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Game-Theoretic Foundations
of Monetary Equilibrium∗

Gabriele Camera Alessandro Gioffré

ESI, Chapman University Goethe University Frankfurt

September 30, 2013

Abstract

Monetary theorists have advanced an intriguing notion: we exchange money to
make up for a lack of enforcement, when it is difficult to monitor and sanc-
tion opportunistic behaviors. We demonstrate that, in fact, monetary equilib-
rium cannot generally be sustained when monitoring and punishment limitations
preclude enforcement—external or not. Simply put, monetary systems cannot
operate independently of institutions—formal or informal—designed to monitor
behaviors and sanction undesirable ones. This fundamental result is derived by
integrating monetary theory with the theory of repeated games, studying mon-
etary equilibrium as the outcome of a matching game with private monitoring.

Keywords: Social norms, repeated games, cooperation, payment systems.
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1 Introduction

Why do societies rely on money? The traditional view is that monetary

systems overcome barter and intertemporal trade frictions [10]. A recent

view is that money makes up for a lack of enforcement in society: money

has value if, by exchanging it, we outperform equilibria based on rules of

voluntary behavior [1, 7, 9].

To develop this idea, imagine a group of strangers facing repeated op-

portunities to aid someone else, at a cost. Payoffs are maximized if everyone

helps. However, monitoring is difficult, direct reciprocation is impossible,

no one can self-commit to actions, and no coercion is possible: any help

is voluntary. Establishing a norm of mutual support requires trust that

help today will be later returned by strangers, which calls for enforcement

of defections [6, 8]. Monetary trade requires none of this—argue mone-

tary theorists: we exchange help for money instead of promises of future

help because we cannot monitor and cannot sanction, individually or col-

lectively, opportunistic behavior. What incentives can monetary systems

provide that norms of voluntary behavior cannot reproduce?

We answer this question by adopting analysis techniques from the lit-

erature on repeated matching games to study monetary exchange. Such

methodological innovation allows us to demonstrate that money cannot

generally make up for a lack of enforcement (external or not) in society.
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In fact, monetary equilibrium collapses if monitoring and punishment lim-

itations hinder individual and group enforcement. In particular, without

enforcement of spot trades monetary exchange cannot be sustained in large

anonymous economies, i.e., the economies that are the bread and butter of

monetary models.

In the model, a stable population of anonymous players is randomly

divided in pairs in each period. In every encounter one subject can pro-

vide a benefit to the other by sustaining a small cost (= make a voluntary

transfer). This interaction is infinitely repeated [3, 4]. Since players can-

not build reputations and cannot adopt relational contracts, there is an

incentive to behave opportunistically and avoid making transfers. May

the introduction of symbolic objects (=tokens) support an outcome that is

socially preferred?

Monetary theorists have offered a positive answer by imposing quid-pro-

quo constraints: any transfer requires a concurrent payment, or else it fails.1

In a simultaneous-moves game this amounts to assuming away any temp-

tation to defect (= give nothing) by imposing mechanical punishment (=

get nothing), so if money has value, monetary trade is incentive-compatible

by design. Quid-pro-quo is a form of external enforcement: it converts the

social dilemma into a coordination game by restricting the outcome set.
1E.g., see the survey in [10]; the “no-commitment trading mechanism” in [9], which
embeds a technology that filters out outcomes that are not mutually desirable; the
trading mechanism in [1].
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What if we do not restrict outcomes in a match? Agents might not

voluntarily deliver their “quid,” even if they get the “quo.” In sequential

equilibrium, such opportunistic behavior must be deterred with proper

dynamic incentives. The result that money sustains exchange without

enforcement—external or not—is thus overturned. All we need is a suf-

ficiently large economy with poor monitoring; Folk-theorem type results

for matching games reveal that even if everyone sanctions a defection by

forever defecting, such community enforcement cannot deter opportunistic

behavior in large groups [6, 8].

Our finding that money cannot single-handedly make up for a lack of

enforcement in society is unique. It is meaningful because it provides a

theoretical foundation for the notion that monetary exchange cannot oper-

ate as a stand-alone institution to overcome trade frictions. The option to

exchange symbolic objects for goods does not per se remove opportunistic

temptations, so monetary trade must be supported by enforcement institu-

tions, formal (=external) or informal. This leads us to hypothesize that the

monitoring difficulties due to the growth in size of human settlements over

the course of history, might have provided a push towards adoption of mon-

etary exchange in those communities equipped with effective enforcement

institutions, and not in societies that lacked such institutions—as current

thinking would instead suggest.

The paper proceeds as follows. Section 2 presents the model and reports

4



the main Theorem, which is proved in Section 3. Section 4 offers some final

remarks.

2 A model of intertemporal exchange

Consider an economy populated by N = 2n ≥ 4 infinitely-lived agents who

face a social dilemma [3, 4]. An exogenous matching process partitions the

population into n pairs in each period t = 0, 1, . . .. Pairings are random,

equally likely, independent over time, and last only one period. Let oi(t) ̸= i

be agent i’s opponent (or partner) in period t.

In each pair {i, oi(t)}, a coin flip assigns the role of buyer to one agent,

and seller to the other. Hence, in each period an agent is equally likely

to either be a seller meeting a buyer, or a buyer meeting a seller. The

buyer has no action to take. The seller can choose C or D; C is interpreted

voluntarily transferring a good; Figure 1 reports the payoff matrix, where

g − d − l > 0 and −l ≤ 0 ≤ d < g.2

Seller

C D

Buyer g, d − l d , d

Figure 1: Interaction in a match

Notes: Row player is a buyer, column player is a seller. Payoffs to (buyer, seller).

The outcome C is called gift-giving: the buyer earns surplus g − d

2E.g., sellers have a perishable good, and buyers derive greater utility than sellers from
consuming goods.
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and the seller’s surplus loss is −l. The outcome D is called autarky, as

it generates no trade surplus. Define the (socially) efficient outcome in a

match as the one in which, giving equal weight to players, total surplus is

maximized. Gift-giving is efficient, because g−d−l > 0, but is not mutually

beneficial, because buyers benefit at the expense of sellers. Autarky is the

unique Nash equilibrium of a one-shot interaction.

Now consider infinite repetition of such interaction. It is assumed that,

in each t, each agent in {i, oi(t)}, for i = 1, . . . , N , observes only the out-

come in their match (=private monitoring). The identity of oi(t) and the

outcome in other pairs are unobservable, so players cannot recognize past

opponents if they meet them again (= anonymity). These assumptions

imply that agents can neither build a reputation nor engage in relational

contracting—a standard assumption in monetary theory.

Payoffs in the repeated game are the sum of period-payoffs, discounted

by a common factor β ∈ [0, 1).3 In the repeated game, the efficient outcome

corresponds to the one in which total surplus is maximized in each match,

and in each period. We call this outcome “gift-giving” because it involves

an infinite sequence of unilateral transfers.

Consider a strategy described by a two-state automaton with states

“active” and “idle.” The agent takes actions only as a seller. At the start
3Equivalently, let the economy be of indefinite duration where β is the time-invariant
probability that, after each period the economy continues for one additional period,
while with probability 1 − β, the economy ends.
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of any date, if seller i is active, he selects C, and otherwise D. Agent i is

active on date t = 0, and in all t ≥ 1 (i) if agent i is active, then i becomes

idle in t + 1 only if the seller in {i, oi(t)} chooses D. Otherwise, agent i

remains active; (ii) There is no exit from the idle state. If everyone adopts

this strategy, then the entire group participates in enforcing defections,

and gift-giving is a sequential equilibrium if N is sufficiently small [1].

Otherwise, community enforcement does not represent a sufficient deterrent

[6, 8]. So, let us add fiat money to study if its use can solve such enforcement

problems.

2.1 The game with money

A random fraction m = M

N
∈ (0, 1) of agents is initially endowed with one

indivisible, intrinsically worthless token. As is standard in the literature,

token holdings are observable, and cannot exceed one [1]. The introduction

of tokens expands action sets: in addition to others choices he may have, a

player with a token must also decide to either keep the token or to give it to

his opponent. The left panel in Figure 2 illustrates the game in a monetary

match, defined as a meeting where only the buyer has a token. All other

meetings are called non-monetary. Players simultaneously choose actions.

Adding tokens does not eliminate any outcomes possible when M = 0:

to see this, consider strategies that ignore tokens, which brings us back to

Figure 1. Adding tokens expands the strategy set. Consider a strategy
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Seller
C D

give g, (d − l)⋆ d, d⋆

Buyer
keep g⋆, d − l d⋆, d

Seller
C D

give g, (d − l)⋆ d⋆, d

keep d⋆, d d⋆, d

Figure 2: Monetary match with and without quid-pro-quo constraint

Notes: Left panel: stage game in a monetary match. Payoffs (row, column) are not
affected by the buyer’s action because tokens have no intrinsic value; the ⋆ by a player’s
payoff denotes token possession at the end of the interaction. The right panel shows
how outcomes change when the quid-pro-quo constraint is imposed, making unilateral
transfers impossible.

that can support monetary exchange. Following [6], we represent it using

a two-state automaton.

Definition 1 (Monetary trade strategy). At the start of any period t,

agent i can be “active” or “idle:” when active and in a monetary match, i

transfers his inventory to oi(t); otherwise, i makes no transfer. The agent

starts active on t = 0; in all t ≥ 1

• If agent i is active, then i becomes idle in t + 1 only if {i, oi(t)} is a

monetary match where someone makes no transfer. Otherwise, agent

i remains active.

• There is no exit from the idle condition.

We call monetary trade the outcome that results when everyone adopts

the strategy in Definition 1. Under monetary trade transfers occur only

in monetary matches–the seller selects “C” and the buyer selects “give.”

These actions are simultaneous and voluntary. There are no transfers in

all other matches because a seller selects “C” only if the buyer has a token,

and a buyer with a token selects “give” only if the seller has no token.
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Monetary trade has two components: a rule of desirable behavior (=

equilibrium) and a rule of punishment to be followed if a departure from

desirable behavior is observed (= off equilibrium). Players start by mak-

ing transfers in all monetary matches, but stop forever after observing a

deviation. Such switch to a “punishment mode” is absent from monetary

models, which impose quid-pro-quo constraints: every transfer requires a

concurrent payment, and unilateral transfers are impossible.4 This is not

an innocuous assumption. It removes from the outcome set any outcome

that is not mutually beneficial, which changes the nature of the game, from

a social dilemma to a pure coordination game with Pareto-ranked outcomes

(Figure 2). Ruling out opportunistic temptations in this manner amounts

to assuming an institution for the enforcement of spot trades. Our model

lifts this restriction—money does not embody an enforcement technology—

hence players must rely on informal enforcement to sustain intertemporal

exchange.

2.2 Monetary equilibrium

Conjecture that monetary trade is an equilibrium. Consider an agent with

j = 0, 1 tokens at the start of a period. Define the probability m0 that

someone without money randomly meets a buyer with a token, and the

probability 1−m1 that someone with money randomly meets a seller with-
4The monetary trade strategy in the literature is: after any history, the agent in a
monetary match makes an unconditional transfer, and no transfer otherwise. Autarky
is the outcome in any match where a departure from this strategy occurs; see [1, 3, 9].
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out a token. Since being a seller or a buyer in a meeting is equally likely,

and independent of money holdings, we have

m0 := 1
2

× M

N − 1
for M ≤ N − 1,

1 − m1 := 1
2

× N − M

N − 1
for M ≥ 1.

Recursive arguments imply that the start-of-period equilibrium payoff vj

satisfies

v0 = m0 (d − l + βv1) + (1 − m0) (d + βv0),

v1 = m1 (d + βv1) + (1 − m1) (g + βv0) .

(1)

Lemma 1. We have v1 > v0 always, and v0 ≥ d

1 − β
if

β ≥ βm := l

(1 − m1)(g − d) + m1l
∈ (0, 1).

Proof of Lemma 1. In Appendix

β ≥ βm is necessary for existence of monetary equilibrium: payoffs must be

above that ensured by permanent autarky d

1 − β
, which is always an equi-

librium. However, it is not sufficient because players can suffer involuntary

losses.

Theorem 1 (Existence of monetary equilibrium). There exists (l∗, β∗) ∈

[0, g − d) × (βm, 1) such that for (l, β) ∈ [l∗, g − d) × [β∗, 1) monetary trade

is a sequential equilibrium. Monetary trade is not a sequential equilibrium

as N → ∞.

Given the lack of enforcement technologies, monetary exchange must rely

on some form on community enforcement of defections. Voluntary transfers
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are made today only if there are sufficient incentives (i) to avoid commu-

nity enforcement in the future (the requirement on β) and (ii) to partic-

ipate in community enforcement if someone deviates (the requirement l).

Hence, in the absence of enforcement technologies, monetary exchange is

self-sustaining only if punishment can spread quickly in the economy. But

this is impossible if the group is too large. Before turning to the proof of

this theorem, it is helpful to contrast its findings with the standard result

in the monetary literature.

Proposition 1 (Monetary equilibrium with external enforcement).

Assume quid-pro-quo. Monetary equilibrium is supported for all β ∈ [βm, 1)

and for any N .

Here, no agent can sustain (in)voluntary losses, so opportunistic behavior

is assumed away. That is, some enforcement has been introduced, e.g.,

an institution that enforces private property rights. So, there is no need

for community enforcement and we consider a simple history-independent

strategy: in a monetary match, players make transfers (money or goods)

conditional on receiving a concurrent transfer; otherwise sellers choose D,

and buyers do not make transfers. Monetary trade is incentive compatible

if the seller’s loss is small relative to the benefit expected from spending

the token in the future. All we need is sufficiently patient players, β ≥ βm;

see [1].

The rest of the paper constructs the proof of Theorem 1 by studying
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the incentives to make voluntary transfers in equilibrium (=cooperate) and

to punish off equilibrium (=defect). We start by studying how punishment

spreads off equilibrium, and proceed by calculating off-equilibrium payoffs.

3 Off-equilibrium punishment and payoffs

Consider the start of an arbitrary period t in which the economy is or goes

off the (monetary) equilibrium path. Following well-established terminol-

ogy in repeated games, we refer to active agents as cooperators as opposed

to defectors, who are idle. Suppose the population is partitioned into N −k

cooperators and k = 1, . . . , N defectors. For k ≥ 2 the economy is off the

equilibrium path. Let k = 1 denote the case in which someone defects for

the first time in a monetary match, moving the economy off equilibrium.

Let

k ∈ κ := (1, . . . , N)T

denote the state of the economy at the start of a generic date and define

the N−dimensional column vector ek with 1 in the kth position and 0

everywhere else (T = transpose).5

It can be shown that, in this case, the probability distribution of defec-
5To be precise, k = 1 denotes the state of the economy after matching takes place in
equilibrium, when someone defects in a monetary match. This slight abuse in notation
is made for convenience. Also note that we use yj ∈ y := (y1, . . . , yN ) to denote a
generic element of vector y.

12



tors t ≥ 1 periods forward is given by eT
k Qt where

Q =



0 1 0 0 0 0 . . . 0 0
0 Q22 Q23 Q24 0 0 . . . 0 0
0 0 Q33 Q34 Q35 Q36 . . . 0 0
...

...
...

...
...

... . . .
...

...
0 0 0 0 0 0 . . . QN−1,N−1 QN−1,N

0 0 0 0 0 0 . . . 0 1



is an N × N transition matrix with elements Qkk′ satisfying Qkk < 1 for

all k < N .

When everyone follows the strategy in Definition 1, the upper-triangular

matrix Q describes how contagious punishment spreads from period to pe-

riod, i.e., how the economy transitions from a state with k ∈ κ to k′ ∈ κ

defectors. This type of community enforcement has four main properties [5,

Theorem 1]. First, it is irreversible and contagious: If someone defects to-

day, then tomorrow there cannot be less defectors than today. The number

of additional defectors depends on the random matching outcome.6 Since

defection is an absorbing state, the number of defectors expected on any

date is greater if we start with more defectors, and can only increase over

time. A single defection eventually leads to 100% defections, an absorbing

state that is reached in finite time almost surely.

Suppose there are k ≥ 2 defectors. Let vj(k), j = 0, 1, be the payoff

to a generic defector i at the start of t when k = 2, . . . , N . To construct

vj(k), we must compute earnings/losses that i expects in t, and so we
6Q12 = 1 by definition. The first line of Q represents the case when someone defects in
a monetary match, in equilibrium.
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must consider all possible encounters in which i may take part. Indeed, i’s

opponent in period t, oi(t), may or may not be a cooperator, and may or

may not have money. We also must compute i’s continuation payoffs in each

possible encounter {i, oi(t)}. Such payoffs depend on money holdings of i,

and the number of defectors k′ in the continuation game, which depends on

the outcome in the match {i, oi(t)} and all other matches. For this reason

it is convenient to proceed by considering the probability of each possible

encounter {i, oi(t)} that is conditional on reaching a specific k′ ≥ k, where

Qkk′ is the probability of reaching k′ starting from k ≥ 2.

We construct v0(k), the payoff to defector i when he has no money at

the start of date t. Consider any outcome in t leading to k′ ≥ k defectors

in the continuation game. Focus on a match between defector i and oi(t).

Conditional on k′ being the state on t + 1 and k being the state on t, let

α0
kk′ denote the probability that, on date t, oi(t) is a cooperating buyer with

money when i has no money (the 0 superscript).7 Hence, with probability

α0
kk′ agent i gains a token and earns d; with complementary probability

1−α0
kk′ agent i either meets a defecting buyer who has money or is not in a

monetary match, and in either of these circumstances i does not receive a
7α0

kk = 0 because, if the state does not change (k′ = k), then it must be the case that
no idle seller meets a buyer who cooperates. The probability α0

kk′ depends on the
distribution of money across defectors.
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token and earns d. Using a recursive formulation for k = 2, . . . , N we have

v0(k) =
N∑

k′=k

Qkk′{α0
kk′ [d + βv1(k′)] + (1 − α0

kk′)[d + βv0(k′)]}

= d + β
N∑

k′=k

Qkk′v0(k′) + β
N∑

k′=k

Qkk′α0
kk′ [v1(k′) − v0(k′)]. (2)

We have v0(N) = d

1 − β
because α0

Nk′ = 0 for all k′ (it is impossible to meet

a cooperator when everyone is a defector). In addition, since v1(k) ≥ v0(k)

for all k (which we show later), we also have v0(k) ≥ v0(N) = va for all

k = 2, . . . , N .

The payoff to someone who has no money and defects in equilibrium is

v0(1) = d + βv1(2),

which follows from the fact that Q12 = 1 and α0
12 = 1 by definition (if a

seller is the first player to defect, k = 1, then he must defect in a monetary

match, in which case he surely meets a cooperating buyer and we transition

to k′ = 2).

Now, we construct v1(k), i.e., the payoff to defector i when he has money

at the start of t. Consider any outcome in t leading to k′ ≥ k defectors in the

continuation game starting on t+1. Conditional on reaching k′ and k being

the current state, let α1
kk′ denote the probability that oi(t) is a cooperating

seller without money.8 Hence, with probability α1
kk′ agent i keeps his token

and earns g; with complementary probability 1 − α1
kk′ , defector i either

8Here α1
kk = 0 because, by definition, no defector meets a cooperator in this case.
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meets a defecting seller who has no money, or is not in a monetary match,

and in either case, i keeps the token and earns d. Consequently for k =

2, . . . , N we have

v1(k) =
N∑

k′=k

Qkk′{α1
kk′ [g + βv1(k′)] + (1 − α1

kk′)[d + βv1(k′)]}

= σkg + (1 − σk)d + β
N∑

k′=k

Qkk′v1(k′). (3)

The second line above follows from observing that—when there are k de-

fectors in the economy—the unconditional probability that i (who has a

token) is in a monetary match with a cooperating seller is

σk :=
N∑

k′=k

Qkk′α1
kk′ =

N∑
k′=k+1

Qkk′α1
kk′ for k = 2, . . . , N. (4)

We have σk ≥ σh if h ≥ k (with more defectors, meeting cooperators is less

likely).

It is convenient to define σ1 = 1 and the vector

σ = (σ1, σ2, . . . , σN−1, 0)T.

For k ≥ 2, each element σk defines the probability that buyer i is in a

monetary match and meets a cooperator, given that i is one of k defectors

at the start of a period. It should be clear that 0 = σN < σk′ < σk < σ1 = 1

for 2 ≤ k < k′ ≤ N − 1. Also, define

v1(1) = g + βv1(2),
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as the payoff to a buyer who is in monetary match in equilibrium, and

defects. Define

ϕk = (1 − β)eT
k (I − βQ)−1σ for k = 1, . . . , N.

Following [5], it can be interpreted as the expected number of cooperators

without money that a defector with money meets in the continuation game,

normalized by (1 − β)−1.

Lemma 2. We have

v1(k) = 1
1 − β

[ϕkg + (1 − ϕk)d] for k = 1, . . . , N, (5)

with v1(k) non-increasing in k and lim
β→1−

ϕk

1 − β
< ∞.

The proof immediately follows from [5, Theorem 2]. Having character-

ized payoffs in and out of equilibrium, we can now study deviations in and

out of equilibrium.

3.1 Equilibrium deviations

Suppose everyone has been active until period t and in period t + 1 agent

i deviates, reverting to play the monetary trade strategy on t + 2. Agent i

meets cooperator oi(t) who may or may not have money.

In a non-monetary match, player i does not deviate by making a trans-

fer. Doing so is suboptimal because i has a loss but no future gain (contin-

uation payoffs do not change because his opponent remains active). Hence,

consider a monetary match in equilibrium. Two cases may occur:

17



• i has no money and oi(t) is a buyer with money. If i deviates by

choosing D, then i receives money and his opponent becomes idle.

Such deviation is suboptimal if

d + βv1(2) ≤ d − l + βv1. (6)

• i has money and oi(t) is a seller without money. If i keeps his token,

then he obtains g and oi(t) becomes idle. Such deviation is subopti-

mal if

g + βv1(2) ≤ g + βv0. (7)

Lemma 3 (No deviations in equilibrium). There exists a value β∗ < 1

such that (6)-(7) hold for all β ∈ [β∗, 1).

Proof of Lemma 3. In Appendix.

The proof of the Lemma reveals that the key participation constraint

is the buyer’s. In equilibrium, if the buyer pays a seller — which occurs if

β is sufficiently large — then it is also true that the seller serves the buyer.

The reverse, however, is not true.

Lemma 4 (Large economies). Monetary trade is not an equilibrium as

N → ∞.

Proof of Lemma 4. In Appendix.

Intuitively, in large economies buyers prefer to avoid paying because

they can immediately consume, cannot be immediately punished, and can

spend their money in the future. This destroys the value of money. The

18



conclusion is that monetary equilibrium cannot generally be sustained when

monitoring and punishment limitations preclude adequate enforcement—

external or not. This is true for the same reason it is true for social norms:

in equilibrium individuals voluntarily sustain a loss to provide a benefit to

others only if group punishment is a significant threat. In the next section,

we study the credibility of the threat, by considering the incentives to

punish off-equilibrium.

3.2 Off-equilibrium deviations

Community enforcement is credible if actions in the punishment phase are

individually optimal. Deviating in non-monetary matches is suboptimal

(the deviator has a loss and cannot slow down contagion). However, a

defector might wish to deviate in a monetary match, to slow down the

contagious spread of punishment. We study this case.

Suppose there are k ≥ 2 defectors, and agent i is one of them. Let v̂j(k)

denote i’s payoff when he has j = 0, 1 tokens. Deviating is suboptimal if

v̂j(k) ≤ vj(k).

To derive these continuation payoffs, consider that the expected payoffs

from not punishing depend on the probabilities of meeting a defector with

and without money.

Consider defector i when he does not have money. Conditional on k′
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being the state next period and k currently, let µ0
kk′ denote the probability

that oi(t) is a buyer with money and δ0
kk′ the conditional probability that

oi(t) is a defecting buyer with money, so

α0
kk′ + δ0

kk′ = µ0
kk′ , and

N∑
k′=k

Qkk′µ0
kk′ = m0 for all k ≥ 2.

Similarly, consider defector i when he has money. Let µ1
kk′ denote the

conditional probability that oi(t) is a seller without money, and δ1
kk′ the

probability that oi(t) is a defecting seller without money. Hence, we have

α1
kk′ + δ1

kk′ = µ1
kk′ , and

N∑
k′=k

Qkk′µ1
kk′ = 1 − m1 for all k ≥ 2.

Using a recursive formulation, we have

v̂0(k) =
N∑

k′=k

Qkk′α0
kk′ [d − l + βv1(k′ − 1)] +

N∑
k′=k

Qkk′δ0
kk′ [d − l + v0(k′)]

+
N∑

k′=k

Qkk′(1 − µ0
kk′)[d + βv0(k′)],

v̂1(k) =
N∑

k′=k

Qkk′α1
kk′ [g + βv0(k′ − 1)] +

N∑
k′=k

Qkk′δ1
kk′ [d + βv0(k′)]

+
N∑

k′=k

Qkk′(1 − µ1
kk′)[d + βv1(k′)].

To derive these expressions note that i deviates only in a monetary match.

If i has no money, then we consider v̂0(k). The first line accounts for the

cases in which i is in a monetary match (i.e., a seller). Here, the agent

earns d − l because he cooperates instead of punishing. Player i might also

receive money, but this depends on whether his opponent (who is a buyer

with money) cooperates or defects. If his opponent is a cooperator, then i’s
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continuation payoff is v1(k′ − 1), because this cooperator does not become

a defector (i cooperates) and gives money to i. Otherwise, we have v0(k′)

because there is no impact on the number of future defectors and i does

not receive money.

The second line defines matches in which i is not in a monetary match.

The probability of not meeting a buyer with money can be decomposed as

1 − m0 =
N∑

k′=k

Qkk′(1 − µ0
kk′),

because, conditional on transitioning from k to k′, the probability of not

meeting a buyer with money is 1−µ0
kk′ . In all these matches player i earns d

and does not receive money so the continuation payoff is v0(k′), depending

on the realization of k′.

If i has money, instead, then we consider v̂1(k). Here agent i deviates

only when he is in a monetary match (i.e., a buyer), which is reported in

the first line. Deviating means that i transfers money instead of keeping it.

If his opponent is a cooperator, then i earns g and the continuation payoff

is v0(k′ − 1) because his opponent does not observe a defection; otherwise

i earns d and gets v0(k′) continuation payoff. The second line refers to the

matches that are not monetary.

Now, we use the definitions of vj(k), for k = 2, . . . , N , to derive inequal-

ities that guarantee that single-period deviations are not profitable, out of

equilibrium. Deviating from punishment in a monetary match is subopti-
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mal for defector i, when i is a buyer, if v̂1(k) ≤ v1(k), which is rewritten

as

N∑
k′=k

Qkk′α1
kk′ [v0(k′ − 1) − v1(k′)] ≤

N∑
k′=k

Qkk′δ1
kk′ [v1(k′) − v0(k′)], (8)

by manipulating expressions v1(k) and v̂1(k) and using the fact that α1
kk′ +

δ1
kk′ = µ1

kk′ .

Lemma 5 (Buyers punish). Inequality (8) holds for all β ∈ (0, 1).

Proof of Lemma 5. In Appendix.

Out of equilibrium, it is never optimal for a buyer to deviate from the

punishment strategy. The reason is simple. Suppose buyer i today pays

the seller, when in fact he should not. Paying the seller may slow down

the growth in the number of defectors but agent i cannot benefit from it

until he re-acquires money. Hence, since future payoffs are discounted, it

is a dominant strategy to not pay out of equilibrium.

Deviating from punishment in a monetary match is suboptimal for de-

fector i, when i is a seller, if v̂0(k) ≤ v0(k). Using α0
kk′ + δ0

kk′ = µ0
kk′ , the

inequality is

β
N∑

k′=k

Qkk′α0
kk′ [v1(k′ − 1) − v1(k′)] ≤ l

N∑
k′=k

Qkk′µ0
kk′ . (9)

Lemma 6 (Sellers punish). There exists 0 ≤ l∗ < g − d such that if

l ∈ [l∗, g − d), then inequality (9) holds for all β ∈ (0, 1).

Proof of Lemma 6. In Appendix
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Out of equilibrium, cooperating as a seller may slow down the growth in

defectors. This benefits the seller because he acquires money and may be

able to spend it tomorrow. To remove the incentive to deviate, the seller’s

loss from making a unilateral transfer must be sufficiently high.

4 Final remarks

Can money overcome trade frictions when voluntary trading arrangements

cannot? It can—according to current thinking—because monetary sys-

tems operate independently of institutions designed to monitor behaviors

and sanction undesirable ones. Conceptually, money exists because of a

lack of enforcement in society. This view hinges on a routine assumption

that money embodies a technology, which prevents players from suffering

losses—a technology to enforce property rights, perhaps.

We have proved that without some enforcement hard-wired into the

model, monetary exchange is afflicted by the same problems that under-

mine norms of voluntary behavior. The analysis can be extended to prove

that when rules of voluntary behavior support intertemporal exchange,

monetary exchange may not. The take-away is that monetary systems do

need institutions designed to monitor behaviors and sanction undesirable

ones. Money and enforcement are complementary institutions, not substi-

tutes, after all.

So what explains the widespread use of money in society? It may be

a consequence of the kind of enforcement it requires, which is perhaps less

costly, less cognitively demanding, or behaviorally more effective compared

to that needed to sustain alternative trading arrangements. Recent experi-

mental work on indefinitely repeated social dilemmas suggests that oppor-

tunistic temptations are not easily deterred by community enforcement,

whereas costly personal punishment is quite effective [2]. Moreover, when
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external enforcement of monetary spot trades is available, fiat monetary ex-

change endogenously emerges and empirically outperforms non-monetary

outcomes even if rules of voluntary behavior can theoretically sustain in-

tertemporal exchange [3, 4].
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Appendix

Proof of Lemma 1. The definition of vj immediately implies

v0 = [(1 − m1)g + m1d]m0β + (d − m0l)(1 − m1β)
(1 − β)[1 + β(m0 − m1)]

,

v1 = [(1 − m1)g + m1d][1 − (1 − m0)β] + (d − m0l)(1 − m1)β
(1 − β)[1 + β(m0 − m1)]

,

hence we have

v1 − v0 = (1 − m1)(g − d) + m0l

1 + β(m0 − m1)
> 0.

This difference is positive because m0 − m1 ≥ −1, and it reflects the differ-

ence in expected trade surpluses. With probability 1 − m1 someone with a

token earns surplus g − d and with probability m1 earns no surplus. Some-

one without a token earns a surplus −l with probability m0 and no surplus

otherwise. The denominator is an adjusted discount factor.

The outcome corresponding to infinite repetition of the static Nash

equilibrium (every seller always chooses D) is always an equilibrium of

the repeated game. Call this equilibrium “autarky” since every player is

idle in each period and obtains payoff va := d
1−β

. Note v0 ≥ d
1−β

, iff

β ≥ βm = l
(1−m1)(g−d)+m1l

, with βm < 1 since g − d > l > 0.

Proof of Lemma 3. Start by considering deviations by a buyer in a mon-

etary match, i.e., (7), which is satisfied if v0−v1(2) ≥ 0. Using the definition

of v1(k) in (5) we have

v1(2) = d

1 − β
+ 1

1 − β
ϕ2(g − d).
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Hence,

v0 − v1(2) = (1 − β)v0 − d

1 − β
− ϕ2(g − d)

1 − β
.

Using the definition of v0 in (1) we have

(1 − β)v0 − d ≡ βm0(1 − m1)(g − d) − m0l(1 − βm1)
1 + β(m0 − m1)

> 0 if β > βm,

lim
β→1−

(1 − β)v0 − d

1 − β
= ∞.

By [5, Theorem 3] lim
β→1−

ϕ2

1 − β
< ∞. Hence, by continuity β∗ ∈ (βm, 1)

exists such that v0 − v1(2) ≥ 0 for β ∈ [β∗, 1).

Now, consider deviations by a seller in a monetary match. Inequality

(6) is satisfied if β[v1 − v1(2)] ≥ l. From the definition of v0 and v1 in (1)

we have

β(v1 − v0) ≡ β
(1 − m1)(g − d) + m0l

1 + β(m0 − m1)

≥ βm
(1 − m1)(g − d) + m0l

1 + βm(m0 − m1)
≡ l for β ≥ βm.

Now fix β ∈ [β∗, 1) so that v0 ≥ v1(2). Consequently v1 −v1(2) ≥ v1 −v0 ≥

l/β, i.e., inequality (6) is also satisfied when β ∈ [β∗, 1).

Proof of Lemma 4. We have to simply show that buyers do not wish to

pay in economies that are “large.” To define a large economy, let M = bN

for b ∈ (0, 1) and let N → ∞. That is, we fix a per-capita money supply

and let the economy grow large.

Consider a defector who is a buyer in a monetary match, out of equi-

librium when there are k ≥ 2 defectors. Since the number of defectors is

finite, the unconditional probability that the buyer is in a monetary match
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with a seller who is a cooperator is lim
N→∞

σk = 1
2

(1 − b). Hence, we have

lim
N→∞

ϕ2 = lim
N→∞

(1 − β)eT
2 (I − βQ)−1σ = (1 − β)

∞∑
j=2

(I − βQ)−1
2j lim

N→∞
σj

= 1
2

(1 − b)(1 − β)
∞∑

j=2
(I − βQ)−1

2j = 1
2

(1 − b),

where (I −βQ)−1
2j denotes element in row 2 column j of matrix (I −βQ)−1;

(I − βQ)−1
21 = 0 because Q is upper triangular.

Recall that a buyer does not deviate in equilibrium if (7) holds, i.e., if

v0 − v1(2) ≥ 0. But this is violated for all β ∈ (0, 1) as N → ∞. To see

this note that

lim
N→∞

[v0 − v1(2)] = lim
N→∞

[
(1 − β)v0 − d

1 − β
− ϕ2(g − d)

1 − β

]

= − [2 − β(1 + b)][(g − d)(1 − b) + bl]
2(1 − β)(2 − β)

< 0.

Proof of Lemma 5. We prove by contradiction that v1(k) ≥ v0(k), for

all k = 2, . . . , N .

Suppose v1(h) < v0(h) for some 2 ≤ h ≤ N . Use the definition of v0(k)

in (2) and notice that vj(k) ≥ vj(k+1) for j = 0, 1 and all k = 2, . . . , N −1.9

9Suppose there exists a k such that vj(k) < vj(k + 1) for j = 0, 1. This means that
in the economy starting with one more defector, any defector is more likely to meet a
cooperator. But this cannot be true, as it contradicts the properties of the transition
matrix Q as in [5, Theorem 1].
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We have

v0(h) = d + β
N∑

k′=h

Qhk′α0
hk′v1(k′) + β

N∑
k′=h

Qhk′(1 − α0
hk′)v0(k′)

< d + βv1(h)
N∑

k′=h

Qhk′α0
hk′ + βv0(h)

N∑
k′=h

Qhk′(1 − α0
hk′)

< d + βv0(h)
N∑

k′=h

Qhk′α0
hk′ + βv0(h)

N∑
k′=h

Qhk′(1 − α0
hk′)

= d + βv0(h),

which provides the desired contradiction because v0(k) ≥ d

1 − β
for all

k = 2, . . . , N .

Consider inequality (8). We prove that it holds whenever v1(k) ≥ v0(k−

1), for all k = 2, . . . , N . Using the definition of v0(k) in (2) we have

v0(k) = d + β
N∑

k′=k

Qkk′v0(k′) + β
N∑

k′=k

Qkk′α0
kk′(v1(k′) − v0(k′))

= d + β
N∑

k′=k

Qkk′v0(k′) + β
N∑

k′=k+1
Qkk′α0

kk′(v1(k′) − v0(k′))

≤ d + β
N∑

k′=k

Qkk′v0(k′) + β
N∑

k′=k+1
Qkk′(v1(k′) − v0(k′))

= d + βQkkv0(k) + β
N∑

k′=k+1
Qkk′v1(k′)

≤ d + βQkkv0(k) + β(1 − Qkk)v1(k + 1).

To derive the second line we have used the fact that α0
kk′ = 0 when k′ = k.

For the third line note that α0
kk′ ≤ 1. The fourth line follows

N∑
k′=k+1

Qkk′v1(k′) ≤ v1(k + 1)
N∑

k′=k+1
Qkk′ = v1(k + 1)(1 − Qkk).

Since

v1(k + 1) ≥ 1 − βQkk

β(1 − βQkk)
v0(k) − d

β(1 − Qkk)
,
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we have

v1(k) − v0(k − 1) ≥ 1 − βQk−1,k−1

β(1 − Qk−1,k−1)
v0(k − 1) − d

β(1 − Qk−1,k−1)
− v0(k − 1)

= 1 − β

β(1 − Qk−1,k−1)
v0(k − 1) − d

β(1 − Qk−1,k−1)

≥ 1 − β

β(1 − Qk−1,k−1)
d

1 − β
− d

β(1 − Qk−1,k−1)
= 0.

The last line follows from v0(k) ≥ v0(N) = d

1 − β
for all k = 2, . . . , N .

Proof of Lemma 6. Consider inequality (9). We derive an expression
for v1(k − 1) − v1(k) when k = 2, . . . , N . From the definition of v1(k) in
(5), for all k = 2, . . . , N

v1(k − 1) − v1(k) = (g − d) 1
1 − β

(ϕk−1 − ϕk). (10)

By [5, Theorem 3] we have lim
β→1−

ϕk

1 − β
< ∞. Hence, (9) holds whenever l

is sufficiently large. To ensure that the parameter set is nonempty we take
a second step.

By [5, Theorem 3] we have ϕk − ϕk+1 ≤ ϕk−1 − ϕk for all k = 2, . . . , N .
So, we have

v1(k − 1) − v1(k) ≤ v1(1) − v1(2) = (g − d) 1
1 − β

(ϕ1 − ϕ2).

We wish to prove that β(ϕ1 − ϕ2)
1 − β

< 1, hence a value l∗ < g − d exists,

which satisfies (9). From equation (5) in Lemma 2 we have

v1(1) = 1
1 − β

[ϕ1g + (1 − ϕ1)d].

By definition of v1(1), we also have

v1(1) = σ1g + (1 − σ1)d + βv1(2)

= σ1g + (1 − σ1)d + β

1 − β
[ϕ2g + (1 − ϕ2)d],
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where we have used equation (5) for v1(2). Hence, we must have

1
1 − β

[ϕ1g + (1 − ϕ1)d] = σ1g + (1 − σ1)d + β

1 − β
[ϕ2g + (1 − ϕ2)d],

which is rewritten as
ϕ1 − βϕ2

1 − β
= σ1.

Recall that σ1 = 1 (if there is only one defector, then the defector meets a

cooperator with certainty) and β(ϕ1 − ϕ2) < ϕ1 − βϕ2, hence β(ϕ1 − ϕ2)
1 − β

<

1.
Finally, note that inequality (9) is the most stringent when k = 2, and

in this case it can be rewritten as

(g − d) 1
m0

β

1 − β

N∑
k′=2

Q2k′α0
2k′(ϕk′−1 − ϕk′) ≤ l,

which is achieved by substituting on the right hand side
N∑

k′=2
Q2k′µ0

2k′ = m0

and by substituting in the difference v1(k′−1)−v1(k′) the expressions v1(k)
given in Lemma 2. Now define

γ := sup
β∈(0,1)

N∑
k′=2

Q2k′α0
2k′

β

1 − β
(ϕk′−1 − ϕk′).

Note that γ < m0 because β(ϕk′−1 − ϕk′)
1 − β

< 1 for all β. Hence, defining

l∗ := (g − d) γ

m0
,

inequality (9) holds for all β ∈ (0, 1) if l is in [l∗, g − d).
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