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Abstract

Maintaining the security of critical infrastructure networks is vital for a modern economy.

This paper examines a game-theoretic model of attack and defense of a network in which the

defender’s objective is to maintain network connectivity and the attacker’s objective is to

destroy a set of nodes that disconnects the network. The conflict at each node is modeled as

a contest in which the player that allocates the higher level of force wins the node. Although

there are multiple mixed-strategy equilibria, we characterize correlation structures in the

players’ multivariate joint distributions of force across nodes that arise in all equilibria. For

example, in all equilibria the attacker utilizes a stochastic ‘guerrilla warfare’ strategy in

which a single random [minimal] set of nodes that disconnects the network is attacked.

JEL Classification: C7, D74

Keywords: Allocation Game, Asymmetric Conflict, Attack and Defense, Colonel Blotto

Game, Network Connectivity, Weakest-Link, Best-Shot



1 Introduction

In the literature on game-theoretic models of attack and defense there has been a grow-

ing interest in the attack and defense of networks of targets. One focus of the work on the

strategic role of network structure in this context is the role that strategic complementarities

among targets play in creating structural asymmetries between the attack and defense of a

network. For example in complex infrastructure networks — such as communication sys-

tems, electrical power grids, water and sewage systems, oil pipeline systems, transportation

systems, and cyber security systems — there often exist particular targets or combinations

of targets which if destroyed would be sufficient to disconnect the network and create a

terrorist “spectacular.”

The focus of this article is on strategic behavior in the attack and defense of network

connectivity. A network (or graph) is connected if there exists a path between every pair

of nodes. Similarly, a network is k-connected if there exist at least k internally disjoint

paths (i.e. paths that do not share internal nodes) between every pair of nodes. Note

that connectivity provides a measure of the robustness of a network with respect to node

failure/destruction in that a k-connected network remains connected when any k − 1 nodes

are destroyed. Connectivity is a classic graph theory problem, dating back to Menger’s (1927)

work on cuts and internally-disjoint paths.1 In our game of attack and defense of network

connectivity, the defender’s objective is to maintain network connectivity and the attacker’s

objective is to successfully attack a set of nodes that disconnects the network. Note that

each minimal set of nodes that disconnects the network — known as a minimal cut set or

minimal separator (and by minimal it is meant that no proper subset of the minimal cut set

disconnects the network) — may be thought of as possessing best-shot redundancy in that

the minimal cut set is successfully defended if and only if the defender successfully defends

at least one node within the set.2 Conversely, the network may be thought of as having

weakest-link exposure in that the network is successfully defended if and only if the defender

successfully defends all minimal cut sets within the network.

We examine properties arising in the set of Nash equilibria of a simultaneous-move game

of attack and defense of a network. Each node in the network is vulnerable to attack and at

each node the conflict is modeled as a deterministic contest in which the player who allocates

the higher level of force wins the node with probability one. In this game the attacker’s

1For further details, see Ford and Fulkerson (1962).
2See Hirshleifer (1983), who coins the terms best-shot and weakest-link in the context of the voluntary

provision of public goods.
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objective is to maximize the product of the probability of disconnecting the network by

winning at least one cut set and his payoff for the successful attack of at least one cut set, vA,

net of the expenditure on forces, which are allocated at a constant unit cost. Conversely, the

defender’s objective is to maximize the product of the probability of maintaining connectivity

and his payoff for maintaining connectivity, vD, net of his expenditure on forces, also allocated

at constant unit cost. A distinctive feature of this environment is that a mixed strategy is a

joint distribution function in which the randomization in the force allocation to each node

is represented as a separate dimension. A pair of equilibrium joint distribution functions

specifies not only each player’s randomization in force expenditure to each node, but also

the correlation structure of the force expenditures across the node set. We construct a Nash

equilibrium pair of distribution functions and, in the case in which the network has disjoint

minimal cut sets, completely characterize the unique set of Nash equilibrium univariate

marginal distributions and the unique equilibrium payoff of each player. Furthermore, we

show that in any equilibrium the attacker launches an attack on at most one minimal cut

set. Similarly, the defender randomly chooses one node from each minimal cut set to defend.

Noting that a network is connected if and only if the network contains a spanning tree

(a subgraph of the network that is a tree and contains all of the nodes of the tree), the

defender’s equilibrium strategy may be interpreted as choosing a random spanning tree to

defend, where the spanning tree is implicitly determined by the choice of the one node in

each minimal cut set that is defended.

Closely related is the literature on sequential-move models of the attack and defense

of a network of targets such as Dziubiński and Goyal (2013a, b).3 In the two-stage game

examined in Dziubiński and Goyal (2013a) the defender moves first and chooses which nodes

to defend, where defense is perfect in the sense that a defended node survives an attack with

probability one. Then, the attacker observes which nodes have been defended and chooses

which nodes to attack. Any undefended node that is attacked is destroyed with probability

one. Note that the defender is an exogenously imposed leader — implying that the attacker’s

3See also Goyal and Vigier (2014) who examine a zero-sum model of the attack and defense of a network
of targets with contagion in which the conflict at each node is determined by the Tullock contest success
function. Also related are sequential-move reliability-theoretic models such as Bier, Oliveros, and Samuelson
(2007), and Powell (2007a, b). In these models, defensive resources increase the stochastic reliability of a
target in the event of an attack, the defender’s payoff is additive with respect to the values of the surviving
targets, and it is exogenously specified that the attacker uses a guerrilla warfare strategy consisting of
an attack on a single target. In the case in which the defender has private information concerning the
vulnerability of the individual targets, as in Powell (2007b), this sequential-move structure gives rise to an
interesting signaling problem in that the defender would like to protect the most vulnerable targets but does
not want to signal to the attacker which targets are the most vulnerable.
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force allocations can be made contingent on the defender’s allocation. In equilibrium, the

defender chooses either to protect the minimum set of nodes that ensures the survival of

a spanning tree, or to leave the network undefended. In Dziubiński and Goyal (2013b)

the defender first designs the network and allocates defensive resources across nodes, where

defense is again assumed to be perfect. Then, the attacker chooses an exogenously specified

number of nodes to attack at zero cost. Although these papers simplify the conflict at each

node by focusing on the case of sequential moves and perfect defense, these models feature

a rich network structure that, in addition to providing insights on the connectivity problem,

allows for a general value function for the residual network and provides insight into the

defender’s choice of network structure.

In contrast, our simultaneous-move model is motivated by applications such as informa-

tion or transportation network defense or border defense, where attackers must either take

actions before being certain of the allocation of defensive resources or where strategies like

random monitoring or deployment may be employed by defenders and, thus, defensive re-

sources can either be concealed or randomly allocated with sufficient speed that it is difficult

to argue that attacker allocations can be made contingent on defensive allocations. Although

we take the network as given and restrict our focus to only the connectivity problem, we

allow for a contest structure with nontrivial conflict at each node that results in rich equilib-

rium behavior in which mixed strategies involve multivariate joint distributions specifying

the force expenditure to each node and the correlation structure of the force expenditures

across the node set. Furthermore, by endogenizing the attacker’s entry and force expenditure

decisions, our approach sheds light not only on the conditions under which the assumption

of one attack is likely to hold, but also related issues such as how the defender’s actions can

decrease the number of attacks.

Our results on endogenous force correlation structures in games of attack and defense

are closely related to the literature on the classic Colonel Blotto game.4 Originating with

Borel (1921), the Colonel Blotto game is a two-player game in which each player allocates his

fixed level of forces across a finite number of battlefields, within each battlefield the higher

allocation wins, and each player maximizes the number of battlefield wins. As in our game of

attack and defense, a mixed strategy is a joint distribution function. However, in the Colonel

4Recent work on Blotto-type games includes extensions such as: asymmetric players (Roberson 2006,
Hart 2008, Weinstein 2012, Dziubiński 2013, Macdonell and Mastronardi 2015), non-constant-sum variations
(Kvasov 2007, Hortala-Vallve and Llorente-Saguer 2010, 2012, Roberson and Kvasov 2012), alternative
definitions of success (Golman and Page 2009, Tang, Shoham, and Lin 2010, Rinott, Scarsini, and Yu 2012),
and political economy applications (Laslier 2002, Laslier and Picard 2002, Roberson 2008, Thomas 2012).
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Blotto game it is the budget constraint that creates a linkage between the force allocations to

the individual battlefields. Allocating force to a specific battlefield reduces the level of forces

that can be allocated to other battlefields. Conversely, the linkages in our game of attack

and defense arise because of the definition of success for each of the players.5 There are a

number of related games that display similar objective-based linkages. For example, Szentes

and Rosenthal (2003a) examine the so-called “chopstick auction” in which three identical

objects are separately, but simultaneously, auctioned and each of two players wins a fixed

prize of known and common value if and only if he wins at least two of the three objects.

The player placing the highest bid on a given object wins the object. Szentes and Rosenthal

examine both winner-pay and all-pay versions of this auction. In the winner-pay version, a

bid that does not win an object is refunded. In the all-pay version, all bids are forfeited.

Szentes and Rosenthal (2003b) extend this analysis to a related n-player game in which each

player’s objective is to secure a super-majority of auction wins. The model we examine here

differs in that the objective-based linkages are asymmetric across players.6

Our model features an environment in which random noise plays little role in determining

the outcomes at the nodes — at each node the player with the larger resource expenditure

for the node wins the node with certainty.7 Closely related is the literature on simultaneous-

move multidimensional resource allocation games in which the conflict at each node features

a softer form of competition that emphasizes the role of random noise in determining the

outcomes at the nodes.8 For example, under the Tullock contest success function (henceforth,

CSF) the probability that a player wins a node is equal to the ratio of the player’s resource

5In a related attack and defense game, Bernhardt and Polborn (2010) examine a cost-based asymmetry
between attack and defense. In that case, the “committed” attacker experiences no opportunity costs from
allocating forces and continues attacking targets until either he runs out of targets or is defeated. Also
related is Kovenock, Sarangi, and Wiser (2015) which examines a modified form of the board game Hex in
which a contest arises at each cell on the board with the contest winner determined by the Tullock contest
success function.

6See Kovenock and Roberson (2012) for a survey of cost- and objective-based linkages in multidimensional
resource allocation games. See also Arce, Kovenock and Roberson (2012) which examines a related game
with multiple attack technologies.

7This corresponds to the limiting case of the general ratio-form contest success function am/(am + dm)
where m is set to ∞ and a and d are the two players’ allocations of force. The parameter m ∈ R+ is
inversely related to the level of noise in the conflict: low values imply a large amount of noise and high
values correspond to low or no noise. Because (for a single contest with linear costs) pure-strategy equilibria
fail to exist for all m greater than 2 and there exist equilibria in one-shot contests that are payoff equivalent
to the m =∞ case whenever m > 2 (Baye, Kovenock, De Vries 1994, Alcalde and Dahm 2010), the case of
m =∞ is viewed as an important theoretical benchmark that is relevant for all m > 2.

8See for example Snyder (1989) and Klumpp and Polborn (2006) which examine related games featuring
the symmetric majoritarian objective in the context of politicians engaged in a campaign resource allocation
game.
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expenditure at the node to the sum of all of the players’ expenditures at the node. The case

of the attack and defense of a network in which each minimal cut set consists of a single node

with the outcome at each node determined by the Tullock CSF is examined by Clark and

Konrad (2007), who find that under this softer form of competition the attacker optimally

chooses a complete coverage strategy in which each and every node that is a minimal cut

set is attacked with certainty. In contrast, we find that when the factors influencing node

outcomes are explicitly captured in the model, with unmodeled factors or “noise” playing

little or no role, attackers utilize a stochastic guerilla warfare strategy in all equilibria. For

the special case in which the network consists of only singleton minimal cut sets, this involves

a single random node that is a cut set being attacked, but with a positive probability that

each cut set is chosen as the one to be attacked.9

Section 2 presents the model of attack and defense with network connectivity. Section

3 characterizes a Nash equilibrium in mixed strategies and explores properties shared by all

Nash equilibrium mixed strategies. Section 4 concludes.

2 The Model

Players

The model is formally described as follows. Two players, an attacker, A, and a defender,

D, simultaneously allocate their forces across the n̂ ≥ 2 nodes in the network G = (N̂ , E)

with node-set N̂ and edge-set E. G is a connected network, and thus, there exists at least

one path between every pair of nodes in N̂ . A network is said to be disconnected if it is not

connected.

For a connected network G, a (node) cut set is a set of nodes C ⊂ N̂ whose removal from

G results in a disconnected network. A minimal cut set is a cut set satisfying the property

that no proper subset forms a cut set. Let B denote the index set consisting of indices for

all minimal cut sets of network G. Let Nj denote the index set consisting of indices for all

nodes in minimal cut set j ∈ B, and let nj ≡ |Nj| denote the number of nodes in minimal

9Kovenock, Roberson, and Sheremeta (2010) experimentally examine behavior in a specification of the
game of attack and defense of a network with only singleton minimal cut sets where the conflict at each
target is modeled either by the Tullock CSF or the specification given in this paper, the auction CSF.
Consistent with the theoretical prediction under the auction CSF, attackers utilize a stochastic guerilla
warfare strategy — in which a single random node is attacked — more than 80% of the time. Under the
lottery CSF, attackers utilize the stochastic guerilla warfare strategy almost 45% of the time, in contrast to
the theoretical prediction that the attacker covers all of the nodes, which is observed less than 30% of the
time.
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cut set j. Figure 1 provides three examples — a tree network, a core-periphery network,10

and an arbitrary network — with their respective minimal cut sets. Note that in each of

these examples the corresponding minimal cut sets are disjoint. In the results section we

focus first on networks with disjoint minimal cut sets, and then show how these results can

be extended to networks with overlapping minimal cut sets.

(a) Tree Network (b) Core-Periphery Network (c) Arbitrary Network

Figure 1: Example Networks with Disjoint Minimal Cut Sets

A minimal cut set is successfully defended if the defender allocates at least as high a

level of force as the attacker to at least one node within the set. Conversely, an attack on

a minimal cut set is successful if the attacker allocates a strictly higher level of force than

the defender to each node in the set. Let xiA (xiD) denote the level of force allocated by the

attacker (defender) to node i. For each j ∈ B define

ιj =

1 if ∀ i ∈ Nj | xiA > xiD

0 otherwise
.

Observe that for each node, the player that allocates the strictly higher level of force wins

that node (with ties going to the defender), but in order to win the minimal cut set the

10Here we use the definition of a core-periphery network from Bramoullé (2007): in a core-periphery
network the node set E can be partitioned into two subsets, core nodes and periphery nodes, such that each
core node is directly connected to all other core nodes, while each periphery node is connected to one core
node and is not connected to any periphery node.
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attacker must win all of the nodes.

The players are risk neutral and have asymmetric objectives. The attacker’s objective is

to successfully attack at least one minimal cut set, and the attacker’s payoff for the successful

attack of at least one minimal cut set is vA > 0. The attacker’s payoff function is given by

πA (xA,xD) = vA max
({
ιj
}
j∈B

)
−
∑
i∈N̂

xiA.

The defender’s objective is to preserve connectivity, and the defender’s payoff for successfully

defending connectivity is vD > 0. The defender’s payoff function is given by

πD (xA,xD) = vD

(
1−max

({
ιj
}
j∈B

))
−
∑
i∈N̂

xiD.

For each player, the force allocated to each node must be nonnegative.

Because nodes that are not contained in any minimal cut set (N̂ \ ∪j∈BNj) do not factor

into the players’ payoff functions except insofar as resources may be wasted on them, it is

clear that in any equilibrium xiA = xiD = 0 for all i ∈ N̂ \ ∪j∈BNj. Henceforth, we restrict

our focus to the set of nodes that are contained in the union of the minimal cut sets, denoted

by N ≡ ∪j∈BNj, with n ≡ |N | denoting the number of such nodes.

It is important to note that our formulation utilizes an auction contest success func-

tion.11 It is well known that, because behavior is invariant with respect to positive affine

transformations of utility, all-pay auctions in which players have different constant unit costs

of resources may be transformed into behaviorally equivalent all-pay auctions with identical

unit costs of resources, but suitably modified valuations. This result extends directly to the

environment examined here, and thus, our focus on asymmetric valuations also covers the

case in which the players have different constant unit costs of resources.

Also observe that in the formulation described above the network features a weakest-link

exposure problem for the defender. That is, if the defender loses a single minimal cut set

then connectivity is lost. Conversely, each minimal cut set features best-shot redundancy in

that the minimal cut set is successfully defended if the defender wins at least one node in

the set.

11See Baye, Kovenock, and de Vries (1996).
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Strategies

It is clear that there is no pure-strategy equilibrium for this class of games. For player

k ∈ {A,D}, a mixed strategy is an n-variate distribution function Pk : Rn
+ → [0, 1] with one-

dimensional marginal distribution functions {P i
k}i∈N , one univariate marginal distribution

function for each node i ∈ N . The n-tuple of player k’s allocation of force across the n nodes

is a random n-tuple drawn from the n-variate distribution function Pk.

Model of Attack and Defense of Network Connectivity

The model of attack and defense of network connectivity, which we label

ADN {G, vA, vD} ,

is the one-shot game in which players compete by simultaneously announcing mixed strate-

gies, each node is won by the player that provides the higher allocation of force for that node,

ties are resolved as described above, and players’ payoffs, πA and πD, are specified above.

3 Results

It is useful to introduce a simple summary statistic that captures both the asymmetry in the

players’ valuations and the structural asymmetries arising from the network structure.

Definition 1. Let α = vD/(vA[
∑

j∈B
1
nj

]) denote the normalized relative strength of the

defender.

Several properties of this summary statistic should be noted. First, the normalized

relative strength of the defender is increasing in the relative valuation of the defender to the

attacker (vD/vA) and, for each minimal cut set j ∈ B, is increasing in the number of nodes

(or best-shot redundancy) nj in cut set j. In particular, the normalized relative strength of

the defender is increasing in the total best-shot redundancy arising in G, as measured by

1/
∑

j∈B
1
nj

.

For all G with disjoint minimal cut sets, Theorem 1 establishes the uniqueness of: (i)

the players’ equilibrium expected payoffs and (ii) the players’ sets of univariate marginal

distributions. Theorem 1 also provides a pair of equilibrium mixed strategies. Case (1) of

Theorem 1 examines the parameter configurations for which the defender has a normalized

relative strength advantage, i.e. α ≥ 1. Case (2) of Theorem 1 addresses the parameter

8



configurations for which the defender has a normalized relative strength disadvantage, i.e.

α < 1. It is important to note that the stated equilibrium mixed strategies (n-variate

distributions) are not unique. However, in Propositions 1-3 we characterize properties of

optimal attack and defense that hold in all equilibria.

Theorem 1. For any parameter configuration of the game ADN{G, vA, vD} in which G has

disjoint minimal cut sets there exists a Nash equilibrium. Moreover, there exists a unique

set of Nash equilibrium univariate marginal distributions and a unique equilibrium payoff for

each player.

(1) If α ≥ 1, then for each j ∈ B and i ∈ Nj, player A’s univariate marginal is, for

xi ∈ [0, vA
nj

],

P i
A

(
xi
)

= 1− vA
njvD

+
xi

vD
.

Similarly, player D’s univariate marginal is

P i
D

(
xi
)

= 1− 1

nj
+
xi

vA
.

The expected payoff for player A is 0, and the expected payoff for player D is vD(1− 1
α

).

(2) If α < 1, then for each j ∈ B and i ∈ Nj, player A’s univariate marginal is, for

xi ∈ [0, αvA
nj

],

P i
A

(
xi
)

= 1− αvA
njvD

+
xi

vD
.

Similarly, player D’s univariate marginal is

P i
D

(
xi
)

= 1− α

nj
+
xi

vA
.

The expected payoff for player D is 0, and the expected payoff for player A is vA(1−α).

One Nash equilibrium of ADN{G, vA, vD} is for each player to allocate his forces according

to the following n-variate distribution functions:

(1) If α ≥ 1, then for player A and x ∈∏j∈B[0, vA
nj

]nj

PA (x) = 1− 1

α
+

∑
j∈Bmini∈Nj{xi}

vD
.
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Similarly for player D and x ∈∏j∈B[0, vA
nj

]nj

PD (x) = min

{∑i∈Nj x
i

vA

}
j∈B

 .

(2) If α < 1, then for player A and x ∈∏j∈B[0, αvA
nj

]nj

PA (x) =

∑
j∈Bmini∈Nj{xi}

vD
.

Similarly for player D and x ∈∏j∈B[0, αvA
nj

]nj

PD (x) = 1− α + min

({∑
i∈Nj x

i

vA

}
j∈B

)
.

Proof. The proof of the uniqueness of the players’ equilibrium expected payoffs and sets of

univariate marginal distributions is given in the Appendix. We now establish that the pair

of n-variate distribution functions given in case (1) constitute an equilibrium for α ≥ 1. The

proof of case (2) is analogous. The Appendix (see the proof of Proposition 1) establishes

that in any n-tuple drawn from any equilibrium n-variate distribution PA player A allocates

a strictly positive level of force to at most one minimal cut set. Although not a necessary

condition for equilibrium, the PA described in Theorem 1 displays the property that for the

minimal cut set which receives the strictly positive level of force the force allocated to each

node in that set is an almost surely increasing function of the force allocated to any other

node in that cut set. The Appendix (see the proof of Proposition 1) also establishes that

in any n-tuple drawn from any equilibrium n-variate distribution PD player D allocates a

strictly positive level of force to at most one node in each minimal cut set.

We will now show that, for each player, each point in the support of their equilibrium

n-variate distribution function, PA or PD, given in case (1) of Theorem 1 results in the same

expected payoff, and then show that there are no profitable deviations from this support.12

When xiA > 0 for every i ∈ Nj, the probability that player A wins every node in minimal cut

set j ∈ B is given by the nj-variate marginal distribution PD({xiA}i∈Nj , {{ vAnj′ }i∈Nj′}j′∈B|j′ 6=j),
which we denote as P

Nj
D ({xiA}i∈Nj). Given that player D is using the equilibrium strategy PD

12Except for possibly at points of discontinuity of his expected payoff function, each player k must make
his equilibrium expected payoff at each point in the support of his equilibrium strategy, Pk.
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described above, the payoff to player A for any allocation of force xA ∈ Rn
+ which allocates a

strictly positive level of force only to the nodes in minimal cut set j ∈ B, and allocates zero

force to every other node is

πA (xA, PD) = vAP
Nj
D

(
{xiA}i∈Nj

)
−
∑
i∈Nj

xiA.

Simplifying,

πA (xA, PD) = vA

(∑
i∈Nj x

i
A

vA

)
−
∑
i∈Nj

xiA = 0.

Thus, the expected payoff to player A from allocating a strictly positive level of force to only

one minimal cut set is 0 regardless of which minimal cut set is attacked.

For player A, the only possible payoff increasing deviation from his mixed strategy is to

allocate a strictly positive level of force to two or more minimal cut sets. Beginning with the

case in which player A attacks two minimal cut sets j, j′ ∈ B with xiA > 0 for every i ∈ Nj ∪
Nj′ , the probability that player A wins all of the nodes in both cut sets j, j′ ∈ B is given by the

(nj + nj′)-variate marginal distribution PD({xiA}i∈Nj∪Nj′ , {{ vAnj′′ }i∈Nj′′}j′′∈B|j′′ 6=j,j′), which we

denote as P
Nj ,Nj′

D ({xiA}i∈Nj∪Nj′ ). The payoff to player A for any allocation of force xA ∈ Rn
+

which allocates a strictly positive level of force to every node in exactly two minimal cut sets

j, j′ ∈ B is

πA (xA, PD) =

vAP
Nj
D

(
{xiA}i∈Nj

)
+ vAP

Nj′

D

(
{xiA}i∈Nj′

)
− vAP

Nj ,Nj′

D

(
{xiA}i∈Nj∪Nj′

)
−

∑
i∈Nj∪Nj′

xiA.

Simplifying,

πA (xA, PD) = −vA min

{∑
i∈Nj x

i
A

vA
,

∑
i∈Nj′

xiA

vA

}
< 0.

The case of player A allocating a strictly positive level of force to more than two minimal

cut sets follows directly. Clearly, in any optimal strategy player A never allocates a strictly

positive level of force to more than one minimal cut set.

The case for player D follows along similar lines. If player D allocates a strictly positive

level of force to a subset φ ⊆ N of nodes with one node, denoted φj, from each mini-

mal cut set j ∈ B, then the probability that player D preserves connectivity is given by

PA({xiD}i∈φ, {{vAnj }i∈Nj\φj}j∈B), which we denote as P φ
A({xiD}i∈φ). Given that player A is

11



using the equilibrium strategy PA described above the payoff to player D for any allocation

of force xD ∈ Rn
+ which allocates a strictly positive level of force to only the nodes in the set

φ is

πD (xD, PA) = vDP
φ
D({xiD}i∈φ)−

∑
i∈φ

xiD.

Simplifying,

πD (xD, PA) = vD

(
1− 1

α

)
+ vD

(∑
i∈φ x

i
D

vD

)
−
∑
i∈φ

xiD

and thus

πD (xD, PA) = vD

(
1− 1

α

)
for all xD in which a strictly positive level of force is allocated to each node in some set

φ ⊆ N of nodes with one node from each minimal cut set j ∈ B. Following lines similar to

those given above in the demonstration that player A attacks at most one minimal cut set

(see the proof of Proposition 1 in the Appendix for further details), player D cannot increase

his expected payoff by deviating to an allocation with a strictly positive level of force at two

or more nodes within one or more minimal cut sets.

Although the equilibrium mixed strategies stated in Theorem 1 are not unique,13 it is

useful to provide some intuition regarding the existence of this particular equilibrium before

moving on to the characterization of properties of optimal attack and defense that hold in

all equilibria (Propositions 1-3). The supports of the equilibrium mixed strategies stated

in Theorem 1 are given in Figure 2 in an example with a specific parameter configuration.

Panels (a) and (b) of Figure 2 provide the supports for the attacker and defender, respectively,

in the case in which there are two minimal cut sets each with one node (i = 1, 2). Panels (c)

and (d) of Figure 2 provide the supports for the attacker and defender, respectively, in the

case in which there is one minimal cut set with two nodes (i = 1, 2) and one minimal cut set

with one node (i = 3).

Across all of the Panels (a)-(d), if α = 1 then each player randomizes continuously over

their respective shaded line segments. In the event that the defender has a normalized

relative strength advantage (α > 1), the defender’s strategy stays the same, but the attacker

13For example, in the case (1) parameter range of Theorem 1 another equilibrium strategy for player D is
to use the mixed strategy

PD (x) =
∏
j∈B

{∑
i∈Nj

xi

vA

}
.
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Network with two minimal cut sets, each with one node (i = 1, 2)

x1

x2

ṽA

ṽA

(a) Attacker

x1

x2

ṽA

ṽA

(b) Defender

Network with two minimal cut sets, one with two nodes (i = 1, 2) and one with one node
(i = 3)

x1

x2

x3

ṽA

2

ṽA

2

ṽA

(c) Attacker

x1

x2

x3

ṽA

2

ṽA

2

ṽA

(d) Defender

Figure 2: Supports of the Theorem 1 pair of equilibrium mixed strategies (ṽA =
min{αvA, vA}).
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now places a mass point of size 1 − (1/α) at the origin and randomizes continuously over

the respective line segments with the remaining probability. Conversely, if the defender has

a normalized relative strength disadvantage (α < 1), then it is the defender who places a

mass point (of size 1− α) at the origin.

Beginning with Panels (a) and (b), recall that if the attacker successfully attacks a single

minimal cut set the network is disconnected. As shown in Panel (a) the support of the

attacker’s equilibrium mixed strategy, PA, lies on the axes, and, thus, the attacker launches

an attack on at most one minimal cut set. To successfully defend a set of singleton minimal

cut sets, the defender must win every node within the set. As shown in Panel (b) the support

of the defender’s (Theorem 1) equilibrium mixed strategy, PD, lies on the 45◦ line, and, thus,

the defender’s allocation of force to node i is an almost surely strictly increasing function

of the force allocated to node −i. Note that if the attacker launches an attack on at most

one minimal cut set, then the probability that any single attack is successful depends only

on the univariate marginal distributions of the defender’s mixed strategy (an n-variate joint

distribution). In addition, the defender’s expected force expenditure depends only on his set

of univariate marginal distributions, and, for a given set of univariate marginal distributions,

is invariant to the correlation structure.14 Finally, note that given the defender’s choice of

correlation structure [Panel (b)], the attacker’s probability of at least one successful attack

depends only on the maximum of his force allocations across the two nodes. That is, given

the defender’s equilibrium mixed strategy, if the set of points such that xiA ≥ x−iA > 0 for

some i ∈ {1, 2} has positive measure, then the attacker can strictly increase his expected

payoff by reducing x−iA to x−iA = 0 for all such points. In such a deviation, the probability

of at least one successful attack is unaffected, but the attacker’s expected force expenditure

decreases. Thus, at each point in the support of the equilibrium mixed strategy the attacker

launches at most one attack.

Panels (c) and (d) examine a simple network with one minimal cut set with two nodes

and one minimal cut set with one node. In Panel (c), note that the attacker launches an

attack on at most one minimal cut set. In the event in which the minimal cut set with two

nodes is attacked, the attacker’s allocation of force to node i in the cut set is an almost surely

strictly increasing function of the force allocated to node −i in the cut set. In Panel (d),

note that for this parameter configuration there are two spanning trees of the network and

the defender randomly chooses a spanning tree to protect by allocating a strictly positive

14More formally, for a given set of univariate marginal distribution functions, the expected force expendi-
ture is invariant to the mapping into a joint distribution function, i.e. the n-copula. For further details see
Nelsen (1999).

14



level of force to at most one of the nodes i ∈ {1, 2} in the minimal cut set with two nodes

and choosing to set the level of force allocated to the single node in the remaining minimal

cut set as an almost surely increasing function of the level of force allocated to the minimal

cut set with two nodes. That is, the force allocated to each node in the randomly chosen

spanning tree is an almost surely strictly increasing function of the level of force allocated

to the other node in the spanning tree. Given these correlation structures, the intuition for

why the attacker launches an attack on at most one minimal cut set in the network follows

along the lines given above for the network with singleton minimal cut sets.

We have already pinned down equilibrium payoffs and univariate marginal distributions

arising in all equilibrium mixed strategies. We now characterize several other qualitative

features arising in all equilibria. Proposition 1 examines the number of minimal cut sets

that are simultaneously attacked as well as the number of nodes within each minimal cut set

that are simultaneously attacked and defended. Propositions 2 and 3 examine the likelihood

that the defender leaves the network undefended, the likelihood that the attacker launches

an attack on the network, and conditional on an attack, the likelihood that a given minimal

cut set j ∈ B is attacked. Formal proofs for Propositions 1-3 are given in the Appendix.

Proposition 1. In any equilibrium {PA, PD} of the game ADN{G, vA, vD} with disjoint

minimal cut sets:

(1) If xA is an n-tuple contained in the support of PA, then xA allocates a strictly positive

level of force to at most one minimal cut set.

(2) If xD is an n-tuple contained in the support of PD, then xD allocates a strictly positive

level of force to at most one node within each minimal cut set.

For intuition on part (1) of Proposition 1, recall that success for the attacker requires

winning at least one minimal cut set. Because attacking multiple cut sets is costly, it must

be the case that doing so increases the probability of success. Then note that the defender

has the ability to utilize correlation structures in his mixed strategy for which the attacker’s

probability of success is non-increasing as the number of minimal cut sets that are attacked

increases. For example in the equilibrium strategies given in part (1) of Theorem 1 the

defender randomly chooses one node from each minimal cut set to defend and the mixed

strategy specifies that across this set of nodes the allocation of force has perfect positive

correlation. Given that in equilibrium the defender employs such a strategy, the attacker

allocates a strictly positive level of force to at most one minimal cut set. The intuition for

part (2) of Proposition 1 follows along similar lines. In particular, the attacker now has
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the ability to utilize a mixed strategy for which the defender’s probability of successfully

defending the cut set is non-increasing as the number of defended nodes in the cut set

increases.

Proposition 2. If α ≥ 1, then in any equilibrium {PA, PD} of the game ADN{G, vA, vD}
with disjoint minimal cut sets:

(1) With probability 1− 1
α

, the network is not attacked.

(2) Conditional on an attack on the network, the probability that player A attacks minimal

cut set j ∈ B is 1/(nj[
∑

j′∈B
1
nj′

]), which is decreasing in the number of nodes in cut

set j.

(3) Player D allocates a strictly positive level of force to each minimal cut set j ∈ B with

certainty.

For α > 1, the normalized relative strength of the defender is high enough that all

equilibria involve the attacker refraining from attack with positive probability. Conversely,

the defender defends the network with certainty. Because each minimal cut set j provides

the defender with a form of best-shot redundancy in proportion to the number of nodes, nj,

in cut set j, larger minimal cut sets are more difficult to successfully attack. Conditional

on launching an attack on the network, the probability that minimal cut set j is attacked is

decreasing in the number of nodes nj.

Proposition 3 addresses the case of α < 1. In this case, the attacker optimally launches

an attack with certainty and the defender leaves the network undefended with positive prob-

ability.

Proposition 3. If α < 1, then in any equilibrium {PA, PD} of the game ADN{G, vA, vD}
with disjoint minimal cut sets:

(1) The network is attacked with certainty.

(2) The probability that player A attacks minimal cut set j ∈ B is 1/(nj[
∑

j′∈B
1
nj′

]), which

is decreasing in the number of nodes in cut set j.

(3) Player D leaves the network undefended with probability 1 − α and, with probability α,

allocates a strictly positive level of force to every cut set j ∈ B.
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If α < 1, then the normalized relative strength of the defender is sufficiently low that

all equilibria involve the defender leaving the network undefended with positive probability,

and the likelihood that the defender leaves the network undefended is decreasing in the

normalized relative strength of the defender.

To summarize, the following conditions hold in all equilibria. If α > 1, then in any equi-

librium the attacker chooses, with positive probability, not to launch an attack. Regardless

of the value of α, the attacker launches an attack on at most one minimal cut set. Condi-

tional on an attack, the likelihood that any individual minimal cut set is attacked depends

on the number of nodes within the minimal cut set. For each minimal cut set the likelihood

of attack is decreasing in the number of nodes. If α < 1, then in any equilibrium the defender

leaves the network undefended with positive probability. Lastly, regardless of the value of α,

conditional on the network being defended, the defender randomly chooses one node within

each minimal cut set to defend, i.e. the defender chooses a random spanning tree to defend.

Figure 3 below illustrates in the case of network (c) from Figure 1 how randomizing over

which node in each minimal cut set to defend is equivalent to randomizing over defense of a

spanning tree. In this example there exist two singleton minimal cut sets and a minimal cut

set with three nodes. For each of the nodes in the non-singleton minimal cut set Figure 3

provides the corresponding spanning tree that is implicitly preserved if each of the defended

nodes are preserved, where the defended nodes are surrounded by a dashed circle and the

undefended nodes are denoted by hollow nodes. Note that if one or both of the undefended

nodes are destroyed the network is still connected by the spanning tree that is created by

the nodes that are defended.

Networks with Overlapping Minimal Cut Sets

Figure 4 provides two examples of networks with overlapping minimal cut sets. In cases such

as in panel (a) of Figure 4 where the overlapping minimal cut sets are symmetric with respect

to the number of nodes in each cut set, it is straightforward to extend the specific pair of

equilibrium mixed strategies in Theorem 1. If, as in panel (b) of Figure 4, the overlapping

minimal cut sets differ with respect to the number of nodes, then it may be possible to

judiciously extend the specific pair of equilibrium mixed strategies in Theorem 1 to cover

this case, but this extension will depend critically on the network structure.

Beginning with the case of cycle networks as in panel (a) of Figure 4, consider an arbitrary

cycle network with n ≥ 4 nodes. Let the nodes be sequentially indexed (clockwise) from 1

to n. The following corollary provides an extension of the mixed strategies in Theorem 1
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Figure 3: Randomly Defended Spanning Trees

Figure 4: Example Networks with Overlapping Minimal Cut Sets

(a) Cycle Network (b) Arbitrary Network
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that applies to cycle networks. In constructing the equilibrium, define α∗ = vD
vA(n/2)

and let

the index i+ 2 refer to (i+ 2)(mod n).

Corollary 1. For any parameter configuration of the game ADN{G, vA, vD} with G a cycle

network, there exists an equilibrium in which each player allocates his forces according to the

following n-variate distribution functions:

(1) If α∗ ≥ 1, then for player A and x ∈ [0, vA
2

]n

PA (x) = 1− 1

α∗
+

∑
i∈N min{xi, xi+2}

vD

Similarly for player D and x ∈ [0, vA
2

]n

PD (x) =

(
2 mini∈N x

i

vA

)
In this equilibrium, the expected payoff for player A is 0, and the expected payoff for

player D is vD(1− 1
α∗

).

(2) If α∗ < 1, then for player A and x ∈ [0, α
∗vA
2

]n

PA (x) =

∑
i∈N min{xi, xi+2}

vD

Similarly for player D and x ∈ [0, α
∗vA
2

]n

PD (x) = 1− α∗ +

(
2 mini∈N x

i

vA

)
In this equilibrium, the expected payoff for player D is 0, and the expected payoff for

player A is vA(1− α∗).

For a cycle network, any pair of nonadjacent nodes forms a minimal cut set, the destruc-

tion of which disconnects the network. In the following comments, we provide a sketch of the

proof that the mixed strategies in Corollary 1 form an equilibrium but omit the arguments

ruling out the attack of multiple minimal cut sets which follow along the same line as in the

proof of Theorem 1. If α∗ ≥ 1, then the expected payoff to the attacker from attacking any
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pair of nonadjacent nodes i and i′ = (i+ 2)(mod n) with (xiA, x
i′
A) ∈ [0, vA

2
]2 is

vA

(
2 min{xiA, xi

′
A}

vA

)
− xiA − xi

′

A ≤ 0 (1)

which holds with equality if xiA = xi
′
A. In the mixed strategy equilibrium identified in

Corollary 1, the attacker chooses a random node i and its first nonadjacent node i′ in a

clockwise direction to attack, and sets xiA = xi
′
A at each point in the support. Thus, (1) holds

with equality at each point in the support of the attacker’s equilibrium mixed strategy.

When α∗ ≥ 1 the defender’s Corollary 1 equilibrium mixed strategy specifies that the

allocation to each node i in the network is strictly positive and is an almost surely strictly

increasing function of the allocation to each other node. Specifically, at each point in the

support of the defender’s Corollary 1 equilibrium mixed strategy xiD = xi
′
D for all i, i′ ∈ N .

If the defender defends each node i in the network with xiD ∈ (0, vA
2

], then the defender’s

expected payoff is

vD

(
1− 1

α∗
+

∑
i∈N min{xiD, xi+2

D }
vD

)
−
∑
i∈N

xiD ≤ vD

(
1− 1

α∗

)

which holds with equality if xiD = xi+2
D for all i as in the support of the defender’s Corollary

1 mixed strategy. And, given the attacker’s Corollary 1 equilibrium mixed strategy, there

exist no profitable deviations for the defender. The case of α∗ < 1 follows along similar lines.

As noted, the panel (b) network in Figure 4 illustrates that when minimal cut sets overlap

and differ with respect to the number of nodes that they contain, the qualitative nature of

Nash equilibrium may depend critically on the details of the network structure. Nonetheless,

it may be possible to derive a Nash equilibrium profile.

In the case of the network in panel (b), let the nodes be sequentially indexed (left to

right with any nodes equidistant from the leftmost node being indexed from top to bottom)

from 1 to n. Note that in panel (b), the 4 minimal cut sets are (2, 3), (2, 4, 6), (5), and (7),

and thus, nodes 1 and 8 are never attacked or defended. Let x = (x2, x3, x4, x5, x6, x7) ∈ R6
+

be a 6-tuple that corresponds to the allocation of force to nodes 2-7, and for this network

define α∗ = 3vD
8vA

.

Corollary 2. For any parameter configuration of the game ADN{G, vA, vD} with G given

by panel (b) of Figure 4, there exists an equilibrium in which each player allocates his forces

according to the following n-variate distribution functions:
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(1) If α∗ ≥ 1, then for player A and x ∈ [0, 2vA
3

]× [0, vA
3

]× [0, vA
6

]× [0, vA]× [0, vA
6

]× [0, vA]

PA (x) = 1− 1

α∗
+

min
{
x2

2
, x3
}

+ min
{
x2

2
, x4 + x6

}
+ x5 + x7

vD
.

Similarly for player D and x ∈ [0, 2vA
3

]× [0, vA
3

]× [0, vA
6

]× [0, vA]× [0, vA
6

]× [0, vA]

PD (x) =

(
min{x2 + min{x3, x4 + x6}, x5, x7}

vA

)
.

In this equilibrium, the expected payoff for player A is 0, and the expected payoff for

player D is vD(1− 1
α∗

).

(2) If α∗ < 1, then for player A and x ∈ [0, 2α∗vA
3

]×[0, α
∗vA
3

]×[0, α
∗vA
6

]×[0, α∗vA]×[0, α
∗vA
6

]×
[0, α∗vA]

PA (x) =
min

{
x2

2
, x3
}

+ min
{
x2

2
, x4 + x6

}
+ x5 + x7

vD
.

Similarly for player D and x ∈ [0, 2α∗vA
3

]× [0, α
∗vA
3

]× [0, α
∗vA
6

]× [0, α∗vA]× [0, α
∗vA
6

]×
[0, α∗vA]

PD (x) = 1− α∗ +

(
min{x2 + min{x3, x4 + x6}, x5, x7}

vA

)
.

In this equilibrium, the expected payoff for player D is 0, and the expected payoff for

player A is vA(1− α∗).

To preserve a spanning tree in panel (b) of Figure 4, the defender must win nodes 5

and 7, combined with either node 2 or a combination of node 3 with node 4 and/or node

6, which is exactly what happens in the support of the equilibrium mixed strategy for the

defender in Corollary 2. If α∗ ≥ 1 and the defender only defends nodes 2, 5, and 7 with any

x2
D ∈ (0, 2vA

3
], and x5

D, x
7
D ∈ (0, vA] respectively, then the defender’s expected payoff is

vD

(
1− 1

α∗
+
x2
D + x5

D + x7
D

vD

)
− x2

D − x5
D − x7

D = vD

(
1− 1

α∗

)
.

Similarly, if D only defends nodes 3 − 7 with any x3
D ∈ (0, vA

3
], x4

D, x
6
D ∈ (0, vA

6
], and

x5
D, x

7
D ∈ (0, vA] respectively, then the defender’s expected payoff is

vD

(
1− 1

α∗
+
x3
D + x4

D + x6
D + x5

D + x7
D

vD

)
− x3

D − x4
D − x6

D − x5
D − x7

D = vD

(
1− 1

α∗

)
.
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Recall that the 4 minimal cut sets are (2, 3), (2, 4, 6), (5), and (7). Consistent with part

(1) of Proposition 1, at each point in the support of A’s Corollary 2 equilibrium mixed

strategy A attacks at most one minimal cut set. We focus on the case in which the (2, 3)

minimal cut set is attacked, and note that the three remaining cases follow along similar

lines. If α∗ ≥ 1, then the expected payoff to the attacker from attacking nodes 2 and 3 with

(x2
A, x

3
A) ∈ [0, 2vA

3
]× [0, vA

3
] is

vA

(
x2
A + x3

A

vA

)
− x2

A − x3
A = 0.

As in the case of disjoint minimal cut sets, in both of the examples in Figure 4 the cor-

responding Corollary 1 and 2 equilibrium mixed strategies involve the defender choosing a

random spanning tree to defend and the attacker choosing a random minimal cut set to

attack.

4 Conclusion

This paper examines a game-theoretic model of attack and defense of network connectivity.

The model features asymmetric objectives: the defender wishes to successfully defend net-

work connectivity and the attacker’s objective is to successfully attack at least one minimal

cut set. Although the model allows for general correlation structures for force expenditures

within and across the nodes, for the case in which the minimal cuts sets are disjoint we derive

the unique equilibrium expected payoffs of the attacker and defender and demonstrate that

there exists a unique equilibrium univariate marginal distribution of forces to each node. An

equilibrium pair of mixed strategies for the attacker and defender, each of which is a joint

distribution governing the allocation of forces to all nodes, is also constructed, although these

are generally non-unique.

Our approach leads to a wealth of interesting extensions and applications. Because the

game examined here is a set of complete information all-pay auctions linked by payoff com-

plementarities, almost any extension of the standard one-dimensional strategic allocation

problem represented by the standard all-pay auction with complete information has a cor-

responding extension in this game. Examples include incomplete information about values

or unit costs of forces, affine handicapping of players within contests at nodes, and nonlin-

ear costs of forces.15 In addition, as in other models of strategic multidimensional resource

15Examples of these extensions for the one-dimensional strategic allocation problem include Amann and
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allocation, such as Colonel Blotto games, interesting extensions arise by introducing more

heterogeneity across nodes, such as allowing for differential node values for the attacker and

defender within the network structure, or other factors that might link allocations across

nodes, such as budget constraints or “infrastructure technologies” that allow lumpy force

expenditure across sets of nodes. Although this general research agenda is in its early stage,

we believe these issues deserve further development.

References

[1] Alcalde, J., and M. Dahm (2010), “Rent seeking and rent dissipation: a neutrality

result,” Journal of Public Economics 94:1-7.

[2] Amann, E., and W. Leininger (1996), “Asymmetric all-pay auctions with incomplete

information: the two-player case,” Games and Economic Behavior 14:1-18.

[3] Arce, D.G., Kovenock, D., and B. Roberson (2012), “Weakest-link attacker-defender

games with multiple attack technologies,” Naval Research Logistics 59:457-469.

[4] Baye, M.R., Kovenock, D., and C.G. de Vries (1994), “The solution to the Tullock

rent-seeking game when R > 2: mixed-strategy equilibria and mean dissipation rates,”

Public Choice 81:363-380.

[5] Baye, M.R., Kovenock, D., and C.G. de Vries (1996), “The all-pay auction with complete

information,” Economic Theory 8:291-305.

[6] Bernhardt, D. and M.K. Polborn (2010), “Non-convexities and the gains from concealing

defense from committed terrorists,” Economic Letters 107:52-54.

[7] Bier, V.M., Oliveros, S., and L. Samuelson (2007), “Choosing what to protect: strategic

defensive allocation against an unknown attacker,” Journal of Public Economic Theory

9:563-587.

[8] Borel, E. (1921), “La théorie du jeu les équations intégrales à noyau symétrique,”
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[13] Dziubiński, M., and S. Goyal (2013a), “How to defend a network,” University of Cam-

bridge working paper.
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Appendix

This appendix characterizes, for the case of disjoint minimal cut sets as in Theorem 1, the

unique equilibrium payoffs, the unique sets of equilibrium univariate marginal distributions,

and properties of the supports of all equilibrium joint distributions. The proofs of Theorem

1 and Propositions 2 and 3 follow from the 9 lemmas formulated in this characterization.

In particular, Theorem 1 follows from Lemmas 8 and 9 and the formal proof is stated after

Lemma 9. Similarly, Propositions 2 and 3 follow from Lemmas 5, 6 and 8, and the formal

proof is stated after Lemma 8. Note also that the proof of Proposition 1, which is stated

after Lemmas 1-4, factors prominently in the proofs of Lemmas 5-8.

Before proceeding, observe the following notational conventions which will be used through-

out the appendix. For points in Rn, we will use the vector notation x = (x1, x2, . . . , xn). For

ai ≤ bi for all i = 1, 2, . . . , n, let [a,b] denote the n-box B = [a1, b1]× [a2, b2]× . . .× [an, bn],

the Cartesian product of n closed intervals. The vertices of the n-box B are the points

(c1, c2, . . . , cn) where ci is equal to ai or bi. Lastly, let s̄ik and sik denote the upper and lower

bounds, respectively, for player k’s marginal distribution for node i.

Given that the defender is using the mixed strategy (joint distribution function) PD, let

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) (2)

denote the probability that with a force allocation of xA the attacker wins at least one

minimal cut set. Thus, the attacker’s expected payoff from any pure strategy xA is

vAPr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA)−∑

i∈N

xiA. (3)

It will also be useful to note that the attacker’s expected payoff from any mixed strategy PA

is

vAEPA

[
Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA)]−∑

i∈N

EP iA

[
xiA
]

(4)

where EPA denotes the expectation with respect to the mixed strategy PA and EP iA denotes

the expectation with respect to the univariate marginal distribution for node i, P i
A, of the

mixed strategy PA.

Similarly, given that the attacker is using the mixed strategy PA, let

Pr
(

max
({
ιj
}
j∈B

)
= 0
∣∣∣PA,xD) (5)
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denote the probability that with a force allocation of xD the defender wins all of the minimal

cut sets in the network. Thus, the defender’s expected payoff from any pure strategy xD is

vDPr
(

max
({
ιj
}
j∈B

)
= 0
∣∣∣PA,xD)−∑

i∈N

xiD. (6)

Lastly, the defender’s expected payoff from any mixed strategy PD is

vDEPD

[
Pr
(

max
({
ιj
}
j∈B

)
= 0
∣∣∣PA,xD)]−∑

i∈N

EP iD

[
xiD
]

(7)

where EPD and EP iD denote the expectation with respect to the mixed strategy PD and the

expectation with respect to the univariate marginal distribution for node i, P i
D, respectively.

We begin by showing that for each node i within minimal cut set j, both players’ mixed

strategies have the same upper bound, denoted s̄j, and a lower bound of 0.

Lemma 1. In any equilibrium, for each j ∈ B, s̄iA = s̄iD = s̄j > 0 and siA = siD = 0 for all

i ∈ Nj.

Proof. We begin with the proof that siA = siD = 0 for all i. By way of contradiction, suppose

siA 6= siD. Let ŝi ≡ max{siA, siD}, and let k be the identity of the player attaining ŝi (that is

ŝi = sik and ŝi > si−k).

If si−k > 0, when player −k allocates si−k to node i player −k loses node i with certainty

and can strictly increase his payoff by setting si−k = 0. It follows directly, that player −k
does not randomize over the open interval (0, ŝi), and thus player −k must have a mass point

at 0.

In the case in which si−k = 0 (where player −k does not randomize over the open interval

(0, ŝi) and has a mass point at 0), we know that (i) both players cannot have a mass point at

sik, (ii) player −k cannot place mass at sik, and (iii) player k can strictly increase his payoff

by lowering sik to a neighborhood above 0. Thus, we conclude that siA = siD = 0 for all i.

Lastly, for the proof that for each j ∈ B, s̄iA = s̄iD = s̄j > 0 for all i ∈ Nj, it is clearly

the case that in any equilibrium s̄iA = s̄iD for all i ∈ N . For the proof that for every j ∈ B
and i ∈ Nj s̄

i
A = s̄iD > 0, by way of contradiction, suppose that there exists a minimal cut

set j ∈ B and node i ∈ Nj such that s̄iA = s̄iD = 0. Player A loses minimal cut set j with

certainty and, thus, it must be the case that s̄i
′
A = s̄i

′
D = 0 for all i′ ∈ Nj. However, player

A can strictly increase his payoff by reducing to zero any allocation of force outside of the

minimal cut set j ∈ B and allocating an arbitrarily small, but strictly positive, level of force

to each node i′ ∈ Nj. Thus, we have a contradiction. Similarly, for any pair i′′, i′′′ ∈ Nj it
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follows that if s̄i
′′
A = s̄i

′′
D < s̄i

′′′
A = s̄i

′′′
D then player D would do better by moving mass from s̄i

′′′
D

to s̄i
′′
D . Thus, s̄iA = s̄iD = s̄j > 0 for all i ∈ Nj and all j ∈ B, which completes the proof.

Lemma 2. In any equilibrium {PA, PD} with the set of univariate marginal distributions

{P i
A, P

i
D}ni=1, for every j ∈ B and every node i ∈ Nj neither player’s univariate marginal

distribution places positive mass on any point except possibly at zero.

Proof. If for node i, xik > 0 is such a point for player k, then player −k must best-respond

by placing no mass in (xik − ε, xik] for some ε > 0 sufficiently small. If not, player −k would

benefit from moving mass from this interval to either zero or to a δ-neighborhood above xik.

Therefore player k can increase his payoff by moving mass from xik to the ε-neighborhood

below xik.

Lemma 3. In any equilibrium, each player’s expected payoff (equations (3) and (6) for the

attacker and defender respectively) is constant over the support of his mixed strategy (joint

distribution) except possibly at points of discontinuity of his expected payoff function.

Proof. Except for possibly at points of discontinuity of his expected payoff function, each

player k must make his equilibrium expected payoff at each point in the support of his

equilibrium strategy, Pk. Otherwise, player k would benefit by moving mass to the n-tuple(s)

in his support with the highest expected payoff.

Lemma 4. In any equilibrium {PA, PD} with the set of univariate marginal distributions

{P i
A, P

i
D}ni=1, for every j ∈ B and every node i ∈ Nj, each player k’s univariate marginal

distribution P i
k randomizes continuously over the interval (0, s̄j].

Proof. For every node i ∈ Nj, Lemma 1 implies that s̄ik = s̄j > 0, for k = A,D. Lemma 2

rules out mass points of P i
k in the interval (0, s̄j]. To rule out gaps, by way of contradiction,

suppose that there exists an equilibrium in which for some such node i ∈ Nj, player k’s

univariate marginal distribution for node i, P i
k, is constant over the interval [β, β) ⊂ (0, s̄j].

For this to be an equilibrium, it must be the case that P i
−k is also constant over the interval

[β, β). Otherwise, player −k could increase his payoff by moving mass in the interval to the

lower bound.

However, if P i
−k(β) = P i

−k(β), then for sufficiently small ε > 0 spending β + ε in node i

cannot be optimal for player k. Indeed, by discretely reducing his expenditure from β+ ε to

β + ε player k’s payoff would strictly increase. Consequently, if P i
k is constant over [β, β) it

must also be constant over [β, s̄j], a contradiction to the fact that s̄ik = s̄j and the definition

of s̄ik.
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Proposition 1. In any equilibrium {PA, PD} of the game ADN{G, vA, vD} with disjoint

minimal cut sets:

(1) If xA is an n-tuple contained in the support of PA, then xA allocates a strictly positive

level of force to at most one minimal cut set.

(2) If xD is an n-tuple contained in the support of PD, then xD allocates a strictly positive

level of force to at most one node within each minimal cut set.

Proof. We begin with the proof of part (1). By way of contradiction suppose that there

exists an equilibrium {PA, PD} such that for a positive measure of points in the support

of PA at least two minimal cut sets simultaneously receive strictly positive levels of force

(henceforth, simultaneously attacked).

We first introduce some notation. Let xjA denote the restriction of the vector xA to the

set of nodes contained in minimal cut set j (i.e., {xiA}i∈Nj). Denote the set of points in the

support of PA that simultaneously attack at least two minimal cut sets as

ΩA ≡ {xA ∈ Supp(PA)
∣∣xjA 6= 0 for at least two j ∈ B}.

For each point xA ∈ ΩA let PxA(j ∈ B|xjA 6= 0) denote the power set of the indices of minimal

cut sets that player A simultaneously attacks at the point xA. Let ψ denote an arbitrary

element of this power set, let |ψ| denote the cardinality of the set ψ, and let xψA denote the

restriction of the vector xA to the set of nodes contained in the minimal cut sets in ψ (i.e.,

{xiA}i∈∪j∈ψNj). For each point xA ∈ ΩA define J (xA) = {j ∈ B|xjA 6= 0} as the set of the

indices of minimal cut sets that player A simultaneously attacks at the point xA.

If at the point xA ∈ ΩA player A simultaneously attacks two minimal cut sets j′ and j′′,

then the probability that at xA ∈ ΩA player A wins at least one minimal cut set is given by

Claim 1.

Claim 1. If at xA ∈ ΩA player A simultaneously attacks two minimal cut sets j′ and j′′,

then the probability that player A wins at least one minimal cut set is

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) =

Pr
(
ιj
′
= 1
∣∣∣PD,xj′A)+ Pr

(
ιj
′′

= 1
∣∣∣PD,xj′′A )− Pr (ιj′ , ιj′′ = 1

∣∣∣PD,xj′,j′′A

)
(8)

Note that the third term in the second line of (8) corrects for the first two terms’ multiple

counting of player A winning at least one minimal cut set. Next, we consider the probabil-
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ity that player A wins at least one minimal cut set in the special case in which player A

simultaneously attacks three minimal cut sets.

Claim 2. If at xA ∈ ΩA player A simultaneously attacks three minimal cut sets j′, j′′, and

j′′′, then

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) =

Pr
(
ιj
′
= 1
∣∣∣PD,xj′A)+ Pr

(
ιj
′′

= 1
∣∣∣PD,xj′′A )+ Pr

(
ιj
′′′

= 1
∣∣∣PD,xj′′′A )

− Pr
(
ιj
′
, ιj
′′

= 1
∣∣∣PD,xj′,j′′A

)
− Pr

(
ιj
′
, ιj
′′′

= 1
∣∣∣PD,xj′,j′′′A

)
− Pr

(
ιj
′′
, ιj
′′′

= 1
∣∣∣PD,xj′′,j′′′A

)
+ Pr

(
ιj
′
, ιj
′′
, ιj
′′′

= 1
∣∣∣PD,xj′,j′′,j′′′A

)
. (9)

Again, note that the third and fourth lines of (9) correct for the second line’s multiple

counting of player A winning at least one minimal cut set. Given Claims 1 and 2, a straight-

forward proof by induction can be used to establish that for any arbitrary point xA ∈ ΩA

the probability that player A wins at least one minimal cut set is given as follows.

Claim 3. At an arbitrary point xA ∈ ΩA the probability that player A wins at least one

minimal cut set is given by

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) =∑

ψ∈PxA
(j∈B|xjA 6=0)\∅

(−1)(|ψ|−1) Pr
(
ιj = 1 ∀ j ∈ ψ

∣∣∣PD,xψA) . (10)

Continuing with the proof, by way of contradiction suppose that there exists an equilib-

rium {PA, PD} in which two or more minimal cut sets are simultaneously attacked. Recall

that in order to win a minimal cut set player A has to allocate a strictly higher level of force

to every node in the minimal cut set. Thus, it is strictly suboptimal in a minimal cut set

j for player A to have xjA 6= 0 with xiA = 0 for some i ∈ Nj, and, in the discussion that

follows, we focus on the case in which xjA � 0. For any xA ∈ Supp(PA) such that xjA � 0

for some minimal cut set j, the probability that player A wins every node in cut set j, and

hence wins cut set j is

Pr(ιj = 1|PNj
D ,xjA) = P

Nj
D (xjA), (11)

where P
Nj
D is the nj-variate marginal distribution for minimal cut set j. For each xA ∈ ΩA,

the probability that at the point xA ∈ ΩA player A wins every node in each minimal cut set
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j ∈ ψ is

Pr
(
ιj = 1 ∀ j ∈ ψ

∣∣∣PD,xA) = Pψ
D(xψA) (12)

where Pψ
D is the (

∑
j∈ψ nj)-variate marginal distribution over all of the minimal cut sets

j ∈ ψ.

In the construction of the proof we will make use of a joint distribution function, P̂D,

that involves the application of the Fréchet-Hoeffding upper-bound n-copula16 to player D’s

set of (multivariate) marginal distributions for each of the minimal cut sets, {PNj
D }j∈B, under

the equilibrium strategy PD. That is, P̂D(xA) = minj∈B{PNj
D (xjA)}. Clearly this is a valid

joint distribution function; for each j ∈ B the nj-variate marginal distribution P
Nj
D (xjA) is

preserved; for each i ∈ ∪j∈BNj the univariate marginal distribution P i
D(xiA) is preserved; and

for each xA ∈ ΩA

P̂
NJ (xA)

D (x
J (xA)
A ) = min

j∈J (xA)
{PNj

D (xjA)} (13)

where P
NJ (xA)

D is the (
∑

j∈J (xA) nj)-variate marginal distribution over all of the minimal

cut sets j ∈ J (xA). Because the expected cost of the equilibrium strategy PD — given

in the second term in (7) — depends on only the set of univariate marginal distributions

{P i
D}i∈∪j∈BNj , the strategy P̂D(xA) has the same expected cost as PD(xA).

Inserting (11), (12), and (13) into (10) yields the following result.

Claim 4. If player D uses the strategy P̂D(xA), then for each xA ∈ ΩA the probability that

player A successfully attacks at least one of the minimal cut sets is

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣P̂D,xA) = max

j∈B|xjA�0
{PNj

D (xjA)}. (14)

We now have the following result regarding P̂D.

Claim 5. For each xA /∈ ΩA,

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) = Pr

(
max

({
ιj
}
j∈B

)
= 1
∣∣∣P̂D,xA) .

For each xA ∈ ΩA,

Pr
(

max
({
ιj
}
j∈B

)
= 1
∣∣∣PD,xA) ≥ Pr

(
max

({
ιj
}
j∈B

)
= 1
∣∣∣P̂D,xA)

16See Nelsen (1999) and Schweizer and Sklar (1983) for more details.

33



where if P
NJ (xA)

D (x
J (xA)
A ) 6= P̂

NJ (xA)

D (x
J (xA)
A ) then this inequality is strict.

If xA /∈ ΩA, then player A attacks at most one minimal cut set and the first part of the

claim follows directly. For the second part of the claim, we begin with the case in which

player A attacks two minimal cut sets j′ and j′′. Suppose, without loss of generality, that

P
Nj′

D (xj
′

A) ≥ P
Nj′′

D (xj
′′

A ). Inserting (11) into Claim 1, the second part of Claim 5 follows from

Claim 4.17 For the case in which player A attacks more than two minimal cut sets, there

exists a j′ ∈ J (xA) such that P
Nj′

D (xj
′

A) ≥ P
Nj
D (xjA) for all j ∈ J (xA). Because player A

cannot strictly increase his probability of winning at least one minimal cut set by modifying

xA so that xjA = 0 for all j 6= j′, j′′ (where j′, j′′ ∈ J (xA) are such that j′′ 6= j′ and

P
Nj′

D (xj
′

A) ≥ P
Nj
D (xjA) for all j ∈ J (xA)) and we know that the second part of Claim 5

applies in the case in which player A only attacks two minimal cut sets j′ and j′′, the second

part of Claim 5 extends directly to the case in which player A attacks more than two minimal

cut sets.18

Returning to the proof of part (1) of Proposition 1, if for almost every xA ∈ ΩA,

P
NJ (xA)

D (x
J (xA)
A ) = P̂

NJ (xA)

D (x
J (xA)
A ), then from (3) and Claim 4 player A can strictly in-

crease his payoff by modifying each subset of ΩA that has positive measure by choosing,

at each xA in such subsets, a minimal cut set j such that P
Nj
D (xjA) ≥ P

Nj′

D (xj
′

A) for all

j′ ∈ J (xA) and setting xj
′

A = 0 for all j′ 6= j. This contradicts the assumption that {PA, PD}
is an equilibrium. Conversely, Claim 5 implies that if there exists a subset of xA ∈ ΩA with

positive measure such that P
NJ (xA)

D (x
J (xA)
A ) 6= P̂

NJ (xA)

D (x
J (xA)
A ), then there exists a strictly

payoff increasing deviation for player D, which contradicts the assumption that {PA, PD} is

an equilibrium. This completes the proof of part (1) of Proposition 1.

For the proof of part (2) of Proposition 1, we can modify the argument given above for

part (1) as follows. At node i in minimal cut set j let ιj,i = 0 if xiD ≥ xiA and ιj,i = 1

otherwise. Note that ιj ≡ mini∈Nj{ιj,i}, and the probability that player D wins minimal cut

set j is given by Pr
(
ιj = 0|PNj

A ,xjD

)
. For each j ∈ B, let

Ωj
D ≡ {xjD ∈ Supp(P

Nj
D )
∣∣xiD 6= 0 for at least two i ∈ Nj}.

17For the strict inequality in Claim 5, note that by assumption PD is an equilibrium strategy and xA ∈ ΩA

is a point in Supp(PA), also an equilibrium strategy. If at xA player A attacks two minimal cut sets j′ and

j′′, then because the cost-decreasing deviation of attacking only minimal cut set j′ with xj′

A (and setting

xj′′

A = 0) cannot be payoff increasing and the right-hand side of the inequality in Claim 5 is invariant to such
a deviation, the inequality in Claim 5 must be strict.

18The argument for the strict inequality in Claim 5 when player A attacks more than two minimal cut
sets follows along the same lines as for the case in which player A attacks two minimal cut sets.
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For each j ∈ B and each point xjD ∈ Ωj
D define Ij(xjD) = {i ∈ Nj|xiD 6= 0} as the set of the

indices of nodes in minimal cut set j that player D simultaneously defends at the point xjD.

Letting P̂
Nj
A (xjD) = mini∈Nj{P i

A(xiD)} and P̂A(xD) denote any joint distribution with the set

of nj-variate marginal distributions {P̂Nj
A (xjD)}j∈B, we can then use the arguments in claims

1-5 to construct the following modified forms of Claims 4 and 5, which we denote as Claim

4∗ and Claim 5∗, respectively.

Claim 4∗. If player A uses the strategy P̂A(xD) with nj-variate marginal distribution P̂
Nj
A (xjD)

for each minimal cut set j ∈ B, then for each xjD ∈ Ωj
D the probability that player D suc-

cessfully defends minimal cut set j is

Pr
(
ιj = 0

∣∣∣P̂Nj
A ,xjD

)
= max

i∈Nj |xiD>0
{P i

A(xiD)}. (15)

Claim 5∗. For each xjD /∈ Ωj
D,

Pr
(
ιj = 0

∣∣∣PNj
A ,xjD

)
= Pr

(
ιj = 0

∣∣∣P̂Nj
A ,xjD

)
.

For each xjD ∈ Ωj
D,

Pr
(
ιj = 0

∣∣∣PNj
A ,xjD

)
≥ Pr

(
ιj = 0

∣∣∣P̂Nj
A ,xjD

)
.

where if P
Nj
A (xjD) 6= P̂

Nj
A (xjD) then this inequality is strict.

Returning to the proof of part (2) of Proposition 1, if for almost every xjD ∈ Ωj
D,

P
Nj
A (xjD) 6= P̂

Nj
A (xjD), then from Claim 5∗ it follows that there exists a strictly payoff increas-

ing deviation for player A, which contradicts the assumption that {PA, PD} is an equilibrium.

Conversely, if for almost every xjD ∈ Ωj
D, P

Nj
A (xjD) = mini∈Nj{P i

A(xiD)}, then from (6) and

Claim 4∗, it follows that player D can strictly increase his payoff by modifying each subset

of Ωj
D that has positive measure by choosing, at each xjD in such subsets, a node i such that

P i
A(xiD) ≥ P i′

A(xi
′
D) for all i′ ∈ Nj and setting xi

′
D = 0 for all i′ ∈ Nj|i′ 6= i. This contradicts

the assumption that {PA, PD} is an equilibrium. This completes the proof of part (2) of

Proposition 1.

Lemma 5. In any equilibrium {PA, PD}, for any minimal cut set j and every nj-tuple

xjA ∈ [0, s̄j]nj there exists a κjA ≥ 0 such that, P
Nj
D (xjA) =

κjA
vA

+

∑
i∈Nj

xiA

vA
. Moreover, κjA

satisfies κjA = vA − nj s̄j ≥ 0.
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Proof. From Proposition 1 part (2) in the support of any equilibrium strategy player D

allocates a strictly positive level of force to at most one node in minimal cut set j, and thus

the support of player D’s nj-variate marginal distribution for minimal cut set j, P
Nj
D , is

located on the axes in Rnj
+ . Combining this with Lemma 4 — each of player D’s univariate

marginal distributions randomizes continuously over the interval (0, s̄j] — and Lemma 2 —

each of player D’s univariate marginals has no mass points except for possibly at zero —

it follows that there are no mass points in the support of player D’s nj-variate marginal

distribution for minimal cut set j, P
Nj
D , except for possibly at the origin in Rnj

+ .

Combining Proposition 1 part (1) — in the support of any equilibrium strategy player A

attacks at most one minimal cut set — with Lemma 3 — each player has a constant expected

payoff over the support of his mixed strategy (except for possibly at points of discontinuity

of the expected payoff function) — it follows that for each minimal cut set j there exists a

κjA ≥ 0 such that for each xA in the support of PA in which xjA ∈ (0, s̄j]nj

Pr
(
ιj = 1

∣∣∣PNj
D ,xA

)
= P

Nj
D (xjA) =

κjA
vA

+

∑
i∈Nj x

i
A

vA
. (16)

Moreover, from the definition of ιj it is clear that for each xA in the support of any equilibrium

strategy PA such that xjA 6= 0, it must be that xjA ∈ (0, s̄j]nj . Otherwise, player A could

increase his payoff by setting xjA = 0.

The proof that follows shows that the second equality in equation (16) holds not only for

each xA in the support of PA such that xjA 6= 0, but for all nj-tuples xj ∈ [0, s̄j]nj .

Consider an arbitrary point xA ∈ Supp(PA) in which xi
′
A ∈ (0, s̄j) for i′ ∈ Nj. Because

xA ∈ Supp(PA) and xjA 6= 0, we know that xjA ∈ (0, s̄j]nj , and thus, equation (16) applies.

From Lemma 4, there exists an εi
′
> 0 such that (xi

′
A + εi

′
) ∈ (0, s̄j]. Furthermore, there

exists a point x̃A ∈ Supp(PA) such that x̃i
′
A = (xi

′
A + εi

′
). Similarly, for each i ∈ Nj such that

i 6= i′ define εi as εi = x̃iA − xiA.

Because from Proposition 1 part (1) player A attacks at most one minimal cut set and

in both xA and x̃A player A attacks minimal cut set j, we know that for each i /∈ Nj,

x̃iA = xiA = 0, and we can restrict our focus to player D’s nj-variate marginal distribution for

minimal cut set j, P
Nj
D . Recall that for any xj ∈ Rnj

+ , P
Nj
D (xj) is equal to the P

Nj
D -volume

of the nj-box [0,xj].
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Let ∆
x̃iA
xiA
P
Nj
D (xj) denote the first-order differences of the function P

Nj
D as follows:

∆
x̃iA
xiA
P
Nj
D (xj) = P

Nj
D (x1, . . . , xi−1, x̃iA, x

i+1, . . . , xnj)− PNj
D (x1, . . . , xi−1, xiA, x

i+1, . . . , xnj).

(17)

Because the support of P
Nj
D is located on the axes in Rnj

+ , the expression ∆
x̃iA
xiA
P
Nj
D (xjA) is the

measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on the ith axis.19 Note that the

difference in (17) involves one point in the support of PA, (x1, . . . , xi−1, xiA, x
i+1, . . . , xnj), and

one point, (x1, . . . , xi−1, x̃iA, x
i+1, . . . , xnj) ∈ (0, s̄j]nj , that may or may not be in the support

of PA. Because the expected payoff from the nj-tuple (x1, . . . , xi−1, x̃iA, x
i+1, . . . , xnj) must

be less than or equal to the equilibrium expected payoff and from Lemma 4 the first equality

in equation (16) holds at this point we know that

∆
x̃iA
xiA
P
Nj
D (xjA) ≤ εi

vA
. (18)

Because the support of P
Nj
D is located on the axes in Rnj

+ , we also know that

P
Nj
D (x̃jA) = P

Nj
D (xjA) +

∑
i∈Nj

∆
x̃iA
xiA
P
Nj
D (xjA). (19)

That is, the P
Nj
D -volume of the nj-box [0, x̃jA] is equal to the P

Nj
D -volume of the nj-box [0,xjA]

plus the measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on each of the i ∈ Nj axes,

where the caveat in footnote 19 applies.

Because both xA and x̃A are contained in the support of PA and xA, x̃A ∈ (0, s̄j]nj it

follows from equation (16), Lemma 1, and Lemma 2 that

P
Nj
D (x̃jA)− PNj

D (xjA) =
∑
i∈Nj

εi

vA
(20)

Combining equations (19) and (20) it follows that for each i ∈ Nj equation (18) holds with

equality. That is the measure of the support of P
Nj
D over the interval (xiA, x̃

i
A) on the ith

axis is equal to εi/vA.

Given that the points xA and x̃A were arbitrarily chosen from the support of PA and that

19This interval is for the case that xiA ≤ x̃iA, or equivalently εi ≥ 0, for all i ∈ Nj . If xiA > x̃iA for one or

more i ∈ Nj , then ∆
x̃i
A

xi
A

P
Nj

D (xj
A) should be replaced with ∆

max{xi
A,x̃i

A}
min{xi

A,x̃i
A} P

Nj

D (xj
A) and the relevant interval is

(min{xiA, x̃iA},max{xiA, x̃iA}).
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there are no mass points in the support of player D’s nj-variate marginal distribution for

minimal cut set j, P
Nj
D , except for possibly at the origin, it follows directly that the measure

of the support of P
Nj
D over any interval [a, b] ⊂ (0, s̄j] on the ith axis is equal to (b− a)/vA.

Furthermore, player D must place a mass point of size κjA/vA at the point xj = 0, and from

(16), Lemma 1, and Lemma 2, κjA = vA − nj s̄j ≥ 0. This concludes the proof of Lemma

5.

Lemma 6. In any equilibrium {PA, PD}, there exists a κD ≥ 0 such that for any set φ of

nodes with one node from each minimal cut set j ∈ B and every |B|-tuple xφD ∈
∏

j∈B[0, s̄j],

P φ
A(xφD) = κD

vD
+

∑
i∈φ x

i
D

vD
. Moreover, κD satisfies κD = vD −

∑
j∈B s̄

j.

The proof of Lemma 6 is analogous to the proof of Lemma 5, and we thus provide only

a brief sketch of the proof. First, from part (2) of Proposition 1 we know that at each point

in the support of any equilibrium strategy PD player D allocates a strictly positive level of

force to at most one node in each minimal cut set. For an arbitrary point xD ∈ Supp(PD)

let φ denote a set of |B| nodes with one node from each minimal cut set j ∈ B that includes

each node i for which xiD > 0. From Proposition 1 part (1) in the support of any equilibrium

strategy player A allocates a strictly positive level of force to at most one minimal cut set

j, and thus the support of player A’s |B|-variate marginal distribution for node set φ, P φ
A, is

located on the axes in R|B|+ . Combining this with Lemma 4 — each of player A’s univariate

marginals randomizes continuously over the interval (0, s̄j] — and Lemma 2 — each of player

A’s univariate marginals has no mass points except for possibly at zero — it follows that

there are no mass points in the support of player A’s |B|-variate marginal distribution for

node set φ, P φ
A, except for possibly at the origin in R|B|+ .

Combining Proposition 1 part (2) — in the support of any equilibrium strategy PD player

D allocates a strictly positive level of force to at most one node in each minimal cut set —

with Lemma 3 — each player has a constant expected payoff over the support of his mixed

strategy (except for possibly at points of discontinuity of the expected payoff function) —

it follows that there exists a κD ≥ 0 such that for each xD in the support of PD with

corresponding node set φ

Pr
(

max
({
ιj
}
j∈B

)
= 0
∣∣∣PA,xD) = P φ

A(xφD) =
κD
vD

+

∑
i∈φ x

i
D

vD
. (21)

The remainder of the proof follows along lines similar to the proof of Lemma 5.

Lemma 7. In any equilibrium, nj s̄
j = nj′ s̄

j′, ∀ j, j′ ∈ B.
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Proof. Recall that, in any equilibrium, from Lemma 5, for any j ∈ B and for any xjA ∈
[0, s̄j]nj , P

Nj
D (xjA) =

vA−nj s̄j
vA

+

∑
i∈Nj

xiA

vA
. From the combination of Proposition 1 part (1),

at most one minimal cut set is attacked, and Lemma 5 it follows that player A’s expected

payoff from any attack on a minimal cut set j is vA − nj s̄j.
From Lemma 3, player A’s expected payoff is constant across all points in the support

of PA, except possibly at points of discontinuity of the expected payoff function. Thus, ∀
j, j′ ∈ B, vA − nj s̄j = vA − nj′ s̄j′ or equivalently nj s̄

j = nj′ s̄
j′ .

Lemma 8. In any equilibrium {PA, PD},

(1) If α ≥ 1, player A’s expected payoff is 0 and player D’s expected payoff is vD(1− 1
α

).

(2) If α < 1, player D’s expected payoff is 0 and player A’s expected payoff is vA(1− α).

(3) nj s̄
j = min{vA, vD/[

∑
j′∈B(1/nj′)]} ∀ j ∈ B.

Proof. Recall part (2) of Proposition 1 — in any equilibrium {PA, PD} if xD ∈ Supp(PD)

then xD allocates a strictly positive level of force to at most one node in each minimal cut set

j. Letting φ denote a set of |B| nodes with one node from each minimal cut set j ∈ B that

includes each node i for which xiD > 0, it follows from Lemma 6 and part (2) of Proposition 1

that player D’s expected payoff at each point xD ∈ Supp(PD) is vD−
∑

j∈B(s̄j). Similarly for

player A, recall part (1) of Proposition 1 — in any equilibrium {PA, PD} if xA ∈ Supp(PA)

then xA allocates a strictly positive level of force to at most one minimal cut set j. From

Lemma 5 and part (1) of Proposition 1, it follows that player A’s expected payoff at each

point xA ∈ Supp(PA) is vA − nj s̄j.
There are two cases to consider. In case (i) vA − nj s̄j > 0, then from Lemma 5 player

D places an atom of size (vA − nj s̄j)/vA on the nj-tuple xjD = 0. From Lemma 7, it follows

that if player D places an atom on the nj-tuple xjD = 0 for some minimal cut set j, then

for all j′ ∈ B player D places an atom on the nj′-tuple xj
′

D = 0. Because, player D wins the

minimal cut set in the event of a tie at one or more nodes player A does not place an atom

at the origin. Thus, player D’s expected payoff is necessarily 0, vD −
∑

j∈B(s̄j) = 0.

In case (ii) vA − nj s̄j = 0, then from Lemma 5 player D does not place an atom on the

nj-tuple xjD = 0, and player D’s expected payoff is weakly positive vD−
∑

j∈B(s̄j) ≥ 0. Com-

bining Lemma 7 with cases (i) and (ii), it follows that, nj s̄
j = min{vA, vD/[

∑
j′∈B(1/nj′)]}.

This completes the proof of part (3) and parts (1) and (2) follow directly, using the fact that

α ≥ 1 implies nj s̄
j = vA and α < 1 implies nj s̄

j = vD/[
∑

j′∈B(1/nj′)].
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Proofs of Propositions 2 and 3:

Proof. Suppose {PA, PD} is an equilibrium. For Propositions 2 and 3 parts (1) and (2), it

follows from Lemma 6 that the probability that the network is not attacked is P φ
A(0) = κD

vD
,

where κD = vD −
∑

j∈B s
j and φ is any arbitrary set of nodes with one node from each

minimal cut set j ∈ B. From part (3) of Lemma 8, if α ≥ 1 then κD
vD

= 1 − 1
α

and if α < 1

then κD
vD

= 0. Part (1) of Proposition 2 and Part (1) of Proposition 3 follow directly. Part (2)

of Proposition 2 and Part (2) of Proposition 3 follow from the probability that, conditional

on an attack, minimal cut set j ∈ B is attacked, which from Lemma 6 is equal to

1− P φ
A(0, {sj′}j′ 6=j)

1− P φ
A(0)

=
sj

vD

1− κD
vD

=
sj∑
j′∈B s

j′
=

1

nj[
∑

j′∈B
1
nj′

]
(22)

where the last equality in (22) follows from Lemma 7.

Next, part (3) of Proposition 2 follows from Lemma 5 and part (3) of Lemma 8. In

particular, Lemma 5 specifies that, for all j ∈ B, P
Nj
D (xjA) =

κjA
vA

+

∑
i∈Nj

xiA

vA
, with κjA =

vA − nj s̄j ≥ 0. Then, part (3) of Lemma 8 specifies that if α ≥ 1, then nj s̄
j = vA for all

j ∈ B. Thus, for α ≥ 1 it follows that P
Nj
D (0) = 0 for each j ∈ B. That is, the defender

allocates a strictly positive level of force to each minimal cut set j ∈ B, and this completes

the proof of part (3) of Proposition 2.

Lastly, for part (3) of Proposition 3, it follows from Lemma 5 and part (3) of Lemma 8

that when α < 1, P
Nj
D (0) = 1 − α for all j ∈ B. That is, the defender leaves each minimal

cut set j ∈ B undefended with probability 1 − α > 0. Note that if P
Nj
D (0) = 1 − α for all

j ∈ B, then PD(0) ≤ 1 − α. If PD(0) = 1 − α, then the defender leaves the entire network

undefended with probability 1− α > 0. We now introduce three claims that will be used to

show that PD(0) < 1− α does not arise in equilibrium.

Claim 6. For each minimal cut set j, any node i ∈ Nj, and any β ∈ (0, sj) there exists a

set of points of positive measure in the support of any equilibrium strategy PA with xjA 6= 0

and xiA ∈ (0, β].

Note that Claim 6 is a direct consequence of Lemma 6. The measure of the support of

any equilibrium strategy PA over n-tuples in which xiA ∈ (0, β] is calculated as follows. For

any φ such that i ∈ Nj ∩ φ, this measure is P φ
A(xi = β, {s̄j′}j′ 6=j) − P φ

A(xi = 0, {s̄j′}j′ 6=j).
Recall that from Lemma 6, for any set φ of nodes with one node from each minimal cut

set j ∈ B and every |B|-tuple xφD ∈
∏

j∈B[0, s̄j], P φ
A(xφD) = κD

vD
+

∑
i∈φ x

i
D

vD
. Thus, P φ

A(xi =

β, {s̄j′}j′ 6=j)− P φ
A(xi = 0, {s̄j′}j′ 6=j) > 0 for β > 0.
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For the next claim note that if PD(0) < 1−α, then, with strictly positive probability, the

defender leaves some but not all minimal cut sets undefended. Without loss of generality,

let j′ and j′′ denote a pair of minimal cut sets for which in the mixed strategy PD it is the

case that with strictly positive probability xj
′

D 6= 0 and xj
′′

D = 0.

Claim 7. If PD(0) < 1 − α, then there exists at least one node i′ ∈ Nj′ and a measurable

interval [β, β] ⊂ (0, sj
′
] such that xi

′
D ∈ [β, β] and xj

′′

D = 0 with strictly positive probability.

Claim 7 follows from part (2) of Proposition 1. If with strictly positive probability

xj
′

D 6= 0 and xj
′′

D = 0, then it follows that there exists an n-box [a,b] with bj
′ � aj

′ 6= 0 and

bj
′′

= aj
′′

= 0 such that PD(b)− PD(a) > 0. Then, recall that from part (2) of Proposition

1 that if xj
′

D 6= 0, then xj
′

D allocates a strictly positive level of force to at most one node i′

within minimal cut set j′. Thus, there exists at least one node i′ ∈ Nj′ and a measurable

interval [β, β] ⊆ [ai
′
, bi
′
] ⊂ (0, sj

′
] such that xi

′
D ∈ [β, β] and xj

′′

D = 0 with strictly positive

probability.

The last claim regards player A’s probability of winning at least one minimal cut set

using a deviation from equilibrium that involves any xA with xj
′

A 6= 0 where xi
′
A ∈ (0, β) for

node i′ ∈ Nj′ , xj
′′

A = ε for ε > 0, and xjA = 0 for all j 6= j′, j′′.

Claim 8. If PD(0) < 1−α, then for any xA with xj
′

A 6= 0 where xi
′
A ∈ (0, β) for node i′ ∈ Nj′,

xj
′′

A = ε for ε > 0, and xjA = 0 for all j 6= j′, j′′ there exists a δ > 0 such that

Pr
(

max
{
ιj
′
, ιj
′′
}

= 1
∣∣∣PD,xA) ≥ Pr

(
ιj
′
= 1
∣∣∣PD,xA)+ δ

Note that Claim 8 is a direct consequence of Claims 1 and 7. First, recall that from

Claim 1 the probability that player A wins at least one minimal cut set is

Pr
(

max
{
ιj
′
, ιj
′′
}

= 1
∣∣∣PD,xA) =

Pr
(
ιj
′
= 1
∣∣∣PD,xj′A)+ Pr

(
ιj
′′

= 1
∣∣∣PD,xj′′A )− Pr (ιj′ , ιj′′ = 1

∣∣∣PD,xj′,j′′A

)
Next, define δ as

δ ≡ Pr
(
ιj
′′

= 1
∣∣∣PD,xj′′A )− Pr (ιj′ , ιj′′ = 1

∣∣∣PD,xj′,j′′A

)
.

Because, from Claim 7, for PD(0) < 1 − α there exists at least one node i′ ∈ Nj′ such that

xi
′
D ∈ [β, β] and xj

′′

D = 0 with strictly positive probability, it follows that for an xA with

xj
′

A 6= 0 where xi
′
A ∈ (0, β) for node i′ ∈ Nj′ and xj

′′

A = ε player A will, with strictly positive
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probability, lose minimal cut set j′ but win minimal cut set j′′, i.e. Pr(ιj
′′

= 1|PD,xj
′′

A ) >

Pr(ιj
′
, ιj
′′

= 1|PD,xj
′,j′′

A ) and, thus, δ > 0.

We now use Claims 6 and 8 to prove part (3) of Proposition 3. By way of contradiction

suppose that there exists an equilibrium with PD(0) < 1− α. From Claim 6, we know that

there exists a set of points of positive measure in the support of any equilibrium strategy PA

with xj
′

A 6= 0, xi
′
A ∈ (0, β) for node i′ ∈ Nj′ , and xjA = 0 for all j 6= j′. Then from Claim 8,

we know that player A can strictly increase his probability of winning at least one minimal

cut set by deviating at each such point in the support of PA where xj
′

A 6= 0, xi
′
A ∈ (0, β), and

xjA = 0 for all j 6= j′ by setting xj
′′

A = ε for ε > 0. Furthermore, as ε approaches 0, such a

strategy marginally increases player A’s expected costs but, because xj
′

D 6= 0 and xj
′′

D = 0

with strictly positive probability, discretely increases his probability of winning at least one

minimal cut set. Thus, player A can strictly increase his expected payoff by deviating, and we

have a contradiction to the assumption that there exists an equilibrium with PD(0) < 1−α.

We have, thus, shown that if α < 1, then, in any equilibrium, PD(0) = 1−α and the defender

leaves the entire network undefended with probability 1− α > 0. This completes the proof

of part (3) of Proposition 3.

Lemma 9. There exists a unique set of equilibrium univariate marginal distributions

{P i
A, P

i
D}ni=1.

Proof. This proof is for the uniqueness of player D’s set of univariate marginal distributions.

The proof for player A is analogous. For each minimal cut set j ∈ B, Lemma 5 shows that

for any xjA ∈ [0, s̄j]nj , P
Nj
D (xjA) =

vA−nj s̄j
vA

+

∑
i∈Nj

xiA

vA
, where from part (3) of Lemma 8 nj s̄

j =

min{vA, vD/[
∑

j′∈B(1/nj′)]}. Thus, in each minimal cut set j player D’s unique univariate

marginal distributions follow from player D’s unique nj-variate marginal distribution for

minimal cut set j. In particular, for each j ∈ B and i ∈ Nj player D’s univariate marginal

distribution for node i is calculated as P i
D(xi) = P

Nj
D (xi, {s̄j}i′∈Nj |i′ 6=i):

(1) If α ≥ 1, then for each j ∈ B and i ∈ Nj, player D’s univariate marginal is, for

xi ∈ [0, vA
nj

],

P i
D

(
xi
)

= 1− 1

nj
+
xi

vA

(2) If α < 1, then for each j ∈ B and i ∈ Nj, player D’s univariate marginal is, for

xi ∈ [0, αvA
nj

],

P i
D

(
xi
)

= 1− α

nj
+
xi

vA
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This completes the proof of Lemma 9.

Proof of Theorem 1.

Proof. Immediately following the statement of Theorem 1 we showed that the joint distribu-

tions given in the Theorem constitute an equilibrium. To complete the proof, observe that

parts (1) and (2) of Lemma 8 provides the unique equilibrium payoffs and Lemma 9 provides

the unique sets of equilibrium univariate marginal distributions.
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