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Cost Share Adjustment Processes for
Cooperative Group Decisions about Shared Goods:
A Design Approach

Edna T. Loehman, Richard Kiser, and Stephen J. Rassenti’

For group decision about shared goods, the nature of the shared good and how its cost is to be shared
among group members must be determined. Complexity arises from heterogeneity in preferences and
endowments and nonlinear cost. To facilitate group decision, this paper proposes special type of group
decision support system, a cost share adjustment process (CSAP), in which cost shares are adjusted
iteratively via algorithmic rules until agreement is reached, ideally producing a socially optimal, cost
feasible, and fair outcome. Design elements for CSAPs include message space, cost allocation and
adjustment rules, controllers, and incentive rules, with many possibilities for a cost share adjustment
process.

In contrast to public good literature, our designs apply for situations of nonlinear cost,with economies of
scale and fixed costs. Because of impossibility theorems, a design approach is developed: simulation and
economic experiment are employed to compare alternative designs. As simulation and experiment both
indicate, complicated rules for incentive purposes may impede locating group agreement. Instead of
complicated economic incentive rules, economic experiments show that unanimity Approval Voting can
mitigate the effects of strategic behavior.

1.0 Introduction

1.1 Definition of Shared Goods

This paper concerns the design of a process for a cooperating group to find agreement
about a shared good when there are benefits for the group to share its costs. With agreement, the
shared good is jointly provided to the group, with each member of the group having potential
access to it. The participants must agree simultaneously on the nature of the good to be provided
and how its costs will be shared among group members.

Contemporary examples of shared goods are plentiful in both business and social contexts.
A computer system is an example within a firm. Multiple divisions within the firm may have
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different computing needs and budgets, but there may be some economies—such as for operations
and maintenance —from having a common system. Once a computer system is provided, all
divisions potentially have equal access to its utilization. Since needs and resources will differ by
division, equal sharing of system costs among divisions may not be acceptable. Lack of
agreement may lead management to impose a computer system which may be a poor fit for some.

A neighborhood recreational facility to be built in a commons is an example in a social
context. The facility benefits the neighborhood if a common area can be used for recreation at
lower maintenance and operation costs than individually, with a wider set of activities provided.
Once built, recreation activities are available to all in the neighborhood. Heterogeneity is
inherent: neighbors may differ in terms of recreational needs and income endowments as related
to family characteristics and age, so that equal sharing of costs may be inappropriate. Lack of a
method for finding agreement about cost sharing may mean that no facility would be provided.

Our goal is to determine methods for finding a shared good quantity and cost sharing so
that all group members are better off than in a non-cooperative situation. Many potentially
cooperative situations may result in no group action because of lack of a way to determine an
acceptable outcome when preferences and endowments are heterogeneous. In such situations,
employment of a group decision method could facilitate group agreement. By agreement is meant
a situation such that all parties are better off than they would be in the “fallback” situation of no
group provision, and the group decision should be voluntary.

This paper draws on economic literature for the design of cost sharing methods. Public
goods are similar to shared goods in that the same good can be provided to a group of participants,
although public goods usually involve a larger scale group size. Examples of public goods are
public education, public libraries, and public radio and television. With a very large number of
group participants, direct voluntary agreement about a public good and its finance is generally
difficult. Therefore, decision about the nature of a public good is generally made through
government, with finance accomplished through taxation.

In contrast to public goods, a shared good can have natural boundaries and a relatively
small group size to limit congestion; these conditions may make participatory group decision and
voluntary agreement more feasible than for public goods. Local public goods (Tiebout, 1956)
similarly have well-delineated (geographic) jurisdictions. Different locales have different mixes
of local public goods and taxes, and presented with the different combinations, potential residents
choose the jurisdiction that best matches their preferences. There is no consideration of direct
participation in determining the nature of local public goods in this literature.

Shared goods are also similar to club goods (Cornes and Sandler, 1960) in terms of having
a limited group size. The main concern in club goods literature has been determining the optimal
group size when there is congestion. However, homogeneity of group members has been the
common assumption in club goods literature, making equal cost sharing appropriate.

The shared goods situation contrasts with cooperative game theory treatments as the
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Shapley value (Young, 1985), in which the nature of the good to be shared is already specified and
for cost sharing, a formula could based on concepts of fairness and rationality as expressed in
axioms. While fairness is obviously important in group decision, the concept of fairness may not
be well-represented by axiomatic rules. Most important, the nature of a shared good is not
generally pre-specified and is a primary matter for groups’ decisions to share provision.

Loehman and Whinston (1971) suggested that public goods are a special case of jointly
supplied public services that exhibit declining average costs. Because declining costs pose
problems for finance through uniform pricing, a method of cost sharing through personalized cost
shares — related to the Shapley value — was proposed. However, unlike game theory approaches,
they recognized the problem of how to determine the level of the good. A bargaining process for
finding agreement was proposed but was not detailed. We remedy this need here.

1.2 Two Views on Public Goods

Because of their similarities, views on public goods are relevant for shared goods. In
1954, Paul Samuelson characterized the impossibility of “decentralized spontaneous solution” for
public goods; he said (p. 388, 1954): ... "no decentralized pricing system can serve to determine
optimally these levels of collective consumption.” Samuelson’s conclusion was based on the
hypothesis that the free-rider problem would destroy any voluntary provision of a public good.
Much theoretical and experimental literature on incentive compatibility followed.

An alternative literature supports the possibility of voluntary provision of collective goods,
which has implications for shared goods. Olson (1971, p.32) states that “Though there is a
tendency for even the smallest groups to provide suboptimal amounts of a collective good... , the
more important point to remember is that some sufficiently small groups can provide themselves
with some amount of a collective good through the voluntary and rational action of one or more of
their members.” Thus, though acknowledging that members of a group inherently would prefer
that others pay for a collective good, he believed that particularly for smaller groups, the existence
of collective benefits greater than costs would promote group provision.

One historic example is early turnpikes. As Klein (1990) says: “The free-rider problem
was overcome by an almost vigilant impulse to participate and to see that your neighbor did
likewise...” Services provided by private communities are cases of shared goods, and private
communities can use societal pressure to overcome free-riding (Foldvary, 1994).

In an experimental context, Smith (1978, 1979) demonstrated that free-riding need not be
devastating for provision of public goods. In Smith (1976), an institution was defined to be a
specified set of rules and procedures, and he found that outcomes are influenced by the nature of
institutional rules. Self-interest and reciprocity are possible behaviors for any individual (Smith,
1997), and institutional rules can call forth either behavior. Smith (1989) also suggested a
criterion for a successful institution that we adopt here: institutional rules should achieve a
desirable outcome regardless of the mix of underlying individual behaviors.
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1.3 Benefits of Group Agreement and Complexity as a Deterrent to Group Decision

Situations in which collective action for shared goods is beneficial are likely to have
nonlinear cost — such as economics of scale, fixed costs, or declining average costs — which must
be covered. For fixed costs, the larger the sharing group, the lower is the share of fixed cost for
each group member. When average unit costs decline as the scale of provision increases, there are
individual benefits to be gained from participating in a group because cost per person in a group
solution will be less than an non-cooperative (individual) solution.

Members of a sharing group often have heterogeneous preferences and different abilities to
pay for a shared good. Perhaps because of complexity, equal cost sharing is frequently practiced.
For example, there is equal sharing of a restaurant bill even when people have ordered meals with
different costs. Natural solutions for cost sharing often use proportionality or equity rules (Young,
1994). The group problem is easily solved by equal shares if there is homogeneity of group
members. Otherwise, the complexity of solving the group decision problem (Dasgupta,1997)
may be an important deterrent to group provision and is a more constructive reason than free-
riding to explain difficulties in group decision-making.

To illustrate complexity, we give an example that finding an optimal, cost feasible,
individually rational solution can be computationally difficult when there is heterogeneity and
nonlinear cost. Suppose preferences for three group members for a shared facility of size Q are as
follows, where x; represents expenditure for all other goods and M, represents a budgetary limit

[T3ELI N

for each group member denoted by “i”:

u(x;, Q) = x; +v, log(1+Q)
u(x,, Q) = X+, log(1+Q)
u(x3,Q) = x5 +v; log(1+Q)

where Xy, =13 1/8. Suppose the cost of provision is C(Q) = 30 + 9Q + 9Q* and x;= M, - S, for
cost shares S, summing to C(Q). By maximizing the sum of utilities, the optimal good is Q=1/24.
However, even with full information about preferences, determining the optimal quantity would
be very difficult for a group without some sort of solver.

Besides the need for preference information and computational needs, a further difficulty
arises in assigning cost shares. With quasi-linear utility functions as above when the optimal
shared good level is independent of the distribution of income (Bergstrom and Cornes, 1983),
determining an objective solution for cost shares is not possible by optimization.

1.4 Concept of a Cost Share Adjustment Process and Background on Adjustment Processes

Addressing complexity of the group decision problem for share goods, a group decision
support system (GDSS) could help locate agreement about the nature of the good and cost sharing
and thus could significantly improve group outcomes. We propose design of a special type of
GDSS for the shared goods problem. A cost share adjustment process (CSAP) is an iterative



process of decentralized message exchange with algorithmic equilibration to locate group
agreement for a shared good. Cost shares and shared good quantity are adjusted via algorithm —
based on group member messages — until agreement about the shared good and its finance is
reached. The specification of a cost share adjustment process involves defining a cost share
instrument, together with adjustment rules for its parameters. The method allows for
heterogeneity and nonlinear costs while requiring only limited information about preferences.

The design of CSAPs falls under the subject of mechanism design. Design of mechanisms
or institutions to address allocation problems owes its beginning to Hurwicz (1973) with further
development through the years (Hurwicz and Reiter, 2006), culminating in a Nobel Prize for
Hurwicz in 2007. Two contributions of mechanism design literature are: impossibility theorems,
the impossibility of finding a “perfect” mechanism for all environments once human strategic
behavior is introduced (Hurwicz, 1972); and incentive compatible mechanisms that address
strategic behavior in message generation (Mookherjee, 2008). Our design methods recognize
impossibility theorems and incentive problems for shared goods, as explained below.

A less known branch of mechanism design is the concept of an adjustment process
(Hurwicz, 1987). One idea of adjustment is that of the Walrasian auctioneer in a tatonnement
(“groping”) process; the auctioneer adjusts a market price until a supply-demand equilibrium is
reached. Tatonnement has traditionally referred to price adjustment in a market process.' The
ability of price to equilibrate demand and supply in a market is well-known. Here we extend the
idea of tatonnemont to adjustment of personalized prices in a share formula for a shared good.

Alternatively, Alfred Marshall (1920) saw a market process in terms of quantity
adjustment: a market period starts with a given quantity, and quantity is adjusted if the supply
price (what suppliers are willing to accept) is below the demand price (what buyers are willing to
pay). Thus, two alternative forms of market adjustment are price and quantity adjustment, and
these two adjustment methods also apply to shared goods, as we show here.

The context for a CSAP is planning in advance of carrying out a collective decision by a
group.” Malinvaud (1971) suggested that the role of the planner in decentralized message
exchange is to substitute for direct message exchange among agents themselves. Decentralization
concerns the designation of who has what information. In contrast to a “center’” or “planner”
having full information about a system, decentralization is favored because it reduces information
costs and promotes privacy of information (Hurwicz, 1973). Termed the “invisible hand” by

'For tatonnement, no transactions are carried out until equilibrium is reached (Takayama, 1985, p.341).

Tulkens (1978) differentiated between planning and voluntary exchange institutions: voluntary exchange
is associated with market institutions and private consumption, while planning requires cooperation of citizens in an
economy, with the planner acting in the best interests of the citizens. Here, both aspects apply: shared good
decisions are voluntary but are made in a planning context.



Adam Smith in a market setting, decentralization can result in an optimum solution without the
need for centralized information about individual preferences. However, decentralization need
not refer only to non-cooperative situations. While a decentralized process with private message
exchange may appear non-cooperative, MAS-COLELL [1980] noted that decentralization is also
relevant for cooperative situations to reduce information and transactions costs of agreement.

The role of message exchange and execution of the tatonnement adjustment process can be
carried out by a networked computer system not requiring a human planner. At the same time,
CSAP can be a substitute for direct negotiation. Direct negotiation may be difficult, with
posturing and misrepresentation leading to group breakdown. The efficacy of computer-mediated
communication (CMC) for group decision is supported by Li (2007) who compared CMC to face-
to-face communication (FTF) for various functions of a group decision making process. Similar
to other studies, she found that CMC groups (with 4 or 5 members) took a longer time than FTF
to complete decision tasks. However, FTF did not have better group outcomes than CMC for the
assigned tasks, because ‘“social talk” had a negative impact on group effectiveness. Although her
group decision tasks were relatively simple, CMC may also provide better outcomes than FTF
communication for shared goods because of complexity.

We envision a CSAP to be a form of computer-mediated communication at the same time
as providing algorithmic decision support. In the terminology of group decision support systems
(Biro and Kovacs, 1994), the architecture for CSAPs is a multi-party communication protocol,
with a central mediator (which can be a computer) who communicates directly with each group
member without cross communication among the members. The notion of a distributed group
decision support system — with decentralized information managed by a network system — has
arisen because face-to-face communication is difficult for larger groups (Bui, 1987). Relatedly,
Algorithmic Mechanism Design (Nisan and Ronen, 2001) in computer science literature combines
ideas from economics and game theory with solution algorithms for online auction design.

1.5 Contributions of this Paper

Blumel et al. (1986, p.296) complained about the inconclusiveness of public good
allocation mechanisms and attribute this to a lack of a comprehensive framework. Here, we
provide such a comprehensive framework for shared goods, reaching from definition to
computation and behavior.

The main contributions of this paper are: 1) proposing the concepts of shared goods and
cost share adjustment process for decisions; 2) developing a mathematical economics (static and
dynamic) foundation for CSAPs; 3) the design approach of identifying and comparing alternative
cost sharing processes and adjustment procedures, here employing simulation and economic
experiment. The design approach responds to impossibility theorems: there is no theoretically
“best” method. In contrast to our design approach, many public good papers — both theory and
experiment — have proposed and supported only one cost sharing or taxation method.

Our process idea combines aspects found in several literatures proposed in the 1960's: 1)
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decomposition, found in mathematical programming and decentralized planning’; 2) iterative
solution, found in organizational management theories*; and 3) use of controllers for coordination
of engineering systems’. Decomposition refers to taking a complex overarching optimization
problem and associating its solution with separate or decentralized solution for a set of simpler
problems. With decentralization, each of the simpler problems is associated with its own small
information set in place of a comprehensive information set for the overarching problem.
Iteration with controllers reduces the complexity of optimizing. In a social system, it means
involving cooperating parties in decision-making through coordination signals. These topics are
still of interest for engineering control systems,® and here we combine them in a novel way.

For design purposes, we develop a taxonomy for CSAPs based on the general theory of
adjustment processes and coordination in engineering systems. Our taxonomy delineates message
space, allocation rules, adjustment rules, and the nature of controllers as essential aspects of
CSAPs. By varying these aspects, design of many CSAPs is possible. We identify share-taking
and quantity-taking as two generic types, and share-taking is shown to have an important
optimality property.

Messages between group members and a coordinator, which can be a computer, are the
“stuff” of adjustment procedures. Following market paradigms, messages can include bids,
quantities, or both. Bids are a natural language for small markets and auctions, while quantity
demands are responsive to pricing. Size of the message space was a concern to early mechanism
design literature for computational and information cost reasons (Reiter, 1974, Mount and Reiter,
1974), and a smaller size message space was deemed more desirable (Hurcwicz, 1994, 1973).
Today, computer memory is not a prominent constraint. However, there may be a behavioral
aspect of message space which we explore here with experimental economic methods.

Another contribution stems from our economic experiment design: a novel unanimity
voting approach similar to natural group processing appears to ameliorate strategic behavior. We
suggest that the voting approach is an alternative to complicated cost allocation rules found in
incentive compatibility literature.

Our design of CSAPs draws on public goods theory, economic experiment, and theory of
adjustment processes, each reviewed in sections of this paper. Section 2 gives historical
background for public goods theory and experiments. A taxonomy for dynamic adjustment is
developed in Section 3. Section 4 provides an economic theory foundation for CSAP design

3See Arrow and Hurwicz (1960) and Hurwicz (1970) for an economic resource allocation application. See
Wong (1973) for an application of economic planning.

*Atkins (1974) used a mathematical programming framework for management control of budgets,
investment, joint costs, etc. Cohen (1980, 1986) applied the iterative solution method to control in an organization,

focusing on incentive problems of messaging.

3See Laub and Bailey(1978) for a two level hierarchical structure with coordinated communication for a
general control problem.

®Chanron and Lewis (2005) study convergence in decentralized design for complex engineering systems.
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elements. Our main results are found in sections 5 through 8. In Section 5, we specify the general
dynamic form for two types of CSAPs, share-taking and quantity-taking. In Section 6, we
construct CSAPs based on cost allocation rules in economic literature and propose three new
designs; we then use simulation to compare six CSAPs for convergence and optimality for a
common environment. Section 7 describes experiment structure and comparison of share-taking
and quantity-taking CSAPs, while Section 8 reports more extensive trials for one promising
CSAP. Results support that a two-stage group process — proposal generation and unanimity
voting for the final group decision — can frequently result in agreement that is near-optimal.

2.0 A Brief History of Public Goods

Because of relevance for our designs and experiments, we give a brief history of public
goods in economic literature, including the desirability of voluntary agreement, incentive
compatible mechanisms, adjustment processes, and experiments. Clearly, the volume of relevant
work is large in scope. It has not received comprehensive treatment covering both theory and
experiment. We highlight views about unanimity voting in theory and experiment.

2.1 Definition of a Public Good

Public goods literature addresses definition of a public good, optimal provision, and
incentive compatible mechanisms to ameliorate free-riding. Samuelson (1954, p.387) defined a
public good in terms of joint consumption: “a collective consumption good is one that all enjoy in
common in the sense that each individual’s consumption leads to no subtraction from any other
individual’s consumption.” This has been commonly interpreted as “non-rivalry” in consumption,
in contrast to “rivalry” for private goods. A “pure public good” has a zero marginal cost of adding
additional participants once a good is provided (hence marginal cost pricing — as commonly
prescribed — cannot be used); this marginal cost condition has limited applicability in real life.

In the literature, another defining characteristic is “non-excludability”, i.e., it is not
feasible to exclude use, once provided. Olson (1971, p.14) states that “a common, collective, or
public good is any good such that if any person in a group consumes it, it cannot be feasibly
withheld from others in the that group.” Therefore, free-riding is inherent and difficult to prevent.
Another aspect is indivisibility of benefits: it is not possible to assign fractional shares of the total
benefit to individuals. Hart and Cowhey (1977) suggest that these various definitions overlap.

Joint supply (Head, 1962) — or joint provision, as used here — means that once produced,
the good is available to more than one individual. Commenting on Samuelson’s definition,
Hart and Cowhey (1977) distinguish between “availability” and “use.” For example, once
provided a computer system in a firm will be available for all divisions, though it can be utilized
differently among divisions. Similarly, a neighborhood recreation facility is available to all
neighbors, but they would generally not use it equally.’

"The distinction between “availability” and “use” seems associated with the distinction between fixed (or
equipment) costs and variable (or operating) costs. Whether or not joint provision occurs often hinges on how to
finance fixed costs which may be relatively large. Fixed costs may not vary greatly over a range of users, so that
once provided, the equipment is available to additional users. For example for a neighborhood playground, the basic
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2.2 Voluntary Agreement and Unanimity

Because of problems of free-riding and identifying beneficiaries, government provides
public or collective goods and finances them through taxes. With public finance of collective
goods, Wicksell (1986) recognized that coercion was inherent in government taxation: by
separating decision and taxation, some people would be asked to pay for something they did not
value in commensurate terms: “it would seem to be a blatant injustice if someone should be
forced to contribute toward the costs of some activity which does not further his interest (p. 89).
Wicksell — and later Lindahl and Olson — believed that it was possible and desirable to find
voluntary agreement for such goods: “Provided the expenditure in question holds out any prospect
at all of creating utility exceeding costs, it will always be theoretically possible, and
approximately so in practice, to find a distribution of costs such that all parties regard the
expenditure as beneficial and may therefore approve it unanimously” (Wicksell, 1896, p.89-90).
Wicksell proposed the principle of unanimity to guarantee that all individuals would receive
benefits commensurate to their cost share for a collective good. However, Wicksell recognized
that if complete unanimity were required, collective action could be held hostage by strategic
voting (Tideman, 1998). Therefore, the “Voluntary Exchange Theorists” such as Lindahl and
Wicksell proposed that governments should establish tax shares and expenditures as if they were
responding to negotiations among individuals (Musgrave, 1939 in Dougherty, 2003).

2.3 Optimality and Why it is not Achieved

Samuelson (1954) was the first to define optimality clearly for public goods, deriving the
necessary condition for optimality in terms of “marginal valuations” (here, called “marginal
bids”), now considered to be the foundation of the modern theory of public goods (Pickhardt,
2006). Samuelson’s optimality condition given in Section 3 also applies directly to shared goods.

To satisfy this optimality condition requires determining marginal valuations for
participants for the public good, and Samuelson (1954) suggested that participants would under-
reveal their marginal valuations. Thus the impossibility of a market or decentralized solution: “it
is in the self-interest of each person to give false signals” about their preferences for the public
good and to “snatch some selfish benefits in a way not possible under the self-policing
competitive pricing of private goods” (p.388-89). The resulting incentive compatibility literature
focused on enticing participants to correctly reveal these valuations or bids.

Olson (1971) explained free-riding in another way: because of the property of non-
excludability, there is an incentive to withhold contribution, hoping that others’ contributions will
be sufficient. However, Olson had a broader view recognizing the possibility of collective
provision for labor and business unions and other nonmarket groups. He believed that a collective
good could be provided by a small group when there is benefit from collective action, though its
provision may be suboptimal.

equipment may be the same whether the number of users is small or large. At the same time, variable costs reflect
the number of users, such as for playground monitors for the neighborhood playground. Covering operating costs is
less problematic than covering fixed costs. For example, many goods and services now provided by government
have “user charges” to cover variable costs.



Lindahl first offered a solution concept for public goods (Roberts, 1974). Lindahl (1919)
considered the situation of two parties trying to determine a public activity and sharing the tax
bill. He diagrammatically showed that there could be a point of voluntary agreement and
suggested that his concept of equilibrium tax shares could be extended to more parties.

2.4 Historical Adjustment Processes

Adjustment processes specify how an equilibrium can be found through a dynamic system.
Prominent examples are summarized below. Except for experiments for the SDC process, these
processes have not been operationalized either computationally or experimentally. Several papers
(Roberts, 1974; Tulkens, 1977; Blumel et al., 1986; Chander, 1993) have reviewed adjustment
processes proposed in the literature and found various weaknesses in each method.®

2.4.1 Lindahl Process

Lindahl (1919, translated in Musgrave and Peacock 1958) was the first economist to detail
a process for reaching agreement for a public good. The Lindahl equilibrium (described below) —
the desired outcome of the process — has been considered a definitive solution concept by
economists.

The Lindahl process as described in Silvestre (2003) is as follows. A set of cost shares is
proposed; if the corresponding level of public good for this expenditure is desirable for all parties,
then the outcome is accepted. Otherwise, if any party desires an increase in the public good, their
share is increased; the public good is set at the minimum of the public good proposals for the set
of shares, and the tax shares are specified according to the differences in public good demands.
The process stops when there is unanimity in the level of public expenditure. The nature of the
process guarantees that participant benefits will increase as the public good increases, but the
outcome may be sub-optimal (Roberts, 1974).

2.4.2 MDP Process

Instead of being tax-price guided, the MDP Process, independently suggested by
Malinvaud (1971) and Dreze and De La Vallee Poussin (1971) is quantity-guided (Blumel, Pethig,
and von dem Hagen, 1986). Using the terminology in this paper to describe this method: starting
from a feasible state, the coordinator proposes the total level of public good to be supplied. Each
participant then reports her marginal valuation to obtain an increase from this level. The
coordinator then computes the increase in the public good by comparing the total of bids to
marginal cost for the increase and uses an allocation rule to determine the tax distribution for
funding the public good. The distribution of cost is such that benefits for participants are
increasing as long as the public good level is changing. The process stops when the total marginal
valuations and marginal cost are equal, thus satisfying optimality.

$We are reminded of the impossibility results of Hurwicz: that no mechanism will be fully incentive
compatible and optimal at the same time.
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Chander (1993) proposed a process in which participants propose their bids to increase the
public good, which is determined similar to MDP. Here, the tax-price per unit of public good for
each participant is defined endogenously to be a share of cost as determined by her bid relative to
the total of bids. Any equilibrium corresponds to a ratio equilibrium (Kaneko, 1977). We use a
similar sharing rule for the Optimal Bid Process described in Section 6.

2.4.3 Sequential Direct Contribution Process

Bagnoli et al. (1989, 1991, 1992) proposed a sequential process — Sequential Direct
Contribution (SDC) — for an environment with discrete public good levels. Incremental bids
relative to incremental cost determine the shared good level increase: the good level is
sequentially increased by one level, starting from zero, as long as the sum of incremental bids
covers the incremental cost of a change. The process stops when incremental costs are no longer
covered by the sum of incremental bids by members. If the sum of bids exceeds costs, Bagnoli et
al. (1992) argued that any excess should not be returned for incentive reasons.

Their stopping rule is termed a “Provision Point” rule and was proposed as an incentive
against free-riding: the public good level provided will be sub-optimal if participants under-bid.
By the voluntary nature of bidding, all group members will be better off at the terminal step
compared to the initial condition without the public good. The bid instrument was shown to lead
to a Nash equilibrium that is Pareto optimal (Bagnoli and Lipman, 1989), and their theoretical
result has been supported by experiments (Bagnoli and McKee, 1991).

2.5 Incentive Compatibility

Incentive compatibility mechanisms have been proposed to address free-riding, typically in
the form of a tax or penalty function. The protocol of theory is to show that a Nash equilibrium
satisfies optimality. Two prominent examples aim at achieving a theoretical Lindahl equilibrium.

Groves-Ledyard. The Groves-Ledyard (GL) mechanism uses a cost allocation formula
with a penalty function for deviation from the group demand for the public good. For the GL
mechanism, an incremental quantity for the public good is proposed by each group member, and
the total quantity to be provided is the sum of the proposed increments. As an incentive for
truthful demand revelation, whether a participant proposes a high or low quantity, they are
penalized according to the difference relative to the group average. The form of the penalty
function is constructed so that cost feasibility is achieved. Cost is linear homogeneous, so that
there is a direct relation between proposed total quantity and provision cost.

In theory, a Nash equilibrium with the Groves-Ledyard mechanism is Pareto optimal.
However, it is recognized that feasibility for the individual budget constraint and individual
rationality may not be satisfied at a Groves-Ledyard equilibrium (Greenberg et al., 1977; Groves
and Ledyard, 1987).

Smith. Smith (1978, 1979, 1980) proposed a tax mechanism such that a member's bid
message would not directly influence her own price; thus a false valuation message would have no
affect on a person’s cost share. The process used both bid and quantity messages to determine the
public good and cost share for a linear homogeneous cost function. A person’s price was
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constructed from the difference between marginal cost and the average bid per unit excluding that
person. For linear cost, bids are adjusted so that the sum of bids will cover cost exactly.

2.6 Public Good Experiments’

Public good experiments have generally used a small size group to test behavior under a
variety of conditions and are therefore relevant for shared goods. The focus of experiments has
been to examine the effects of free-riding on group outcomes, as related to experimental
conditions. Experiments have most often used repeated bidding; however this repetition is not
algorithmic. Most experiments used the unrealistic case of linear homogeneous cost (not allowing
economies of scale or fixed costs). Several studies tested unanimity voting rules and found them
to improve group outcomes. To assess the desirability of experimental outcomes, measures of
“efficiency” have compared experimental outcomes regarding bids, quantities, or net benefits to a
theoretical optimum. Experimental conditions and results are summarized here for later
comparison to our experimental results.

2.6.1 Voluntary Contribution Mechanism

The Voluntary Contribution Mechanism (VCM) has been the predominant experimental
method for testing free-riding behavior for public goods (Isaac, Walker, and Thomas, 1984; Isaac,
McCue, and Plott, 1985; Isaac, Schmitz, and Walter, 1989); results are reviewed for later
comparison to our results. VCM uses bid messages to determine public good provision, with cost
shares determined directly from bids. A common finding is that as a bidding mechanism is
repeated, bids decay, resulting in less and less public good provision.

Coates and Gronberg (2001, 1996) tested the effects of sequential versus simultaneous
bidding in VCM for groups of size four. Sequential bidding provides more information about
others’ bids than simultaneous bidding, when others’ contributions are not known at the time a bid
is made. Efficiency was measured as the percent of maximum group surplus (a measure of net
benefit) achieved. The sequential institution achieved 65-69% efficiency whereas the
simultaneous institution achieved 44-50%, depending on the level of provision cost.

Sell and Wilson (1991) tested how information about previous contributions affects
current contributions for VCM. Alternatives were no information, information about average
group contribution, and information about individual contributions. They found that more
information about individual contributions improved contributions, achieving at best around 70%
of the optimum contribution after nine repetitions of VCM. Aggregate bid information achieved
only about 50% of the optimum contribution, with about the same result for no information.

Chan et al. (1999, 1996) tested the effects of heterogeneity on contributions in a VCM
game. Three-person groups were used. In their experimental design, in contrast to many VCM
experiments, the optimum contribution is not the full endowment. With face-to-face
communication and heterogeneity in endowment and reward, about 70% of the optimum
contribution was made, and about 60% of the optimum was obtained with no communication.

?A recent more complete review of public goods experimental literature is given in Chen (2008).
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2.6.2 Groves-Ledyard Mechanism

Chen and Plott (1996) tested the Groves-Ledyard mechanism with two levels for the
punishment parameter. They used linear homogeneous cost and quadratic utility functions. In
their experimental procedure — named Periodic Process — each round had independent bidding and
outcomes; the number of repetitions was fixed at thirty. There were four experiments of two
sessions each with 5 subjects. They found that with a higher punishment parameter, a higher level
of the public good is provided, and efficiency (percent of the optimal public good level) is higher.
Average efficiency for a low punishment parameter was 91.1% and 97.7% for a high parameter.

2.6.3 Smith’s Experiments

Smith (1978, 1979, 1980) experimentally tested alternative institutional rules for group
decision about public goods. Smith’s Auction Mechanism and Free-rider Mechanism differed in
terms of message space and rules that determine the public good level and cost shares. Smith’s
Auction Mechanism used both bid and quantity messages; for incentive purposes, an individual’s
bid did not influence her tax or cost share. The bid message was the proposed contribution for the
public good, and the quantity message was the proposed quantity for the public good. The
resulting good level was the average of group quantity proposals. The Free-rider Mechanism uses
bidding similar to the Voluntary Contribution Mechanism in that there was no incentive
mechanism for bidding. The Free-rider Mechanism determined quantity directly from the sum of
bids because, for linear homogeneous cost, cost is proportional to shared good quantity.

Both Auction and Free-rider mechanisms were embedded in a voting game. Each
repetition resulted in proposed cost share and shared good quantity. Messaging was repeated until
group members unanimously agreed to end the process at a particular cost allocation and shared
good quantity. The terminal step determined the final cost shares and quantity.

Comparisons were based on a small number of trials for each institution. For 1979 results:
with a group size of six persons with eight to ten trials, the Auction mechanism required an
average of 8.3 rounds to find agreement; the Free Rider Mechanism required fewer iterations:
5.75 rounds on the average. For the Auction Mechanism, the public good quantity was 73% of the
theoretical optimum (calculated from Table 5 of Smith, 1979); near optimal results were obtained
for games with agreements, but 20% of the games ended in no agreement. The Free-rider
Mechanism also achieved an average public good level of 73% of the optimum, with agreement in
all games. Smith (1979) — seeming surprised — concludes in the Summary section that 1) his
incentivized Auction Mechanism did not produce larger quantities of the public good than the
Free-Rider Mechanism; 2) his Free-Rider Mechanism did not result in typical free-riding. He
attributes this to the unanimity voting requirement.

2.6.4 Other Mechanisms

Harstad and Marrese (1982) developed the Seriatim process using repeated bidding, but
rather than being terminated by a vote, the process is terminated when all players repeat their
previous bid messages. They tested the Groves-Ledyard mechanism with quadratic utilities and
linear homogeneous cost in nine experiments with 31 subjects. The number of bidding cycles
ranged from 3 to 38; the average number of iterations was 15.4. The average efficiency was 94%.
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Banks et al. (1988) tested Smith and VCM rules with and without a unanimity
requirement. Their unanimity rule is similar to Smith’s: each round members vote whether or not
to stop the process; if they all vote no, the process is repeated up to five times. If they all vote yes,
then payoffs are made according to the results of the final round. They found the Smith process
with voting to be more efficient than VCM. They also found that the unanimity voting rule
reduces the efficiency of the outcome, but that the unanimity rule prevented the decay in
performance that could otherwise occur with VCM. Six games with ten subjects were used for
each institution.

3.0 Dynamic Foundation: Adjustment Processes and Application to CSAPs

Mathematical description for the dynamic structure of CSAPs is developed here by
applying the general structure of adjustment processes and coordination methods to CSAPs. The
resulting taxonomy for CSAPs is based on message space, allocation rules, adjustment rules, and
controllers; these components can be varied to produce alternative CSAPs. Mathematical notation
follows that of the original authors.

3.1 Message Adjustment Process

Hurwicz (1960) formalized the idea of a message adjustment process for resource
allocation problems. Formally, the environment for a process (e) is a vector of environments ¢’
for each agent, including preferences and technologies. Agents iteratively present messages that
belong to a message space M. Agents i send messages m' to each other according to individual
response functions f given the message vector m:

m ‘(t+1) = fi(m(t),e)

An adjustment mechanism is said to be private if each agent’s message is determined solely on the
basis of individual characteristics ¢'. Suppose the message process has a stationary message
m*(e). The group outcome is then determined by an allocation rule A:

z=h(m"(e))

Thus, an adjustment process is defined by an ordered triple (M, f, h/. A process is evaluated
according to whether its equilibrium lies in the pre-specified desirable set F(e).

Jordan (1987, 1995) extended Hurwicz’s concept by describing message exchange in the
form of differential equations, allowing theorems about stability of dynamic systems to be
applied. Further, Jordan described agents’ messages as being controllers. Denoting the state of
the system by a vector s, controllers are determined by behavioral rules given the state and
environment: ¢’ = f(s,e ), and adjustment of the state is defined by an adjustment function o:
§ = at(c,8). Jordan studied the stability of the equilibrium of the resulting system:

5 = a(fiGs, e H,s) = F(s, e)
3.2 Engineering Systems Theory of Coordination and Controllers

To address complex group decision problems, Reiter (1995) described a coordination
process as being a set of procedures to solve a joint optimization problem that consists of: "(i) an
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algorithm for computing a function, the decision rule, and (ii) an assignment to individual agents
of the steps required to execute the algorithm." Consistent with this description, a CSAP is a
coordination process specifically designed to solve the group shared good optimization problem.

From engineering systems theory, coordination is a method of producing a solution to a
control problem through a decomposed, multi-level form in which a coordinator orchestrates the
independent activities of local decision agents through coordination parameters called controllers
(Findeisen et al., 1980, p.84). There is an overall goal for an interconnected system with local
decision units. The coordinator has the aim to coordinate local decision units to achieve this goal
through the coordination parameters (Findeisen et al., 1980, p.12). Controllers may be system-
wide or localized. A local controller is a coordination parameter for a local decision unit. The
coordinator uses feedback functions or adjustment rules for controllers to stabilize the system.

Findeisen et al. (p.1) provide several reasons for coordination: 1) the decision-making
capability of an individual unit is limited; 2) subsystems may have limited communication with
one another; 3) there is a cost and/or a distortion in transmitting information. These reasons also
apply to CSAPs, and below we give examples of alternative processes with different controllers.

3.3 A Taxonomy for CSAPs

We combine Hurwicz’s and Jordan’s descriptions with engineering systems theory to
describe a general algorithmic adjustment process that applies for CSAPs.

An algorithmic adjustment process is described by <M, f, ¢, s, &, h> where: M denotes
the message space; f'is the set of behavioral response functions; c is a vector of controllers; s are
variables describing the system state; ¢ denotes the algorithmic adjustment rule for the
controllers; /4 is the allocation rule that links outcome variables to the system state. Controllers ¢
affect individual behavior and are designed to equilibrate the system. For local controllers, each
agent receives a personalized control message ¢’ and submits a message to the coordinator in
accord with system information and behavior rules.

The form of an algorithmic adjustment process is:

m'=fim,c,s,e)
¢ = a(m,s),
$§ = h(m,s),
c(0)=¢c%s(0)=s"°

The dynamic equilibrium of this game has a stationary message vector m *(e) for § =0, ¢ =0. An
algorithmic adjustment process can be viewed as a differential game between participants and the
coordinator, each controlling a subset of system variables'®. The game stops when there is a
dynamic equilibrium.

The coordinator applies the algorithmic adjustment rule ¢ to controllers based on
messages and the existing state. The change in the state of the system is determined from

'YArrow and Hurwicz (1977) proposed formulating resource allocation as a differential game. (1977).
Dore (1979) — for a multi-product firm — suggests the need for incentives for the coordinator.
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messages and the existing state. State variables include variables that are system-wide (for
example, the level of the public good) as well as those that pertain individuals such as the level of
utility, payoff, or net reward.

A taxonomy for CSAPs results from this general description; a CSAP is characterized by:

1) the message space: bids and/or quantity messages from group members; proposed cost
shares and proposed group quantity by the coordinator;

2) the cost allocation rule;

3) its controllers (here, personalized prices and/or group quantity Q);

4) its adjustment rules: how controllers are modified in response to messages.

3.4 Criteria for Message Adjustment Processes

Criteria for adjustment processes include both information needs and convergence
properties. Regarding information: 1) following Hurwicz, an adjustment process is privacy-
preserving if ¢’ is a local controller, and each player has only aggregated information about other
players (examples of aggregation are the average of quantities demanded and the sum of others’
bids); 2) following Reiter, a process is information-conserving if adjustment rules require only
information about the previous state, not information about all previous states. Thus, less
information is needed to control the system when the process is information-conserving.

Convergence and stability are important mathematical criteria for dynamic adjustment
processes (Jordan, 1987, 1995; Mas-Colell, 1986). Desirable properties are that: (i) for any initial
state, the corresponding path should converge to some solution of the stationary equation system
(system stability); i1) given an equilibrium outcome, if the initial state is perturbed from the
equilibrium, the process should converge to a point in the neighborhood of the equilibrium (local
stability) (Mas-Colell, Whinston, and Green, 1995; pp. 621-622). Additionally, Laub and Bailey
(1978) suggested two criteria for a coordination process: the dynamic process should converge to
an equilibrium, and the equilibrium should solve the decision problem.

4.0 Static Economic Foundation for CSAPs

Economic theory provides the foundation for specifying allocation and adjustment rules
for CSAPs. The basic concepts and notation are developed in this section. In a later section,
adjustment rules for price/quantity controllers are specified corresponding to two types of CSAPs,
share-taking and quantity-taking, based on this section.

First described is the desired nature of an equilibrium of an adjustment process. Next the
message space and controllers are specified in terms of prices and/or quantities. We also delineate
why the Lindahl equilibrium and Voluntary Contribution Mechanism are not appropriate.

The setting and notation are as follows. A group is engaged in making a voluntary
decision about the quantity and cost shares for a shared good. Suppose there are only two goods
to be considered: the shared good (Q) and a private good (x) representing all other goods, and
assume that each group member (i) desires a positive amount of the shared good. Preference
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orderings for each group member over the two goods are represented by utility functions ', and
members have endowments M, The cost function for the shared good relative to the private good
is C(Q), and we assume increasing marginal cost, C(0) = 0, and declining marginal utility for Q.

4.1 Cost Share System

The foundation for share-taking is a cost share system. A cost share system and the notion
of a cost share equilibrium (CSE) were proposed by Mas-Colell and Silvestre (1989, 1991, 1994);
their characterization allowed general cost functions and feasible Q. A cost share system has
personalized cost share schedules T;(Q) for each group member, such that 7;(0)= 0 and ZTI.( Q)=
C(Q) for any Q. The cost share equilibrium (CSE) is a feasible Q" such that no group member
would prefer a different shared good level for the given cost share system, thus satisfying

ui(x;",Q ")2u'(M;-T(Q).Q)

for all members i and private goods x;” = M, - T(Q"). That is, a CSE has unanimity shared good
Q" for cost shares corresponding to T,(Q") and is a Pareto optimum: no other feasible shared good
level is preferred by all group members for the given set of cost allocation schedules.

Mas-Colell and Silvestre (1989) showed that the CSE is in the core, thus is individual- and
group- rational and showed that a CSE can be mapped into a Lindahl equilibrium, thus proving its
existence. However, description of the CSE does not indicate how it is to be located, which is the
purpose of dynamic adjustment for CSAPs.

4.2 Pareto Optimality, Share-taking, and Cost Share Equilibrium

Pareto optimality — often represented as maximizing the sum of utilities subject to a
feasibility constraint — is the keystone concept for welfare economic theory. Rather than being an
actual goal of calculation, maximizing the sum of utilities is used here as a construct for
institutional design of a pricing instrument: any pricing tool that does not maximize this sum
could be improved on without making anyone worse off.

For the shared good Q, a Pareto optimum is the solution of:
Max Xu ( X, Q)
x;,Q
s.t. 2x, + C(Q)< XM,

X, Q20

Any interior optimum must satisfy the Samuelson (1954) condition (a necessary condition for
optimality) that the sum of ‘“marginal valuations” — marginal utility of the public good relative to
marginal utility of the private good at Q — is equal to marginal cost of additional Q '":

"Second order conditions are used to ensure existence of an optimum. In general there may be multiple
equilibria with any pricing instrument.
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The paradigm for market design is to define a pricing instrument that produces an
equilibrium that achieves a Pareto optimum, and the appropriate pricing instrument for market
goods is uniform pricing. Similarly, for public goods, we use cost shares with personalized prices
to achieve an equilibrium that is Pareto optimum. For general cost functions, the use of a cost
share system {7, (Q)} allows the Pareto optimality problem to be decentralized, and for nonlinear
cost, it provides for a more general solution concept than the Lindahl equilibrium (see below).

Share-taking behavior means that each group member takes her cost share schedule 7(Q,)
as given and then determines her shared good proposal Q; to maximize her utility. The quantity
by group member (i) for the shared good is the solution of:

Max u i(x,Q)
X,Q;
st.x, + Ty(Q) < M;
X, Q20

For share-taking behavior, each group member’s proposed quantity equates their marginal
valuation to their marginal cost share:
ol
Q /
e T; (Ql)
Uy

The cost share equilibrium — achieved when these conditions are simultaneously satisfied at
unanimous quantity Q" — satisfies the Samuelson condition by definition of the cost share system.
Furthermore, by definition of the cost share system, the cost of the shared good is exactly covered.

4.3 Linear Cost Share Equilibrium and Personalized Prices

Mas-Colell and Silvestre (1989) defined a linear cost share equilibrium (LCSE) as a
special form of CSE. For this type of equilibrium, the cost share instrument has a specific form
specified in terms of cost share parameters s; and personalized prices p; :

T{(Q = 5,CQ) + p,Q.

As they showed, a LCSE is Pareto optimal if the sum of shares s; equals one and the sum of prices
p; equals zero. Figure 1 illustrates the LCSE for a group with two members. Since prices should
sum to zero, one person’s price is positive while the other’s is negative. That is, starting from
equal shares and two group members, one person’s share will be more than an equal share while
the other’s is less than an equal share.

4.4 Lindahl Equilibrium is not Optimal with Nonlinear Cost

For public goods, the Lindahl equilibrium with personalized prices p;, has been the most
prominent solution concept; here we show it does not work with non-linear cost. The Lindahl
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equilirium can be viewed as a special case of LCSE with zero cost share parameters.

For the Lindahl equilibrium, given her personalized price, each participant determines a
public good proposal Q; maximizing her utility subject to her budget constraint:
MaX u i( Xia Ql)
XpQ;
st.x; +p,Q; < M,
X;,Q,20

Thereby, a participant’s quantity proposal Q; sets her marginal valuation equal to her price:

i
u
Q _
i P

Uy

Equilibrium requires unanimity Q= Q* with prices satisfying P2 p;=C {(Q%*). Thus, any
equilibrium satisfies the Samuelson condition. For nonlinear cost, there is a problem with the
Lindahl solution because the total tax collection exceeds cost when marginal costs are increasing:

). pQ" - CQ1HQ" >C@Q+)

That is, any equilibrium will not actually be Pareto optimal, because the excess funds could be
redistributed to make at least some group members better off.

4.5 Marginal Bids

Bid messaging is relevant for both share-taking and quantity-taking processes. To describe
bidding, we first define willingness to pay (WTP) for the shared good at a given Q to be the most
that a person would pay for an incremental increase of ¢ in Q. For person i, WI'P' WTP equalizes
utility before and after the change (a compensating variation, in the terminology of welfare
€conomics):

uiM,-T(Q-WTP,Q+g) = u'(M,-T,(Q).Q)

it can be implicitly determined from the above to be a function of Q and incremental change g.

The marginal willingness to pay (MWTP'(Q)) for person i is how much — at given a level
of Q — that a person would be willing to pay for a marginal increase in the level of Q. Marginal
willingness to pay is the derivative of WTP' with respect to quantity. By the Implicit Function
Theorem applied to the above equation, marginal willingness to pay is equal to Samuelson’s
marginal valuation:

. ug
MWTP Q) = 2
U,

evaluated at Q and x; = M, - T(Q). For CSAPs, we use the notation b, to denote the marginal
willingness to pay — here termed the marginal bid. For a marginal bid: a proposed shared good
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quantity is taken as given, and bids are made in order to obtain a marginal increase in Q.
4.6 Personalized Pricing at a LCSE

From above, at a LCSE each group member’s marginal bid should equal to the marginal
charge at the equilibrium quantity Q":

MWTP Q") = 5,C/@Q") +p;

We will use this result to define adjustment rules below for personalized prices for CSAPs. Re-
writing the equilibrium condition for a LCSE,

P, = MWIP'(Q™) - s,C'(Q™).

That is, at equilibrium personalized prices p, should be the differences between the marginal bid
and the share of marginal cost. This relation is the basis for adjustment rules below.

4.7 Fairness of a Linear Cost Share Equilibrium

A fairness condition for a LCSE with a linear cost share system can be obtained from the
above price definition when there are equal share parameters s; = 1/n for group size n. Then, the
difference in equilibrium personalized prices for any two group members is equal to the difference
in their marginal willingness to pay:

p, - p; = MWTPJQ™") - MWTP Q")

i.e., a member with a higher willingness to pay than others will receive a larger personalized price.

Theorem: For a LCSE with equal share parameters s; = 1/n, the personalized price satisfies the
fairness condition that it is the difference between a person’s marginal willingness to pay

and the average marginal willingness to pay. Thus, MWTP, greater than average will result in a
positive personalized price (more than an equal share) and for reverse case will result in a
negative price (less than an equal share).

Proof: For a LCSE, the sum of personalized prices should be zero. Summing over group
members in the above relationship, the result is obtained.

4.8 Non-optimality of the Voluntary Contribution Mechanism

The Voluntary Contribution Mechanism has been prominent in economic theory as well as
experiment (Bergstrom, Blume, and Varian, 1986). Here, the Voluntary Contribution Mechanism
(VCM) is shown not to result in a Pareto optimum, hence is not a good institution for a CSAP.

The Voluntary Contribution Mechanism uses bid messages regarding voluntary
contributions B; . Provided others’ bids are known; the sum of others’ bids Zj . B; 18 taken as
given when an individual determines her bid B,. For feasibility, the public good quantity is
determined such that the sum of bids equals or exceeds the cost for this quantity. For continuous
Q and cost C(Q), the Nash equilibrium bid B, for each participant simultaneously solves the

following optimization problem for nonnegative bids and private consumption x; (Varian,1994):
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Max u i(x,, Q)
x;,Q,B;
st.x; + B, <M,
B, + X B>C(Q).
j#i

For each group member, first order conditions for an interior equilibrium are:

ud(M;-B,.C "'(XB))
. I = c/c'XB)).
u)M,-B,C (TB)) j
j

The set of equilibrium conditions does not satisfy the Samuelson condition for optimality. As
Dasgupta (1997, p. 191) suggested, the non-optimality of the Nash solution could lead to
difficulties in supplying public goods with VCM. Also, determining a Nash equilibrium for VCM
can be as difficult as finding a Pareto optimum (Laffont,1988); in particular, Moore et al. (1997)
showed that existence of a Nash equilibrium is problematic when there are fixed costs.

5.0 Two Generic CSAP Types: Share-taking and Quantity-taking

Here, we formally describe share-taking and quantity-taking as two distinct types of
dynamic adjustment processes. Results in this section link static and dynamic theories in Sections
3 and 4: a share-taking process results in a theoretical optimum by its use of a cost share system.
In contrast, a quantity-taking process — based on bidding — is not necessarily optimal.

5.1 General Form for Share-taking Processes

For a share-taking process, group members take individual cost share schedules 7(Q) as
given and respond with messages about their quantity demands. For a linear cost share
instrument, personalized prices are local control parameters, and the group aggregate quantity
proposal is also a control parameter. The general form for a share-taking CSAP is as follows:

1. Given the personal cost share schedule 7, (Q), each member states her proposal Q;

2. The coordinator determines the group plan O by aggregating proposals Q,.

3. The coordinator computes control parameters and new cost share schedules based on
the member messages and the adjustment rule.'”

The process repeats until the same quantity is proposed by all members: Q,= O .

The distinguishing characteristic of a share-taking process is that it is built on adjustment
of a cost share system. Therefore we have the following result:

PFor the Bid/Quantity Process described in Section 6, group members also propose marginal bids which

are used to determine personalized prices. A Provision Point test determines the aggregate O together with
quantity proposals, as described in Section 7.

21



Theorem: Assuming truthful messages, and increasing utility and cost functions, a dynamic
equilibrium for a share-taking CSAP is a Pareto optimum.

Proof. The proof is immediate: any dynamic equilibrium achieves a cost share
equilibrium, and based on the result of MCS (1989), any cost share equilibrium is optimal.

5.2 General Form for Quantity-taking Processes

For quantity-taking, members take the suggested group quantity as given and respond with
bids to increase this group quantity. The suggested group quantity is the control parameter. A
quantity-taking process starts from an initial feasible quantity level, which can be zero:

1. The coordinator proposes a group quantity Q .

2. Given Q, group members present bids to increase this level.

3. Given bids, the coordinator determines a change in O and cost shares.
The process continues until a stopping rule is engaged.

Unlike share-taking processes, any equilibrium is not necessarily Pareto optimal, and cost
may not be exactly covered. For an example, see the following simulated MDP process. Later,
we present the Optimal Bidding Process that in theory achieves a special case of cost share
equilibrium and so is optimal.

6.0 Comparison of Alternative Cost Share Adjustment Processes

In this section, we describe and compare alternative CSAPs. We show that many of the
cost allocation suggestions in the literature result in convergence and/or optimality failures.
(Further numerical examples of iterative processes can be found in Section 7 with messaging
from experiments and Appendix 2 with “truthful” messaging.)

Three processes are from the literature. MDP (Malinvaud,1971; Dreze and De La Vallee
Poussin, 1971) is a quantity-taking process using bid messages; it was originally specified as an
adjustment process. Groves-Ledyard (1977, 1980) used only quantity messages, while Smith’s
(1978, 1979, 1980) cost allocation rules used bids and quantities.”> Because Samuelson identified
misrepresentation in bidding as the culprit for impossibility of designing decentralized
mechanisms for public goods, Smith’s focus was on creating an incentive rule for bidding,
whereas the Groves-Ledyard incentive rule was based on a penalty function built on quantity
messages. In effect, their specifications provide alternative cost allocation rules. To form CSAPs
from their cost allocation rules, we add price adjustment rules.'

PBecause linear cost directly relates bids to quantities, the “bid only” message space was possible.

4 As originally specified, no adjustment procedures were included by Smith and Groves-Ledyard. Instead,
their experiments used repetition of messaging, relying on experimental subjects to find a common good quantity.
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We propose three new CSAPs, each with a different message space, based on the cost
share equilibrium and price/quantity controllers. Two share-taking CSAPs are based directly on
the linear cost share instrument with price controllers. The Quantity Process uses only quantity
messages, while the Bid-Quantity Process uses both bids and quantities. A new quantity-taking
process using only bid messages has the theoretical property of optimality — in contrast to VCM —
because it produces a ratio equilibrium (Kaneko, 1977), a special case of LCSE with zero
personalized prices.

Thus, possibilities for message space are: both bid and quantity messages; only bid
messages, and only quantity messages. Demonstrating myriad possibilities, Table 1 compares
taxonomically these six alternative CSAPs in terms of control parameters, the form of cost
information, message space, and incentive rules.

Design criteria are needed to compare alternative designs. Criteria found in the literature
relate to both theory and behavior: 1) achievement of Pareto optimality; 2) cost feasibility; 3)
convergence of the adjustment process; 4) fairness; and 5) success in locating an acceptable
(individually rational) group outcome. Speed of convergence is a measure of transactions costs.
In Table 2, the relative success of these six CSAPs is compared in these terms through simulation
with truthful messaging.

6.1 MDP Planning Process

The MDP planning process was fully specified as an adjustment process. In brief, given a
proposed quantity Q to be supplied, each member sends the coordinator a marginal bid message
b,. The coordinator then determines shared good quantity according to an adjustment rule: quantity
is increased if the sum of marginal bids covers marginal cost, and decreased otherwise. For
feasibility, the process must start from an initial tax collection that covers cost.

Adjustment rules for quantity and personalized tax shares 7; as originally specified are:

. .

Q=v[Xb, - C'QI;

. : 22

ti:biQ - Si/Y Q%

X, =-1,.
s, are distributional parameters that sum to one and ¥ is a speed of adjustment parameter that
must be specified. At the dynamic equilibrium, cost shares are defined by the cumulation
(integral) over personalized tax increments over all iterations.” At a dynamic equilibrium, the
Samuelson condition is satisfied and taxes are stationary. The cost allocation for each member is
the total charge at the terminal level, which is the sum or integral of the tax increments starting

from the initial charge. The personalized tax increments over members cumulated over iterations
satisfies:

Eifi:idt= ch’(Q)dt - C(Q)+K

where K is the constant of integration. If cost is linear homogeneous, K would be zero, so cost

BRoberts (1974) pointed out that to correct for income effects, incremental taxes must be subtracted from
income at each step as the bidding process proceeds.
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would be exactly covered by the tax cumulation. However, with a fixed cost, cost, cost may not
be exactly covered. If excess revenue is collected, the situation would not be Pareto optimal,
since all members could be made better off with refunds.

The novelty of the MDP process is that by construction, the tax increments are designed so
that each step is utility-improving, providing incentives for cooperation:

Au'=u'(x)+uy' (Q
= (U s/7)(Q?
>0.
therefore by individual rationality, group members should agree to a group equilibrium outcome.

6.2 Modifying the Groves-Ledyard Mechanism to form a CSAP

The Groves and Ledyard (1977, 1980) method used only quantity messaging, which
translated directly to cost because of assumed linearity. To result in a LCSE, the cost share
instrument should be of the form 7(Q) = s, C(Q) + p, Q. To construct a CSAP, we first modify
the GL allocation rule to accommodate nonlinear cost and add an adjustment rule. The modified
G-L cost share instrument is:

T(Q) = s,C(Q) + y/2[(@-1)/n(Q-Q_)*-V/]

where Q ; = 1/(n-1) Zj;i Q; is the mean public good without member i, and VZ?=1/[2(n-1)(n-

2)] Z,;#,- 2:,:#,- (0, - O, ) is a variance term that produces a personalized tax. The term in brackets
times the penalty parameter is a personalized tax. The sum over i of the personalized taxes is zero
by construction, so that cost share allocations sum to total cost. Both high and low demanders are
penalized for deviation from the group average. The punishment parameter J is arbitrary. As

Chen and Plott (1996) show, larger values of ¥ force faster agreement.

The cost share form above suggests the adjustment rule for personalized prices:
i = ¥2[@- D@ - QY- (VY

Average quantity demanded Q, 0., and V; are taken from the previous round. By definition, the
personalized prices sum to zero each round, so that any equilibrium is a LCSE.

6.4 Modifying the Smith Rule to form a CSAP

Smith’s rule determined the individual’s cost share from others’ bid messages to avoid the
effects of bid misrepresentation. We first modify Smith's cost allocation rule to be in the form of
a cost share system for nonlinear cost:

T(Q) = s,C(Q) + [(1-s)C"(Q_) - X b;]1Q,
j#i

where b; denotes the marginal bid to increase Q by one unit, Zj', denotes the sum over j excluding
member i, and Q ; denotes the group average proposal excluding member i. At an equilibrium, Q ;
= Q" and 2 b, = C {Q’), satisfying the Samuelson condition for optimality.
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To form a CSAP for a LCSE, we add an adjustment rule based directly on the first order
condition for a linear cost share instrument. Similar to Smith’s original rule, lagged quantity
demands by others’ and others’ bids determine personalized prices:

pi = (1-s)C(Q.H - 2b;"
Since these prices do not sum to zero, and each step could be a final outcome, we must normalize
prices for a CSE:

pi =p; - ln2p’

For equal share parameters s; , the Mean Value Theorem implies:

1= RPCQ.)@Y - Q1) + B - 1 Th))
j J

-1mC"QH@Q"-Q) + (b - 1/mXb)
J

Thus by normalizing, both bid and quantity messages will affect personalized prices. For
increasing marginal cost, personalized price will be positive (more than an equal cost share) if: 1)
the quantity proposal is less than average; and 2) if the bid is greater than the average bid. That is,
the price normalization rule gives an incentive to propose a quantity greater than average and a bid
less than average, not the bid incentive that Smith originally intended!

6.5 Three New CSAPs

We construct three new CSAPs, two share-taking and one quantity-taking processes, with
different message spaces. Two share-taking processes are based directly on the linear cost share
instrument: the Quantity Process uses only quantity messages from group participants, and the
Bid/Quantity Process uses both bid and quantity messages. The Optimal Bidding Process (OBP) is
a quantity-taking process with two types of bid messages, but in contrast to VCM, it is based on the
ratio equilibrium (Kaneko, 1977), and so achieves optimality. The ratio equilibrium is a special
case of cost share equilibrium with zero personalized prices.

Quantity Process. The name of this process derives from its message space: only quantity
messages are transmitted from group members to the coordinator. Given a linear cost share
schedule with given personalized price, each member determines her quantity demand Q" . The
adjustment rule for personalized price is based on the first order condition for a LCSE; given the
current price p; the rule for price adjustment compares one’s own demand to the average demand:

pi - p =5 [CQYH-C/@Y]

where O’ denotes the average of individual demands Q,' for the current iteration. This adjustment
rule will have and equilibrating effect with increasing marginal cost, a common second order
condition in economic models. For feasibility, prices must be normalized to sum to zero each step.
With equal share parameters s; and applying the mean value theorem, normalized price is:
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p~p, + 1Y - p + C"(Q)(Q;-Q)

j
so that with increasing marginal cost, a group member with demands greater than the average
demand will receive a higher price on the next round — thus increasing the cost share — and
conversely for those with demands lower than the average. This adjustment rule has an
equilibrating effect on quantity: with declining marginal willingness to pay, a higher price means a
lower quantity demand on the next round.

Bid/Quantity Process. This adjustment process uses both quantity and marginal bid
messages from members. Given the personalized cost share schedule, each member first
determines their quantity demand Q,' . The group quantity is set at the average of member
proposals. The marginal bid b, is the value for member i of marginally increasing this good.
Similar to MDP and Bagnoli and McKee, a Provision Point rule is added: if the sum of marginal
bids covers marginal cost, the current group quantity is increased.

The price adjustment rule is derived directly from first order conditions for share-taking:
price can be determined from the first order condition evaluated at the current group quantity:

pit+1 - bit _ Si C /(61:).

For feasibility, prices must be normalized to sum to zero when quantity is not at the equilibrium.
The normalized price with equal share parameters is:

pllt+1 = pit+1 - l/nEpJHl = blt - ]./nzbjt
i J
Thus, a person with a bid greater than average will receive a greater price.

Optimal Bidding Process. This process uses only bid messages, but to achieve optimality,
two types of bid message are employed. It combines rules suggested in previous studies. Similar
to the VCM mechanism, the full bid B, is the voluntary contribution; the sum of full bids
determines a feasible shared good level. The marginal bid b,is the willingness to pay to increase
the shared good level from the feasible level. The quantity adjustment rule is similar to MDP
(Dreze and de Valle Poussin, 1971). The cost allocation rule is similar to Chander (1993).

The method uses a quantity adjustment rule that indicates the direction of the optimum.
Personal cost shares are local controllers; they are set to be proportional to bids, a type of fairness
rule. For feasibility, the cost share can be less than the full bid, if the sum of full bids is greater
than cost. The process is as follows:

1. Given full bids B;', QF' is the largest quantity that can be afforded for the given sum of full bids.
Thus, QF"' satisfies:

YB.'> C(QFY).

2. Given QF', each member proposes the marginal bid b, to increase from QF' to the next level.

26



3a. The suggested quantity QS' is determined to be greater than QF' if the sum of marginal bids
exceeds marginal cost:

QS = y[Xb, - C/(QF Y.

3b. The suggested cost share parameters are as follows:

t Bit + bit if OS> QF
§; = — 1 > ;
YB; + b))
t
s = 5 if QS < QF.
YB;

The suggested cost share ST;*' is the suggested share times the cost of the suggested quantity:
ST = s'CQs Y

i =

The process repeats, and the suggested cost share can become the “full bid” contribution for the
next round. The process stops when QS and full bids are no longer changing. At an equilibrium,
the resulting cost shares are proportional to bids.

When quantity increases, this process is utility-improving similar to the MDP process, since
bidding is voluntary and the cost share will be no greater than the full bid."® However, utility
improvement is not guaranteed if quantity decreases.

6.6 Simulation of Alternative CSAPs

We use simulation to compare alternative CSAPs for convergence, optimality, and
individual rationality. While simulation outcomes do not constitute proof, either non-convergence
or non-optimality is sufficient to negate the possibility of global optimality of a process.

All simulations shown in Table 2 use the same Cobb-Douglas utility functions and a cubic
cost function with a fixed cost. Utility functions are specified so that one group member is LH for
benefit and endowment respectively, one is HL, and one is LL. Simulation uses “truthful”
messages regarding bids. For all share-taking CSAPs, the starting point is equal shares (s, = 1/n
and p,; =0). Convergence means that quantity proposals and/or bids are no longer changing, here no
change in the first two decimal places. Convergence details are shown in Appendix 1.

Selection of adjustment or penalty parameters is a disadvantage for implementing GL,
MDP, and OBP processes. For the MDP process, quantity does not arise from individual choice,
so the adjustment rule may give a quantity not afforded by some group members. For our example,
the MDP process was infeasible for a wide range of adjustment speeds (including y=1, as MDP is

16Utility improvement occurs when QS increases:

u(M;-ST,,QS) > uM,-(T,+b,),QS) = u'(M,-T,QF) > u'(M,-B,,QF).
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usually described). For y=.05, there was an equilibrium — when bids and quantity were no longer
changing — but the equilibrium quantity was 77% of the optimum quantity.

For this nonlinear cost and the penalty parameter ¥=35,"” the GL process converged to a
non-optimal disagreement point in which the low-income, low-benefit member sticks to a low
demand in spite of the penalty. Since this group member would be made worse off compared to
her non-cooperative solution at this equilibrium, she would not voluntarily agree to the GL
equilibrium outcome. Non-optimality occurred for both higher and lower penalty parameters.

The Smith process and our three new processes converged successfully. The BQP and
Smith process have the same message space — bids and quantities — and converged similarly.
Evidently for share-taking, faster convergence can be obtained with a larger message space: the QP
took much longer to converge, close to optimal by iteration 11, whereas BQP converged in only
five iterations. OBP took 18 iterations to converge with the same size message space.

7.0 Behavioral Effects of CSAPs

Since the Quantity Process, Smith Process, Bid-Quantity Process, and Optimal Bidding
Process converged successfully, they were further compared behaviorally. Experimental results
show that behavior and computation differ: what works computationally may work less well when
behavior is introduced. Our experimental design includes both the application of CSAP rules and
the specification of information and voting rules. Although Smith’s work (1978, 1979, 1980) is a
major influence, our experimental design differs importantly in terms of voting rules.

7.1 Proposal and Approval Phases with Unanimity Voting

Unanimity as a voting mechanism has been featured in both conceptual and experimental
economic literature. Economic experiments for public goods have indicated that unanimity voting
can improve outcomes. Unanimity voting in another setting has been found to greatly enhance the
efficiency of group outcomes (Gardner, Herr, Otrom, and Walker, 2000). Unanimity voting is an
important feature of our experimental design which may ameliorate free-riding behavior because
logically, any extreme proposals would not be selected by a group.

Our unanimity voting method differs from Smith’s. In Smith’s experiments, there were
repeated rounds, and the round receiving unanimous votes for termination of the process was taken
as the group outcome. Here — as in a natural group process — there are two types of voting: to end
proposal generation and then to select among the generated proposals. That any proposal may be
an outcome is allowed because each proposal round is feasible, by construction. Unanimity is
required both to end proposal generation and to select the group outcome from the set of proposals.

Correspondingly, the experimental cost sharing game has two defined phases: a Proposal
Phase and an Approval Phase. Cost allocation and adjustment rules operate during the Proposal
Phase to generate alternative group plans. The Approval Phase then allows groups to review and
vote over the entire set of group proposals. Because there are these two phases, any strategic

"Chen and Plott (1996) used y=1 and 100, suggesting that a higher parameter leads to faster convergence.
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behavior in generating proposals can be separated from group decision. That is, although a group
member may strategize in generating proposals, this need not destroy the final outcome. Still,
strategic behavior during the Proposal Phase may have a destructive influence on group decision
during the Approval Phase, as shown in examples of group processes given here.

The Approval Phase is constructed similar to Hare voting: each member first indicates the
three most preferred proposals by rank. A screen with ranking information for all group members
is then presented. Plans that are not in someone’s top three are dropped from consideration.
Members are then given three chances at approval voting — “yes” or “no” votes — for the remaining
set, each time with a display of how group members voted. If there is no group agreement, all
group members receive their non-cooperative allocations, which is by construction less desirable.

7.2 Parameterization and Experimental Set-up

Following Smith (1976), group members’ rewards are based on pre-specified cost and
utility functions and given endowments. University of Arizona business school students were used
as subjects. Experimental cost for each session was about $300 based on an average of about $15
per subject plus a $5 show up fee. Each group had three members. Following Andreoni (1988), to
avoid learning about group members, group membership was mixed randomly after the first game.
Each group participated in a practice game with no payoff, followed by three games with real
rewards. All groups in a session of three games played simultaneously, but the network set-up
assured anonymity. Each session of practice and three games took about two hours in total.

Cost and Parameters. The cost function is nonlinear with a fixed cost f of the form: C(Q) =
1/s[f + 10 (sQ) - 5 (sQ” + 5 (sQ)’]. Reward levels are determined by quasi-linear utility functions
of the form: u;(x;, Q) = x; + y; /s log (1 + sQ). Fixed cost f and scaling factor s were varied to
provide games with different optimal Q levels and different status quo for members.

For information presentation purposes, experiments use discrete levels of possible
quantities, so that rather than continuous schedules for cost and rewards, discrete levels correspond
to quantity levels for incremental cost shares are net rewards.

Heterogeneous Member types. There were three types of members in each game: A =
(High Reward, Low Endowment; indicated as HL); B= (High Reward, High Endowment; indicated
as HH); C=(Low Reward, Low Endowment; indicated as LL). In each game, two of the members
could not afford to provide the good individually. For each participant, her type was varied over
the course of the three games.

Information. Compared to VCM treatments, ours is a “worst case” communication setting:
there is no direct communication among group members, bid messages are simultaneous, and cost
shares are private. At any point group members could view the history of proposal generation in a
format similar to information in Table 3 through Table 6, except that payoff (net reward)
information was private.

For share-taking, each group member receives a schedule of quantities with corresponding
personalized cost shares and rewards. Similar to VCM, the information format for the Optimal
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Bidding Process uses a matrix of outcomes for “your bid” and “others’ bids” indicating the
possible levels of the shared good and payoffs corresponding to combinations of bid amounts.

At the beginning of each game session, each member identifies her non-cooperative best
outcome for the given cost and utility schedules. For the non-cooperative outcome, the full cost for
her optimal quantity must be paid by the individual. On all information screens, the individual’s
non-cooperative net reward level reminds her of the benefits of cooperation.

Rules. Experiment descriptions of allocation and adjustment rules for each process are
given in Appendix 1. To summarize, the price adjustment rule for the Quantity Process gives an
incentive to propose quantities less than average, while adjustment for Bid-Quantity pricing gives
an incentive for the incremental bid to be less than average. For the Smith-like process (not
actually like Smith’s intended incentive scheme), because of the need for feasibility for each
proposal round, price normalization gives a two-pronged incentive based on both bids and
quantities, giving opportunity for two forms of strategic behavior.

The Provision Point rule for the Bid/Quantity and Smith-like processes is that the group
quantity is allowed to increase to the next level only if the sum of incremental bids exceeds the
incremental cost for the given level. A consideration for experimental design is how to specify the
base for the Provision Point test. For the Smith-like process, we used the group average rounded-
down; this led to negative bids in part because disadvantaged group members would want less than
the average. For the Bid/Quantity process, we used the group average less one level for the
provision test; this seemed to give more satisfactory bidding results.

For share-taking processes, the Proposal Phase starts from equal cost shares for each group
member. Each round produces a proposal for group quantity and cost shares for the next round. If
the group does not agree to stop the proposal rounds within a certain number of rounds, then the
proposal process has a randomized end, similar to breakdown for a natural process. Subjects were
told that the Proposal Phase would end with probability of 0.5 after five proposal rounds.

During the Approval Phase, multiple “yes” votes were permissible, so that approvals for
multiple group choices were possible. With multiple approvals, experiment payoffs were made
according to the approved proposal with the smallest quantity variance over group members. For
Optimal Bidding, the payoff was based on the largest feasible quantity.

Optimal Bidding Process. For the Optimal Bidding Process (OBP), each round produces a
proposal of a feasible group quantity and cost shares as well as a suggested direction for an
improved outcome together with suggested cost shares. However, group members are free to make
any bid each round.

The adjustment rule for OBP differs from that in Section 6 because experiments used
discrete rather than continuous quantity levels. Quantity adjustment is similar to the method
proposed by Tulkens (1978) and the Provision Point rule of Bagnoli et al. (1991, 1992). For
suggested good level QS and feasible level QF and incremental cost denoted by IC:

QS = QF + 1if Xb,' - IC(QF % >0,
QS=QF ifXb'-IC(QF") =0;

QS = QF - 1if Xb,' - IC(QF 9 <0. 20



7.3 Strategic Behavior and Fairness: Examples of Experimental Institutions

To demonstrate alternative rule sets or institutions and resulting behavior, Tables 3-6 show
examples of actual game histories for each of our experimental cost sharing institutions,
demonstrating the types of strategic behavior that can occur.' These examples indicate that many
types of individual behavior occur for each institution. As forms of strategic behavior, both
underbidding and overbidding are exhibited, and the same player may exhibit both in different
rounds. However, in spite of individual strategic behavior, a reasonable group outcome can occur
for the Approval Phase.

Table 3 shows an example of history for the Quantity Process. Besides approval of the cost
share equilibrium, other outcomes were also approved, as indicated by unanimous “yes” votes.
This exemplary outcome of the group finding the cost share equilibrium was obtained in slightly
less than half of the experimental games with the Quantity process.

The approved outcomes were individually rational: all three group members are better off
compared to their best individual outcomes. The group outcome seems fair: the B member (HH)
receives the largest cost share, the A member (HL) has an intermediate share, and the C member
(LL) has the lowest share. The disadvantaged “C” member (LL) starts out with a lower than
average quantity proposal and continues this for four rounds; consequently this member receives a
much lower cost share than the other group members.

Table 4 shows history for Game 2 for a Bid/Quantity game session. The provision test is
carried out for the group average level minus one. To illustrate the provision rule: in Round 1 the
rounded average of member proposals is Q=4; one level less is Q=3, which can be increased to
Q=4 if the sum of incremental bids exceeds incremental cost. Since the provision test is passed,
Q=4 is the group quantity for round 1. For the next round, the average is 0=6, but the provision
test is not passed so the group quantity is set at Q=5 where it remains until the last round when
group members unanimously agree to a group quantity of Q=6 for the indicated cost shares. This

last round quantity is less than the actual optimum Q=7 because of strategic behavior.

Evidently, the larger message space with both bids and quantities gives more opportunity
for strategic behavior. In Round 1, the disadvantaged C member (LL) starts out by proposing a
quantity much less than the other members’ proposals. Over the rounds, this person also presents
negative incremental bids, evidently desiring a quantity less than the group average. Consequently,
this member receives the lowest cost share on all rounds. Group member A (HL) initially proposes
larger quantities than the others but later reduces quantity proposals; this member also puts in
larger incremental bids for most rounds; consequently this member receives the largest cost shares
except in Round 6, after this member reduced her bid on the previous round. The advantaged B
member (HH) plays strategically as indicated by relatively low bid messages, so that the B member
does not have the largest cost share, except in round 6 from A’s reduced bid on the previous round.

'8 The number of trials for comparison was limited for budgetary reasons but are comparable to past
experiment research.
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Table 5 shows history for Game 3 from an Optimal Bidding game session. There are more
rounds than in the QP and BQP cases, indicating more strategic behavior. Repeatedly because the
Provision Point test is satisfied, the algorithm signals that the optimum is greater than Q=3. In
Round 2 the optimum Q=4 is found, however the group votes to continue the messaging process.
Similar to VCM results, note the decay in the suggested plan from Round 2 through Round 5, after
which A and B members dramatically increase their full bids. All members have erratic patterns
for “full” bids, evidently strategic behavior. However, all Provision Point tests are passed except
(correctly) for Round 6 when the feasible plan exceeds the optimum. Evidently, group members
are able to distinguish the roles of the two types of bidding.

Voting over all rounds, the optimal level (Q=4) with unequal cost shares is accepted, i.e., in
spite of strategic behavior, the optimum is achieved. Regarding fairness, the advantaged B
member receives the largest share of cost in the approved outcomes. The similar A and C
members have cost shares of similar magnitude in the approved last two rounds.

Table 6 shows history for Game 1 for the Smith-like Process in which the Provision Point
test was carried out at the group average. For example in Round 1, the average of proposals
(rounded down) is Q=7; the provision test is whether or not the group plan should be increased to
0=8. The negative provision result means that the group plan remains at Q=7.

The pricing incentive rule is based on both bids and quantities, giving an increased cost
share to members who propose a lower quantity than average and have incremental bids more than
the average. This two-pronged incentive gives more opportunity for strategizing. For example,
the disadvantaged C member gives the lowest quantity proposals and so is penalized with relatively
large cost shares. Member A gives a large incremental bid on Round 1, thus receiving a cost share
of over 90% on the following round, and then reduces her bid to zero on the next round to reduce
her cost share. The advantaged member B consistently proposes Q=9 which is greater than the
group average and also presents negative incremental bids; she therefore consistently has low or
subsidized cost shares. The resulting cost share distributions are wildly unequal and seem unfair.

In Approval Voting, the disadvantaged C member prefers the equal shares outcome for the
first round because her payoff is highest; all other proposals are voted down by this member, even
though they are associated with higher payoffs than the non-cooperative outcome, probably
because of the skewed cost shares. Member A member has the same voting pattern. Since Member
B does not agree to equal shares, probably because the other rounds have higher payoffs, there is
no group agreement. Disagreement can be attributed to the great inequity in cost shares due to
strategic behavior. In spite of its lack of agreement, this trial illustrates that group members appear
to understand the complicated incentives of this game structure.

7.5 Comparison of Experimental Institutions
We compare alternative institutions in terms of the group decision criteria of efficiency,

transactions costs, and rate of agreement. Efficiency is measured in terms of the percent of the
optimal solution for shared good, with “zero” used in cases of no group agreement. The rate of
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agreement is another indicator of success: more “no agreement” games indicates less success. The
number of proposal rounds is a measure of transactions costs. Here, the average number of
proposal rounds ranged from four to six rounds, probably influenced by the rule of a randomized
end after five rounds. In theory for the cost and utility specifications, a solution could have been
obtained in three rounds.

For each institution, there was one experiment session with three games for three to five
groups at the same time."” Table 7 shows the number of groups for each institution and
summarizes the results. Each of the three games for each institution has a different
parameterization of utility and cost, with respective optimal solutions of Q=8, 7, and 4.

Quantity Process. The Quantity Process had the most success in finding a group solution:
the Quantity Process achieved 94% efficiency and 100% agreement for nine games in initial
experiments. The smaller message space of the QP may be associated with fewer opportunities for
strategic behavior, and its simpler adjustment rule requires less learning.

Bid/Quantity Process (Provision Point test at Q - 1). This process is similar to the Smith
Free-Rider mechanism, except for the addition of the Provision Point test and different voting
rules. With strategic behavior, because the Provision Point test was met only about half the time,
group outcomes were generally less than the optimal outcomes. Although bids were usually
insufficient to meet the provision test, bids were positive most of the time.

Smith-like Process (Provision Point test at group average Q). This process had the highest
rate of negative or zero bids, and there was no agreement in about a third of the games. Because of
more “no agreement” outcomes, efficiency of this rule was the lowest of these four institutions.
The nature of the Provision Point test was evidently a factor

Optimal Bidding Process (Provision Point test at QF). This process is like VCM with the
addition of marginal bids and the provision point. This process had the highest efficiency (69%)
among the three compared CSAPs with bidding. Its rate of satisfying the provision test is also best
among these three methods. The percent of negative or zero bids was about the same as for the
Bid/Quantity Process, but OBP was better than the Bid/Quantity process and the Smith-like
process in terms of the rate of finding agreement.

In comparison, some voluntary contribution experiments with simultaneous bidding
(Coates and Gronberg, 1996, 2001) had efficiencies as low as 44-50%. The 69% average efficiency
for the OBP games — with simultaneous messaging — compares favorably to VCM studies with
simultaneous messaging (60% efficiency for Chan, 1999, 1996). While providing only aggregate
information about others’ contributions, OBP efficiency was comparable to VCM with more
specific information about individual contributions (70% by Sell and Wilson, 1991).

l()Although trials for each institution were limited to a small number, the total number of games was similar
to Smith’s 1979 study.
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Thus, even our limited number of experiments indicates that the nature of the message
space and institutional rules matter. The Bid/Quantity and Smith-like games have the same
message spaces but different rules; approval rates are strikingly different for these two processes.
All methods with bidding exhibited more indicators of strategic behavior than the Quantity
Process: processes with bidding had disagreement rates of 13-33% whereas the initial Quantity
Process games all had group agreement.

8.0 More Experiments for the Quantity Process

Because of its relative success, the Quantity Process was further examined in 144 more
games. For this larger set of experiments, an average efficiency of 77% and success rate of group
agreement of 85.5% were obtained, but certain computational problems were revealed.
Experimental results summarized in Table 8 are described below.

Efficiency and Learning Effects. Efficiency results — an average of 77% over all games —
are on the same order as Smith’s (1979) Auction and Free-rider mechanisms, here for a more
complex environment with nonlinear cost. Efficiency varied by game, with the second game
statistically less efficient than the first and third games. The lower efficiency of the second game
may be due to more strategic behavior as members “play” with the message possibilities. By the
third game when rules are probably better understood, an average efficiency of 83% is attained.

Learning effects are evident from the statistical tests indicated in Table 8. There are
significant differences — at the 99% probability level using a t-test between game 1 and game 2 —
in the number of proposal rounds and the approval rates for equal shares. There is a significant
increase in efficiency between game 1 and game 2, at the 95% probability level for the t-test.

Bid vs. Quantity Messaging. We hypothesized that the form of messaging can affect the
success of group process and suggested that there may be more strategic behavior for institutions
with bidding. By combining all QP games and also combining all games with bidding in some
form, we test this hypothesis — with a binomial distribution model — of whether there is more
disagreement for processes with bidding than for QP with “quantity only” messaging. Using a t-
test for the difference in disagreement rates at a probability level of 99%, disagreement rates for
bidding differ significantly from rates with quantity messaging, and games with bidding have a
significantly higher disagreement rate.*

Potential Subsidized Cost Shares. Examining this more extensive set of experimental
trials, a problem with the adjustment rule is evident: the adjustment rule can result in a subsidized
cost share for a game participant with a low quantity demand, which in turn can lead to group
disagreement. Nearly half of the indicated “disagreement” cases were associated with outcomes in

*There were 153 total games with “quantity only” messaging and 39 games with bid messaging of some
form. The average disagreement rate over all bidding games was 20.38%. The average disagreement rate over all
QP games was 13.6%. The t-statistic is 0.0678/0.00695 for a t-statistic of 9.75! (The standard deviation for the
disagreement rate over combined experiments is .00695.)

34



which one group member was subsidized.”’ However, subsidies did not always preclude
agreement if the advantage of group agreement was sufficient for the other group members. (Other
disagreement cases were due to voting problems: either a non-compromising member held out for
her most preferred outcome, or there seemed to be a lack of understanding of the voting process.)

Heterogeneity Information. Providing detailed heterogeneity information could help
promote the idea that cost shares can be fair even though unequal, because endowments and
preferences differ. Initially games were differentiated to test for the effect of information about
heterogeneity. In one set of games, only a generic description was given that group member types
differed. In the other set, more detailed heterogeneity information was given: each group member
was told specifically about their own type (high or low endowment, and high or low reward)
relative to the types of others. Since none of the indicators shown in Table 8 had a statistical
difference by information treatment, outcomes for the two information treatments were combined.

Group Agreement and Bidding Effects. The importance of group agreement should be
emphasized as a criterion for success in addition to efficiency measures used in experiments.
(Recall that many public goods experiments that tested for the free-rider problem were not
structured for group agreement.) Here and in natural settings, without agreement no shared good is
provided. Group agreement was found in 85.5% of the 144 QP games. Failure to reach a group
agreement occurred in 12/69 (17.3%) games with “no heterogeneity information” and in 9/75
(12%) of the “heterogeneity information” games; this difference was not statistically significant.

Transactions Costs as Measured by Proposal Rounds. Each game equilibrium could be
found in three proposal rounds if proposals were truthful; any strategic behavior would increase the
number of rounds. The number of rounds for the second and third games (4 to 5 rounds) is
significantly greater than for the first game, indicating more “strategic play” in later games as rules
are better understood.

Equal Shares Approval. Equal cost sharing was the starting point for each game. The
overall approval rate for equal shares is 31%, indicating that equal sharing of cost is a robust
sharing rule even with heterogeneity. The highest approval rate for equal shares is for the first
game, and the lowest rate is for the second game. Reasonably, equal cost sharing may be more
attractive when an alternative sharing rule is not transparent.

Cost Share Equilibrium. The concept of a cost share equilibrium was not specifically
described in instructions. We had expected that a solution with unanimity in quantity (QU) for
determined cost shares would be a natural attractant, with only an issue of locating it. However, a
located QU outcome was not necessarily approved for the determined cost shares. An outcome
with unanimity in quantity for the determined shares was not necessarily the theoretical CSE
because of strategic behavior coupled with the adjustment rules.

2! The subsidy situation could be addressed by changing the starting point of the QP process, eg. instead of

starting with equal shares letting initial shares depend on endowments. But this would require the use of private
information about group members’ endowments.
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A QU for given cost shares was located in 46% of the games. The second and third games
had a statistically greater rate of locating a QU compared to the first game, evidently a learning
effect. The average approval rate for quantity unanimity (QU) is 21%, with the lowest rate (10%)
on the first game; the second game has the QU highest approval rate (31%). At the same time, the
highest approval rate for equal shares is on the first game.

Given that QU is not found in every game, the conditional rate of approval — QU approval
given that unanimity is located — is a more reasonable measure of QU attractiveness. The QU
conditional approval rate averages 46% compared to 31% average approval for equal shares.

Perhaps QU approval could be improved by algorithmic changes: in 83.3% of the cases in
which a located QU was not approved, there were either subsidies or an imbalance in cost share
allocation relative to player types.

9.0 Conclusions

The situation of nonlinear cost — such as economies of scale and fixed costs — is a reason for
a group to benefit from cost sharing for a jointly provided good, but it makes finding a group
solution difficult through democratic process especially when there is heterogeneity in group
preferences and endowments. Therefore, this paper proposed the concept of a cost share adjustment
process (CSAP), an algorithmic process to adjust parameters of a cost share system to help a group
locate a feasible agreement about a shared good. We developed a both a conceptual foundation and
a design approach for CSAPs. The design approach addresses impossibility results of mechanism
design: since there is no perfect theoretical solution, both computation and behavior influence the
desirability of a potential process. The design approach compares alternative cost sharing
institutions via simulation and experiment, applying group decision criteria of optimality,
feasibility, convergence, fairness, transactions costs, and agreement rate.

We identified two generic types of processes (share-taking and quantity-taking). We
showed that share-taking built on a cost share system and personalized prices is inherently optimal
and feasible, whereas quantity-taking with bidding may not be. We identified important taxonomic
design elements for CSAPs: message space, cost allocation rules, controllers, and personalized price
adjustment rules. CSAPs can exhibit many possible combinations of these aspects. In contrast to
the Voluntary Contribution Mechanism commonly used in public good experiments, our Optimal
Bidding Process based on two types of bid messages is optimal in theory and works well in practice
for a nonlinear environment.

Our experiments identified a behavioral aspect of message space design. Although CSAPs
with either quantity or bid messaging can produce theoretical optimality, comparing CSAPs
experimentally in terms of message space showed that bidding significantly resulted in more
breakdown of group agreement compared to quantity messaging. But the quantity process could
also result in no agreement if the underlying (imperfect) adjustment algorithm produced unfair-
seeming subsidies.

Experiments with our three new CSAPs had reasonable success for nonlinear cost,
compared to past public good experiments with linear cost functions. In spite of a relatively
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unfavorable information setting — no face-to-face communication and simultaneous messaging —
our experimental trials had average efficiencies of 65% and 69% with bidding over twelve to fifteen
games, and average efficiency of 77% for the Quantity process over 144 games.

Our experimental design mimics a natural group decision structure of having separate
Proposal and Approval phases. A CSAP operates during the Proposal Phase to generate alternative
proposals for shared good level and cost shares, and the approval voting process then allows group
members to choose among alternative proposals. Results indicate that proposal generation —
together with unanimity approval voting — can temper strategic behavior without complex penalty
functions, producing near-optimal outcomes. Thus, approval voting is more than an experimental
artifact: it is an important institutional design aspect to ameliorate strategic behavior. Since there are
many ways that approval voting could be structured, further consideration of voting rules — a
prominent feature of political science literature — is warranted.

A natural follow-up question is, how could the CSAP/ voting approach be applied as
decision support for real group decision situations? A CSAP could be used either with full
anonymity in computer-mediated communication or in a face-to-face mode. The Quantity Process is
simple enough for computations to be made by hand, an advantage for non-automated groups
especially with small group size. For larger group sizes, a computer-mediated group decision
support system based on a CSAP could substantially improve group outcomes. With GDSS
implementation as an eventual goal, CSAP design should be further studied in both experimental
and natural settings.
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Table 1. Taxonomic Comparison of Alternative Cost Share Adjustment Processes

of individual’s
bids and sum of
others’ bids

Process Control Cost Group Incentive Rule
Instrument Information Member’s
given to Group | Message
Members
Share-taking:
Groves-Ledyard®”® | Personalized price | Personal cost Quantity demand | Form of cost
share schedule share rule
Quantity” Personalized price | Personal cost Quantity demand | None
share schedule
Personalized price; | Personal cost Quantity demand; | Form of cost
Smith™" Group quantity share schedule | Marginal bid share rule
Bid/ Personalized price; | Personal cost Quantity demand; | Provision Point
Quantity" Group quantity share schedule | Marginal bid rule
Quantity-taking:
MDP* Group quantity Individual’s Marginal bid None
tax bill
Optimal Bidding” | Group quantity; Matrix of Full bid; Provision Point
Personalized shares | feasible Marginal bid rule
quantities, for
combinations

* Original process modified for nonlinear cost
® Converted to a CSAP by adding a personalized price adjustment rule
" New process in this paper
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Table 2. Simulation of Cost Share Adjustment Process for Nonlinear Cost.

Process Iterations to Converge Individual Pareto Optimal
Rationality
Groves-Ledyard® 7 No No
(stable disagreement) (96% of optimal
quantity)
Quantity* 23 Yes Yes
Smith* 7 Yes Yes
Bid/Quantity* 5 Yes Yes
MDP? 6 Yes No
(77% of optimal
quantity)
Optimal Bidding 18 Yes Yes

“Penalty parameter: y=5
® Speed of adjustment: y=.05
¢ Equal share parameters

Utility functions: u; (x;, Q)= log (1+x;) + ¥; log (1+Q).
Preference parameters: ¥, =1, ¥, =2, ¥; = 1.
Endowments: M, =20, M, = 10, M; = 10.

Cost function: C(Q) =10 + 10 Q - 5 Q° + 5 Q’ for Q >0;

C(0)=0.
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Table 3. Example of Quantity Process, Game 1, Optimal Q = 8

Round] Group Member Proposals % Cost Shares Member Payoffs |Final Approval Votes|
Plan
B C B C A B C A B C
1 7 8 9 6 33 33 33] 5857] 9437] 2697] VYes]Yes [No
2 7 8 8 7 36 46 18] 5790] 9090] 3110] VYes]Yes [No
3 7 8 8 7 39 50 11] 5699] 8999 3288] Yes|Yes [Yes
4 7 8 8 7 43 53 4] 5612] 8912] 3470] VYes]Yes |Yes
5 8 8 8 8 45 54 1] 5579] 8949) 3661] VYes]Yes |Yes
non-| 42201 7710{ 2000
coop
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Table 4. Example of Bid/Quantity Process, Game 2, Optimal Q = 7, Provision Point Test at Group Average -1

Rnd.| Grp. Member Member >Incr| % Cost Shares Member Payoffs Final
Plan Proposals Bids Cost Approval
? Votes
B C A B A C B C A [B |C
1 4 7 6 1] 130] 75] 44] Yes] 33 33 33] 4833] 7923] 2633] No|No |No
2 5 8 6 5] 200] 150] 57] No] 40 32 28] 5069 8457| 2774] NolYes]Yes
3 5 7 6 6] 200] 155] -11] No| 43 35 22| 5027] 8402] 2874] NoJNo [No
4 5 6 7 5] 280] 150] -23] No] 46 39 15| 4974] 8337] 2992] No|No |No
5 5 7 5 6] 100] 165] -63] No] 54 35 10] 4827] 8402] 3074] No]No |No
6 5 5 6 6] 220] 130] 17| Yes] 38 48 14| 5104] 8192] 3002]Yes|Yes]Yes
7 6 6 6 6] 280] 175] 34| Yes] 47 34 19| 5133] 8793] 2972]Yes|Yes]Yes
non-| 4040f 7350| 2000
coop
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Table 5. Example of Optimal Bidding Process, Game 3, Optimal Q=4, Provision Point Test at Feasible Plan

Rnd.{Feas |Sgstd Full Bids Incremental > % Cost Shares [Member Payoffs Final
Plan [Plan Bids Incr. Approval Votes
Cost?
A B C A B C A B C A B C A B C
1 4 5] 1500] 2000} 600} 250] 1000] 300 Yes| 37 49 15]3170]5560]2307] Yes|Yes |Yes
2 4 4] 450] 2500] 766] 250] 800] 300] Equal 12 67] 21]4002]4932]2104] Yes|No [No
3 2 3] 350] 1200] 701] 400] 250] 150 Yes 16 53 31]3306]5024]11864] Yes]No [No
4 2 3] 250] 1300] 724] 400] 300] 150 Yes 11 57] 32]3406]4939]1849] Yes|No [No
5 0 1] 150] 750] 725] 850] 1300 0 Yes 9 46] 45]2000]4000J2000] NoJNo [No
6 5 4] 1500] 3500 0] 200] 675] 150 Nol 30 70 0]3263]4259]2896] Yes|No |Yes
7 4 5] 550] 4000 100] 250} 1075] 100 Yes 12 86 214012]4294]2732] Yes|No |Yes
8 0 0] 350] 1050] 200} 1000] 1050 0] Equal] 22 66 13]2000J4000]2000] NolNo |No
9 3 4] 1500] 1400] 200] 300] 600] 300 Yes 49 45 6]2821]5599]2525] NolYes |Yes
10 3 4] 550] 2200] 425] 300] 500] 250 Yes 17 69 13]13629]4971]2345] Yes|Yes |Yes
11 3 4] 500] 2000] 560] 300] 550] 250 Yes 16 65 18]3654]5074]2217] Yes|Yes |Yes
non-{2000(4173|2000
Coop.
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Table 6. Example of Smith-like Process, Game 1, Optimal Q = 8, Provision Point Test at Group Average

Rnd| Grp. Member Mem >Incr| % Cost Shares Member Payoffs Final
Plan Proposals ber Cost Approval
Bids ? Votes

A B C A B C A B C A B C A [B |C

220] -400] 116] No| 33 33 33]5790] 9370]2630] Yes|No |Yes

0] -60] 101} No] 97| -67 69]4086]10496] 1986]No |JYes |No

50] -150 0] NojJ 30 15 55]5885] 9884]2018|No |Yes|No

0] -200 3] No] 55 3 42]15892] 9742]2482|No |Yes|No

(=]
U
N
(o)
(=]
(=]

No| 49 0 50]5332]10311]2151|No ]Yes|No

0] -300] -22] No] 54 -9 5415206]10535]2046] No JYes |No

230] -350] 121] No| 56] -18 56]4948]10198]2170|No | Yes|No

ol~vjojols]w]v]=
o e BN BN =) BN 1 B
o l~JoJol~]olo]wo
wlololololo]o]o
N EN [ 1531 BN EN (&) =

0] 470 0] No] 65] -59 65]4216]11146] 1960|No | Yes|No

non-{4020] 7510)2000
coop
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Table 7. Experimental Comparison of Alternative Cost Share Adjustment Processes

Game
1 2 3 Overall
Efficient Q 8 7 4

Quantity Process
Y%Efficiency 083 1.0 1.0 0.94
Avg. # Rounds 3.33 5.0 5.05 4.44
# Games 3 3 3 9
# No Agreement 0/9 =0.0
Bid/Quantity Process
Y%Efficiency 0.50 0.80 0.65 0.65
Avg. # Rounds 540 5.00 6.40 54
# Games 5 5 5 15
# Rounds Provision Met 39/84 =0.46
# Negative or Zero Bids 63/(3x84) =0.25
# No Agreement 2/15 =0.13
Smith-like Process
%Efficiency 0.41 0.96 0.50 0.62
Avg. # Rounds 475 625 6.5 5.8
# Games 4 4 4 12
# Rounds Provision Met 10/70 =0.14
# Negative or Zero Bids 125/(3x70) = 0.60
# No Agreement 4/12 =0.33
Optimal Bidding Process
%Efficiency 0.75 0.64 0.68 0.69
Avg. # Rounds 450 525 525 5.0
# Games 4 4 4 12
# Rounds Provision Met 32/60 =0.53
# Negative or Zero Bids 43/(3x60) =0.24
# No Agreement 2/12 =0.17
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Table 8. More Trials of the Quantity Process

Accept QU

Game 1 2 3 Overall
Efficient Q 7 4 8

# Games 48 48 48 144
Percent Efficiency | 0.77 0.71* 0.83 0.77
Avg. # 3.60* | 4.79 4.79 4.39
Proposal Rounds

Equal Shares 0.50** 0.14~ 0.29 0.31
Approved, %

QU Found 0.29** 0.54 0.56 0.46
QU Approved 0.10** 0.31** 0.20 0.21
Conditional Prob. | 0.34** 0.57* 0.36 0.46

QU denotes Quantity Unanimity for the shared good

* Significant difference between adjacent pairs, 95% t-test
** Significant difference between adjacent pairs, 99% t-test
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Appendix 1: Rule Descriptions

In the instructions for each institution, each was described in terms of its general properties
(computational details were a “black box.”). For share-taking processes, the initial cost allocation
schedule with equal shares was first shown. After each subject makes quantity and/or bid proposals,
a new cost allocation schedule is displayed on the next round, with corresponding net payoffs.

Share-taking processes with price adjustment had a similar information format: cost allocation, benefit,
and net reward schedules were presented for a schedule of ten quantity levels. After seeing the
information screen, each subject responded with a message about the desired shared good quantity.
Summaries of proposals and resulting shares of cost for all group members by round were available as
public information on history and voting screens.

Instructions for the Proposal Phase were as follows, by process:

Quantity Process. ‘“The computer will determine the group plan based on the average of members’
quantity proposals. Overall, a larger quantity means that both benefits and cost shares will increase for
all group members.

Cost shares are equal in the first round. Your cost share for subsequent rounds will be calculated by
the computer based on your quantity proposals relative to others’ proposals. If your quantity proposal
is greater than the average proposal, your cost share will increase on the next round. Conversely, your
cost share will decrease if your proposal is less than the average.”

Bid/Quantity Process. “The computer will determine the group plan based on the average of members’
quantity proposals. Overall, a larger quantity means that both benefits and cost shares will increase for
all group members.

Each round, the group plan begins at the average of group members’ quantity proposals minus one.
Given the newly calculated group plan, you will be asked to bid to increase the group plan to the next
higher level. To make the increase to the next higher level, the total of bids must be enough to cover
the extra cost for that plan. Cost shares are equal on the first round. Your cost share for subsequent
rounds will be calculated by the computer based on your bids relative to others’ bids. If your bid is
greater than the average, your cost share will increase on the next round. Conversely, your cost share
will decrease on the next round if your bid is less than the average.”

Smith-like Process. “The computer will determine the group plan based on the average of members’
quantity proposals. Overall, a larger quantity means that both benefits and cost shares will increase for
all group members.

Given the newly calculated group plan, you will be asked to propose your bid to increase the group plan
to the next higher level. To make the increase, the total of bids proposed by the group must be enough

to cover the increased cost for that plan.

Cost shares are equal in the first round. Your cost share for subsequent rounds will be calculated by
the computer. If your bid is greater than the average bid, your cost share will increase. Conversely, if
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your bid is less than the average, your cost share will decrease. You can also receive a bonus — a
reduced cost share — if your quantity proposal is greater than the average quantity proposal. Conversely,
a quantity proposal less than the average can mean a penalty in terms of increasing your share.”

Optimal Bidding Process. Although the overall form of this game followed the proposal and approval
phase format, the information format is different from the other cost share adjustment processes. A
matrix displays the quantities that different levels of contributions could “buy”, in terms of the
individual’s own bid and the sum of others’ bids. As for VCM, another matrix shows corresponding
net rewards by own bid and sum of others’ bids.

The rules of the process were described as follows. “Each round you will:
1) Make a Bid, to determine a feasible commodity plan and cost shares.

The sum of your bid and others’ bids will result in a Feasible Group Plan. The computer will determine
this plan from the highest level that can be afforded given the total bids and the cost for each plan level.

Your cost share will never be more than your bid on any round.

Since the sum of bids may be greater than the required cost for the feasible plan, bids are adjusted so
that excess revenue is not collected. The percent share of group cost that you will pay is the relative
proportion of your bid to the sum of bids.

Your net reward for each round will be based on the feasible commodity plan and your cost share.

2) Make an Incremental Bid, to suggest a new plan and cost share for the next round
Your benefit would increase if the group plan level were to increase. Your Incremental Bid represents
an extra contribution over your current cost share toward an increase in the plan level.

The Suggested Group Plan is determined by the computer in the direction of maximal group net returns.

* If the sum of incremental bids exceeds the extra cost to increase the plan, then the Suggested Group
Plan is one level higher than the current feasible plan.

* If the sum of incremental bids is less than required, then the Suggested Group Plan is one level less
than the current feasible plan.

* If the sum of incremental bids exactly equals the extra cost, the Suggested Group plan is the same as
the current feasible plan.

Your Suggested Cost Share for the next round will be in proportion to the sum of your original cost

share and your incremental bid, if the plan level increases. The suggested cost shares will exactly cover
the cost of the Suggested Group Plan.”
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Appendix 2: Details of Simulation of CSAPs

Utility functions: u; = log (1+x;) + Y; log (1+Q).

Preference parameters: ¥, =1, ¥, =2, ¥;= 1.

Endowments: M, =20, M, = 10, M; = 10.

Cost function: C(Q) = 10+ 10 Q -5 O° + 5 Q° for Q >0;
C(0)=0.

The base for utility changes is Q=0 and x,=M..

Theoretical Linear Cost Share Equilibrium, s. = 1/n:

0
Pi =
P2 =
Ps =

964
1.80
- .03
177

Au, =.18; Au, = .48; Au, = .08.

Theoretical Ratio Equilibrium:

» »
A
Il

965
441
328
231

Au, =.15; Au, = 48; Au, = .15

Quantity Process, s.= 1/n:

Converged after 23 iterations.
Au, =.18; Au, =.48; Au,=.08

Iteration 1 3 6 11 23
Q 93 95 957 963 964
Q, 1.163 1.09 1.03 983 965
Q, 95 95 95 958 964
Q, 68 81 .90 947 964
P, 39 92 1.35 1.68 1.80
P, 04 04 003 003 ~.03
P -42 -.96 -1.35 -1.68 -1.77
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Groves-Ledyard Personalized Price Process, s.= 1/n

Penalty Parameter y =5:
Disagreement equilibrium after seven iterations.
Au, = .29; Au, = .53; Au, =-.27.

Iteration 1 3 4 6 7
Q 930 926 925 925 925
Q, 1.16 1.16 1.16 1.162 1.162
Q, 95 1.00 1.006 1.009 1.009
0, 68 62 613 607 606
P, 12 025 012 008 007
D, -31 -371 -38 -.388 -390
P 19 346 37 381 383

Similarly, for penalty parameters y =3 andy =10, disagreement equilia occurred.

Bid/Quantity Process, s,= 1/n:
Converged after 5 iterations.
Au, = .18; Au, = .48; Au, = .08

Iteration 1 2 3 4 S
Q 927 .96 964 965 965
Q, 1.17 1.00 971 966 965
Q, .96 .96 962 964 964
Q; .66 92 958 964 965
P 1.49 1.75 1.7 1.80 1.80
P> -.02 -.02 -.03 -.03 -.03
o -1.47 -1.73 -1.76 -1.76 -1.77

55



Smith Process, s;= 1/n:
Converged in seven iterations.
Au, = .18; Au, = .48; Au; = .09

Iteration 1 2 4 6 7
Q 93 955 964 965 966
Q 1.16 1.03 98 967 966
Q, 95 98 96 965 966
Q; 68 86 95 965 966
P, 1.18 1.54 1.72 1.74 1.75
P, -.19 ~11 -.09 -.09 -.09
ps -.99 -1.43 -1.64 -1.66 -1.66

MDP Planning Process:
Speed of adjustment ¥ = 0.05.

Initial taxes = 3.4 each to cover fixed cost of 10.

Converges to a stationery point in six iterations that is not optimal.
Cumulative taxes sum to slightly more than cost.

Au, = .13; Au, = 44; Au, = .08.

Iteration 1 2 4 S 6

Q 49 .65 73 74 741
Tax, 6.07 6.87 7.27 7.31 7.32
Tax, 4.57 5.07 533 5.36 5.37
Tax, 3.64 3.95 4.13 4.15 4.15
Tax 14.28 15.89 16.73 16.82 16.84
Sum

Cost 14.25 15.75 16.57 16.66 16.71

The process leads to individually infeasible quantity changes for penalty parameters
¥ =1.0,0.5,0.25,0.15, and 0.1

56



Optimal Bid Process:

Speed of adjustment ¥ = 0.05.
Initial bids based on equal shares for Q=1 at cost of $20.
Converges to optimum in eighteen iterations.
Au, = .15; Au, = 48; Au, = .15.

Ttes

Note: the process starts out at equal shares with negative utility for person three for the first round.

ration 1 S 10 15 18
Q 1.0 952 97 963 965
s, 33 43 44 44 44
S, 33 33 33 33 33
5 33 24 23 23 23

57




	Cost Share Adjustment Processes for Cooperative Group Decisions about Shared Goods: A Design Approach
	Recommended Citation

	Cost Share Adjustment Processes for Cooperative Group Decisions about Shared Goods: A Design Approach
	Comments
	Copyright


	Corel Office Document

