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A tractable analysis of contagious equilibria†

Gabriele Camera Alessandro Gioffré
ESI, Chapman University University of Basel

July 11, 2013

Abstract

This paper studies contagious equilibrium in infinitely repeated matching games.
The innovation is to identify a key statistic of contagious punishment that, used
together with a recursive formulation, generates tractable closed-form expressions
for continuation payoffs, off equilibrium. This allows a transparent characterization
of the dynamic incentives created by contagious punishment schemes.
Keywords: Cooperation, social norms, grim trigger, random matching.
JEL codes: C6, C7

1 Introduction

The studies in [4, 6] have extended the analysis of cooperation in infinitely

repeated games from economies with stable partnerships to random matching

economies, where relational contracting is unavailable. The central result is

that full cooperation can be achieved even if players cannot exploit reciprocity
† We thank an anonymous referee for several helpful comments. G. Camera acknowl-

edges partial research support through the NSF grant CCF-1101627. Correspondence ad-
dress: Gabriele Camera, Economic Science Institute, Chapman University, One University
Dr., Orange, CA 92866, USA; e-mail: camera@chapman.edu. Alessandro Gioffré: Fac-
ulty of Business and Economics, Department of Macroeconomics, University of Basel, Peter
Merian-Weg 6, CH - 4002 Basel, Switzerland; e-mail: alessandro.gioffre@unibas.ch.
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mechanisms because agents are anonymous, and can neither communicate with

nor can observe others’ past behaviors. In these matching economies, coop-

eration relies on adopting a common strategy (=a social norm) that includes

the threat of unforgiving punishment. According to this norm, a player al-

ways cooperates unless someone defects, in which case the player switches to

punishing by defecting forever.

Studying equilibrium in these economies is analytically cumbersome be-

cause, once punishment starts, it spreads at random, through cooperator-

defector encounters. This contagious punishment process complicates the

characterization of continuation payoffs, which holds the key to establishing

whether dynamic incentives exist for players to follow the social norm.

This study contributes to the literature on cooperation and contagious

punishments by showing how to attain a tractable closed-form expression of

continuation payoffs, off equilibrium. This is done by, first, identifying and

characterizing a key statistic of contagious punishment processes, which we

call the contact rate. This is the rate at which a defector expects to meet

cooperators in the continuation game. We then use such a statistic to derive

through a recursive formulation tractable closed-form expressions for contin-

uation payoffs off equilibrium, which are simply convex combinations of static

payoffs; the convexification factor depends on the number of defectors present
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in the economy, the discount factor, and the breadth of monitoring.

To see the difference with previous work, note that [4] bases the existence

proof on a pointwise analysis of continuation payoffs, i.e., for a specific real-

ization of a matching trajectory. Instead, we follow the approach in [6], which

is matrix-theoretic; we augment it by adopting a recursive formulation that

allows us to obtain tractable closed-form expressions for continuation payoffs,

away from the equilibrium path of play. This has the virtue of making the

analysis of contagious equilibrium transparent. In particular, we generalize

the expressions for continuation payoffs for all possible beliefs about the num-

ber of defectors, whereas the literature typically considers only the case of

two defectors. In this manner we can characterize exact bounds on the two

parameters that are key to ensuring that cooperation is self-enforcing: the

discount factor and the cost sustained to slow down the contagious spread

of defections. This is theoretically meaningful it helps us to better under-

stand how changes in the game’s parameters affect the incentives to follow

contagious punishments and it is also empirically meaningful it helps us to

construct laboratory economies based on repeated, random matching games

(e.g., see [1, 2]).

We proceeds as follows. Section 2 presents the basic model. Section 3

identifies some basic properties of the typical contagious punishment process,
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which are then used in Section 4, to recursively derive payoffs as a convex

combination of static payoffs. Section 5 shows how this machinery can be used

to characterize bounds on parameters that support cooperative equilibrium

in repeated matching games with private monitoring. Section 6 extends the

analysis to games with (imperfect) public monitoring and public randomization

devices. Section 7 concludes.

2 The model

Consider an economy in which anonymous agents are randomly and bilaterally

matched in each period to play a stage game. There are N = 2n ≥ 4 infinitely-

lived agents, who have linear preferences and discount the future with common

discount factor β ∈ (0, 1). Equivalently, let the economy be of indefinite

duration where β is the time-invariant probability that, after each period the

economy continues for one additional period, and otherwise the economy ends.

In each period t = 0, 1, . . ., an exogenous matching process partitions the

population into n pairs. Pairings are random, equally likely, independent over

time, and last only one period. Let oi(t) 6= i be agent i’s opponent in period t,

where oi is an involution. Agents cannot observe the identities of others and

cannot recognize individuals if they meet them again (= anonymity).

In every period t each agent in {i, oi(t)}, for i = 1, . . . , N , faces an identi-
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cal two-player stage game that consists of simultaneously and independently

selecting one action from the set {C,D}. The possible stage-game payoffs

to agent i are πDD, πCD, πDC , and πCC , where the first subscript refers to i’s

action in the four possible outcomes (D,D), (C,D), (D,C), and (C,C). We

assume that (C,C) is the socially efficient outcome and that πDC > πCC and

πDD > πCD, i.e., the game is a social dilemma where there are incentives to

behave opportunistically. Each agent i observes the actions (but not the iden-

tities) of a set of agents denoted Oi(t, a), which includes agent i, i’s opponent

oi(t), and a = 0, . . . , N − 2 other randomly selected agents. The case a = 0

corresponds to private monitoring, which is when Oi(t, 0) = Oi(t) = {i, oi(t)}.

At the other extreme, a = N−2, we have public monitoring. In-between cases

capture situations that we dub, with a small abuse in language, “imperfect”

public monitoring in which, for instance, players see the actions of those who

are spatially close to them but not of everyone in the economy.1

Suppose every agent i = 1, . . . , N adopts the following trigger strategy

(e.g., see [4]):

Definition 1. On t = 0, agent i is in state s = C and selects action C. On

all t > 0, agent i is either in state s = C or s = D, and selects action s.

• If agent i is in state C in period t, then i switches state on t+ 1 only if
1For example, the matching process randomly partitions the population into pairwise

disjoint groups of size a+ 2 in each period. In each group agents play in pairs but observe
all the actions taken in their group.
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some agent in Oi(t, a) selected D. Otherwise, i remains in state C.

• State D is absorbing.

In what follows, we focus on the case when everyone in the population follows

the strategy in Definition 1, i.e., we consider a social norm as in [4, 6]. This

norm has two components: a rule of desirable behavior (always choose C)

and a rule of punishment (always choose D) selected only if a departure from

desirable behavior is observed. For this reason, we will call an agent who is in

state C a “cooperator,” and a “defector” otherwise.

The central feature of grim play is that any defection starts an irreversible

contagious punishment process that eventually leads to an environment in

which everyone is a defector. Depending on the parameter a, punishment

may spread in the economy either by means of direct contact with a defec-

tor or indirectly, by observing a defection outside of the agent’s match. Such

unforgiving decentralized punishment scheme forms the basis of cooperation

because it removes the incentive to behave opportunistically when agents are

sufficiently patient. In the next section we discuss the properties of decentral-

ized punishment, and in the section that follows we show that such properties

hold the key to a tractable formulation of out-of-equilibrium payoffs.
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3 Properties of decentralized punishment

Consider the start of a generic period. Suppose the population is partitioned

into k = 1, . . . , N defectors and N − k cooperators. Let

σk := N−k
N−1 with σk ∈ σ = (σ1, σ2, . . . , σN−1, 0)T

define the probability that on this date defector i meets a cooperator.2 It

should be clear that 0 = σN < σk′ < σk < σ1 = 1 for 2 ≤ k < k′ ≤ N − 1. Let

k ∈ κ := (1, . . . , N)T

denote the state of the economy on a generic date and define theN−dimensional

column vector ek with 1 in the kth position and 0 everywhere else.

Theorem 1. Suppose there are k = 1, . . . , N defectors and that each agent i
observes the actions of agents in Oi(t, a) for a = 0, . . . , N − 2. The probability
distribution of defectors evolves over the span of t ≥ 1 periods according to
eT
kQ

t where Q is an N × N transition matrix with elements Qkk′ and mean
µk(t) := eT

kQ
tκ satisfying:

1. Qkk′ = 0 for k′ < k;

2. Qkk < 1 = QNN for all k = 1, . . . , N − 1;

3. µk+1(t) ≥ µk(t), for all k = 1, . . . , N − 1 and all t ≥ 1;

4. µk(t+ 1) ≥ µk(t) ≥ k, for all k = 1, . . . , N − 1 and all t ≥ 1;

5. µk(t) is non-decreasing in a.

Proof. In Appendix
2T = transpose. With a slight abuse in notation, we use yj ∈ y := (y1, . . . , yN ) to denote

a generic element of vector y.
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When everyone follows the strategy in Definition 1, the upper-triangular ma-

trix

Q :=



Q11 Q12 Q13 . . . Q1,N−1 Q1N
0 Q22 Q23 . . . Q2,N−1 Q2N
0 0 Q33 . . . Q3,N−1 Q3N
...

...
... . . .

...
...

0 0 0 . . . QN−1,N−1 QN−1,N
0 0 0 . . . 0 1



describes how contagious punishment spreads from period to period, i.e., how

the economy transitions from a state with k to k′ defectors.

Decentralized punishment has five main properties. Punishment is irre-

versible (Property 1) and contagious (Property 2): If someone defects today,

then next period there can only be more defectors than today, and can never

be less. Clearly, the number of additional defectors depends on the monitoring

process.3 Punishment is decentralized (Property 3) and unforgiving (Property

4): Because defection is an absorbing state, the number of defectors expected

on any date is greater if we start with more defectors, and can only increase

over time. Finally, the number of defectors expected on any date is non-
3It follows that Qkk′ may or may not depend on the outcome of the random matching

process. For instance, consider private monitoring, Oi = {i, oi} for all i = 1, . . . , N . Here
the number of additional defectors depends only on the random matching process because
a cooperator j may switch to being a defector during t only by “direct contagion”, i.e., if
oj(t) is a defector; consequently, defectors can at most double from period to period, i.e., we
have Qkk′ = 0 for k′ > min(2k,N). Instead, the matching realization does not matter under
public monitoring, i.e., when Oi = {1, . . . , N} for all i = 1, . . . , N . The reader interested in
closed-form transition matrices for a = 0 can consult [5] or the Supporting Materials of this
paper, where we also study the case of a > 0 and of noise in transitions.
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decreasing in the number of actions that agents can observe in the economy

(Property 5).

We also define the probability ηkk′ that a defector, say, agent i, meets a

cooperator conditional on an outcome being realized that raises the number of

defectors from k to k′. Clearly, ηkk′ ≤ ηk−1,k′ for all k = 2, . . . , k′ with ηkk = 0;

this is due to random matching, which implies that meeting a cooperator today

is less likely when there are more defectors.

The unconditional probability that agent i meets a cooperator when there

are k defectors is:

σk =
N∑
k′=k

Qkk′ηkk′ . (1)

A single defection eventually leads to 100% defections in the economy,

an absorbing state that is reached in finite time. To compute the expected

number of periods to full defection which is helpful in experimental contexts

(e.g., see [1]) define τk as the average number of periods required to have N

defectors in the economy when we start with k = 1, . . . , N defectors. We have

τk = 1 +
N∑
k′=k

Qkk′τk′ for k = 1, . . . , N − 1

τN = 0.

With probability Qkk the number of defectors does not further increase over

the course of one period; hence, the following period we expect once again τk
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periods before we have N defectors in the economy. With probability Qkk′

there are k′ − k new defectors by the end of the period, hence, tomorrow we

expect τk′ periods before we have N defectors in the economy. Clearly, τN = 0.

Let Q0 denote the matrix obtained when the last row of Q is a vector of

zeros. The elements of vector τ := (τ1, . . . , τN)T are solutions to the system of

equations

τ = 10 +Q0 · τ ⇒ (I −Q0) · τ = 10,

where I is the identity matrix and 10 is the N -dimensional unit vector whose

N th component is zero. Since I−Q0 is upper-triangular with non-zero diagonal

elements, then I−Q0 is invertible, and τ = (I−Q0)−1·10 is the unique solution.

4 Continuation payoffs: a recursive approach

Start by recognizing that the equilibrium payoff to any agent is

v0 = πCC
1− β .

Now consider out-of-equilibrium situations in which there are k ≥ 1 defectors

at the start of a period and fix one defector, say, agent i.4 If decentralized

punishment is characterized by matrix Q as in Theorem 1, then using standard
4If k = 1 this corresponds to a situation in which one agent moves out of equilibrium.
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recursive methods the payoff to defector i is

vk =
N∑
k′=k

Qkk′ [ηkk′πDC + (1− ηkk′)πDD + βvk′ ]. (2)

Using (1), letting v := (v1, . . . , vN)T and using eT
kQv ≡

∑N
k′=kQkk′vk′ we have

vk = σkπDC + (1− σk)πDD + βeT
kQv.

The remainder of this section is devoted to proving the following result:
Theorem 2. Let there be k ≥ 1 defectors. The payoff to any defector satisfies

vk = 1
1− β [φkπDC + (1− φk)πDD] (3)

where
φk := (1− β)eT

k (I − βQ)−1σ,

with 0 = φN < φk+1 < φk < σk, lim
β→1−

φk = 0 and lim
β→1−

φk
1− β <∞. Moreover,

φk is non-increasing in a, φk − φk+1 is non-increasing in k and in a, and
φk − φk+1

1− β is non-decreasing in β.

The message is that the continuation payoff to a defector is a convex combina-

tion of the static payoff from meeting a cooperator and another defector. The

function φk is the rate at which a defector expects to meet cooperators in the

continuation game, as we will show in the remainder of this section.

To prove this result, let there be k ≥ 1 defectors at the start of a period;

fix one, say, agent i. Here σk is the probability that on this date defector i

meets a cooperator. Now consider future possible encounters between defector

i and cooperators. The probability that defector i meets a cooperator t ≥ 1

11



periods from now depends on how many defectors there will be on that date.

To calculate this number, without loss in generality let t = 0 be the present

date (when we have k defectors). The probability to have k′ defectors on date

t = 1 is Qkk′ , on date t = 2 is Q2
kk′ ≡

∑N
h=1 QkhQhk′ , and it is Qt

kk′ on date

t ≥ 1, i.e., it is cell (k, k′) of matrix Qt because Q is a transition matrix.

Consider period t = 0; ∑N
k′=1 Qkk′σk′ is the probability that on t = 1

defector i will meet a cooperator. The probability that initial defector i meets

a cooperator t ≥ 0 periods from now is

N∑
k′=1

Qt
kk′σk′ = eT

kQ
tσ < 1.

To verify that eT
kQ

tσ < 1 note that ∑N
k′=1 Q

t
kk′ = 1 and σk′ < 1 for all k′ > 1.

Given that there are k ≥ 1 defectors at the start of a period, we now wish

to calculate the expected number of cooperators that any of these defectors

will meet in the continuation game (their future lifetime). To do so, suppose

for a moment that the economy is infinitely-lived, i.e., β = 1. Fix defector i

among the k current defectors. The expected number of cooperators that i

will meet in the continuation game is

eT
kσ +

∞∑
t=1

eT
kQ

tσ.

When β ∈ (0, 1), this number is calculated by adding the continuation proba-
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bility β, i.e., we have

σk + β
N∑
k′=1

Qkk′σk′ + β2
N∑
k′=1

Q2
kk′σk′ + . . . = eT

kσ +
∞∑
t=1

βteT
kQ

tσ = eT
k (I − βQ)−1σ.

Lemma 1. The sum eT
kσ + ∑∞

t=1 β
teT
kQ

tσ converges for all β ∈ [0, 1] and is
bounded above by (1− β)−1.

Proof. In Appendix

The expected number of cooperators that a defector meets in the contin-

uation game is finite (even if the horizon is infinite), because each current

cooperator can be met only once. This is due to the contagious punishment

process: when a defector meets a cooperator, the cooperator switches to de-

fection.5 Because cooperators may meet defectors in every period, the number

of cooperators is likely to fall over time, hence eventually no-one cooperates.

Now notice that if β < 1 and a defector meets one cooperator in each

period, then the number of cooperators met in the continuation game corre-

sponds exactly to the expected duration of the economy, which is (1− β)−1.6

We therefore normalize the expected number of cooperators that a defector

meets in the continuation game by the expected duration of the economy.
5Clearly, this expected number is bounded above by N − k because a defector cannot

meet more than N − k cooperators since each cooperator encountered becomes a defector.
This would still be true if defector-cooperator matches generated one new defector with
a probability less than one, i.e., if we added some noise to the decentralized punishment
process.

6Here (1 − β)βt is the probability that the economy lasts exactly t + 1 periods, so the
expected duration of the economy is (1− β)

∑∞
t=1 β

t−1t = (1− β)−1.
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Given Q, σ, and β, this gives us a ratio that we call the contact rate:

φk = (1− β)eT
k (I − βQ)−1σ for β ∈ (0, 1).

One can interpret this as the rate at which defector i expects to meet co-

operators in a period, in the continuation game, when there are currently

k ≥ 1 defectors. If there are few defectors, then agent i meets cooperators

at a high rate, and φk is close to one; otherwise, it is close to zero. Because

eT
kσ +∑∞

t=1 β
teT
kQ

tσ is finite for all β, it is immediate that

lim
β→1−

φk = 0 and lim
β→1−

(1− β)−1φk <∞. (4)

In short, the contact rate reaches zero as the expected duration of the contin-

uation game approaches infinity because, in the long run, the economy will be

entirely populated by defectors.

Clearly, φN = 0 because matrix Q is upper-triangular and σN = 0; in-

tuitively, defection is an absorbing state, so once we have N defectors it is

impossible to meet cooperators in the continuation game. We have:

Lemma 2. For all k = 1, . . . , N − 1 we have (i) 0 = φN < φk+1 < φk < σk,

(ii) φk is non-increasing in a, (iii) φk − φk+1 is non-increasing in k and in a

(iv) φk − φk+1

1− β is non-decreasing in β.

Proof. In Appendix

To complete the proof of Theorem 2 note that since Q is upper triangular,
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matrix (I − βQ) is invertible, hence we use the definition of vk to obtain

v = σπDC +(1−σ)πDD+βQv ⇒ v = (I−βQ)−1[σπDC +(1−σ)πDD]

where vk ∈ v satisfies

vk = eT
k (I − βQ)−1[σπDC + (1− σ)πDD]

= 1
1− β [φkπDC + (1− φk)πDD].

The defector’s payoff is a convex combination of two possible static payoffs:

the one from meeting a cooperator and the one from meeting a defector. The

contact rate φk serves as the convexification parameter. The virtue of this

approach is that it makes analysis of equilibrium quite tractable. We provide

an example of what we mean, next.

5 Cooperation with private monitoring

Here we demonstrate the tractability of our approach by revisiting the proof of

a well-known existence result for the repeated prisoners’ dilemma game with

private monitoring studied in [4, 6]. Let the static payoffs to an agent i be:

πDD = d, πCD = d − l, πDC = d + g, and πCC = c, where g > 0, c > d,

l ≥ 0.7 There is private monitoring, so Oi(t) = {i, oi(t)} for all agents i in

each period t. That is, contagious punishment only spreads through direct
7The payoff formulation is a bit more general than in [4, 6], where the normalization

d = 0 is assumed. Note also that neither [6] nor [4] assume 2c > c + g + d − l, which—as
noted in [7]—is sometimes part of the definition of Prisoners’ Dilemma
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contagion. Conjecture that everyone follows the strategy in Definition 1.

The study in [6] proves that if l is sufficiently large, then there exists a

β∗ ∈ (0, 1) such that for all β ∈ [β∗, 1) the outcome where k = 0 in each

period can be supported as a sequential equilibrium.

5.1 Existence of cooperative equilibrium

Start by recognizing that, from Theorem 2, the payoff to a defector when there

are k ≥ 1 defectors at the start of a generic period is

vk = 1
1− β [φk(c+ g) + (1− φk)d].

Consider one-shot deviations from the strategy in Definition 1. In equilibrium

an agent must choose C and not D. This holds if v0 − v1 ≥ 0, because v1

defines the payoff to someone who defects in equilibrium. From (3) we have

v0 − v1 = 1
1− β [c− d− φ1(c+ g − d)]. (5)

From Theorem 2 we have lim
β→1−

φ1

1− β <∞. By continuity there exists a value

β∗ ∈ (0, 1) such that v0 − v1 ≥ 0 for all β ∈ [β∗, 1).

Out of equilibrium, let agent i be one of k ≥ 2 defectors. Agent i chooses
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D (as specified in Definition 1), whenever

N∑
k′=k

Qkk′ [ηkk′(c+ βvk′−1) + (1− ηkk′)(d− l + βvk′)]

≤
N∑
k′=k

Qkk′ [ηkk′(c+ g) + (1− ηkk′)d+ βvk′ ]
(6)

The right hand side is simply the payoff vk (recall that
N∑
k′=k

Qkk′ηkk′ = σk).

The left-hand side reports the payoff to defector i when he does not punish:

he deviates by choosing C today, reverting to playing D forever, tomorrow. It

is derived using the recursive formulation of continuation payoffs in (2). With

probability Qkk′ the economy should transition to a state with k′ defectors, i.e.,

there are k′ − k mixed matches. The (conditional) probability that defector

i is in one of such mixed-matches is ηkk′ . Because defector i deviates only

today by choosing C instead of D, his current opponent does not become a

defector due to private monitoring the opponent only observes i’s action.

Hence, with probability Qkk′ηkk′ agent i’s continuation payoff is vk′−1 and not

vk′ . This adjustment does not apply if agent i is not in a mixed match (with

probability 1− ηkk′), as in this case his deviation C cannot reduce the number

of future defectors from k′ to k′ − 1.

Rewrite the above inequality as

β
N∑
k′=k

Qkk′ηkk′(vk′−1 − vk′) ≤ σkg + (1− σk)l. (7)
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From equation (3) in Theorem 2, for all k ≥ 2 we have

vk−1 − vk = 1
1− β (φk−1 − φk)(c+ g − d) <∞ for all β ∈ (0, 1) (8)

because lim
β→1−

(1−β)−1φk <∞. Given any β ∈ (0, 1), deviating off equilibrium

is suboptimal if l is sufficiently large, and the existence proof is completed.

5.2 Characterization of bounds on parameters

The procedure developed in the previous sections has useful applications. It

allows us to find exact bounds for the parameters that sustain the contagious

equilibrium and to characterize them as functions of the model’s parameters.

Here, we characterize the lower bounds on β and l.

The discount factor

Here we derive the exact lower bound for β, such that deviating in equilibrium

is never optimal, and characterize it in terms of the cost of cooperation in

equilibrium. To do so, it is convenient to normalize the payoff parameter g

by c− d, which can be interpreted as the surplus from cooperation relative to

defection. The variable γ := g

c− d
roughly speaking captures the (opportu-

nity) cost of cooperation in equilibrium, as it measures the gain from defecting

relative to the surplus from cooperating.

Proposition 1. In the repeated Prisoners’ Dilemma with private monitoring,
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the lower bound for β, such that deviating in equilibrium is never optimal is

β∗ := φ−1
1

( 1
1 + γ

)
,

a strictly increasing and concave function of γ.

Proof. In Appendix

FIG. 1 APPROXIMATELY HERE

Figures 1 illustrates the mapping between the bound β∗, the size of the

economy N , and the cost of cooperation in equilibrium γ. The minimal dis-

count factor that is necessary to support cooperation in equilibrium grows as

the opportunistic incentives increase, and as the economy grows larger.

The cost of slowing down contagion

Now we determine an exact lower bound for l, such that deviating out of

equilibrium is never optimal for a defector, for any belief on the number of

defectors k. We can think of l as the cost of cooperation off equilibrium.

Proposition 2. In the repeated Prisoners’ Dilemma with private monitoring,
if

l ≥ l(β, k) := 1
1− σk

{
(c+ g − d)

N∑
k′=k

Qkk′ηkk′
β(φk′−1 − φk′)

1− β − σkg
}
,

then off equilibrium punishment is optimal under the belief that there are k =
2, . . . , N defectors. In particular, l(β, k) is non-decreasing in β, it is decreasing
in k and, if

l ≥ l∗ := (N − 2)(c− d),
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then off-equilibrium punishment is optimal for any β ∈ (0, 1) and k.

Proof. In Appendix

Figures 2 helps us to understand how the cost of slowing down contagion

and the discount factor must co-vary to maintain the incentive to punish.

FIG. 2 APPROXIMATELY HERE

It plots the mapping between the minimum value of l, the beliefs about the

number of defectors off the equilibrium path of play, and the discount factor

β. The minimum value l needed to support punishment off equilibrium is

non-decreasing in β and non-increasing in k.

6 Extensions

This section explores two issues that emerge from the previous discussion. The

cost of cooperating off-equilibrium, i.e., the lower bound for the parameter

l, falls as k increases (Figure 2). This suggests that the possibility to see

actions outside of a match would strengthen the incentives to cooperate and

to punish because contagious punishment would spread more rapidly (Theorem

1, result 5). Proposition 2 has also made explicit the finding in [6] that as

economies get progressively large the incentives to carry out punishments can

be maintained only if the cost from cooperating off equilibrium grows large.
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Adding public randomization devices, as in [4], may offer a way to resolve such

a shortcoming.8

6.1 Imperfect public monitoring

Here we provide counterparts for Propositions 1-2 under (imperfect) public

monitoring, which in this paper has been defined as a situation in which agents

observe the actions of a = 1, . . . , N − 2 anonymous agents outside of their

match, as discussed in Section 2.

The functional forms for off-equilibrium payoffs do not vary; the central

difference is that transition matrix and contact rate now depend on a. There-

fore, we write Q(a) and φk(a) for a > 0 and φk(0) ≡ φk and Q(0) ≡ Q.9 Now

each player expects that a individuals in addition to his opponent observe

his action in a period (see the proof of Theorem 1). Consequently, greater a

supports faster contagion, off-equilibrium, and a lower contact rate with coop-

erators. Naturally, this strengthens the incentive to cooperate, in equilibrium,

so the lower bound on the discount factor falls when actions can be observed

outside a match. Formally, we have a version of Proposition 1
Corollary 1 (Imperfect Public Monitoring and β). Consider the repeated Pris-
oners’ Dilemma with a = 1, . . . , N − 2. The lower bound for β, such that
deviating in equilibrium is suboptimal is

β(a) := φ−1
1 (a)

( 1
1 + γ

)
≤ β∗.

8We thank an anonymous referee for suggesting these extensions.
9An explicit expression for Q(a) is derived in the Supplementary Materials.
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Proof of Corollary 1. See Appendix

To study deviations off-equilibrium we must generalize expression (6) for

a > 0. Suppose agent i is one of k defectors, and deviates choosing C instead

of D. Such deviation is suboptimal if

N∑
k′=k

Qkk′(a){ηkk′(a)c+ (1− ηkk′(a))(d− l) + β
k′−k∑
j=0

αkk′(j; a)vk′−j}

≤
N∑
k′=k

Qkk′(a)[ηkk′(a)(c+ g) + (1− ηkk′(a))d+ βvk′ ].

Given a and conditional on k′ − k new defectors, ηkk′(a) is the probability

that defector i meets a cooperator, while αkk′(j; a) is the probability that

j = 0, . . . , k′ − k cooperators see the action of i and of no other defector.10

Hence, if defector i plays C, then j cooperators do not switch to punishing.

The right-hand side is the payoff vk, as before. The left-hand side reports

the payoff to defector i when he cooperates, instead of punishing as he should.

Agent oi(t) may be a cooperator or not, which impacts i’s the period payoff (ei-

ther c or d− l). The continuation payoff depends on how many cooperators see

the action of no other defector but defector i. Since σk =
N∑
k′=k

Qkk′(a)ηkk′(a),

for k ≤ k′ the inequality above yields

β
N∑
k′=k

Qkk′(a)(v̂k′ − vk′) ≤ σkg + (1− σk)l,

10For a = 0 we have αkk′(1; 0) = ηkk′(0) ≡ ηkk′ , αkk′(0; 0) = 1− ηkk′ , and αkk′(j; 0) = 0
for all j = 2, . . . , k′ − k, and we get back (6).
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where the expectation v̂k′ :=
k′−k∑
j=0

αkk′(j; a)vk′−j is taken over the possible num-

ber of cooperators j who see the action of i (directly or indirectly) and of no

other defector. If i cooperates, these j agents keep cooperating, so we have

vk′−j. We obtain a version of Proposition 2.

Corollary 2 (Imperfect Public Monitoring and l). Consider the repeated Pris-
oners’ Dilemma with a = 1, . . . , N−2. Proposition 2 holds by replacing l(β, k)
with

l(β, k; a) := 1
1− σk

(c+ g − d)
N∑
k′=k

Qkk′(a)β(φ̂k′(a)− φk′(a))
1− β − σkg

 ,

a non-increasing function of a, with φ̂k′(a) :=
k′−k∑
j=0

αkk′(j; a)φk′−j(a).

Proof of Corollary 2. In Appendix.

A defector will not deviate (by cooperating) if l ≥ l(β, k; a), and since

l(β, k; a) is non-increasing in a, the cost of cooperation can be smaller when

players observe more actions in the economy. Intuitively, off-equilibrium a

defector is less capable to slow down contagion because cooperators are more

likely to observe defections somewhere else in the economy.

To sum up, if players can observe actions outside their match, then the

incentive to move off-equilibrium decreases since a deviation quickly generates

larger numbers of defectors compared to private monitoring. The incentive to

not punish also decreases because contagion spreads through indirect obser-

vation of defections. The message is that cooperative equilibrium is easier to

23



sustain when players can observe some actions outside of their match.

6.2 Reverting to cooperation

Consider the case in which defection is not an absorbing state, following [4].

To simplify the discussion, assume private monitoring; the results go through

when this is not so. Suppose a public randomization device is available. At the

start of each date, the device randomly selects and makes public a number q̃t ∈

[0, 1] with uniform probability. Defectors switch state if q̃t is sufficiently high,

say, higher than q ∈ (0, 1); everyone else remains in their state. Consequently,

the strategy in Definition 1 is modified as follows:11 at the start of a period t,

a cooperator who observes a defection starts punishing in t+1 only if q̃t+1 < q;

a defector reverts back to cooperation in t+ 1 only if q̃t+1 ≥ q. In sum, out of

equilibrium, the economy can revert back to full cooperation, with probability

1 − q. We show that in this case the incentives to cooperate (in equilibrium)

decrease, while the incentives to punish (off-equilibrium) increase.

The continuation payoff in equilibrium is still v0. Suppose that off-equilibrium

there are k ≥ 1 defectors at the start of some period, and fix one, say, agent

i. Since decentralized punishment is still characterized by matrix Q, the off-
11See Supplementary Materials for formal definitions and details of this section’s analysis.
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equilibrium payoff to agent i for k = 1, . . . , N is

wk = 1
1− βq [φk(βq)πDC + (1− φk(βq))πDD + β(1− q)v0],

where φk(βq) = (1 − βq)eT
k (I − βqQ)−1σ, to emphasize the difference with

φk ≡ φk(β) (no random device). As q → 1, we have wk → vk for all k ≥ 1.

In equilibrium a generic agent must choose C and not D, which holds if

v0 − w1 = 1
1− βq [c− d− φ1(βq)(c+ g − d)] ≥ 0.

There exists a value qβ = β∗ ∈ (0, 1) satisfying c − d = φ1(βq)(c + g − d)

(Proposition 1). Hence, v0 − w1 ≥ 0 for all qβ ∈ [β∗, 1); defecting is subop-

timal in equilibrium for all β ∈
[
β∗

q
, 1
)

. Therefore, the availability of public

randomization devices makes it harder to sustain cooperation in equilibrium.

Intuitively, the possibility to revert to cooperation after a defection is akin to

introducing the possibility of renegotiation, which raises off-equilibrium pay-

offs, hence strengthens the incentive to defect.

Off-equilibrium, punishment is incentive-compatible if

qβ
N∑
k′=k

Qkk′ηkk′(wk′−1 − wk′) ≤ σkg + (1− σk)l.

which is simply expression (7) with the adjustment for the randomization q.

So, cooperating off-equilibrium is suboptimal for any β and l, if q is sufficiently

small; and it is suboptimal for any β and q, when l is sufficiently large.
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The inequality above holds for l ≥ l(qβ, k), defined in Proposition 2. Since

l(x, k) is a non-decreasing function of x ∈ (0, 1) (Proposition 2), l(qβ, k) ≤

l(β, k) for all q ∈ (0, 1], and for all k ≥ 1. With a public randomization device,

punishment is more easily sustained off the equilibrium path, even if the cost

from cooperating is small, and even if the population is large.

7 Final remarks

We have studied contagious equilibrium in infinitely repeated games where

players are randomly matched in pairs, in each period, to play a game. The

methodological innovation is to identify a key statistic of contagious punish-

ment that, together with a recursive formulation, generates tractable closed-

form expressions for continuation payoffs, out of equilibrium. A virtue of this

approach is that it makes the analysis of contagious equilibrium transparent,

allows us to generalize the expressions for continuation payoffs for all beliefs

about the number of defectors, and gives us a way to characterize exact bounds

on the parameters that are key to ensuring that cooperation is self-enforcing.

An application of the analysis developed in this study for something other

than a Prisoners’ Dilemma game is found in [3], which studies sequential equi-

librium with and without monetary exchange in random matching economies

in which agents play a helping game, repeatedly.
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Appendix
Proof of Theorem 1. The existence of the transition matrix Q immediately
follows from the indefinite repetition of a game in which everyone adopts the
strategy in Definition 1. In particular, notice that ∑N

k′=1 Qkk′ = 1 for all
k = 1, . . . , N . The properties of Q are derived from the features of the strategy
in Definition 1.
Property 1: It directly follows from the random matching assumption. For
1 ≤ k < N , there is a positive probability that some cooperator meets a
defector; hence, there is a positive probability that some cooperator switches
to playing D forever.
Property 2: It hinges on the fact that defection is an absorbing state for an
agent.
Property 3: Let κ := (1, . . . , N)T be the vector of all possible defectors in
the economy. Let there be k ≥ 1 defectors at the start of some date. The
average number of defectors in the economy after t ≥ 1 periods is

µk(t) = eT
kQ

tκ =
N∑
k′=1

Qt
kk′k

′ =
N∑
k′=k

Qt
kk′k

′ ≥ k,

We have
µk(t+ 1)− µk(t) = eT

kQ
t(Q− I)κ ≥ 0

because each element of vector (Q − I)κ is non-negative. This is so because
each row j of vector Qκ gives us µj(1), while each row j of vector Iκ gives us
j, and we know from the previous result that µj(1) ≥ j. Intuitively, defection
is an absorbing state, so, if we have k defectors, then the expected number of
defectors can only increase over time above the initial number k.
Property 4: Consider two economies differentiated according to their initial
number of defectors, k and k + 1. Let agent h be starting as a cooperator in
the k−economy and as a defector in the (k + 1)−economy. Recall that the
matching process is independent of k.
Let C(t) be the set of cooperators at date t when the economy starts with k
defectors. We have

|C(0)| = N − k and C(t+ 1) ⊆ C(t)

Consider h ∈ C(0), and denote by Dh(t) the set of new defectors generated by
making h a initial defector, instead of a cooperator. Clearly Dh(0) = {h} and,
by properties 1 and 2, we have that |Dh(t)| > 1 with positive probability in all
t ≥ 1. Now let E|Dh(t)| denote the expected number of additional defectors

28



that exist on date t as a consequence of agent h being an initial defector in
the (k + 1)−economy. We have

µk+1(t)− µk(t) = E|Dh(t)|

because µk(t) is the expected cardinality of the set of defectors present on date
t, given k initial defectors.
Property 5: Consider two economies differentiated according to the param-
eter a = 0, . . . , N − 2, i.e., the number of agents outside of a player’s match,
whose actions are observed in a period. These a agents are randomly selected
with a uniform probability, iid across agents. Denote by Qkk′(a) the elements
of the transition probability, to make explicit their dependence from the num-
ber a of observations made outside of a match. Let there be k ≥ 1 defectors
at the start of some date. The expected number of defectors in the economy
after t ≥ 1 periods is

µk(t; a) = eT
kQ

t(a)κ =
N∑
k′=k

Qt
kk′(a)k′,

We want to prove
µk(t; a+ 1) ≥ µk(t; a), for all a.

Suppose agent i defects on some date. The deviation is observed by the
opponent oi on that date (direct contagion) and possibly by r = 0, 1, . . . , N−2
agents outside of the match {i, oi} (indirect contagion). A generic agent h /∈
{i, oi} observes the action of i with probability p(a) = a

N − 2, i.e., i ∈ Oh

with probability p(a) in that period. This probability neither depends on the
identity of h nor on the period. Hence, in each period the probability P (r; a)
that r = 0, . . . , N − 2 agents who have not met agent i observe his action is

P (r; a) =
(
N − 2
r

)
p(a)r(1− p(a))N−2−r.

Hence, we expect that oi and
N−2∑
r=0

P (r; a)r = a others observe the defection of

i; so, the expected number of defectors µk(t; a) is non-decreasing in a.

29



Proof of Lemma 1. When β ∈ [0, 1) we have

eT
kσ +

∞∑
t=1

βteT
kQ

tσ < eT
k1 +

∞∑
t=1

βteT
kQ

t1 = (1− β)−1.

where 1 is an N×1 unit vector. The inequality follows from Theorem 1, which
proves that eT

kQ
t1 = 1 for all t because Qt is a transition matrix.

When β = 1, recall that σN = 0 and Q is upper-triangular. Hence we can
write ∞∑

t=0
eT
kQ

tσ = eT
k

∞∑
t=0

Qt
0σ = eT

k (I −Q0)−1σ <∞,

where Q0 is matrix Q where row N is all zeros. Clearly, ∑∞t=0 Q
t
0 converges

since all diagonal elements in Q0 are less than one (Theorem 1).

Proof of Lemma 2. Let k = 1, . . . , N − 1.
Proving φk ≤ σk: Recall that Qt

kk′ = 0 for k′ < k and σk > σk′ for k′ > k.
Hence,

eT
k (I − βQ)−1σ = σk +

∞∑
t=1

βt
N∑
k′=1

Qt
kk′σk′ = σk +

∞∑
t=1

βt
N∑
k′=k

Qt
kk′σk′

< σk + σk
∞∑
t=1

βt
N∑
k′=k

Qt
kk′ = σk + σkβ(1− β)−1

= σk(1− β)−1.

Proving φk > φk+1: We need

φk = (1− β)−1σk + (1− β)−1
∞∑
t=1

βt
N∑
k′=k

Qt
kk′σk′

> (1− β)−1σk+1 + (1− β)−1
∞∑
t=1

βt
N∑

k′=k+1
Qt
k+1,k′σk′ = φk+1,

which always holds if
N∑
k′=k

Qt
kk′σk′ ≥

N∑
k′=k+1

Qt
k+1,k′σk′ , because σk > σk+1. Note
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that
N∑
k′=k

Qt
kk′σk′ =

N∑
k′=k

Qt
kk′
N − k′

N − 1 = N

N − 1 −
1

N − 1

N∑
k′=k

Qt
kk′k

′

≥ N

N − 1 −
1

N − 1

N∑
k′=k+1

Qt
k+1,k′k

′ =
N∑

k′=k+1
Qt
k+1,k′

N − k′

N − 1

=
N∑

k′=k+1
Qt
k+1,k′σk′

since µk+1(t) = ∑N
k′=k+1 Q

t
k+1,k′k

′ ≥ µk(t) = ∑N
k′=kQ

t
kk′k

′ by Theorem 1.
Proving φk is non-increasing in a: We make explicit the dependence of
matrix Q from a, using the notation Q(a). We wish to prove that for each
k = 1, . . . , N and for each a = 0, 1, . . . , N − 2

φk(a+ 1) ≤ φk(a). (9)

Recall that
φk(a) = (1− β)eT

k (I − βQ(a))−1σ,

where

eT
k (I − βQ(a))−1σ = σk + β

N∑
k′=1

Qkk′(a)σk′ + β2
N∑
k′=1

Q2
kk′(a)σk′ + . . .

So, it is sufficient to show that

β
N∑
k′=1

Qkk′(a+ 1)σk′ + β2
N∑
k′=1

Q2
kk′(a+ 1)σk′ + . . .

≤ β
N∑
k′=1

Qkk′(a)σk′ + β2
N∑
k′=1

Q2
kk′(a)σk′ + . . .

We exploit Property 5 of Theorem 1, using the notation

µk(t; a) := eT
kQ

t(a)κ =
N∑
k′=k

Qt
kk′(a)k′.
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For each t = 1, 2, . . .

N∑
k′=1

Qt
kk′(a+ 1)σk′ =

N∑
k′=1

Qt
kk′(a+ 1)N − k

′

N − 1

= N

N − 1 −
1

N − 1

N∑
k′=k

Qt
kk′(a+ 1)k′

≤ N

N − 1 −
1

N − 1

N∑
k′=k

Qt
kk′(a)k′ =

N∑
k′=1

Qt
kk′(a)σk′ .

Proving that φk−φk+1 is non-increasing in k: Consider an economy with
k = 1, . . . , N − 1 initial defectors, and fix one of them, say, agent i. Let 0
denote the initial date and let C(t) denote the set of cooperators at the start
of period t ≥ 0 when we have fixed k initial defectors. Clearly i /∈ C(0) and,
since defection is an absorbing state, we have C(t+ 1) ⊆ C(t) for all t.

Now, suppose that we start with k + 1 initial defectors; to do so, we move
one cooperator, called agent h 6= i, from C(0) to the complementary set of k
initial defectors CC(0). We wish to track the set of additional defectors Dh(t)
that exist in period t, as a (direct or indirect) consequence of making agent
h an initial defector, instead of an initial cooperator. This can be found by
recursively defining the set of cooperators who, on some date t, have switched
to defection only as the result of seeing the actions of h or of any defectors
created as a result of h’s initial defection.

We have

Dh(0) = {h}

Dh(t) =
{
j ∈

(
CC(t) ∩ C(t− 1)

)
∪ Dh(t− 1)|

Oj(t− 1) ⊆
(
C(t− 1) t Dh(t− 1)

)}
The element j ∈ CC(t) ∩ C(t − 1) captures the requirement that agent j can
be a new defector: he cooperates in t− 1 and starts to defect in t. But agent
j can also be an old defector, infected by agent h, i.e., j ∈ Dh(t − 1). The
component Oj(t−1) ⊆

(
C(t−1)tDh(t−1)

)
captures the requirement that if

j observes defections, then these defections must come from agents “infected”
by agent h. This means that, if j was a cooperator in t − 1, then j starts to
defect in t exclusively as a consequence of seeing the action of some defector
in Dh(t − 1). Instead, if j ∈ Dh(t − 1), then j should not meet a defector
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outside of Dh(t− 1) in period t− 1; i.e., agent j would remain a cooperator in
t if agent h did not start to defect in period 0. Clearly Dh(t) depends on the
number of defectors k′ at the start of date t, because |CC(t)| = k′.

Using the definition of φk we have

φk − φk+1 = (1− β)
∞∑
t=0

βt
N∑
k′=k

Qt
kk′ Pr[oi(t) ∈ Dh(t)|k′].

Recall that φk+1

1− β is the expected number of cooperators that a defector en-
counters (over his lifetime), when the economy starts with k + 1 defectors,
one of which is agent h. If agent h were not a defector in period 0, then the
agents in Dh(t, a) would be cooperators in t. Therefore, φk − φk+1

1− β is the ex-
pected number of additional cooperators that a defector encounters (over his
lifetime), if agent h were a cooperator instead of being a defector on date 0
(i.e., if we started with k instead of k+1 defectors). So, suppose agents i and h
are defectors on the initial date 0. Pr[oi(t) ∈ Dh(t)|k′] is the probability that,
t periods forward, agent i meets either h or any of the cooperators “infected”
by h. Clearly, this probability is conditional on the number of additional de-
fectors k′ − k added over the course of t periods, since Dh(t) is contained in
the set of all defectors added over the periods 1, . . . , t.

Now, fix another agent l 6= h and define the set G(t) = Dh(t) ∪ Dl(t) We
have

φk − φk+2 = (1− β)
∞∑
t=0

βt
N∑
k′=k

Qt
kk′ Pr[oi(t) ∈ G(t)|k′]

where

Pr[oi(t) ∈ G(t)|k′] = Pr[oi(t) ∈ Dh(t)|k′] + Pr[oi(t) ∈ Dl(t)|k′]
−Pr[oi(t) ∈ Dh(t) ∩ Dl(t)|k′]

Since the random matching process is independent of agent’s identities, we
have

Pr[oi(t) ∈ Dh(t)|k′] = Pr[oi(t) ∈ Dl(t)|k′]
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Hence,

φk+1 − φk+2 = (φk − φk+2)− (φk − φk+1)

= (1− β)
∞∑
t=0

βt
N∑
k′=k

Qt
kk′ Pr[oi(t) ∈ Dh(t)|k′]

−(1− β)
∞∑
t=0

βt
N∑
k′=k

Qt
kk′ Pr[oi(t) ∈ Dh(t) ∩ Dl(t)|k′]

≤ φk − φk+1

Proving that φk − φk+1 is non-increasing in a: Again, we make explicit
the dependence of matrix Q from a, using the notation Q(a).

We wish to show that

φk − φk+1 = (1− β)
∞∑
t=0

βt
N∑
k′=k

Qt
kk′(a) Pr[oi(t) ∈ Dh(t, a)|k′]}

is non-increasing in a for all k and all a. Here, set Dh(t, a) comprises all agents
who become defectors in some period 0, . . . , t only as a consequence of agent
h being one of k + 1 initial defectors and that a observations can be made
outside a match.

Defining dt(a; k′ − k) := |Dh(t, a)| when there are k′ defectors on date t

and k defectors on date 0, we have Pr
(
oi(t) ∈ Dh(t, a)|k′

)
= dt(a; k′ − k)

N − 1 . In
what follows we omit the argument k′ − k when understood.

To prove that φk − φk+1 is non-increasing in a, we proceed by induction.
Fix a, and fix a set of k defectors in period 0, and the number of defectors in
period t ≥ 1, i.e., k′. Now fix a trajectory of matching and of observations,
that takes us from k defectors in period 0 to k′ defectors in period t, given
the observations a that can be done outside of a match. Use the definition of
Dh(t, a) in the proof of Lemma 2, where a is made explicit.

For the initial step, we prove that if t = 1, then d1(a) ≥ d1(a + 1). Recall
that Dh(0, a) = Dh(0, a + 1) = Dh(0) = {h} and C(0, a) = C(0, a + 1) = C(0)
by assumption since the set of k initial defectors (hence of initial cooperators)

34



is fixed. Consequently,

d1(a) =
∣∣∣∣{j ∈ (CC(1, a) ∩ C(0)

)
t Dh(0)| Oj(0, a) ⊆

(
C(0) t Dh(0)

)}∣∣∣∣
≥

∣∣∣∣{j ∈ (CC(1, a+ 1) ∩ C(0)
)
t Dh(0)|

Oj(0, a+ 1) ⊆
(
C(0) t Dh(0)

)}∣∣∣∣ = d1(a+ 1)

because we have |CC(1, a)| = |CC(1, a+ 1)| = k′ and Oj(0, a) ⊆ Oj(0, a+ 1).
For the induction step, assume dt−1(a) ≥ dt−1(a + 1) for some t > 2. We

want to prove that dt(a) ≥ dt(a+1). Recall that |CC(t, a)| = |CC(t, a+1)| = k′

by assumption. We have

dt(a) =
∣∣∣∣{j ∈ (CC(t, a) ∩ C(t− 1, a)

)
t Dh(t− 1, a)|

Oj(t− 1, a) ⊆
(
C(t− 1, a) t Dh(t− 1, a)

)}∣∣∣∣
≥

∣∣∣∣{j ∈ (CC(t, a+ 1) ∩ C(t− 1, a+ 1)
)
t Dh(t− 1, a+ 1)|

Oj(t− 1, a+ 1) ⊆
(
C(t− 1, a+ 1) t Dh(t− 1, a+ 1)

)}∣∣∣∣
= dt(a+ 1)

because

• dt−1(a) ≡ |Dh(t−1, a)| ≥ |Dh(t−1, a+1)| ≡ dt−1(a+1) by the induction
hypothesis.

• |C(t−1, a+1)| ≤ |C(t−1, a)|, by the properties of the contagious process
reported in Theorem 1 (the number of defectors cannot be lower if agents
can make more observations).

• Oj(t− 1, a) ⊆ Oj(t− 1, a+ 1)

Hence, given an initial set of k defectors, and given a number of defectors
|CC(t, a)| = |CC(t, a′)| = k′ in period t for some a′ > a, the size of Dh(t, a) is

non-increasing in a for all t. Noticing that Pr[oi(t) ∈ Dh(t, a)|k′] = dt(a)
N − 1 we

conclude that φk − φk+1 is non-increasing in a.

Finally, it is immediate that φk − φk+1

1− β is non-decreasing in β.
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Proof of Proposition 1. Using (7) and the definition of γ observe that β∗
is a solution to the implicit function

φ1 −
1

1 + γ
= 0

where φ1 is a function of β as indicated in Theorem 2. We will prove that φ1 is
a strictly monotone, decreasing function of β and, consequently, the function
φ1 is invertible so

β∗ := φ−1
1

( 1
1 + γ

)
,

in which case

∂β∗

∂γ
= − 1

φ′1

1
(1 + γ)2

∣∣∣∣
β=β∗

> 0,

∂2β∗

∂γ2 = 1
φ′1

 2
(1 + γ)3 − φ

′′
1

(
1

φ′1(1 + γ)2

)2
 ∣∣∣∣

β=β∗
< 0.

To prove that φk is a decreasing function of β for all k = 1, . . . , N − 1, use the
expression for φk. We have

φ′k := ∂φk
∂β

= −eT
k (I − βQ)−1[I − (1− β)Q(I − βQ)−1]σ < 0.

φ′′k := ∂2φk
∂β2 = −2eT

k (I − βQ)−1Q(I − βQ)−1[I − (1− β)Q(I − βQ)−1]σ < 0.

The negative sign of the derivatives follow from noting (from Lemma 1) that
the vector (I − βQ)−1σ < (1 − β)−11, where 1 is an N × 1 unit vector.
Since Q is a transition matrix, then Q(I − βQ)−1σ < Q(1 − β)−11 and so
[I − (1 − β)Q(I − βQ)−1]σ ≥ 0 is a non-zero vector because 0 = σN < σk′ <
σk < σ1 ≤ 1 by definition of σk.

Proof of Proposition 2. Using (8), inequality (7) is rearranged as

β

1− β

N∑
k′=k

Qkk′ηkk′(c+ g − d)(φk′−1 − φk′) ≤ σkg + (1− σk)l,
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which holds if

l ≥ l(β, k) := 1
1− σk

{
N∑
k′=k

Qkk′ηkk′
[
(c+ g − d)× β(φk′−1 − φk′)

1− β − g
]}

.

where we have used that σk =
N∑
k′=k

Qkk′ηkk′ .

We know that φk
′−1 − φk′
1− β is non-decreasing in β (Theorem 2). Therefore

l(β, k) is non-decreasing in β.
Now we argue that l(β, k) is decreasing in k. To see this, notice that

N∑
k′=k

Qkk′ηkk′ak′ = σk when ak′ = 1 for all k′ ≥ k. Hence,
N∑
k′=k

Qkk′ηkk′ak′ is
decreasing in k when ak′ = 1 for all k′ ≥ k, and therefore also when ak′ is a
decreasing sequence. Clearly,

ak′ = (c+ g − d)β(φk′−1 − φk′)
1− β − g

is a decreasing sequence because φk
′−1 − φk′
1− β is decreasing in k′ (Theorem 2) .

Consequently, l(β, k) > l(β, k + 1) for all k = 2, . . . , N .
We can find an upper bound for l(β, k) by noticing, from Theorem 2, that

β

1− β (φk−1 − φk) ≤
β

1− β (φ1 − φ2) <∞ for each k = 2, . . . , N .

To find β

1− β (φ1 − φ2) use the recursive equation v1 = c + g + βv2, which
substituting v1 and v2 from (3) is written as

1
1− β [φ1(c+ g) + (1− φ1)d] = c+ g + β

1− β [φ2(c+ g) + (1− φ2)d],

or, equivalently,
β

1− β (φ1 − φ2) = 1− φ1. (10)

Since β

1− β (φk−1 − φk) is non-decreasing in β (Theorem 2), we have

sup
β∈(0,1)

β

1− β (φ1 − φ2) = lim
β→1−

β

1− β (φ1 − φ2) = 1− lim
β→1−

φ1 = 1, (11)
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where we used (10) to get the second equality and the last equality follows
from lim

β→1−
φk = 0 for all k ≥ 1 (Theorem 2). From (11) we have

l(β, k) ≤ 1
1− σk

N∑
k′=k

Qkk′ηkk′ [(c+ g − d)× 1− g]

= σk
1− σk

(c− d) = N − k
k − 1 (c− d)

≤ l∗ := (N − 2)(c− d).

Hence l ≥ l∗ is sufficient for the optimality of off equilibrium punishment.

Proof of Corollary 1. As before, deviating in equilibrium is suboptimal if
v0− v1 ≥ 0. Following the same procedure used in the earlier proof, using (7),
we have

v0 − v1 = 1
1− β [c− d− φ1(a)(c+ g − d)] = 0

for a value β(a) ∈ (0, 1). Recall that, when a = 0, β∗ ≡ β(0) satisfies v0−v1 =
0. Since φ1(a) ≤ φ1(0) (Lemma 2) and φk(a) is decreasing in β for every a, we
have that β(a) ≤ β∗.

Proof of Corollary 2. By Theorem 2 lim
β→1−

(1 − β)−1φk(a) < ∞ for all k.
Hence, deviating off-equilibrium is suboptimal when l is sufficiently large.

We now characterize l(β, k; a), starting by proving that it is non-decreasing
in β. Note that

φ̂k′(a)− φk′(a)
1− β ≡ 1

1− β

k′−k∑
j=0

αkk′(j; a)[φk′−j(a)− φk′(a)].

We also have the telescoping sum (omitting a when understood)

φk′−j − φk′
1− β = φk′−j − φk′−j+1

1− β + φk′−j+1 − φk′−j+2

1− β + . . .+ φk′−1 − φk′
1− β ,

whose terms of the right-hand side are non-negative and non-decreasing in β
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(Theorem 2). It follows that

β(φ̂k′(a)− φk′(a))
1− β

is non-decreasing in β. Consequently, l(β, k; a) is non-decreasing in β.

To prove that l(β, k) is decreasing in k, rewrite it as

l(β, k; a) = 1
1− σk

N∑
k′=k

Qkk′(a)ηkk′(a)
(c+ g − d)β(φ̂k′(a)− φk′(a))

1− β − g


+ 1

1− σk

N∑
k′=k

Qkk′(a)(1− ηkk′(a))(c+ g − d)β(φ̂k′(a)− φk′(a))
1− β

Using the telescoping sum above, it follows that the first term is decreasing in
k. The second term, instead, can be rewritten as

(c+ g − d) β

1− β

∑N
k′=kQkk′(a)(1− ηkk′(a))(φ̂k′(a)− φk′(a))∑N

k′=kQkk′(a)(1− ηkk′(a))

where we have exploited the fact that

1− σk =
N∑
k′=k

Qkk′(a)(1− ηkk′).

Since φ̂k′(a) − φk′(a) is decreasing in k′ ≥ k, it follows that the second term
of the expression above is also decreasing in k. Consequently, l(β, k; a) is
decreasing in k.

To prove that l(β, k) is non-increasing in a it is sufficient to show that

φ̂k′(a)− φk′(a)

is decreasing in a. Given that φ̂k′(a) =
k′−k∑
j=0

αkk′(j; a)φk′−j(a), this follows from

φk(a)−φk+1(a) being non increasing in a (Lemma 2). Hence, the cooperation
cost l(β, k; a) is non-increasing in the public monitoring parameter a.
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Figure 1: The lower bound for β

Notes: The figure plots the function β∗ for N = 4, 20, 40 as γ varies from 0 to 5 by fixing
(c, d) = (1, 0) and varying g from 0 to 5
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Figure 2: The lower bound for l

Notes: The figure plots the function max(0, l(β, k)) for N = 20, k = 2, 4, 6, and β ∈ (β∗, 1).
We have fixed (c, d, g) = (1, 0, 0.1), hence β∗ = 0.48
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