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In his exposition of subjective expected utility theory, Savage (1954) proposed that the Allais 

paradox could be reduced if it were recast into a format which made the appeal of the 

independence axiom of expected utility theory more transparent. Recent studies consistently find 

support for this prediction. We consider a salience-based choice model which explains this 

frame-dependence of the Allais paradox and derive the novel prediction that the same type of 

presentation format which was found to reduce Allais-style violations of expected utility theory 

will also reduce Ellsberg-style violations of subjective expected utility theory since that format 

makes the appeal of Savage’s “sure thing principle” more transparent. We design an experiment 

to test this prediction and find strong support for such frame dependence of ambiguity aversion 

in Ellsberg-style choices. In particular, we observe markedly less ambiguity-averse behavior in 

Savage’s matrix format than in a more standard ‘prospect’ format. This finding poses a new 

challenge for the leading models of ambiguity aversion. 
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1.   Introduction 

Expected utility (EU) theory (Von Neumann and Morgenstern, 1947) and subjective 

expected utility (SEU) theory (Savage, 1954) are widely recognized as the standard models of 

rational decision making under risk and uncertainty. Both models have also been applied as 

descriptive theories of actual behavior, although persistent empirical challenges were raised soon 

after the models were introduced. Allais (1953) devised pairs of choices, one involving a certain 

outcome and a risky prospect and the other a choice between two risky prospects where people 

frequently
1
 violate the independence axiom of EU. Ellsberg (1961) presented pairs of choices 

each involving a risky prospect (whose probabilities are given) and an uncertain prospect (whose 

probabilities are unknown) where people frequently violate the ‘sure-thing’ principle of SEU.   

In his exposition of subjective expected utility, Savage (1954) digressed to address the 

Allais-type violations of the independence axiom. He conjectured that these violations might be 

reduced if the choice situations were reframed in a transparent format. Tests of this prediction, 

discussed below, have consistently found that the Allais paradox is susceptible to framing, with 

significantly fewer violations in Savage’s proposed presentation format. Since the Ellsberg 

paradox also violates an independence condition, we ask whether applying Savage’s presentation 

format to Ellsberg-style choices leads to fewer violations of SEU: To our knowledge this 

question has not been previously investigated. We ground our investigation in new and rigorous 

theory formalizing the notion of a transparent frame (Leland and Schneider 2016) and recent 

theory formalizing salience (e.g., Bordalo et al. 2012; Koszegi and Szeidl 2013).  

 

2.   Motivation 

Consider Savage’s (1954) version of the Allais paradox: Figure 1 presents this version in two 

different frames (payoffs are in thousands of dollars). The left panel of Figure 1 presents it in 

what we call minimal or efficient frames.
2
 In Savage’s version, a decision maker chooses 

between lotteries 𝑝 and 𝑞 and then chooses between lotteries 𝑝′ and 𝑞′. Lottery 𝑝 offers $500,000 
                                                           
1
 We are speaking here of the classic Allais example, which is a thought experiment involving very large 

hypothetical outcomes which no experimenter can actually pay out. When its outcomes are proportionally scaled 

down to an experimentally feasible size for actual payment, similar behavior does not always occur (e.g. Conlisk 

1989; Fan 2002). This could be either a payoff magnitude effect or a hypothetical versus real incentives effect. In 

incentivized experiments, the generalized Allais example (known as the common consequence effect) does not 

always occur (Burke et al. 1996) and sometimes occurs in ‘non-classic’ ways (Starmer 1992).  
2
 A minimal frame is a matrix presentation of choice alternatives which (among other properties) has the smallest 

dimension (fewest number of columns) needed to represent those alternatives. See Leland and Schneider (2016) for 

formal  property lists which uniquely define minimal and transparent frames. 
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with certainty, whereas 𝑞 offers a 10% chance of $2.5 million, an 89% chance of $500,000, and a 

1% chance of $0.  The independence axiom (and Savage’s sure-thing principle) imply that a 

decision maker with strict preferences will choose either 𝑝 and 𝑝′ or 𝑞 and 𝑞′ (in accord with the 

decision maker’s attitude toward risk). Yet Savage himself reports expressing a preference for 𝑝 

over 𝑞 and for 𝑞′ over 𝑝′ (Savage, 1954), in violation of his own theory! 

 

Figure 1. The Allais Paradox in Minimal and Transparent Frames  

The Allais Paradox in Minimal Frames              The Allais Paradox in Transparent Frames 

 
 

 

Troubled by his own expressed preferences, Savage (1954) invites consideration of an 

alternative presentation of the same choices: We show a similar presentation in the right panel of  

Figure 1. In this presentation, it is clear that 𝑝 and 𝑞 each offer an 89% chance of $500,000 and 

that 𝑝′ and 𝑞′ each offer an 89% chance of $0. Savage proposes that this change in framing may 

enhance the appeal of the independence axiom and produce more consistent choices: Following 

his suggestion, we say that this presentation employs transparent frames. In particular, a 

transparent frame isolates the common consequences of the lotteries under consideration and 

focuses attention on the differences between lotteries as prescribed by the independence axiom.  

A number of recent studies (Leland, 2010; Bordalo et al., 2012; Incekara-Hafalir and Stecher, 

2012; Birnbaum and Schmidt, 2015; Harman and Gonzalez, 2015) have investigated whether 

observed behavior is more consistent with Savage’s theory when the Allais paradox choices are 

presented to subjects in transparent frames. All of these studies find support for Savage’s 

conjecture. Incekara-Hafalir and Stecher (2012) conclude that “given a transparent presentation, 

expected utility theory performs surprisingly well.” 

Leland and Schneider (2016) formalize matrix presentations of lotteries (like those used by 

Savage) and develop a salience-based decision algorithm that operates over frames. Their 

     (x1,y1)    (p1,q1)    (x2,y2)    (p2,q2)    (x3,y3)    (p3,q3)             (x1,y1)   (p1,q1)    (x2,y2)    (p2,q2)   (x3,y3)    (p3,q3) 

p 500 0.10 500 0.89 500 0.01 p 500 0.10 500 0.89 500 0.01 

q 2500 0.10 500 0.89 0 0.01 q 2500 0.10 500 0.89 0 0.01 

              

       (x1,y1)    (p1,q1)    (x2,y2)    (p2,q2)                                          (x1,y1)   (p1,q1)    (x2,y2)    (p2,q2)   (x3,y3)    (p3,q3) 

p′ 500 0.11 0 0.89   p′ 500 0.10 0 0.89 500 0.01 

q′ 2500 0.10 0 0.90   q′ 2500 0.10 0 0.89 0 0.01 
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theoretical work implies that ambiguity aversion is also susceptible to framing: The same 

transparent framing that reduces Allais-style violations of EU should reduce Ellsberg-style 

violations of SEU.  Figure 2 illustrates this with choice situations from our new experiment—as 

these were presented to our subjects. The top pair shows a choice between two acts (state-

contingent lotteries) in minimal frames. The lottery the decision maker plays depends on her 

choice (act 𝐴 or act 𝐵) and the realization of an ambiguous state of the world (a ‘red ticket’ state 

or a ‘blue ticket’ state). The decision maker does not know the probability that the true state is 

red or blue. As in Ellsberg’s classic paradox, one act (𝐴) is merely risky because it yields the 

same lottery regardless of the state: In keeping with relevant theoretical work (Grant and Polak 

2013), we call these “constant acts.” The other act (𝐵) is an “ambiguous act” (it yields different 

lotteries in different states). The decision maker is also given a similar choice in which the 

lotteries assigned to the red and blue ticket states are reversed. This construction resembles that 

in Ellsberg’s (1961) two-color paradox.  

 

Figure 2. Ellsberg’s Paradox in Minimal Frames (top) and Transparent Frames (bottom) 

 

 

The SEU model predicts that a decision maker who strictly prefers 𝐴 to 𝐵 in the top panel of 

Figure 2 will also strictly prefer 𝐵 to 𝐴 when the lotteries assigned to red and blue states are 

reversed—acting as if that agent assigns a subjective probability distribution over states. 

However, in similar types of choices, Ellsberg (1961) found that many people preferred 𝐴 to 𝐵 

regardless of whether the assignment of lotteries to states is reversed. Since 𝐴 offers a known 

$ N/12 $ N/12 $ N/12 $ N/12

A $25   6/12 $0   6/12 $25   6/12 $0  6/12

B $25   9/12 $0   3/12 $25   3/12 $0  9/12

$ N/12 $ N/12 $ N/12 $ N/12 $ N/12 $ N/12

A $25  6/12 $0  3/12 $0  3/12 $25  3/12 $25  3/12 $0  6/12

B $25  6/12 $25  3/12 $0  3/12 $25  3/12 $0  3/12 $0  6/12

You Draw a Red Ticket You Draw a Blue Ticket

You Draw a Red Ticket You Draw a Blue Ticket
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probability of winning a prize, whereas the probability of winning in 𝐵 is ambiguous, the strict 

preference for 𝐴 is termed ambiguity aversion.  

 The choices between 𝐴 and 𝐵 could, like the Allais lotteries, be presented in the ‘transparent’ 

frames shown in the bottom of Figure 2. In this ‘Savage’ presentation, for the choice between 𝐴 

and 𝐵, the common consequences in each state-contingent lottery are isolated, encouraging the 

decision maker to focus on the differences between 𝐴 and 𝐵 (the 3/12 chance of 𝐴 paying $0 and 

𝐵 paying $25 in the red state and the 3/12 chance of 𝐴 paying $25 and 𝐵 paying $0 in the blue 

state).  A decision maker who focuses only on these differences and assigns a uniform prior over 

states will then be indifferent between 𝐴 and 𝐵, regardless of whether the assignment of lotteries 

to states is reversed. This reasoning suggests that transparent framing of the Ellsberg paradox 

will produce behavior closer to ambiguity neutrality. However, such frame-dependence of 

ambiguity aversion is not consistent with any of the leading models of ambiguity aversion in the 

literature. The following section shows that Leland and Schneider’s (2016) model predicts this 

under fairly general conditions, and introduces a variant of their model generalizing the 

prediction in an empirically useful way. Our new experiment finds strong support for this 

generalized version of the prediction. 

 There is but a small and very recent literature on the possibility that ambiguity attitudes are 

susceptible to framing effects. Chew et al. (2017) examine whether presentation of choice 

alternatives as text description versus payoff tables (so as to make the ambiguity inherent in the 

choices more or less explicit) influences the degree of ambiguity aversion observed. They find 

that for subjects who do not recognize ambiguity in some tasks, emphasizing ambiguity produces 

greater ambiguity aversion. However, subjects that recognized ambiguity in each task were more 

ambiguity-averse than those who did not recognize ambiguity in some tasks, regardless of 

whether the ambiguity is emphasized. Trautmann and van der Kuijlen (2014) examine attitudes 

toward ambiguity for gains versus losses.  They report results suggesting that ambiguity aversion 

varies according to whether the outcomes are gains or losses, as has been observed for attitudes 

toward risk.  Finally, Voorhoeve et al. (2016) test the findings in Chew et al. (2017) and in 

Trautmann and van der Kuijlen (2014), and fail to find significant support for the hypotheses that 

emphasizing ambiguity, or reframing gains as losses, alters the prevalence of ambiguity aversion. 

With these mixed findings, we think there is room for more experimental work. Additionally, the 

next section provides a highly focused theoretical motivation for our new experiment. 
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 3.  Two Salience-based Models of Choice under Uncertainty 

Leland and Schneider (2016) employ a matrix representation of the attributes (e.g. payoffs 

and probabilities in lotteries) of pairs of alternatives: We follow this for pairs of acts. A generic 

frame for simple Ellsberg-style choices which encompasses the basic pairs of acts used in our 

experiment is shown in Figure 3 in which there are two possible states 𝜔 ∈ {𝑟, 𝑏} –“red ticket” 

and “blue ticket” states 𝑟 and 𝑏. The decision maker does not know the underlying state 𝜔. In 

Figure 3, act 𝑋 offers lottery {𝑥1
𝑟 , 𝑝1

𝑟; … ; 𝑥𝑛𝑟
𝑟 , 𝑝𝑛𝑟

𝑟 } when 𝜔 = 𝑟 and offers lottery 

{𝑥1
𝑏 , 𝑝1

𝑏; … ; 𝑥𝑛𝑏
𝑏 , 𝑝𝑛𝑏

𝑏 } when 𝜔 = 𝑏. Likewise, act 𝑌 offers lottery {𝑦1
𝑟 , 𝑞1

𝑟; … ; 𝑦𝑛𝑟
𝑟 , 𝑞𝑛𝑟

𝑟 } when 

𝜔 = 𝑟 and lottery {𝑦1
𝑏 , 𝑞1

𝑏; … ; 𝑦𝑛𝑏
𝑏 , 𝑞𝑛𝑏

𝑏 } when 𝜔 = 𝑏. All frames in the experiment presented 

outcomes that monotonically decrease (from left to right) in each state-contingent lottery: In 

Figure 3, this entails that 𝑥1
𝑟 ≥ ⋯ ≥ 𝑥𝑛𝑟

𝑟  and 𝑥1
𝑏 ≥ ⋯ ≥ 𝑥𝑛𝑏

𝑏  for act 𝑋 and analogous 

monotonicity for act 𝑌. Note that the index 𝑖 ∈ {1,2, … , 𝑛𝜔} in Figure 3 denotes the location of 

the i
th

 column vector in each state 𝜔’s frame. 

Figure 3. A Generic Frame under Ambiguity  

 
 

 

 

 

 

 

 

 

3.1  Salience-Weighted Utility of Presentations (SWUP) Derived from SEU 

Given the notion of a frame as a matrix representation of state-contingent lotteries, we can 

model the behavior of a frame-sensitive decision maker by developing a computational decision 

algorithm which operates over frames. To do so, following Leland and Schneider (2016), we 

start with the SEU model of Anscombe and Aumann (1963).  

More generally, index the possible states of the world by 𝜔 ∈ Ω = {1,2, … , 𝑚}. Denote 

ambiguous acts by 𝑋 and 𝑌, where 𝑋 assigns lottery 𝑋(𝜔) with corresponding payoff and 

probability vectors (𝐱𝝎, 𝒑𝝎) to each state. Likewise, 𝑌 assigns lottery 𝑌(𝜔) with payoff and 

probability vectors (𝐲𝝎, 𝒒𝝎) to each state. In the classic alternative-based evaluation model, 

 

  
  

Red Ticket State 
 

Blue Ticket State 

X 𝑥1
𝑟 𝑝1

𝑟 … 𝑥𝑖
𝑟 𝑝𝑖

𝑟 … 𝑥𝑛𝑟
𝑟  𝑝𝑛𝑟

𝑟   𝑥1
𝑏 𝑝1

𝑏 … 𝑥𝑖
𝑏 𝑝𝑖

𝑏 … 𝑥𝑛𝑏
𝑏  𝑝𝑛𝑏

𝑏  

Y 𝑦1
𝑟  𝑞1

𝑟 … 𝑦𝑖
𝑟  𝑞𝑖

𝑟 … 𝑦𝑛𝑟
𝑟  𝑞𝑛𝑟

𝑟   𝑦1
𝑏  𝑞1

𝑏 … 𝑦𝑖
𝑏  𝑞𝑖

𝑏 … 𝑦𝑛𝑏
𝑏  𝑞𝑛𝑏

𝑏  
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there is a unique subjective probability distribution 𝜋 over states (Anscombe and Aumann, 1963) 

such that 𝑋 is chosen over 𝑌 if and only if 

(1) ∑ ∑ 𝜋𝜔[𝑝𝑖
𝜔𝑢(𝑥𝑖

𝜔)]𝑛𝜔

𝑖
𝑚
𝜔 >  ∑ ∑ 𝜋𝜔[𝑞𝑖

𝜔𝑢(𝑦𝑖
𝜔)]𝑛𝜔

𝑖
𝑚
𝜔 . 

We may equivalently rewrite eq. 1 as an attribute-based comparative evaluation model: 

(2) ∑ ∑ 𝜋𝜔[(𝑝𝑖
𝜔 − 𝑞𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) + 𝑢(𝑦𝑖

𝜔))/2 +  (𝑢(𝑥𝑖
𝜔) − 𝑢(𝑦𝑖

𝜔))(𝑝𝑖
𝜔 + 𝑞𝑖

𝜔)/2]𝑛𝜔

𝑖
𝑚
𝜔 > 0. 

Leland and Schneider (2016) note that this “attribute-based evaluation computes probability 

differences associated with outcomes weighted by the average utility of those outcomes plus 

utility differences of outcomes weighted by their average probability of occurrence.” Agents who 

choose according to eq. 2 will make the same choices as agents who choose according to the 

SEU model in eq. 1. But drawing on recent work which highlights the role of salience perception 

in decision making (e.g., Bordalo et al., 2012; Koszegi and Szeidl, 2013), suppose that when 

comparing state-contingent lotteries, agents focus more on large differences in payoffs or 

probabilities and systematically overweight them as a consequence. To formalize this intuition, 

Leland and Schneider place weights 𝜓Ρ(𝑝𝑖
𝜔 , 𝑞𝑖

𝜔) on probability differences and 𝜓Χ(𝑥𝑖
𝜔 , 𝑦𝑖

𝜔) on 

payoff differences, yielding a model in which 𝑋 is strictly preferred to 𝑌 if and only if  

(3) ∑ ∑ 𝜋𝜔[ 𝜓Ρ(𝑝𝑖
𝜔 , 𝑞𝑖

𝜔)(𝑝𝑖
𝜔 − 𝑞𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) + 𝑢(𝑦𝑖

𝜔))/2 𝑛𝜔

𝑖
𝑚
𝜔   

   + 𝜓Χ(𝑥𝑖
𝜔 , 𝑦𝑖

𝜔)(𝑢(𝑥𝑖
𝜔) − 𝑢(𝑦𝑖

𝜔))(𝑝𝑖
𝜔 + 𝑞𝑖

𝜔)/2] > 0.  

Leland and Schneider (2016) call this representation of preferences “salience weighted utility 

over presentations” or SWUP: The weights 𝜓Ρ(𝑝𝑖
𝜔, 𝑞𝑖

𝜔) and 𝜓Χ(𝑥𝑖
𝜔 , 𝑦𝑖

𝜔) are “salience functions” 

satisfying two critical properties of salience perception noted in Bordalo et al. (2012; 2013): 

 

Definition 1 (Salience Function): A salience function 𝜓(𝑎𝑖, 𝑏𝑖) is any (non-negative), 

symmetric and continuous function that satisfies the following two properties:  

1. Ordering: If  [𝑎𝑖
′, 𝑏𝑖

′] ⊂ [𝑎𝑖, 𝑏𝑖]   then 𝜓(𝑎𝑖
′, 𝑏𝑖

′) < 𝜓(𝑎𝑖, 𝑏𝑖).
 
 

2. Diminishing Sensitivity: for any 𝑎𝑖, 𝑏𝑖 , 𝜖 > 0, 𝜓(𝑎𝑖 + 𝜖, 𝑏𝑖 + 𝜖) < 𝜓(𝑎𝑖, 𝑏𝑖). 

 

SWUP explains the Allais paradox framing effect conjectured by Savage. In the transparent 

frame in Figure 1, a decision maker who acts in accordance with SWUP chooses 𝑝 over 𝑞 if and 
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only if she chooses 𝑝′ over 𝑞′, consistent with the independence axiom. In contrast, the salience 

evaluations in the two choice pairs can differ under minimal frames, enabling the model to 

accommodate the Allais paradox. SWUP not only explains the Allais framing effect but also 

predicts a novel framing effect in the context of Ellsberg’s paradox. We can now apply the 

SWUP model to demonstrate this prediction. 

 

3.2    The Ellsberg Paradox in Minimal and Transparent Frames 

We illustrate SWUP with basic pair 1 from our experiment: Figure 4 shows two minimal 

frame versions of this pair. Set 𝑢($25) = 1 and 𝑢($0) = 0, and let 𝜋𝑟 denote the subjective 

probability that the true state is red. Then SWUP predicts that 𝐴 is chosen over 𝐵 if  

𝜋𝑟𝜓Ρ(0.5,0.75)(−0.25) + (1 − 𝜋𝑟)𝜓Ρ(0.5, 0.25)(0.25) > 0. 

As observed by Leland and Schneider (2016), symmetry and diminishing sensitivity of 𝜓Ρ imply 

that 𝜓Ρ(0.5, 0.25) >  𝜓Ρ(0.5,0.75). Thus, under a uniform prior, a SWUP decision maker 

chooses constant act 𝐴 over ambiguous option 𝐵, and likewise chooses constant act 𝐴′ over 

ambiguous option 𝐵′, for any salience function 𝜓Ρ. Hence, SWUP predicts ambiguity aversion in 

minimal frames. In the minimal frames of Figure 4, all payoff differences within each column 

vector are zero, so that behavior under SWUP depends solely on the subjective prior over states 

and the probability salience function. 

 

Figure 4. The Ellsberg Paradox in Minimal Frames 

 

 

 

 

 

  

 

  Red Ticket State   Blue Ticket State 

A $25 0.50 $0 0.50  $25 0.50 $0 0.50 

B $25 0.75 $0 0.25  $25 0.25 $0 0.75 
 

 

  Red Ticket State   Blue Ticket State 

A′ $25 0.50 $0 0.50  $25 0.50 $0 0.50 

B′ $25 0.25 $0 0.75  $25 0.75 $0 0.25 
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Figure 5 shows two transparent frame versions of basic pair 1: Here the probability 

differences within each column vector are zero, so behavior is determined solely by the 

subjective prior and payoff salience. In particular, SWUP now predicts that 𝐴 is chosen over 𝐵 if   

 

𝜋𝑟𝜓Χ(0,25)(−1) + (1 − 𝜋𝑟)𝜓Χ(25,0)(1) > 0. 
 

However, under a uniform prior over states and by symmetry of 𝜓Χ, the left side of this 

expression is identically zero, so the decision maker is predicted to be indifferent between 𝐴 and 

𝐵 (and is likewise predicted to be indifferent between 𝐴′ and 𝐵′). Thus, this version of SWUP 

(derived from SEU) predicts ambiguity aversion in minimal frames and ambiguity-neutrality in 

transparent frames (for any utility function, and any salience function). 

 

Figure 5. The Ellsberg Paradox in Transparent Frames 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Unifying Frame-Independent and Frame-Sensitive behavior toward Ambiguity 

The SWUP model derived above from SEU explains the Allais and Ellsberg paradoxes and 

predicts that they are sensitive to framing, and does so with one coherent subjective prior over 

states. It formalizes the intuition of frame-dependent decision making in a simple manner. 

However, its predictions are too restrictive to accommodate the variety of subject behavior 

observed in many experiments. For data analysis, we need a version of SWUP that allows for 

individual differences in ambiguity attitudes independent of frames. We do so by embedding 

SWUP’s comparative form in a simple and well-known model of ambiguity attitudes—the 

  Red Ticket State 
 

Blue Ticket State 

A $25 0.50 $0 0.25 $0 0.25  $25 0.25 $25 0.25 $0 0.50 

B $25 0.50 $25 0.25 $0 0.25  $25 0.25 $0 0.25 $0 0.50 

 

  Red Ticket State 
 

Blue Ticket State 

A′ $25 0.25 $25 0.25 $0 0.50  $25 0.50 $0 0.25 $0 0.25 

B′ $25 0.25 $0 0.25 $0 0.50  $25 0.50 $25 0.25 $0 0.25 
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Hurwicz (1951) optimism criterion—instead of SEU.
3
 In the Anscombe-Aumann framework, the 

Hurwicz criterion evaluates ambiguous acts according to the convex combination of the best and 

worst-case expected utilities generated by the act across all states of the world: Act 𝑋 is weakly 

preferred to act 𝑌 if and only if 𝐻(𝑋) ≥ 𝐻(𝑌), where 𝐻(𝑋) is 

(4) 𝛼 max𝜔∈Ω ∑ 𝑝𝑖
𝜔𝑛𝜔

𝑖 𝑢(𝑥𝑖
𝜔) + (1 − 𝛼) min𝜔Ω ∑ 𝑝𝑖

𝜔𝑛𝜔

𝑖 𝑢(𝑥𝑖
𝜔). 

We propose an analogous ‘Hurwicz-SWUP’ criterion that allows for frame-independent 

heterogeneity in ambiguity attitudes. Let 𝑋 be ‘more ambiguous’
4
 than 𝑌. Then under the 

Hurwicz-SWUP criterion, 𝑋 is preferred to 𝑌 if and only if 𝑆(𝑋, 𝑌) > 0, where  

(5)  𝑆(𝑋, 𝑌) = 𝛼 max𝜔∈Ω ∑ [
𝜓Ρ(𝑝𝑖

𝜔,𝑞𝑖
𝜔)(𝑝𝑖

𝜔−𝑞𝑖
𝜔)(𝑢(𝑥𝑖

𝜔)+𝑢(𝑦𝑖
𝜔))

2

𝑛𝜔

𝑖 +
𝜓Χ(𝑥𝑖

𝜔,𝑦𝑖
𝜔)(𝑢(𝑥𝑖

𝜔)−𝑢(𝑦𝑖
𝜔))(𝑝𝑖

𝜔+𝑞𝑖
𝜔)

2
] 

  + (1 − 𝛼) min𝜔∈Ω ∑ [
𝜓Ρ(𝑝𝑖

𝜔,𝑞𝑖
𝜔)(𝑝𝑖

𝜔−𝑞𝑖
𝜔)(𝑢(𝑥𝑖

𝜔)+𝑢(𝑦𝑖
𝜔))

2

𝑛𝜔

𝑖 +
𝜓Χ(𝑥𝑖

𝜔,𝑦𝑖
𝜔)(𝑢(𝑥𝑖

𝜔)−𝑢(𝑦𝑖
𝜔))(𝑝𝑖

𝜔+𝑞𝑖
𝜔)

2
].  

The above formulation computes a weighted average of the best-case and worst-case SWUP 

comparisons between the more and less ambiguous acts. This formulation decomposes behavior 

toward ambiguity into a frame-independent ambiguity attitude, 𝛼, and a frame-dependent 

component determined by salience functions 𝜓Ρ(𝑝𝑖
𝜔, 𝑞𝑖

𝜔) and  𝜓Χ(𝑥𝑖
𝜔 , 𝑦𝑖

𝜔) and the frame of the 

decision. Proposition 1 below follows from eq. 5 (Section A4 of our Appendix shows this). 

Proposition 1: Let ≻ (~) denote strict preference (indifference) as determined by the Hurwicz-

SWUP criterion in eq. 5. For the choice situations shown in Figures A1 and A2 of Appendix 

Section A4 (Figures 4 and 5 are examples), with constant act 𝑌 and ambiguous act 𝑋: 

(i) If 𝑋 ~ 𝑌 in the minimal frame then  𝑋 ≻ 𝑌 in the transparent frame.  

(ii) If 𝑋 ~ 𝑌 in the transparent frame then  𝑌 ≻ 𝑋 in the minimal frame.  

                                                           
3
 Another SWUP variant would add a probability 𝜗 ∈ [0,1] that the agent naturally re-frames transparent 

presentations as minimal ones. This is particularly plausible if people naturally think in minimal frames. 𝜗 then 

governs the strength of the framing effect for that agent (agents with 𝜗 = 1 are frame insensitive and agents with 

𝜗 = 0 conform to SEU in transparent frames but exhibit ambiguity aversion in minimal frames). This SWUP variant 

accommodates reduced ambiguity aversion (without requiring ambiguity neutrality) in transparent frames, but still 

rules out ambiguity seeking behavior. Hurwicz-SWUP allows any ambiguity attitude, but requires less ambiguity 

aversion (or more ambiguity seeking) in transparent frames than in minimal frames. 
4
 While there is not yet a general consensus for ranking all pairs of ambiguous acts by their level of ambiguity, one 

natural approach is given by the family of 𝑓-divergences which measures the distance between two probability 

distributions. In Section A3 of our Appendix we show that two well-known 𝑓-divergences – the Hellinger distance 

(Hellinger, E., 1909; Sengar, 2009) and the total variation distance (Levin et al., 2009) predict the same ranking of 

ambiguous acts for each of the basic pairs in our experimental design.  
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Thus Hurwicz-SWUP makes the comparative statics prediction that subjects will be less 

ambiguity averse in transparent frames than in minimal frames for appropriately constructed 

choice situations shown in Appendix A4: We test this prediction.  

 

4.   The Experiment 

Within the experiment, and henceforth, we use the layman’s term “options” instead of the 

theorist’s term “acts.” Our experiment consists of 𝑗 = 1, 2, . . . , 11 “basic pairs” of options, where 

each pair involves a choice between a more ambiguous and a less ambiguous option. Repeated 

trials of each basic pair, with variations of presentation, create a total of 𝑠 =  1, 2, . . . , 60 choice 

situations presented to each subject. In each situation, subjects chose just one of three responses: 

“I prefer Option A,” “I prefer Option B,” or “I am indifferent between Option A and Option B.” 

Table 1 presents the basic pairs and all variations of them. After a subject made all 60 choices, 

she drew a card from a deck of cards numbered from 1 to 60, selecting the subject’s chosen 

option from one situation for payment. (If she chose indifference in that situation, the 

experimenter flipped a coin to choose either option A or option B for the subject.) Uncertainty in 

the chosen option was then resolved in two stages. In the first stage, the subject drew a ticket 

from a opaque bag containing ten paper raffle tickets in an unknown mixture of red and blue 

tickets. As shown in Table 1, the drawn ticket color determined a lottery to be played out. In the 

second stage the subject rolled a twelve-sided die to determine her payment from the lottery. 

This payment was $25 or $0 ($11.01 averaged across the 79 subjects)
5
 which, when added to a 

flat $15 participation fee, yielded average subject earnings of $26.01.  

The subjects were seventy-nine
6
 undergraduate students at a U.S. university.

7
 Subjects were 

seated in visually isolated carrels in a laboratory. From the beginning to the end of each 

experimental session, each subject had an opaque bag hanging in the corner of his or her carrel. 

Subjects were truthfully told that each bag contained an unknown mixture of ten red and/or blue  

 

                                                           
5
 Consider a hypothetical noiseless subjective EV maximizer Bob with equal priors over ticket colors: His expected 

probability of receiving $25 in our design would have been 0.518056 (and otherwise zero). Now assume a sample of 

79 Bobs: Simulation of a million such samples show that average earnings of those 79 Bobs will exceed $11.01 in 

93% of those samples. Now consider a hypothetical random chooser Ted: His probability of receiving $25 would be 

0.492361 in our design, and the average earnings of 79 Teds will exceeded $11.01 in 84% of samples. 
6
 The planned sample was 80 subjects. One subject failed to show for the final session.  

7
 Each of the five experimental sessions lasted approximately 90 minutes (in keeping with recruitment promising 

that sessions would be less than two hours).  
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Table 1. Summary of Experimental Design Pair Variations 

 
Option A Option B Trials of each basic pair 

 

Red 

ticket 

Blue 

ticket 

Red  

ticket 

Blue  

ticket 

Minimal 

frame 

Transparent  

frame 

basic pair # $25 $0 $25 $0 $25 $0 $25 $0 A on top B on top A on top 

1 1/2 1/2 1/2 1/2 3/4 1/4 1/4 3/4 2 1 1 

2 1/2 1/2 1/2 1/2 1 0 0 1 1 0 1 

3 2/3 1/3 2/3 1/3 1 0 1/3 2/3 2 1 1 

4 1/3 2/3 1/3 2/3 2/3 1/3 0 1 2 0 1 

5 1/2 1/2 1/2 1/2 1 0 1/4 3/4 2 1 0 

6 1/2 1/2 1/2 1/2 1 0 1/3 2/3 3 0 0 

7 1/3 2/3 1/3 2/3 1/2 1/2 0 1 2 1 0 

8 2/3 1/3 1/3 2/3 1 0 0 1 2 0 0 

9 2/3 1/3 1/2 1/2 1 0 1/3 2/3 1 0 0 

10 1/2 1/2 1/3 2/3 1 0 0 1 2 1 0 

11 1/2 1/2 1/3 2/3 3/4 1/4 0 1 1 1 0 

 

Notes: The first eight columns show the state-contingent lotteries associated with each of the two ticket color states 

within each pair of options. Fractions below each outcome in each state-contingent lottery are outcome probabilities. 

The total trials in each variation, shown in the right three columns, sum to thirty choice situations: For each one of 

these situations, there was a corresponding situation with the options’ state-contingent lottery assignment of red and 

blue ticket colors reversed. This totals sixty choice situations. 

 

raffle tickets, and that the mixture could differ across their bags. Subjects were never permitted 

to look in their bag, and made one blind draw from their bag at the end of their session.
8
 

Experimental instructions were read aloud to subjects while they followed along in their own 

copies of the instruction booklet. Figure 2 (from Section 2) shows Basic Pair 1 in minimal and  

transparent frames, exactly as these were presented to subjects in the experiment. As shown in 

the figure, both minimal and transparent frames were monotonic in that payoffs decreased 

 (weakly) monotonically from left to right. All presentations used the same table format with the 

column “N/12” denoting the number of die rolls (from a twelve-sided die) yielding the payoff in 

the column to the left: Die rolls corresponding to each payoff increased from left to right.
9
 After 

explaining all facts concerning the decision representation, subjects were quizzed for their 

understanding of how random events (ticket draws and die rolls) would determine payouts given 

                                                           
8
 For interpretation of results and estimation we assume that any prior probabilities subjects place on the red and 

blue ticket states are constant across their choice situations. Our placement of the bags with the subjects, from the 

start to the finish of their session, is meant to make this assumption plausible.    
9
 For instance, in Option B in Basic Pair 1, any die roll between 1 and 9 paid $25 and any die roll between 10 and 12 

paid $0 if a red ticket was drawn. Likewise, any die roll between 1 and 3 paid $25 and any die roll between 4 and 12 

paid $0 if a blue ticket was drawn. 
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choices: Subjects’ answers were individually checked, and any errors explained to them. Then 

subjects were quizzed once more, and any errors (very rare at that point) were again individually 

explained to each subject. An attendant then read a final overview of the events that would take 

place during the session, and the session commenced as described above. 

 

4.1  Explanation of Design Features and Assumptions 

For every choice situation with the assignment of lotteries to states as shown in the eight left-

hand columns of Table 1, there was a corresponding choice situation with this assignment of 

lotteries to states (ticket colors) reversed. This counter-balancing serves two purposes. First, it 

helps neutralize any suspicion a subject might have that the contents of their ticket bag is 

‘rigged’ to minimize experimenter payout. Second, the counter-balancing of lotteries to states is 

needed to infer whether the subject acts as if she assigns coherent probabilities to the red ticket 

and blue ticket states (in the same manner Ellsberg’s two-color paradox tests SEU). For instance, 

in  pair 1 an SEU agent who prefers B to A when the preferred lottery in Option B (the 75% 

chance of winning $25) is assigned to the red ticket state, is acting as-if her subjective 

probability of the red ticket state is greater than 0.50. The same agent should then prefer A to B 

when the preferred lottery in Option B is instead assigned to the blue ticket state.  

In Table 1, basic pairs 𝑗 =  1, 2, 3 and 4 are Ellsberg-style choices in that (i) they involve a 

choice between a constant act 𝐴 (which yields the same lottery regardless of the state) and an 

ambiguous act 𝐵 (which assigns different lotteries to different states) and (ii) both options in 

each of these pairs have the same expected payout if the decision maker assigns a coherent 

uniform prior over states. These four basic pairs are our focus: 26 of the 60 situations 𝑠 are trials 

of these pairs (18 minimal frame trials and 8 transparent frame trials). Section A2 of our 

Appendix shows that, for basic pairs 1 to 4, the Hurwicz-SWUP model predicts decreased 

ambiguity aversion in transparent (versus minimal) frames. Choice pairs 5 through 11 are only 

presented in minimal frames: These provide extra information needed for structural estimation
10

 

                                                           
10

 In the econometrics of risk and uncertainty, structural estimation at the individual subject level benefits strongly 

from choice problems which challenge the boundaries of each subject’s attitudes toward risk and/or ambiguity. Thus 

the inclusion of a range of choice problems, some that tempt even relatively ambiguity-averse subjects to choose the 

ambiguous option (e.g. Option B in basic pair 6) add significant information concerning preferences. Minimal 

frames predominate in our design. This enables the “generalization criterion” analysis we perform below in Section 

5.3. Additionally, note that transparent frames provide no information about probability salience functions 𝜓Ρ: In 

other work based on these data, we plan to test properties of these particular salience functions. 
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and act as spacing trials between repeated trials of the central pairs 1 to 4. As shown in Table 1, 

there were two possible outcomes for each subject: They could receive either $25 or $0. 

Restricting payouts to two possible outcomes, as in Ellsberg’s paradoxes, allows us to test some 

hypotheses without knowledge of risk attitudes.
11

  

Especially in Basic Pairs 1, 2, 3 and 4, we wish to interpret the indifference response, which 

is a 50:50 randomization between options 𝐴 and 𝐵, as actual indifference between them. To do 

so, we need the “certainty betweenness” property described by Grant and Polak (2013). Using 

our experimental term “options” rather than the more usual term “acts,” we can state this 

property as follows. Let Ω denote the set of states 𝜔 and let 𝑍 denote the set of outcomes 𝑧. An 

objective lottery is a known probability distribution 𝑝 on 𝑍. Denote the set of objective lotteries 

by 𝒫(𝑍). An option, 𝑋, is a mapping 𝑋: Ω → 𝒫(𝑍) which assigns an objective lottery 𝑋(𝜔) to 

each state 𝜔. A “constant option” 𝐾 assigns the same objective lottery to every state, and an 

“ambiguous option” assigns distinct objective lotteries to at least two states. Denote the set of all 

options by 𝕆. Certainty betweenness assumes that indifference between a constant option 𝐾 and 

any other option 𝑋 implies indifference between the constant option and any probabilistic 

mixture of the constant option and the other option: 

 

Axiom (Certainty Betweenness): For any option 𝑋 ∈ 𝕆, and any constant option 𝐾 ∈ 𝕆, 

and any 𝛿 ∈ (0,1): 𝑋 ~ 𝐾 ⇒ 𝛼𝑋 + (1 − 𝛼)𝐾 ~ 𝐾. 

 

In the presence of their other axioms, Certainty Betweenness is implied by the certainty 

independence axiom Gilboa and Schmeidler (1989) assumed in their multiple priors model. The 

subset of  Grant and Polak’s monotone mean-dispersion preferences which satisfy certainty 

betweenness and Gilboa and Schmeidler’s (1989) uncertainty aversion axiom is the class of 

multiple priors preferences (Grant and Polak 2013, p. 1369, Corollary 3).  

Certainty betweenness can be applied to basic pairs 1 through 7 in Table 1 since they involve 

a choice between a constant option (option A) and an ambiguous option (option B). Since our 

focus is on basic pairs 1 through 4, we will treat certainty betweenness as a maintained 

hypothesis throughout our study. In our data analyses, we therefore restrict attention to theories 

                                                           
11

 Computation of ambiguity premia requires knowledge of von Neumann and Morgenstern (vNM) functions, but 

below we find that some interesting features of ambiguity premia are fairly robust to curvature of vNM functions.  
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of ambiguity aversion which satisfies certainty betweenness: In particular, our structural 

econometrics compares Hurwicz-SWUP to both Hurwicz preferences and the “mean-standard 

deviation” or MSD preferences described in Grant and Kajii (2007) and Grant and Polak 

(2013).
12

 In Section A2 of our Appendix we demonstrate that SWUP satisfies certainty 

betweenness if the salience functions exhibit homogeneity of degree 0, a property that Bordalo et 

al. (2013) argue is plausible for a salience function and which they invoke in their analysis of 

salience effects in consumer choice. Since the framing effect between minimal and transparent 

frames is predicted under general conditions by SWUP (for any salience function) it also holds 

for the class of salience functions exhibiting homogeneity of degree zero. 

Random selection of just one of each subject’s several choices by means of a random device 

(such as a draw from a card deck) goes under various names: We call it random task selection. 

Currently, we think the balance of experimental evidence suggests that when each of several 

tasks is presented separately (on its own page of a booklet, or on its own computer screen—this 

is important), random task selection produces incentive-compatible choices.
13

 Brown and Healy 

(2018) discuss existing evidence and their own new experimental evidence supporting this claim. 

 

5.  Results  

Our experimental design varied the assignment of ticket colors to objective lotteries to better 

test SEU; additionally, we also vary whether the more ambiguous act is in the top or bottom row 

of the choice table displayed to subjects (to check for response set), and the order in which the 

choice situations are presented to subjects (to check for learning and/or fatigue). Appendix A1.2 

describes an initial estimation that checks on these matters. We find no significant evidence of 

row placement of options or situation order, so we proceed ignoring these things. The assignment 

of ticket color to objective lotteries has no systematic effect across subjects. This does not mean 

all individual subjects have equal subjective priors of each ticket state: Different subjects could 

                                                           
12

 MSD preferences include many other preferences. Grant and Polak show that since the standard deviation 

dispersion function is non-negative, convex, symmetric, and satisfies certainty betweenness, MSD preferences have 

a corresponding representation in the vector expected utility model (Siniscalchi, 2009), the invariant biseparable 

representation (Ghirardato et al., 2004), and the multiple prior representation (Gilboa and Schmeidler, 1989) 

provided that the mean-standard deviation preferences are monotone (a property we impose on our estimations of 

MSD preferences, though this monotonicity constraint rarely binds at the level of individual subjects).  
13

 By “incentive-compatible” we mean that the subject’s choice in any one of the several tasks will be equivalent to 

the choice the subject would have made in that task if that task had been the sole task presented to the subject. 
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still believe that a red (or blue) ticket draw is more likely than blue (or red). So where we 

estimate any structural model containing subjective priors we will still estimate those priors.  

Section 5.1 describes results for pairs 1, 2, 3 and 4, plotting the data and performing very 

simple statistics, to compare results in minimal and transparent frames. Section 5.2 estimates an 

aggregate Hurwicz model of the data, allowed to depend on frames, to contrast “ambiguity 

premia” in transparent and minimal frames. We then perform disaggregated, subject-by-subject 

econometrics in Section 5.3, showing that the Hurwicz-SWUP model outperforms two 

alternatives (Hurwicz criterion and MSD) in predicting choices in transparent frames using only 

choices in minimal frames.                                                                                                                                                                                                                                                                                                                                            

 

5.1 Establishing the Treatment Effect: Minimal Versus Transparent Frames.  

For the purpose of comparing subjects’ choice behavior between minimal and transparent 

frames in basic pairs 𝑗 = 1 to 4, define a dependent variable 𝑐𝑙𝑗
𝑒  taking values  

    1 if subject 𝑒 chose the constant option in trial 𝑙 of pair 𝑗; 

 𝑐𝑙𝑗
𝑒 = 0.5 if subject 𝑒 chose indifference in trial 𝑙 of pair 𝑗; and  

    0 if subject 𝑒 chose the ambiguous option in trial 𝑙 of pair 𝑗. 
 

Empirically, given trials 𝑙 satisfying some condition ℂ, we take ambiguity neutrality to mean that 

𝐸(𝑐𝑙𝑗
𝑒 |ℂ) = 0.5 in basic pairs 𝑗 = 1 to 4. Similarly, we take 𝐸(𝑐𝑙𝑗

𝑒 |ℂ) > 0.5 and 𝐸(𝑐𝑙𝑗
𝑒 |ℂ) < 0.5 

to mean ambiguity aversion and ambiguity seeking, respectively, given condition ℂ. Let 𝑀 and 𝑇 

denote the sets of minimal and transparent frame trials 𝑙 of pairs 𝑗 = 1 to 4, respectively. The 

Hurwicz-SWUP prediction is that the framing effect 𝐹𝑒 = 𝐸(𝑐𝑙𝑗
𝑒 |𝑙𝑗 ∈ 𝑀) − 𝐸(𝑐𝑙𝑗

𝑒 |𝑙𝑗 ∈ 𝑇) > 0. 

The sample analogues of the expectations in 𝐹𝑒 are 𝑐�̅�
𝑒 = ∑ 𝑐𝑙𝑗

𝑒 /18𝑙𝑗∈𝑀  and 𝑐�̅�
𝑒 = ∑ 𝑐𝑙𝑗

𝑒 /8𝑙𝑗∈𝑇 , 

yielding an estimate �̂�𝑒 = 𝑐�̅�
𝑒 − 𝑐�̅�

𝑒  of 𝐹𝑒 for each subject 𝑒. Figure 6 plots pairs (𝑐�̅�
𝑒 , 𝑐�̅�

𝑒) for the 

79 subjects (�̂�𝑒 > 0 for pairs below the 45 degree line), and Figure 7 shows the cumulative 

sample distribution of �̂�𝑒: By a sign test (and other applicable tests),
14

 this distribution’s location 

is easily statistically different from zero. The Hurwicz-SWUP prediction easily holds.  

 

  

                                                           
14

 For every sign test result reported in this article, we also calculated results of the Wilcoxon signed rank test and a 

paired sample t-test: Those two tests always yield still smaller p-values than the sign tests do.  
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Figure 6. Minimal and transparent frame choice proportions, pairs 1 to 4.  

Notes: Smallest (largest) bubbles are one (six) subjects. 

 
Figure 7. Cumulative distribution of estimated framing effects �̂�𝑒. 
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Figure 8. Estimated distributions of Hurwicz 𝛼 in minimal and transparent frame trials: 

Random parameters estimation using the Hurwicz criterion representation. 

 

 

5.2 Comparing Ambiguity Aversion and Premia Across Minimal and Transparent Frames 

Structural estimation—that is, estimation of parameters found in decision-theoretic 

representations—provides another quantification of differences in ambiguity aversion across the  

two types of frames. We do this using eq. 4, the simple Hurwizc criterion, with a 

parameterization allowing the Hurwicz 𝛼 to vary across the two types of frames and across 

subjects as well. Appendix section A1.3 discusses this random parameters estimation of the 

distribution of the Hurwicz 𝛼 parameter in our sampled population, which is based on subjects’  

choices in all sixty choice situations. We estimate mean values of 𝛼 equal to 0.370 (standard 

error 0.011) and 0.438 (standard error 0.010) in minimal and transparent frame choices, 

respectively. The random parameters method also produces estimates of the distributions of 𝛼 

conditional on frame type: Figure 8 shows these two estimated distributions. 

Our experiment uses just two outcomes ($25 and $0) in all options, so we cannot estimate 

curvature of subjects’ underlying vNM (von Neumann and Morgenstern, or Bernoulli) utilities of 
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outcomes:  Therefore estimates of cash equivalents of options is not possible. However, we can 

report some interesting characteristics of cash equivalents that hold across a wide range of utility 

curvatures (including those most scholars take seriously). In particular, the percentage increase in 

ambiguity premia due to minimal frames (versus transparent frames) is almost certainly quite 

substantial and fairly insensitive to assumed curvature of vNM utilities.  

Using the Hurwicz criterion, implicitly define cash equivalents 𝐶𝐸(𝑋|𝛼) of options 𝑋 as  

(6)   𝑢[𝐶𝐸(𝑋|𝛼)] = 𝛼 max𝜔∈Ω ∑ 𝑝𝑖
𝜔𝑛𝜔

𝑖 𝑢(𝑥𝑖
𝜔) + (1 − 𝛼) min𝜔∈Ω ∑ 𝑝𝑖

𝜔𝑛𝜔

𝑖 𝑢(𝑥𝑖
𝜔). 

Note that 𝛼 = 0.5 has special status. It weighs the best and worst expected utilities equally of 

course, but when there are just two states (as in all our options) and 𝛼 = 0.5, the Hurwicz 

criterion is mathematically identical to SEU with uniform priors over the two states. This implies 

that when there are just two states, 𝐶𝐸(𝑋|0.5) is the cash equivalent of an ambiguity neutral 

SEU agent who regards the two states as equally likely. Therefore, we define an ambiguity 

premium  𝜛(𝑋|𝛼) = 𝐶𝐸(𝑋|0.5) − 𝐶𝐸(𝑋|𝛼) that a Hurwicz criterion agent (with optimism 

parameter 𝛼) attaches to ambiguous option 𝑋.
15

 

Table 2 shows this ambiguity premium for ambiguous option 𝐵 in basic pairs 1 to 4, given 

our estimated mean values of 𝛼 in minimal and transparent frame choices, and assuming four 

different amounts of vNM utility curvature.  This table also shows the difference 𝜛(𝐵|0.370) −

𝜛(𝐵|0.438) between the estimated ambiguity premia in minimal and transparent frame choices 

and a quantity we call the “minimal frame markup” 100 ∙ [𝜛(𝐵|0.370) − 𝜛(𝐵|0.438)]/

𝜛(𝐵|0.438), our estimated percentage increase in ambiguity premia between minimal and 

transparent frames. Table 2 shows that although the ambiguity premia themselves vary quite a bit 

with changes in vNM  utility curvature, the minimal frame markup stays in a reasonably small 

neighborhood of 100%. Regardless of vNM curvature, changing from transparent to minimal 

frames roughly doubles our subjects’ estimated ambiguity premium for ambiguous options. 

 

5.3  Predicting Transparent Frame Behavior from Minimal Frame Behavior 

The Hurwicz-SWUP representation motivated the predictions we tested in Section 5.1 

concerning differences between behavior in minimal and transparent frames. There is another 
                                                           
15

 Let 𝑆𝐸𝑉(𝑋) denote the subjective expected value of option 𝑋 under equal priors 𝜋𝑟 = 𝜋𝑏 = 0.5. Define the total 

premium 𝑆𝐸𝑉(𝑋) − 𝐶𝐸(𝑋|𝛼) and the risk premium 𝑆𝐸𝑉(𝑋) − 𝐶𝐸(𝑋|0.5). Our definition of the ambiguity 

premium simply decomposes the total premium into the sum of the risk premium and ambiguity premium. 
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Table 2. Ambiguity Premia in Minimal and Transparent Frames (Basic Pairs 1-4)  

  Option B in Pair 𝑗 = … 

  1 2 3 4 

      
 

ambiguous option  

subjective expected value
a $12.50 $12.50 $16.67 $8.33 

      vNM utility curvature
b      

      

 

 
    

ϖ (minimal frames) $1.63 $3.26 $2.17 $2.17 

ϖ (transparent frames) $0.78 $1.55 $1.04 $1.04 

difference $0.85 $1.71 $1.13 $1.13 

minimal frame markup 109% 110% 109% 109% 

 

     

ϖ (minimal frames) $1.56 $2.97 $2.53 $1.56 

ϖ (transparent frames) $0.76 $1.49 $1.24 $0.77 

difference $0.80 $1.48 $1.29 $0.79 

minimal frame markup 105% 99% 104% 103% 

 

     

ϖ (minimal frames) $0.98 $1.76 $2.16 $0.73 

ϖ (transparent frames) $0.49 $0.93 $1.11 $0.37 

difference $0.49 $0.83 $1.05 $0.36 

minimal frame markup 100% 89% 95% 97% 

 

     

ϖ (minimal frames) $0.43 $0.77 $1.14 $0.31 

ϖ (transparent frames) $0.22 $0.41 $0.60 $0.16 

difference $0.21 $0.36 $0.54 $0.15 

minimal frame markup 95% 88% 90% 94% 

      Notes: 
a
Under the assumption of equal subjective priors ( 𝜋𝑟 = 𝜋𝑏 = 0.5). 

b
The assumed utility of outcomes is 

𝑢(𝑧|𝜅) = [−1 + (1 + 𝑧)(1−𝜅)] [−1 + 26(1−𝜅)]⁄  for 𝜅 ≠ 1 and 𝑢(𝑧|𝜅) = ln(1 + 𝑧) /ln (26) at 𝜅 = 1: This maps the 

outcome range [$0,$25] onto the unit interval. This is a HARA (hyperbolic absolute risk aversion) utility function: 

For 𝜅 > 0, it exhibits declining absolute risk aversion but increasing relative risk aversion. This utility function has 

the property that 𝑢(0|𝜅) = 0 ∀ 𝜅 ∈ ℝ, a property not shared by the CRRA (power) utility functions, as is required 

for SWUP, RDU and CPT. 

 

way to test such predictions known as the “generalization criterion” (Busemeyer and Wang 

2000). This test estimates parameters of two or more preference representations using only 

minimal frame observations and uses those estimates to predict transparent frame observations. 

Here we will index the dependent variable defined in Section 5.1 by situations 𝑠 instead of trials 

and pairs (writing 𝑐𝑠
𝑒 instead of 𝑐𝑙𝑗

𝑒 ). Let 𝒮 ∈ {ℳ, 𝒯} index the two mutually exclusive and 

exhaustive subsets ℳ (minimal frame situations) and 𝒯 (transparent frame situations) of the 

0

1

0 25

0

1

0 25

0

1

0 25

0

1

0 25
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sixty experimental situations s. Let 𝜏 ∈ {𝐻, 𝐻𝑆, 𝑀𝑆𝐷} index the theory representations (Hurwicz 

criterion, Hurwicz-SWUP, and Mean-Standard Deviation, respectively) we examine here; let 𝜃𝜏 

be the parameter vector of each theory representation 𝜏; and let 𝜃ℳ
𝜏,𝑒

 be an estimate of 𝜃𝜏 based 

only on subject 𝑒’s choices in the fifty-two minimal frame situations 𝑠 ∈ ℳ. We estimate 𝜃ℳ
𝜏,𝑒

 

by maximizing subject 𝑒’s log likelihood ℒℳ
𝜏,𝑒(𝜃𝜏) in a choice of 𝜃𝜏 specific to each subject 𝑒. 

We refer to 𝜃ℳ
𝜏,𝑒

 as the “in-sample estimate” and ℒℳ
𝜏,𝑒(𝜃ℳ

𝜏,𝑒) as the “in-sample fit” for subject 𝑒, 

given theory 𝜏. Appendix A1.3 discusses details of this estimation. 

The generalization criterion computes the “out-of-sample fit” ℒ𝒯
𝜏,𝑒(𝜃ℳ

𝜏,𝑒) using the in-sample 

estimate and compares theories 𝜏1 and 𝜏2 by the difference between their out-of-sample fits: That 

is, the generalization criterion for subject 𝑒 is 𝐺𝑒(𝜏1, 𝜏2) = 2[ℒ𝒯
𝜏1,𝑒

(𝜃ℳ
𝜏1,𝑒

) − ℒ𝒯
𝒴,𝑒

(𝜃ℳ
𝒴,𝑒

)]. 

Figures 9 and 10 show the cumulative distributions of 𝐺𝑒(𝐻𝑆, 𝐻) and 𝐺𝑒(𝐻𝑆, 𝑀𝑆𝐷), 

respectively, across our seventy-nine subjects. For comparison we also show cumulative 

distributions of 𝐷𝐴𝐼𝐶𝑒(𝐻𝑆, 𝐻) and 𝐷𝐴𝐼𝐶𝑒(𝐻𝑆, 𝑀𝑆𝐷) in the two figures. These are “in-sample 

fit” comparisons measured by differences between the Akaike (1973) Information Criterion: 

𝐷𝐴𝐼𝐶𝑒(𝜏1, 𝜏2) = 2[ℒℳ
𝜏1,𝑒

(𝜃ℳ
𝜏1,𝑒

) − ℒℳ
𝜏2,𝑒

(𝜃ℳ
𝜏2,𝑒

)] − 2∆𝑘𝜏1,𝜏2, where  ∆𝑘𝜏1,𝜏2 is the difference 

between the number of parameters in 𝜃𝜏1 and 𝜃𝜏2.
16

 Judged by 𝐷𝐴𝐼𝐶𝑒  (in-sample fit for minimal 

frame observations) there is no statistically significant difference between the Hurwicz-SWUP 

criterion and either the Hurwicz criterion or Mean-Standard Deviation preferences. However, the 

Hurwicz-SWUP criterion clearly outperforms these two competitors in out-of-sample prediction 

according to the generalization criterion.  

 

6.  Conclusions 

Motivated by a new model of ambiguity aversion and by the success of Savage’s conjecture 

in predicting the frame-dependence of the Allais paradox for choice under risk, we tested for an 

influence of framing on Ellsberg’s paradox in decisions under uncertainty.  We observed a 

highly significant framing effect in the direction predicted by the Hurwicz-SWUP criterion 

motivated by Leland and Schneider’s (2016) SWUP criterion.  

                                                           
16

 One sometimes thinks of ∆𝑘𝒳,𝒴 as a penalty for relative lack of parsimony. More accurately, it is due to a 

difference in degrees of freedom lost because the very observations used to compute fit were also used to estimate 

parameters. This explains why the generalization criterion has no such “penalty:” Observations used to calculate fit 

(those in 𝒯) were not used to estimate 𝜃ℛ  (that estimation used only observations in ℳ). 
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Figure 9. In-sample and out-of-sample fit comparison between 

Hurwicz-SWUP and Hurwicz criterion representations. 

 
 

Figure 10. In-sample and out-of-sample fit comparison between 

Hurwicz-SWUP criterion and Mean-Standard Deviation representations.  
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One important question warranting further investigation concerns the precise locus of the 

treatment effect. Our hypothesis is that minimal frames hamper “true” preference expression  

 (while transparent frames do not): Transparent frames make common consequences of all 

options clearly visible, focus attention on remaining differences between options, and therefore 

enhancing the sure-thing principle’s descriptive drawing power. An opposite hypothesis, based 

on Chew et al. (2017), is that subjects are “truly” ambiguity averse and transparent frames 

hamper their recognition of ambiguity (while minimal frames do not). Put differently, it might be 

that our framing effect does not decrease ambiguity aversion, but rather increases the noise 

inherent in the decisions of subjects who are truly ambiguity-averse. Using econometric 

modeling similar to that discussed in Sections A1.1 and A1.3 in our Appendix, we explored this 

and think those results suggest that transparent frames do not increase decision noise.
17

 

As noted in Section 2, a variety of fairly recent studies have investigated whether the Allais 

paradox is susceptible to framing. All of these studies (Leland, 2010; Bordalo et al., 2012; 

Incekara-Hafalir and Stecher, 2012; Birnbaum and Schmidt, 2015; Harman and Gonzalez, 2015) 

find significantly fewer violations of the independence axiom of expected utility theory, when 

the lotteries are recast from minimal frames (i.e., the standard ‘prospect’ presentation format) to 

transparent frames (i.e., the Savage matrix format). While the Ellsberg paradox violates a similar 

independence postulate, no such experiment has been conducted for ambiguity attitudes. In the 

present experiment, we find that the same types of frames which reduce Allais-type violations of 

objective expected utility theory also reduce ambiguity aversion in Ellsberg-type decision 

situations. This is in keeping with Leland and Schneider’s (2016) formalization of different kinds 

of frames and the decision algorithms that may operate on those frames. 

 

  

                                                           
17

 This long analysis cannot be include here (the third author will provide it on request). Its essence is to allow both 

parameters governing attitude toward ambiguity, and probabilistic model parameters governing the noisiness of 

decisions, to depend on whether a situation is in a minimal or transparent frame. We did this using the Mean-

Standard Deviation theory, both with and without random parameter controls for heterogeneity across subjects. No 

specification uncovers significant increases in the noisiness of our subjects’ decisions in transparent frames and, in 

all of those specifications, we find a significant decrease in their ambiguity aversion in transparent frames.  
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 Appendix 

 

A1.  Econometric Analysis  

 

A1.1  The Probability of Indifference Responses 

 

Recall from Section 3 that in each choice situation 𝑠 = 1 to 60, subjects may choose either 

Option A or Option B from a pair shown in Table 1, or may report indifference (which is 

resolved by a coin flip). Denote these three alternatives in situation 𝑠 by 𝑠𝑘, 𝑘 ∈ {𝐴, 𝐵, ~}, and let 

𝑣𝑠𝑘
𝜏 ∈ {𝑣𝑠𝐴

𝜏 , 𝑣𝑠𝐵
𝜏 , 𝑣𝑠~

𝜏 } denote their values according to some deterministic theory 𝜏’s 

representation theorem. Then a Luce model of choice probabilities 𝑄𝑠𝑘
𝜏  would be  

(A1)   𝑄𝑠𝐴
𝜏 = 𝑒𝑥𝑝(𝜆𝑣𝑠𝐴

𝜏 )/𝐷𝑠
𝜏, 𝑄𝑠~

𝜏 = 𝑒𝑥𝑝(𝜆𝑣𝑠~
𝜏 )/𝐷𝑠

𝜏, and 𝑄𝑠𝐵
𝜏 = 𝑒𝑥𝑝(𝜆𝑣𝑠𝐵

𝜏 )/𝐷𝑠
𝜏,  

where 𝐷𝑠
𝜏  =  𝑒𝑥𝑝(𝜆𝑣𝑠𝐴

𝜏 ) + 𝑒𝑥𝑝(𝜆𝑣𝑠~
𝜏 )  + 𝑒𝑥𝑝(𝜆𝑣𝑠𝐵

𝜏 ), 

and 𝜆 is a scale parameter, sometimes called “precision” or “sensitivity” (as 𝜆 → ∞ the decision 

maker chooses the highest value alternative with certainty, and as 𝜆 → 0 the decision maker 

chooses each of the three alternatives with one-third probability).  

This approach to our data predicts far too many indifference responses. To solve this problem 

we reinterpret the 𝑄𝑠𝑘
𝜏  in eq. A1 as “preference state probabilities”—probabilities that a subject 

finds herself in one of three “preference states” after choice deliberation (just before she 

responds). Conditional on being in the “indifference state,” we assume she chooses the 

indifference response with probability 𝜙, or chooses either A or B—each with probabilities 

(1 − 𝜙)/2. This allows the subjects’ observed probability of indifference responses to be rarer 

than the Luce model predicts but enforces the compelling notion that an agent in an indifferent 

state favors neither the A nor B response. However, conditional on being in the “prefer A state” 

or the “prefer B state,” she responds by choosing her preferred option with certainty. Now let 

𝑃𝑠𝑘
𝜏 , 𝑘 ∈ {𝐴, 𝐵, ~}, denote “response probabilities:” Our assumptions yield a one-parameter 

generalization of the Luce choice model allowing for “rare” indifference responses:  

(A2) 𝑃𝑠𝐴
𝜏 = 𝑄𝑠𝐴

𝜏 + 0.5(1 − 𝜙)𝑄𝑠~
𝜏 ;   𝑃𝑠~

𝜏 = 𝜙𝑄𝑠~
𝜏 ;   and   𝑃𝑠𝐵

𝜏 = 𝑄𝑠𝐵
𝜏 + 0.5(1 − 𝜙)𝑄𝑠~

𝜏 . 

 

Equations A1 and A2 are the basis of our probabilistic choice models for our econometrics—

with some variations of eq. A1 described below. 
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A1.2  Checks for Significant Nuisance Variance 

Recall that the experimental design features some standard variations meant to check for, and 

control, several potential artifactual effects: We switched the rows in which options were 

displayed, and also changed the order in which the pairs were presented. The hope is always that 

these kinds of variations have no statistically significant impact on choices. We also switched the 

assignment of ticket colors to states (for reasons described in Section 4). In this section we 

perform a statistical analysis meant to check whether any of these three variations have 

unanticipated effects. 

Dividing all terms in eq. A1 by 𝑒𝑥𝑝(𝜆𝑣𝑠𝐵
𝜏 ) yields this new and useful expression of 

preference state probabilities: 

(A3) 𝑄𝑠𝐴
𝜏 = 𝑒𝑥𝑝[𝜆(𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 )]/𝐷𝑠

𝜏,   𝑄𝑠~
𝜏 = 𝑒𝑥𝑝[𝜆(𝑣𝑠~

𝜏 − 𝑣𝑠𝐵
𝜏 )]/𝐷𝑠

𝜏, and 𝑄𝑠𝐵
𝜏 = 1/𝐷𝑠

𝜏,  

  where 𝐷𝑠
𝜏  =  𝑒𝑥𝑝[𝜆(𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 )] + 𝑒𝑥𝑝[𝜆(𝑣𝑠~

𝜏 − 𝑣𝑠𝐵
𝜏 )]  +  1. 

We always assume that subjects’ preferences obey the certainty betweenness axiom (Section 4.1 

explained that the experimental design was predicated on this). In basic pairs 1 through 7 (where 

A is a constant option and B is an ambiguous option) this assumption (along with the 

experimental design) implies that indifference responses have value 𝑣𝑠~
𝜏 = (𝑣𝑠𝐴

𝜏 + 𝑣𝑠𝐵
𝜏 )/2. 

However, options A and B are both ambiguous in basic pairs 8 through 11 so the certainty 

betweenness axiom does not apply: In those pairs there may be a diversification motive giving 

indifference responses increased value. Here we approximate this motive by a constant 

“diversification utility” 𝜁 common to pairs 8 through 11 (in structural estimations the 

diversification motive is modeled in an explicit theoretical way without 𝜁). Therefore, in this 

section’s estimation, we have 𝑣𝑠~
𝜏 = (𝑣𝑠𝐴

𝜏 + 𝑣𝑠𝐵
𝜏 )/2 + 𝜁 and 𝑣𝑠~

𝜏 − 𝑣𝑠𝐵
𝜏 =  (𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 )/2 + 𝜁 

(where 𝛿 is zero in pairs 1 through 7). Also let Δ𝑣𝑠
𝜏 ≡ 𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 , and eq. A3 may then be 

rewritten to give this modified version of the preference state probabilities:  

(A4) 𝑄𝑠𝐴
𝜏 = 𝑒𝑥𝑝(𝜆Δ𝑣𝜏

𝑠)/𝐷𝑠
𝜏, 𝑄𝑠~

𝜏 = 𝑒𝑥𝑝[𝜆(Δ𝑣𝜏
𝑠/2 + 𝜁)]/𝐷𝑠

𝜏, and 𝑄𝑠𝐵
𝜏 = 1/𝐷𝑠

𝜏, 

  where 𝐷𝑠
𝜏  =  𝑒𝑥𝑝(𝜆Δ𝑣𝑠

𝜏) + 𝑒𝑥𝑝[𝜆(Δ𝑣𝑠
𝜏/2 + 𝜁)]  +  1, 

  and 𝜁 = 0 in pairs 1 through 7. 

This formulation (along with eq. A2) is appealing since Δ𝑣𝑠
𝜏 is simply the difference between the 

values of Option A and Option B. The estimation in this section simply makes Δ𝑣𝑠
𝜏 a linear 

function of pair indicators and indicators for all experimentally induced sources of variance in 
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responses—along with a random (normally distributed, zero mean) effect to account for subject-

specific heterogeneity. As is well-known, scale 𝜆 is not separately identifiable in linear latent 

variable formulations such as this; so here, we set 𝜆 = 1.  The results of the first estimation are 

summarized below in Table A1.1, with interpretations of these results following the table.  

 

Table A1.1 Analysis of Effects of Experimentally Induced Sources of Potential Variance 

 

Meaning of estimated parameters Estimates Std. Error
a 

p-value
b 

    standard deviation of subject-specific random effects 1.5 0.23 m
c
 

A. effect of transparent frames (in pairs 1, 2, 3, and 4) –1.0 0.20 < 0.0001 

B. effect of switching red and blue ticket assignment 0.087 0.16 0.60 

C. effect of switching top and bottom row assignment –0.074 0.16 0.65 

D1. order effect—pair presented in first (of three) booklets –0.069 0.11 0.52 

D3. order effect—pair presented in last (of three) booklets 0.0098 0.11 0.93 

pair 1 indicator effect 2.3 0.42 < 0.0001 

pair 2 indicator effect 2.6 0.44 < 0.0001 

pair 3 indicator effect 2.2 0.39 < 0.0001 

pair 4 indicator effect 2.1 0.40 < 0.0001 

pair 5 indicator effect –0.71 0.41 0.088 

pair 6 indicator effect –2.9 0.48 < 0.0001 

pair 7 indicator effect 4.2 0.52 < 0.0001 

pair 8 indicator effect 2.6 0.47 < 0.0001 

pair 9 indicator effect –0.20 0.43 0.64 

pair 10 indicator effect 1.0 0.39 0.011 

pair 11 indicator effect 4.0 0.46 < 0.0001 

Indifference response probability 𝜙 (all pairs) 0.33 0.069 m
c 

Diversification utility 𝜁 (in pairs 8, 9, 10, and 11) –0.68 0.25 0.0097 
Notes: 

a
We use a standard robust “sandwich estimator” to estimate the covariance matrix of parameter estimates. 

b
Against the hypothesis that the true coefficient equals zero. 

c
The “m” means that a p-value would be misleading in 

this case, since the natural null hypothesis (that the parameter equals zero) lies on the boundary of the parameter’s 

allowable space (the parameters in question are first a variance and second a probability).  

 

Row A. This row presents the estimated deviation from the pair indicators (restricted to basic 

pairs 1 through 4) due to transparent versus minimal framing. It is negative and highly 

significant: Transparent frames reduced ambiguity aversion as predicted. 

Row B. Every pair was presented in two ways, with either the red ticket or the blue ticket being 

the better state in the relatively ambiguous option. The insignificance of this effect says that there 

is no mean effect on ambiguous choices of this manipulation, suggesting that on average, 

subjects have equal priors of red and blue ticket states. 
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Row C. In the presentations of the choice situations it is usually true that the top row of each 

presentation is option A while the bottom row is option B, but in twelve of the sixty choice 

situations this was reversed. Row C shows that this effect is statistically insignificant, suggesting 

that we have no empirically important “response set” issue in our experiment.  

Rows D1 and D3. We grouped our sixty choice situations into three booklets of twenty 

situations each and systematically varied the order in which subjects encountered the three 

booklets, so that each booklet was either the first, second or third booklet subjects encountered. 

The insignificance of these two effects suggests that we have no appreciable order effects. 

Pair indicator effects. All the effects described above, except the framing effect, are 

parameterized as deviations from the estimated pair indicator effects (when presented in minimal 

frames). So each pair indicator effect is interpreted as Δ𝑣𝑠
𝜏 ≡ 𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏  under minimal framing. 

A significantly positive (negative) value of a pair intercept means that, on average, subjects 

prefer Option A (Option B) in that pair when presented in a minimal frame. The only pairs (5, 6 

and 9) with negative estimates are pairs where Option B (the relatively ambiguous option) has an 

appreciably higher subjective expected value under the assumption of equal prior probabilities 

assigned to states (ticket colors).  

Indifferent response probability. Across all subjects, this estimate suggests that when subjects 

find themselves in the indifferent preference state, they choose each of the three possible 

responses (A, B or ~) with nearly equal one-third probabilities. 

Diversification utility. The negative sign and statistical significance of this estimate is not what 

most would expect; a diversification motive implies a positive sign for this effect. 

 

A1.3 Details of Structural Estimations Underlying Sections 5.2 and 5.3 

When estimating structural models of choice under risk and uncertainty, many behavioral 

econometricians now use one of several modifications of (or alternatives to, e.g. Fishburn 1978) 

the Luce model of preference state probabilities in eq. A3. This is due to special econometric 

issues, derived from decision-theoretic considerations, in the realm of choice under risk and 

uncertainty (Busemeyer and Townsend 1993; Wilcox 2008, 2011; Blavatskyy 2011; Blavatskyy 

2014). The general form of all these modifications to eq. A3 is 
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(A5) 𝑄𝑠𝐴
𝜏 = 𝑒𝑥𝑝[𝜆(𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 )/𝑁𝑠

𝜏]/𝐷𝑠
𝜏, 𝑄𝑠~

𝜏 = 𝑒𝑥𝑝[𝜆(𝑣𝑠~
𝜏 − 𝑣𝑠𝐵

𝜏 )/𝑁𝑠
𝜏]/𝐷𝑠

𝜏, and 𝑄𝑠𝐵
𝜏 = 1/𝐷𝑠

𝜏,  

where 𝐷𝑠
𝜏  =  𝑒𝑥𝑝[𝜆(𝑣𝑠𝐴

𝜏 − 𝑣𝑠𝐵
𝜏 )/𝑁𝑠

𝜏] + 𝑒𝑥𝑝[𝜆(𝑣𝑠~
𝜏 − 𝑣𝑠𝐵

𝜏 )/𝑁𝑠
𝜏]  +  1, 

  and 𝑁𝑠
𝜏  is a normalization specific to each choice set (situation) 𝑠. 

Our 𝑁𝑠
𝜏 is a small generalization of Blavatskyy’s (2014) “Stronger Utility” normalization. 

For each situation 𝑠, derive two new options 𝑠𝐴𝐵 and  𝑠𝐴𝐵 from options 𝐴 and 𝐵: option 𝑠𝐴𝐵 is 

the stochastic dominance supremum of options 𝑠𝐴 and 𝑠𝐵, while option 𝑠𝐴𝐵 is the stochastic 

dominance infimum of options 𝐴 and 𝐵. Put differently, 𝑠𝐴𝐵 is the least desirable option that 

still stochastically dominates both options 𝑠𝐴 and 𝑠𝐵, while 𝑠𝐴𝐵 is the most desirable option that 

is nevertheless stochastically dominated by both options 𝑠𝐴 and 𝑠𝐵. Blavatskyy’s Stronger 

Utility normalization is 𝑁𝑠
𝜏 = 𝑣

𝑠𝐴𝐵
𝜏 − 𝑣𝑠𝐴𝐵

𝜏 . Blavatskyy developed this normalization for use with 

decision-theoretic representations that assign values to alternatives. We generalize it to decision-

theoretic representations that are comparative (such as SWUP and Hurwicz-SWUP): For 

instance the normalization becomes 𝑁𝑠
𝐻𝑆 = 𝑆(𝑠𝐴𝐵, 𝑠𝐴𝐵) for the comparative Hurwicz-SWUP 

representation. In fact, the plausibility of this minor extension of Stronger Utility is the reason 

we choose it for this particular work: We estimate both value representations and comparative 

representations, and prefer a common normalization for both. 

An example aids understanding of the simple construction of Blavatskyy’s “bounding 

options” 𝑠𝐴𝐵 and 𝑠𝐴𝐵. Rows 2 and 3 of Table A1.2 show basic pair 1 in a minimal frame, while 

rows 1 and 4 show 𝑠𝐴𝐵 and 𝑠𝐴𝐵 in this situation.  One constructs 𝑠𝐴𝐵 by assigning the best 

state-contingent lottery (offerred by either 𝑠𝐴 or 𝑠𝐵 in each state 𝜔) to 𝑠𝐴𝐵 in every state 𝜔; 

similarly one constructs 𝑠𝐴𝐵 by assigning the worst state-contingent lottery (offerred by either 

𝑠𝐴 or 𝑠𝐵 in each state 𝜔) to 𝑠𝐴𝐵 in every state 𝜔. Table A1.2 illustrates this construction. 

 

Table A1.2 Example of Blavatskyy’s Bounding Options (Basic Pair 1, Minimal Frame)  
 

   𝜔 = 𝑟 (red ticket state)  𝜔 = 𝑏 (blue ticket state) 

row option  money prob money prob  money prob money prob 

1 𝑠𝐴𝐵  $25 0.75 $0 0.25  $25 0.50 $0 0.50 

2 𝑠𝐴  $25 0.50 $0 0.50  $25 0.50 $0 0.50 

3 𝑠𝐵  $25 0.75 $0 0.25  $25 0.25 $0 0.75 

4 𝑠𝐴𝐵  $25 0.50 $0 0.50  $25 0.25 $0 0.75 
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To avoid clutter we have so far suppressed dependence on parameters when writing 𝑣𝑠𝑘
𝜏  and 

𝑃𝑠𝑘
𝜏 . We now explicitly note this dependence. Values 𝑣𝑠𝑘

𝜏 (𝛽𝜏) depend on any parameters 𝛽𝜏 of 

theory representation 𝜏. The response probabilities 𝑃𝑠𝑘
𝜏 (𝛽𝜏, 𝜆, 𝜙) inherit dependence on 𝛽𝜏 from 

their dependence on the 𝑣𝑠𝑘
𝜏 (𝛽𝜏) and add dependence on the precision parameter 𝜆 and the 

indifferent response probability 𝜙. So the parameter vector 𝜃𝜏 introduced in Section 5.3 is 

identical to the vector (𝛽𝜏, 𝜆, 𝜙). We then have the likelihood  

(A6) 𝐿𝜏(𝑐𝑠
𝑒|𝜃𝜏) = 𝟏(𝑐𝑠

𝑒 = 1)𝑃𝑠𝐴
𝜏 (𝜃𝜏) + 𝟏(𝑐𝑠

𝑒 = 0)𝑃𝑠𝐵
𝜏 (𝜃𝜏) + 𝟏(𝑐𝑠

𝑒 = 0.5)𝑃𝑠~
𝜏 (𝜃𝜏) 

of observation 𝑐𝑠
𝑒, given response probabilities 𝑃𝑠𝑘

𝜏 (𝜃𝜏) defined by 𝜃𝜏 and eqs. A2 and A5. 

Recall that 𝒮 ∈ {ℳ, 𝒯} indexes the sets of all minimal frame situations and all transparent frame 

situations: Let the vectors 𝑐𝒮
𝑒 denote all of subject 𝑒’s responses in set 𝒮, and let the vector 

𝑐𝑒 = (𝑐ℳ
𝑒 , 𝑐𝒯

𝑒 ) be all sixty of subject 𝑒’s responses. Assuming independence of observations 𝑐𝑠
𝑒 

across 𝑠, the total likelihood of subject 𝑒’s responses is 

(A7)   𝐿𝜏(𝑐𝑒|𝜃𝜏) = ∏ 𝐿𝜏(𝑐𝑠
𝑒|𝜃𝜏)60

𝑠=1 = 𝐿𝜏(𝑐ℳ
𝑒 |𝜃𝜏)𝐿𝜏(𝑐𝒯

𝑒|𝜃𝜏),  

    where  𝐿𝜏(𝑐𝒮
𝑒|𝜃𝜏) = ∏ 𝐿𝜏(𝑐𝑠

𝑒|𝜃𝜏)𝑠∈𝒮 . 

Section 5.2 employs a particular random parameters estimation of 𝜏 = 𝐻, the Hurwicz 

criterion. Values 𝑣𝑠𝑘
𝜏 (𝛽𝜏) are as given by 𝐻(𝑋) in eq. 4. Since we have just two outcomes in the 

experiment (allowing us to normalize their vNM utilities zero or one), 𝛽𝜏 is just a single 

parameter here, the Hurwicz optimism parameter 𝛼. However we allow 𝛼 to vary across subjects 

and frames. The logit of 𝛼 is 𝑥(𝛼) = ln [
𝛼

1−𝛼
] and the logistic function Λ(𝑥) = [1 + 𝑒−𝑥 ]−1 is the 

inverse of 𝑥(𝛼). Let 𝜂 be a Standard Normal random variable with cumulative distribution 

function Φ(𝜂). Characterize each subject by 𝜂𝑒, a subject-specific draw of 𝜂 that is fixed across 

the sixty situations in the experiment. The Section 5.2 estimation assumes that subject e’s 

optimism parameter is 𝛼𝒮
𝑒 = Λ[𝑥(𝛼𝒮) + 𝜎𝒮𝜂𝑒], where 𝒮 ∈ {ℳ, 𝒯} indexes either minimal frame 

or transparent frame trials. This allows both the mean 𝑥(𝛼𝒮) and standard deviation 𝜎𝒮 of (the 

logit of) subjects’ optimism parameters to vary with frames, but requires that each subject’s 

position in those two different distributions remains unchanged across the two types of frames. 

In random parameters estimation one estimates the underlying 𝛼𝒮 and 𝜎𝒮 rather than 

estimating individual subjects’ 𝜂𝑒 (as in a fixed effects model). To do this, the variation of 𝜂𝑒 
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across subjects must be integrated out of the total likelihood: Once that is done, we get a 

likelihood that depends on 𝛼𝒮 and 𝜎𝒮 rather than the 𝜂𝑒: 

(A8) 𝐿𝜏(𝑐𝑒|𝛼ℳ , 𝜎ℳ , 𝛼𝒯 , 𝜎𝒯 , 𝜆, 𝜙) = 

  ∫ 𝐿𝜏(𝑐ℳ
𝑒 |Λ[𝑥(𝛼𝒮) + 𝜎𝒮𝑦], 𝜆, 𝜙)𝐿𝜏(𝑐𝒯

𝑒|Λ[𝑥(𝛼𝒮) + 𝜎𝒮𝑦], 𝜆, 𝜙)𝑑Φ(𝑦)
 

ℝ
. 

In practice, integrals like that shown on the right-hand-side of A8 rarely have analytical 

solutions and must be approximated using numerical methods such as simulation or quadrature. 

We use the Gauss-Hermite quadrature method. One then takes natural logarithms of these 

approximations of A8, sums them across subjects, and maximizes this sum in the parameters 

(𝛼ℳ , 𝜎ℳ , 𝛼𝒯 , 𝜎𝒯 , 𝜆, 𝜙). This generates the estimates and standard errors reported in Section 5.2 as 

well as the estimated distributions of 𝛼 shown in Figure 8. 

In Section 5.3 all estimations are individual subject-by-subject estimations involving no 

assumptions about distributions of parameters across subjects: Every subject 𝑒 gets her own 

estimated parameter vector on the basis of her own vector 𝑐ℳ
𝑒  of fifty-two responses to the 

choice situations 𝑠 ∈ ℳ. The log likelihood introduced in Section 5.3 is just ℒℳ
𝜏,𝑒(𝜃𝜏) ≡

ln[𝐿𝜏(𝑐ℳ
𝑒 |𝜃𝜏)]: When this is maximized in 𝜃𝜏, the solution is 𝜃ℳ

𝜏,𝑒
. We do this for three theories 

𝜏. As discussed above, Hurwicz criterion values 𝑣𝑠𝑘
𝐻 (𝛽𝐻) depend on just one parameter 𝛽𝐻 = 𝛼. 

Hurwicz-SWUP comparison functions 𝑆(𝑠𝐴, 𝑠𝐵) (defined by eq. 5) substitute for value 

differences 𝑣𝑠𝐴
𝜏 − 𝑣𝑠𝐵

𝜏  in eq. A5 and also depend on just one parameter 𝛽𝐻𝑆 = 𝛼 since we employ 

a parameter-free salience function for these estimations (see eq. A13 in Section A2 below). 

Our third theory, the “Mean-Standard Deviation” theory, has this value representation for our 

two-state options 𝑋: 

(A9) 𝑀𝑆𝐷(𝑋) = 𝑆𝐸𝑈(𝑋|𝜋𝑟) − 𝛾𝑆𝑆𝐷(𝑋|𝜋𝑟), where 

 where   𝑆𝐸𝑈(𝑋|𝜋𝑟) = 𝜋𝑟𝐸𝑈[𝑋(𝑟)] + (1 − 𝜋𝑟)𝐸𝑈[𝑋(𝑏)],  

 𝑆𝑆𝐷(𝑋|𝜋𝑟) = √𝜋𝑟(𝐸𝑈[𝑋(𝑟)] − 𝑆𝐸𝑈(𝑋|𝜋𝑟))
2

+ (1 − 𝜋𝑟)(𝐸𝑈[𝑋(𝑏)] − 𝑆𝐸𝑈(𝑋|𝜋𝑟))
2
, 

 and   𝐸𝑈[𝑋(𝜔)] is the state-contingent (objective) expected utility of option 𝑋 in state 𝜔. 

Because our experimental design involves just two outcomes, calculation of state-contingent 

expected utilities 𝐸𝑈[𝑋(𝜔)] requires no parameter estimates. Therefore this theory has just two 

parameters 𝛽𝑀𝑆𝐷 = (𝜋𝑟 , 𝛾) and 𝜃𝑀𝑆𝐷 = (𝜋𝑟 , 𝛾, 𝜆, 𝜙). One small complication flows from the 
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fact that this theory only satisfies monotonicity when 𝛾2 < min (
𝜋𝑟

1−𝜋𝑟 ,
1−𝜋𝑟

𝜋𝑟 ), so this constraint 

on the relationship between 𝜋𝑟 and 𝛾 must be imposed during maximization of subject’s 

likelihood functions. This constraint rarely binds (and never binds with statistical significance). 

The distribution of estimated subjective priors �̂�ℳ
𝑟,𝑒

 across subjects may interest some readers. 

The 10th, 25th, 50th, 75th and 90th centiles of this distribution are 0.465, 0.490, 0.500, 0.521 and 

0.555, respectively (we think that with just 79 subjects, centiles further into the tails aren’t too 

meaningful). This is a fairly tight distribution around uniform subjective priors. 

 

A2: A Sufficient Condition for SWUP to Satisfy Certainty Betweenness 

Consider the following frame involving a choice between a constant option 𝐾 and an ambiguous 

act 𝑋, encompassing basic pairs 1 through 7 from our experiment as special cases. 

 

Let 𝑟 and 𝑏 denote the red and blue ticket states, respectively. Normalize 𝑢(25) = 1, and 

𝑢(0) = 0. Under SWUP,  𝐾 ~ 𝑋 ⟺  𝜋𝑟𝜓Ρ(𝑝, 𝑞𝑟)(𝑝 − 𝑞𝑟) + (1 − 𝜋𝑟)𝜓Ρ(𝑝, 𝑞𝑏)(𝑝 − 𝑞𝑏) = 0. 

Act 𝐾 and mixture 𝑊 ≔ 𝛿𝐾 + (1 − 𝛿)𝑋 are shown below in the red and blue ticket states:  

 

 

For basic pairs 1 through 7, certainty betweenness implies this condition for SWUP: 

(A10) 𝐾 ~ 𝑊 ⟺  𝜋𝑟𝜓P((1 − 𝛿)𝑝, (1 − 𝛿)𝑞𝑟)(1 − 𝛿)(𝑝 − 𝑞𝑟) 

                                                    + (1 − 𝜋𝑟)𝜓Ρ((1 − 𝛿)𝑝, (1 − 𝛿)𝑞𝑏)(1 − 𝛿)(𝑝 − 𝑞𝑏) = 0. 

Bordalo et al. (2013) argue that homogeneity of degree zero is a plausible property of a salience 

function and they assume that property in their analysis of salience in consumer choice. They 

define homogeneity of degree zero as follows: 𝜓(𝛿𝑎𝑖, 𝛿𝑏𝑖) = 𝜓(𝑎𝑖, 𝑏𝑖) for all 𝛿 > 0.  

Under homogeneity of degree zero, eq. A10 reduces to: 

 Red Ticket  Blue Ticket 

𝐾 $25 𝑝 $0 1 − 𝑝  $25 𝑝 $0 1 − 𝑝 

𝑋 $25 𝑞𝑟 $0 1 − 𝑞𝑟  $25 𝑞𝑏 $0 1 − 𝑞𝑏  

 Red Ticket 

𝐾(𝑟) $25 𝛿𝑝 $0 𝛿(1 − 𝑝) $25 (1 − 𝛿)𝑝 $0 (1 − 𝛿)(1 − 𝑝) 

𝑊(𝑟) $25 𝛿𝑝 $0 𝛿(1 − 𝑝) $25 (1 −  𝛿)𝑞𝑟 $0 (1 − 𝛿)(1 − 𝑞𝑟) 

 Blue Ticket 

𝐾(𝑏) $25 𝛿𝑝 $0 𝛿(1 − 𝑝) $25 (1 − 𝛿)𝑝 $0 (1 − 𝛿)(1 − 𝑝) 

𝑊(𝑏) $25 𝛿𝑝 $0 𝛿(1 − 𝑝) $25 (1 − 𝛿)𝑞𝑏 $0 (1 − 𝛿)(1 − 𝑞𝑏) 
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(A11) 𝐾 ~ 𝑊 ⟺ (1 − 𝛿)[𝜋𝑟 𝜓Ρ(𝑝, 𝑞𝑟)(𝑝 − 𝑞𝑟) + (1 − 𝜋𝑟)𝜓Ρ(𝑝, 𝑞𝑏)(𝑝 − 𝑞𝑏)] = 0. 

Note that eq. A7 is also the condition for 𝑋 ~ 𝐾, and thus certainty betweenness holds under 

SWUP for basic pairs 1 through 7 if the probability salience function satisfies homogeneity of 

degree zero. A ‘parameter-free’ salience function, introduced by Bordalo et al. (2013), which 

satisfies ordering, diminishing sensitivity, and homogeneity of degree zero is shown below: 

(A12) 𝜓(𝑎𝑖, 𝑏𝑖) ∶=  |𝑎𝑖 − 𝑏𝑖| (|𝑎𝑖| + |𝑏𝑖|)⁄   if 𝑎 ≠ 0 or 𝑏 ≠ 0; and 𝜓(0,0): = 0. 

In our estimations, we use another ‘parameter-free’ salience function introduced by Leland, 

Schneider and Wilcox (2017):   

(A13) 𝜓(𝑎𝑖, 𝑏𝑖|(𝑎, 𝑏)) ∶= |𝑎𝑖 − 𝑏𝑖| (|𝑎𝑖| + |𝑏𝑖| + ‖(𝑎, 𝑏)‖)⁄ ,  

where ‖(𝑎, 𝑏)‖ is the Euclidean norm of the vector (𝑎, 𝑏) that horizontally concatenates all like 

dimension vectors in a frame (i.e., all outcomes in a frame, or all probabilities in a frame, for 

both options in that frame). This salience function also satisfies ordering and diminishing 

sensitivity and a modified homogeneity of degree zero 𝜓(𝛿𝑎𝑖, 𝛿𝑏𝑖|(𝛿𝑎, 𝛿𝑏)) = 𝜓(𝑎𝑖, 𝑏𝑖|(𝑎, 𝑏)). 

With this property, eq. A10 will still reduce to eq. A11 when 𝛿 = 0.5. This restricted certainty 

betweenness is all we need for incentive compatibility of the indifference response (since the 

coin flip resolving indifference is a 50:50 mixture). 

 

A3.  Ranking Acts by Their Robustness to Ambiguity 

All basic pairs from the experiment are shown below. We can rank how robust options A and 

B are to ambiguity by measuring the difference between the red and blue probability 

distributions for A and for B. The smaller the difference between the red and blue distributions, 

the greater the robustness to ambiguity. One standard approach to measuring differences between 

two probability distributions is to use an ‘f-divergence’. Hellinger distance (Hellinger 1909; 

Sengar 2009) and total variation distance (Levin et al. 2009) are two common f-divergences. Let  

P and Q be discrete distributions with finite support. The Hellinger distance between them is: 

𝐻𝐷(𝑃, 𝑄) =
1

√2
[∑ (√𝑝𝑖 − √𝑞𝑖

𝑛
𝑖=1 )2]

1/2
. 

The total variation distance is the maximum difference in probabilities that P and Q assign to the 

same event:  
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𝑇𝑉𝐷(𝑃, 𝑄) = max𝑖 |𝑝(𝑖) − 𝑞(𝑖)|. 

 

Basic  

pair #  

Option A 
 

Option B 

Red ticket Blue ticket 
 

Red ticket Blue ticket 

1 $25  0.50 $0  0.50 $25  0.50 $0  0.50 
 

$25  0.75 $0  0.25 $25  0.25 $0  0.75 

2 $25  0.50 $0  0.50 $25  0.50 $0  0.50 
 

$25  1.00 $0  0.00 $25  0.00 $0  1.00 

3 $25  0.67 $0  0.33 $25  0.67 $0  0.33 
 

$25  1.00 $0  0.00 $25  0.33 $0  0.67 

4 $25  0.33 $0  0.67 $25  0.33 $0  0.67 
 

$25  0.67 $0  0.33 $25  0.00 $0  1.00 

5 $25  0.50 $0  0.50 $25  0.50 $0  0.50 
 

$25  1.00 $0  0.00 $25  0.25 $0  0.75 

6 $25  0.50 $0  0.50 $25  0.50 $0  0.50 
 

$25  1.00 $0  0.00 $25  0.33 $0  0.67 

7 $25  0.33 $0  0.67 $25  0.33 $0  0.67 
 

$25  0.50 $0  0.50 $25  0.00 $0  1.00 

8 $25  0.67 $0  0.33 $25  0.33 $0  0.67 
 

$25  1.00 $0  0.00 $25  0.00 $0  1.00 

9 $25  0.67 $0  0.33 $25  0.50 $0  0.50 
 

$25  1.00 $0  0.00 $25  0.33 $0  0.67 

10 $25  0.50 $0  0.50 $25  0.33 $0  0.67 
 

$25  1.00 $0  0.00 $25  0.00 $0  1.00 

11 $25  0.50 $0  0.50 $25  0.33 $0  0.67 
 

$25  0.75 $0  0.25 $25  0.00 $0  1.00 

 

Let the events be winning $25 and winning $0. The Hellinger distance and the total variation 

distance can be computed for options A and B above. The resulting values are shown in the 

tables below which reveal that they both imply the same ranking of ‘robustness’ to ambiguity. In 

each case, option A has a smaller distance between the red and blue distributions, indicating that 

it is more robust to ambiguity than option B in each pair.   

 

 

 

 

 

 

 

  

Hellinger distance   Total Variation distance 

    

Basic pair A B 

  

Basic pair A B 

1 0 0.37 

  

1 0 0.5 

2 0 1 

  

2 0 1 

3 0 0.65 

  

3 0 0.67 

4 0 0.65 

  

4 0 0.67 

5 0 0.71 

  

5 0 0.75 

6 0 0.65 

  

6 0 0.67 

7 0 0.54 

  

7 0 0.5 

8 0.24 1 

  

8 0.333 1 

9 0.12 0.65 

  

9 0.167 0.67 

10 0.12 1 

  

10 0.167 1 

11 0.12 0.71 

  

11 0.167 0.75 
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A4. Proof of Proposition 1 in Section 3.3 

Proposition 1: Let ≻ (~) denote strict preference (indifference) as determined by the Hurwicz-

SWUP criterion in eq. 5. For the choice situations shown below in Figures A1 and A2 (where 

𝜖 > 0 and 𝑧 > 0; basic pairs 1 to 4 are cases of these), with constant act 𝑌 and ambiguous act 𝑋: 

(i) If 𝑋 ~ 𝑌 in the minimal frame then  𝑋 ≻ 𝑌 in the transparent frame.  

(ii)  If 𝑋 ~ 𝑌 in the transparent frame then  𝑌 ≻ 𝑋 in the minimal frame.  

Proof: Set 𝑢(𝑧) = 1 and 𝑢(0) = 0. 

Proof of (i): Under eq. 5, 𝑋 ~ 𝑌 in the minimal frame in Figure A1 implies 

𝛼𝜓Ρ(𝑝 + 𝜖, 𝑝)(𝜖) + (1 − 𝛼)𝜓Ρ(𝑝 − 𝜖, 𝑝)(−𝜖) = 0, 

which implies 𝛼𝜓Ρ(𝑝 + 𝜖, 𝑝) = (1 − 𝛼)𝜓Ρ(𝑝 − 𝜖, 𝑝). By symmetry and diminishing 

absolute sensitivity of 𝜓Ρ, we have 𝜓Ρ(𝑝 + 𝜖, 𝑝) < 𝜓Ρ(𝑝 − 𝜖, 𝑝). Hence  𝑋 ~ 𝑌 in the 

minimal frame implies that 𝛼 > 0.5. 

For the transparent frame in Figure A2, under eq. 5, we have  𝑋 ≻ 𝑌 if and only if 

𝛼𝜓Χ(𝑥, 0)(1)(𝜖) + (1 − 𝛼)𝜓Χ(0, 𝑥)(−1)(𝜖) < 0.  

By symmetry of 𝜓Χ, the above inequality holds if and only if 𝛼 > 0.5. ∎ 

Proof of (ii): Under eq. 5, 𝑋 ~ 𝑌 in the transparent frame if and only if 𝛼 = 0.5. Given 𝛼 = 0.5, 

diminishing sensitivity and symmetry of  𝜓Ρ imply 𝑌 ≻ 𝑋 in the minimal frame. ∎ 

 

Figure A1. Form of Basic Pairs 1-4 in Minimal Frames  

 
 

 

 

 

 

Figure A2 Form of Basic Pairs 1-4 in Transparent Frames  
 
 
 
 
 
 

 

 
 

 

 

  Red Ticket State   Blue Ticket State 

Y 𝑧 𝑝 0 1 − 𝑝  𝑧 𝑝 0 1 − 𝑝 

X 𝑧 𝑝 + 𝜖 0 1 − 𝑝 − 𝜖  𝑧 𝑝 − 𝜖 0 1 − 𝑝 + 𝜖 
 

  Red Ticket State 
 

Blue Ticket State  

Y 𝑧 𝑝 0 𝜖 0 1 − 𝑝 − 𝜖  𝑧 𝑝 − 𝜖 𝑧 𝜖 0 1 − 𝑝 
 

X 𝑧 𝑝 z 𝜖 0 1 − 𝑝 − 𝜖  𝑧 𝑝 − 𝜖 0 𝜖 0 1 − 𝑝 
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A5   Experimental Materials  

 

The experimental materials are available here: 

 

http://www.chapman.edu/research-and-institutions/economic-science-

institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf 

 

These materials include: 

 The Instruction Booklet 

 Ellsberg Experiment Booklet 1 (Choice Situations   1 – 20) 

 Ellsberg Experiment Booklet 2 (Choice Situations 21 – 40) 

 Ellsberg Experiment Booklet 3 (Choice Situations 41 – 60) 

 

http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf
http://www.chapman.edu/research-and-institutions/economic-science-institute/_files/WorkingPapers/schneider-leland-wilcox-ambiguity-framed-2016b.pdf
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