𝐹(𝜑|𝜂) +  

 

𝜃𝛽𝛼 ∫ ∏ 𝐿𝛽(𝑐𝑠|𝜑)𝑠∈ℳ ∏ 𝐿𝛼(𝑐𝑠|𝜑)𝑠∈𝒫 𝑑𝐹(𝜑|𝜂) +  

 

𝜃𝛽𝛽 ∫ ∏ 𝐿𝛽(𝑐𝑠|𝜑)𝑠 𝑑𝐹(𝜑|𝜂). 

 

We need to pick a distribution 𝐹(𝜑|𝜂) to proceed further. We will use a normal distribution 

everywhere, sometimes converted into a lognormal distribution where we need to restrict the 

parameter in question to non-negative values (the precision parameters 𝜆 for instance). In our 

estimations, the required integrations are performed numerically by Gaussian quadrature. 

Indifference responses suggest one kind of marked heterogeneity amongst our subjects. Near 

half of the subjects (37 of 79) never use the indifference response, but a fifth of the subjects (16 

of 79) use it in more than 6 of the 60 situations. For this reason, one estimation introduces 

heterogeneity in the parameters 𝜙𝛼 and 𝜙𝛽. Estimates of 𝜋𝛼 and 𝜋𝛽 in Tables A.1 and A.2, are 

very close to 0.5, but it is possible that there is variance of these priors across subjects. 

Especially in the case of 𝜋𝛼, we would like to know whether that was significantly in evidence. 

Therefore, we include an estimation with heterogeneity in 𝜋𝛼 in subpopulations where it is 
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present
9
. We also include an estimation with heterogeneity of ‘precision’ parameters 𝜆 since 

ignoring it (when it is present) is known to result in biased estimation of other parameters in 

other settings (Wilcox 2006). Finally, it seems plausible, even likely, that ambiguity aversion 

varies a good deal across the subjects who exhibit it, so we also include an estimation with 

heterogeneity in 𝛾𝛽 in subpopulations where it is present. Table A.4 shows the results of these 

four estimations.  

From Table A.4, we see that the strongest evidence for the locus of our treatment effect is in 

the 𝛾𝛽 parameter: In particular, ∆𝛾𝛽𝑡 is consistently significant at p < 0.01 across all four of these 

estimations. In addition, the effect size for ∆𝛾𝛽𝑡 is large, relative to the size of 𝛾𝛽𝑚, consistently 

indicating between a 30% to a 50% reduction in ambiguity aversion (as inferred by the ratio of 

estimates ∆𝛾𝛽𝑡/𝛾𝛽𝑚) when switching from minimal to transparent frames.  The second possible 

locus for the treatment effect is that subjects act as MD agents in minimal frames and as SEU 

agents in transparent frames.  We estimate that this subpopulation comprises between 7% and 

14% of all subjects, depending on which parameter in Table A.4 is varied to account for 

heterogeneity. In contrast, we estimate that roughly 70% to 90% of subjects are MD agents in 

both minimal and transparent frames, but are markedly less ambiguity-averse in transparent 

frames. Thus, it appears that transparent frames significantly reduced ambiguity aversion for a 

very large proportion of subjects, but a relatively small fraction of the population shifted all the 

way to ambiguity neutrality.  The third possible locus of the treatment effect, a change in the 

precision parameters given by ∆𝜆𝛽𝑡, is insignificant in three of four estimations, but is significant 

at the 0.01 level in the estimation with heterogeneity of the 𝛾𝛽 parameter. In the best-fitting 

estimation—that with heterogeneity of the indifference parameters 𝜙𝜏—there is no evidence that 

the precision parameters are driving the treatment effect. 

  

                                                            
9 Adding in heterogeneity of 𝜋𝛽 is not sensible since this is mathematically very similar to adding multiple priors to 

the mean-dispersion theory. Since our specification of the mean-dispersion preferences is a mathematical re-writing 

of multiple priors preferences in the neighborhood of our model estimates, adding heterogeneity of 𝜋𝛽 results in a 

statistical model that is very poorly identified.  
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Table A.4. Parameter Estimates with heterogeneity within the four subpopulations 

Parameter 

Estimate (Std. Error and p-value below in parenthesis) in eq. (5)  

framework model allowing for heterogeneity of... 

𝜋𝛼 𝜆 parameters 𝛾𝛽 parameters 𝜙 parameters 

𝜋𝛼 
0.49 

(0.025, p = 0.58) 

0.50 

(0.0013, p = 0.46) 

0.46 

(0.058, p = 0.44) 

0.49 

(0.014, p = 0.42) 

𝜋𝛽 
0.50 

(0.0034, p =0.27) 

0.50 

(0.0030, p = 0.28) 

0.51 

(0.0035, p = 0.11) 

0.51 

(0.0034, p = 0.09) 

𝜆𝛼 
28 

(7.4, p = m) 

32 

(1.7, p = m) 

36 

(26, p = m) 

24 

(6.4, p = m) 

𝜆𝛽𝑚 
19 

(1.5, p = m) 

18 

(1.7, p = m) 

21 

(1.7, p = m) 

20 

(1.6, p = m) 

∆𝜆𝛽𝑡 
1.5 

(3.8, p = 0.69) 

–3.2 

(1.9, p = 0.10) 

–4.1 

(1.6, p = 0.01) 

–1.1 

(4.3, p = 0.80) 

𝛾𝛽𝑚 
0.31 

(0.027, p < 0.01) 

0.30 

(0.026, p < 0.01) 

0.29 

(0.040, p < 0.01) 

0.32 

(0.021, p < 0.01) 

∆𝛾𝛽𝑡 
–0.15 

(0.036, p < 0.01) 

–0.12 

(0.031, p < 0.01) 

–0.11 

(0.022, p < 0.01) 

–0.13 

(0.049, p < 0.01) 

𝜙𝛼 
–0.0098 

(0.026, p = 0.71) 

0.013 

(0.0056, p = 0.03) 

0.021 

(0.0053, p < 0.01) 

–0.020 

(0.011, p = 0.07) 

𝜙𝛽 
–0.12 

(0.019, p < 0.01) 

–0.16 

(0.024, p < 0.01) 

–0.099 

(0.015, p < 0.01) 

–0.18 

(0.021, p < 0.01) 

𝜃𝛼𝛼 
0.14 

(0.059, p = m) 

0.063 

(0.031, p = m) 

0.050 

(0.027, p = m) 

0.17 

(0.046, p = m) 

𝜃𝛽𝛼 
0.14 

(0.068, p = m) 

0.077 

(0.043, p = m) 

0.071 

(0.044, p = m) 

0.11 

(0.050, p = m) 

𝜃𝛽𝛽 
0.72 

(0.073, p = m) 

0.86 

(0.051, p = m) 

0.88 

(0.054, p = m) 

0.72 

(0.063, p = m) 

𝜎𝜋𝛼
 

0.053 

(0.029, p = m) 
   

𝜎𝑙𝑛(𝜆)  
0.45 

(0.031, p = m) 
  

𝜎𝛾𝛽
   

0.14 

(0.018, p = m) 
 

𝜎𝜙    
0.13 

(0.017, p = m) 

Log 

Likelihood 
−3068.45 −2934.87 −2924.93 −2873.56 

Notes: “p = m” means that a p-value is misleading. The problem is that the natural values for nulls are boundary 

points of the parameter spaces and t-statistics against boundary points are not statistically sound.  
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Appendix B: A Sufficient Condition for SWUP to Satisfy Certainty Betweenness 

Consider the following frame involving a choice between an objective lottery, 𝜅, and subjective 

lottery, ℎ. This setup encompasses basic pairs 1 through 4 from our experiment as special cases. 

 

Let 𝑟 and 𝑏 denote the red and blue ticket states, respectively. Normalize 𝑈(25) = 1, and 

𝑈(0) = 0. Under SWUP,  ℎ ~ 𝜅 ⟺  𝜋𝑟𝜓Ρ(𝑝, 𝑞𝑟)(𝑝 − 𝑞𝑟) + (1 − 𝜋𝑟)𝜓Ρ(𝑝, 𝑞𝑏)(𝑝 − 𝑞𝑏) = 0. 

Lottery 𝜅 and the mixture 𝑔 ≔ 𝛼𝜅 + (1 − 𝛼)ℎ are shown below in the red and blue ticket states:  

 

 

For basic pairs 1 through 4, certainty betweenness implies condition (B.1) for SWUP: 

(B.1) 𝛼𝜅 + (1 − 𝛼)ℎ ~ 𝜅 ⟺  𝜋𝑟𝜓P((1 − 𝛼)𝑝, (1 − 𝛼)𝑞𝑟)(1 − 𝛼)(𝑝 − 𝑞𝑟) 

                                                    +(1 − 𝜋𝑟)𝜓Ρ((1 − 𝛼)𝑝, (1 − 𝛼)𝑞𝑏)(1 − 𝛼)(𝑝 − 𝑞𝑏) = 0. 

Bordalo et al. (2013) argue that homogeneity of degree zero is a plausible property of a salience 

function and they assume that property in their analysis of salience in consumer choice. They 

define homogeneity of degree zero as follows: 𝜓(𝛼𝑥, 𝛼𝑦) = 𝜓(𝑥, 𝑦) for all 𝛼 > 0.  

Under homogeneity of degree zero, (B.1) reduces to (B.2): 

(B.2) 𝛼𝜅 + (1 − 𝛼)ℎ ~ 𝜅 ⟺ (1 − 𝛼)[𝜋𝑟 𝜓Ρ(𝑝, 𝑞𝑟)(𝑝 − 𝑞𝑟) + (1 − 𝜋𝑟)𝜓Ρ(𝑝, 𝑞𝑏)(𝑝 − 𝑞𝑏)] = 0 

Note that (B.2) reduces to the condition for ℎ ~ 𝜅, and thus certainty betweenness holds under 

SWUP for basic pairs 1 through 4 if the probability salience function satisfies homogeneity of 

degree zero. A ‘parameter-free’ salience function, introduced by Bordalo et al. (2013), which 

satisfies ordering, diminishing sensitivity, and homogeneity of degree zero is shown below: 

𝜓(𝑥, 𝑦): =
|𝑥 − 𝑦|

|𝑥| + |𝑦|
. when it is not the case that x = y = 0 , and 𝜓(0,0): = 0. 

 Red Ticket  Blue Ticket 

𝜅 $25 𝑝 $0 1 − 𝑝  $25 𝑝 $0 1 − 𝑝 

ℎ $25 𝑞𝑟 $0 1 − 𝑞𝑟  $25 𝑞𝑏 $0 1 − 𝑞𝑏 

 Red Ticket 

𝜅(𝑟) $25 𝛼𝑝 $0 𝛼(1 − 𝑝) $25 (1 − 𝛼)𝑝 $0 (1 − 𝛼)(1 − 𝑝) 

𝑔(𝑟) $25 𝛼𝑝 $0 𝛼(1 − 𝑝) $25 (1 −  𝛼)𝑞𝑟 $0 (1 − 𝛼)(1 − 𝑞𝑟) 

 Blue Ticket 

𝜅(𝑏) $25 𝛼𝑝 $0 𝛼(1 − 𝑝) $25 (1 − 𝛼)𝑝 $0 (1 − 𝛼)(1 − 𝑝) 

𝑔(𝑏) $25 𝛼𝑝 $0 𝛼(1 − 𝑝) $25 (1 − 𝛼)𝑞𝑏 $0 (1 − 𝛼)(1 − 𝑞𝑏) 



39 
 

Appendix C (Supplemental Information)  

 

The experimental materials are available here: 

 

http://www.chapman.edu/research-and-institutions/economic-science-

institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf 

 

These materials include: 

 The Instruction Booklet 

 Ellsberg Experiment Booklet 1 (Choice Situations   1 – 20) 

 Ellsberg Experiment Booklet 2 (Choice Situations 21 – 40) 

 Ellsberg Experiment Booklet 3 (Choice Situations 41 – 60) 

 

http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf
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