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ABSTRACT 

Contradictory results have been reported with regard to the effects of various models of hepatic 

encephalopathy on the blood-brain barrier (BBB) permeability, which may be due partly to the 

use of brain concentrations of BBB markers without attention to their peripheral 

pharmacokinetics. The purpose of the current study was to investigate the effects of short-term 

portacaval anastomosis (PCA), a type B model of hepatic encephalopathy, on the peripheral 

pharmacokinetics and brain distribution of sodium fluorescein (FL), which is a small molecule 

marker of BBB passive permeability. A single 25 mg/kg dose of FL was administered 

intravenously to 10-day PCA and sham-operated rats, and serial blood and bile (0-30 min) and 

terminal (30 min) brain samples were collected, and the concentrations of FL and its 

glucuronidated metabolite (FL-Glu) were measured by HPLC. Additionally, the free fractions of 

FL (fu) in all the plasma samples were determined, and the effects of bile salts on fu were 

investigated in vitro. Passive permeability of BBB to FL was estimated by brain uptake clearance 

(Kin) based on both the brain concentrations of FL and plasma concentrations of free (unbound) 

FL. PCA caused a 26% increase in the fu of FL in plasma, which was due to competition of bile 

acids with FL for binding to plasma proteins. Additionally, PCA reduced the biliary excretion of 

FL-Glu by 55%. However, free Kin values (µl/min/g brain) for the sham (0.265 ± 0.034) and PCA 

(0.228 ± 0.038) rats were not significantly different.  It is concluded that whereas 10-day PCA 

alters the peripheral pharmacokinetics of FL, it does not significantly affect the BBB 

permeability to the marker.  

 

Keywords: Blood-brain barrier; Sodium fluorescein; Brain uptake clearance; Plasma free 

fraction; Portacaval anastomosis; Hepatic encephalopathy   
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1. Introduction 

Hepatic encephalopathy (HE) is a neuropsychiatric disorder associated with hepatocellular 

failure or portal-systemic venous shunting, which results in exposure of the brain to high 

concentrations of toxins that are otherwise removed by the liver. In addition to significant effects 

on the brain function, it has been suggested that HE may also increase the blood-brain barrier 

(BBB) permeability in different models of HE (Cauli et al., 2011; Chen et al., 2013; Dixit and 

Chang, 1990; Horowitz et al., 1983; Laursen and Westergaard, 1977; Livingstone et al., 1977; 

Nguyen, 2012; Shimojima et al., 2008; Zaki et al., 1984). However, other studies have shown 

that HE does not affect the BBB passive permeability (Alexander et al., 2000; Bémeur et al., 

2010; Bosoi et al., 2012; Jin et al., 2013). One obvious explanation for these apparently 

contradictory results is the heterogeneity of the animal models of HE used in these studies. 

According to the latest definitions (Ferenci et al., 2002), HE is divided into three types based on 

the extent and type of liver injury that are associated with acute liver failure (type A), portal-

systemic bypass (type B), and cirrhosis (type C). Therefore, it is likely that different types of HE 

have different effects on the BBB permeability.  

 A second complicating factor in the reported contradictory results may be the 

methodology to determine the BBB permeability. For example, in some reports (Bosoi et al., 

2012; Chen et al., 2013; Shimojima et al., 2008) sodium fluorescein (FL) is used as a small 

molecule, non-permeable marker to study the passive permeability of the BBB. Generally, these 

studies use the brain concentration of FL as a measure of BBB integrity. However, HE may also 

alter the peripheral pharmacokinetics and area under the plasma concentration-time curve (AUC) 

of FL, thus potentially affecting the brain concentrations of the marker even in the absence of 

any changes in the BBB passive permeability. Additionally, FL is bound to proteins in the 
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plasma (Li and Rockey, 1982; Manzini and Crescenzi, 1979), and only the free (unbound) 

fraction of the drug is available for distribution to other organs (Mehvar, 2005), including the 

brain. Therefore, studies using FL as an in vivo marker of BBB permeability in HE should 

consider the effects of the disease on both the extent of systemic exposure (AUC) and free 

fraction of the drug, in addition to its brain concentrations.  

  Rats with portacaval anastomosis (PCA) are considered one of the best models of latent 

encephalopathy (type B) in humans (Butterworth et al., 2009). Additionally, few studies have 

reported the effects of PCA in rats on the integrity of the BBB (Alexander et al., 2000; Bosoi et 

al., 2012; Laursen and Westergaard, 1977; Sumner, 1982). Whereas earlier studies (Laursen and 

Westergaard, 1977; Sumner, 1982) suggested that the BBB permeability to the macromolecule 

horseradish peroxidase (HRP) is increased at 10, 14, or 30 days after PCA, more recent studies 

(Alexander et al., 2000; Bosoi et al., 2012) using mannitol, Evans blue, or FL after 4 or 16 weeks 

of PCA reported no effects of PCA on the BBB passive permeability. The disagreement among 

these studies may be related, at least in part, to the time course of the PCA effects on the BBB 

permeability and/or the size and mechanism of the passage of the marker through the BBB. 

However, we are not aware of any quantitative studies on the short-term (≤ 14 days) effects of 

PCA on the BBB permeability of small, non-permeable markers, such as FL. Therefore, the 

purpose of the current investigation was to study the effects of short-term (10 day) PCA on the 

BBB passive permeability using a quantitative analysis of the peripheral and brain disposition of 

FL, including consideration of its free fraction in plasma (fu). Based on the reported increase in 

the BBB to HRP at 10-14 days after PCA (Laursen and Westergaard, 1977; Sumner, 1982), we 

hypothesized that short-term PCA increases the BBB passive permeability to FL. 
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2. Results 

 The liver weight (as a fraction of total body weight) and plasma biochemical parameters for the 

Sham and PCA rats are shown in Fig. 1. PCA caused a 16% decrease (p<0.05) in the liver: total 

body weight ratio (Fig. 1a). Additionally, PCA caused a 40% increase (p<0.05) in the plasma 

concentration of ammonia (Fig. 1b) and an almost 7-fold increase (p<0.0001) in the 

concentrations of total bile acids in plasma (Fig. 1c). Although PCA also modestly (11%) 

reduced (p<0.01) the total plasma protein concentrations (Fig. 1d), the plasma albumin 

concentration was not affected by the surgery (Fig. 1e). Furthermore, the plasma concentrations 

of aspartate aminotransferase (AST) in the Sham and PCA animals were not significantly 

different (Fig. 1f). 

 The total (free plus bound) and free plasma concentration-time courses of FL, along with 

fu values of the marker, are presented in Fig. 2. Additionally, the zero to 30 min AUC values of 

total (AUCtotal) and free (AUCfree) FL during the sampling time are presented in Table 1. 

Although the plasma concentrations or AUC values for the total or free FL were not significantly 

different in the PCA and Sham groups, the AUCfree/AUCtotal ratio in the PCA animals was 26% 

higher (p<0.01) than that in the Sham group (Table 1). This was due to significantly higher fu of 

FL in the PCA animals in most of the samples (Fig. 2c), which also resulted in reversal of PCA: 

Sham AUC ratios when total (ratio of 0.903) and free (ratio of 1.15) AUCs were considered 

(Table 1). 

 The biliary excretion data for FL and its glucuronidated metabolite (FL-Glu) in the Sham 

and PCA rats are depicted in Fig. 3. Although PCA did not significantly affect the biliary 

recovery (Fig. 3a) or biliary clearance of total (Fig. 3b) or free (Fig. 3c) FL, it significantly 

(p<0.01) reduced the biliary excretion of FL-Glu from 17.6% of the dose to 7.93% of the dose 
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(Fig. 3d). Consequently, the overall (FL plus FL-Glu) biliary recovery in the PCA rats (17.9% of 

dose) was significantly (p<0.05) lower than that in the Sham animals (28.7% of dose) (Fig. 3e). 

Further, the bile flow rate (ml/h) in the PCA animals (1.09 ± 0.27) was significantly (p< 0.01) 

lower than that in the Sham group (1.74 ± 0.27) (Fig 3f).  

 The concentration and amount of FL in the liver of Sham and PCA rats are depicted in 

Fig. 4. Whereas the liver concentrations of FL in the Sham and PCA rats were not significantly 

different from each other (Fig. 4a), the amount of FL recovered in the liver of PCA rats (5.89% 

± 0.93% of dose) was significantly (p<0.05) lower than that in the Sham animals (7.74% 

± 1.33% of dose) (Fig. 4 b), most likely due to the lower weight of the liver in the PCA rats. FL-

Glu was not detectable in the liver samples. 

 The brain concentration and total (free plus bound) and free brain uptake clearance (Kin) 

values for FL in the Sham and PCA rats are shown in Fig. 5. PCA did not significantly affect the 

brain concentration (Fig. 5a) or the total (Fig. 5b) or free (Fig, 5c) Kin values of FL. However, 

although the PCA: Sham ratio was more than 1 for the total Kin (1.08), the ratio was less than 1 

(0.857) for the free Kin (Fig. 3).  

 The effects of different concentrations of major bile acids on the in vitro fu of FL are 

demonstrated in Fig. 6. All the tested bile acids caused a concentration-dependent increase in the 

fu of FL. Compared with the baseline fu value of 0.264, the highest concentration of bile acids 

(150 µM) resulted in fu values of 0.414-0.433 (Fig. 6), representing 57% to 64% increase in the fu.  

 

3. Discussion 

The main goal of the current study was to investigate the effects of short-term (10 day) PCA on 

the BBB passive permeability to the small molecule probe FL using an appropriate kinetic 
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analysis, considering both the peripheral and brain disposition of the marker. The success of 

PCA operation was confirmed by reductions in the liver: total body weight ratio and substantial 

increases in the plasma concentrations of ammonia and total bile acids (Fig. 1), in addition to 

visual inspection of the shunt at the time of liver collection. These observations are in agreement 

with previous reports on the effects of PCA on the liver: total body weight ratio 

(Balasubramaniam et al., 1976; Magide et al., 1976), ammonia (Alexander et al., 2000; Hawkins 

et al., 1996), and total bile acids (Poupon et al., 1977). 

 PCA caused significant changes to the peripheral pharmacokinetics of FL, most notably 

an increase in the fu of the marker (Fig. 2c) and a decrease in the biliary excretion of its 

glucuronidated metabolite (Fig. 3d). As for protein binding, the fu of FL in both Sham and PCA 

rats was significantly (p<0.0001) affected by the sampling time (Fig. 2c), suggesting nonlinear, 

concentration-dependent binding of the marker to plasma proteins; the fu values at earlier time 

points (higher plasma concentrations) were higher than those at later time points (lower plasma 

concentrations). The concentration-dependent fu of FL, observed in our studies, is in agreement 

with a previous study (Grimes, 1985) that reported fu values of 0.496, 0.212, and 0.074 in Wistar 

rats at FL plasma concentrations of 446, 163, and 25 µg/ml, respectively. 

 Various studies were conducted to determine the possible mechanisms of the PCA-

induced increase in the fu of FL. A PCA-induced decrease in the total plasma proteins (Fig. 1d) 

might have potentially been responsible for the decrease in the fu of FL. However, being an acid, 

FL is expected to bind almost exclusively to plasma albumin (Manzini and Crescenzi, 1979; 

Rockey et al., 1983), which was not significantly affected by PCA (Fig. 1e). In contrast, the most 

striking effect of PCA on biochemical parameters in our study was the 7-fold increase in the 

plasma concentrations of total bile acids (Fig. 1c). Bile acids are known to bind significantly to 
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albumin (most likely site I) (Roda et al., 1982), displacing other drugs, such as warfarin 

(Bowmer et al., 1985), from their binding site. FL is reportedly bound to albumin site I because 

warfarin directly competes with fluorescein for the same binding site on the serum albumin 

(Manzini et al., 1979). Therefore, we hypothesized that the PCA-induced increase in the fu of FL 

was due to the 7-fold higher concentrations of total bile acids in plasma. Indeed, in vitro studies 

with four major bile acids in plasma are in agreement with this hypothesis as all the tested bile 

acids concentration-dependently increased the fu of fluorescein in plasma (Fig. 6). 

 The second major change in the peripheral pharmacokinetics of FL was the substantial 

reductions in the biliary excretion of FL-Glu (Fig. 3d). Although we are not aware of any 

specific reports on the mode of transport of FL-Glu into the bile, the biliary transport of FL is 

through Mrp2 (Mills et al., 1999). Because Mrp2 is a major transporter for glucuronidated 

compounds, it is likely that the transport of FL-Glu, similar to its parent drug, is also mediated by 

Mrp2. Theoretically, the observed reduction in the biliary excretion of FL-Glu in the PCA rats 

(Fig. 3d) could be due to a decreased formation and/or reduced biliary transport of the metabolite.  

Because PCA did not significantly affect the Mrp2-dependent biliary clearance of FL (Figs 3b 

and c), it is likely that the substantial decrease in the biliary recovery of FL-Glu is due to its 

reduced formation, rather than a reduced transport. 

 The quantitative analysis of brain uptake, incorporating both the brain concentrations and 

AUC values of the total or free FL suggested that 10-day PCA in our rat model does not 

significantly alter the BBB permeability to the marker (Fig. 5). Similarly, Bosoi et al. (Bosoi et 

al., 2012) recently showed that there was no difference between the Sham and PCA rats in their 

brain concentrations of Evans blue or FL at 4 weeks after the surgery. Although the Mw of 

Evans blue is 961 Da, it avidly binds to albumin in plasma, forming a macromolecule. Therefore, 
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that study (Bosoi et al., 2012) suggests that the permeability of the BBB to both small molecules 

(FL) and macromolecules (Evans blue) remain unchanged in the 4 week-PCA rats. Additionally, 

Alexander et al. (Alexander et al., 2000) reported no effect of PCA on the brain 
14

C-mannitol 

space in 16 week PCA rats using the brain in situ perfusion method; mannitol is a non protein-

bound, non-metabolizable probe for BBB passive permeability.  These observations are in 

contrast to histological experiments that showed an increase in the permeability of the BBB 

vasculature to HRP at 10 or 30 days (Laursen and Westergaard, 1977) or at 14 days (Sumner, 

1982) after PCA in rats. Although these earlier studies suggested a generalized increase in the 

BBB permeability, the more recent works by others (Alexander et al., 2000; Bosoi et al., 2012) 

and our own current data suggest that the apparent PCA-induced increase in HRP uptake by 

brain vasculature does not translate into measurable quantitative changes in the BBB 

permeability to small (FL and mannitol) or large (Evans blue) molecules. Therefore, the reported 

increase in the uptake of HRP by cerebral endothelium of PCA rats (Laursen and Westergaard, 

1977; Sumner, 1982) may be a unique phenomenon only affecting the vesicular transport of HRP 

rather than a breakdown of BBB. 

 Although the same conclusion (i.e., no change in BBB permeability to FL) is made in our 

study based on the total (Fig. 5b) and free (Fig. 5c) Kin values, this observation warrants some 

comments. When the total Kin is considered, the PCA: Sham ratio is slightly more than 1 (1.08) 

(Fig. 5b). However, for free Kin, the ratio is slightly less than 1 (0.857) (Fig. 5c). Therefore, it is 

conceivable that under a different scenario, such as PCA: Sham ratio of 1 or slightly lower than 1 

for the total Kin, the differences between the PCA and Sham for free Kin would have been 

statistically significant, hence resulting in a different conclusion based on the total and free Kin. 
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Consequently, although not exemplified in our studies, it seems prudent to use free Kin when FL 

is used as a marker for the in vivo determination of BBB passive permeability. 

 The in vivo approach used here for determination of BBB permeability using FL has been 

used before for 
14

C-sucrose (Bickel et al., 1998; Kang et al., 1994; Ohno et al., 1978), which is 

the gold standard for determination of BBB passive permeability to small molecules (Mw of 342 

Da). The reported in vivo Kin for 
14

C-sucrose, which is not bound to plasma proteins, is 0.25-0.30 

µl/min/g brain (Bickel et al., 1998). It is interesting to note that the free Kin value of 0.265 ± 

0.034 µl/min/g brain for FL (Mw of 332 Da) reported here in Sham animals (Fig. 5c) is 

strikingly close to the reported (Bickel et al., 1998) value for sucrose. Therefore, it appears that 

14
C-sucrose and FL have similar properties in terms of kinetics of brain uptake.  However, it 

should be noted that in contrast to 
14

C-sucrose, some studies (Sun et al., 2001b) have suggested 

that Mrp1 might be involved in the brain distribution of fluorescein, although additional studies 

(Sun et al., 2001a) showed that the brain accumulation of fluorescein did not increase in Mrp1 

knockout mice, suggesting a limited role for Mrp1 function at the BBB. Nevertheless, the 

possibility of contribution of transporters to the brain distribution of fluorescein cannot be ruled 

out at this time.  

 Although previous reports have indicated that ammonia (Skowronska et al., 2012; Ziylan 

et al., 1993) and bile salts (Greenwood et al., 1991; Spigelman et al., 1983) increase the BBB 

passive permeability, the PCA-induced increases in the plasma concentrations of these chemicals 

did not result in a change in the permeability of BBB to FL in our studies. This is most likely due 

to the differences in the concentrations of ammonia or bile acids achieved in our PCA rats and 

the concentrations of these chemicals used in previous studies. For example, an in vitro study  

(Skowronska et al., 2012) showed that treatment of a rat brain endothelial cell line with a 5 mM 
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concentration of ammonia for 24 h increased the cell permeability to dextran 40 kDa. 

Additionally, injection of ammonium acetate to rats, producing a plasma concentration of 1.45 

mM of ammonia, resulted in BBB breakdown (Ziylan et al., 1993).  However, the plasma 

ammonia concentrations in our PCA rats (247 ± 47 µM), although significantly higher than those 

in the Sham animals (176 ± 49 µM), were much lower than the in vitro and in vivo 

concentrations of ammonia that reportedly (Skowronska et al., 2012; Ziylan et al., 1993) alter 

BBB permeability. Similarly, using an in situ brain perfusion model, the increase in the BBB 

permeability to deoxycholate and taurochenodeoxycholate occurred only at perfusate 

concentrations of ≥ 1 mM and ≥ 0.2 mM (Greenwood et al., 1991), respectively. However, the 

total bile acid concentrations in our PCA rats were ≤ 100 µM (Fig. 1c). Indeed, another study 

(Zaki et al., 1983) showed that BBB permeability to inulin remained unchanged by intravenous 

administration of glycocholic acid or taurocholic acid to rats, producing plasma concentrations of 

80 µM. Therefore, the lack of change in the BBB permeability in our PCA rats, despite the 

observed increases in the plasma concentrations of ammonia and total bile acids, is in agreement 

with the literature data.  

 In conclusion, the effects of short-term (10 days) PCA on the peripheral 

pharmacokinetics and brain distribution of the BBB passive permeability marker sodium 

fluorescein were investigated in rats. PCA caused a significant increase in the plasma free 

fraction of the marker, most likely due to an increase in the plasma concentrations of bile acids. 

Additionally, PCA significantly reduced the biliary excretion of the glucuronidated metabolite of 

the marker. However, quantitative analysis of the brain uptake of the marker indicated that the 

10-day PCA does not significantly alter the BBB passive permeability. 
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4. Experimental procedures 

4. 1. Chemicals 

Sodium fluorescein (FL), β-glucuronidase (Type-LII), cholic acid (CA), chenodeoxycholic acid 

(CDCA), lithocholic acid (LCA), and taurocholic acid (TCA) were purchased from Sigma–

Aldrich (St. Louis, MO). Ketamine and xylazine solutions for anesthesia were purchased from 

Llyod Laboratories (Shenandoah, IA). The kits for measurement of biochemical parameters were 

obtained from the following sources: total protein from Pierce Biotechnologies (Rockford, IL), 

albumin from Active Motif (Carlsbad, CA), total bile acids (TBA) from Crystal Chem (Downers 

Grove, IL), ammonia from Sigma–Aldrich, and aspartate aminotransferase (AST) from Teco 

Diagnostics (Anaheim, CA). Methanol and PIC-A reagent (tetrabutylammonium dihydrogen 

phosphate) for HPLC were from Fisher Scientific (Fair Lawn, NJ) and Waters (Milford, MA), 

respectively. 

4.2. Animals 

Adult, male Sprague-Dawley rats were obtained from Charles River Laboratories, Inc. 

(Wilmington, MA, USA) and kept in a temperature- and humidity-controlled room with free 

access to food and water before the experiments. All the animal experiments were approved by 

our Institutional Animal Care and Use Committee.  

4.3. Portacaval anastomosis surgery 

End-to-side portacaval anastomosis (PCA) was carried out at Charles River Laboratories. Briefly, 

the procedure consisted of clamping of the portal vein and inferior vena cava of isoflurane-

anesthetized animals for ~ 5 min, followed by end-to-side anastomosis of the portal vein to 

inferior vena cava using a cyanoacrylate skin adhesive glue (Coy et al., 1991; Jerkins and Steele, 
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1988). However, the blood flow to the liver via hepatic artery was kept intact. Sham rats 

underwent anesthesia, laparatomy, and 5 min clamping of the portal vein and inferior vena cava 

without the anastomosis. Following the surgery, animals had free access to food and water and 

were used in the pharmacokinetic study 10 days later. 

4.4. Pharmacokinetic study 

Ten days after PCA or sham-operation, rats were anesthetized using an intramuscular injection of 

ketamine: xylazine (100:8 mg/kg), and catheters were placed in femoral artery (blood sampling) 

and bile duct (bile collection). Subsequently, fluorescein sodium at a dose of 25 mg/kg (acid 

equivalent) was infused into the penile vein over 5 min. Blood samples (~250 µl ) were then 

collected into heparinized microcentrifuge tubes at time zero (before the drug infusion), 5, 10, 20, 

and 30 min, and plasma was separated. Cumulative (0-30 min) bile samples were also collected 

in pre-weighted microcentrifuge tubes. At the end of experiments (30 min), the vasculature blood 

was flushed out with 50 ml of ice-cold saline delivered at a flow rate of 25 ml/min through a 

catheter inserted into the left ventricle of the heart, and brain and liver tissue were collected. The 

brain and liver were snap-frozen in dry ice/isopentane and liquid nitrogen, respectively. All the 

samples were stored at -80
o
C until analysis.   

4.5. Protein binding studies 

The unbound concentrations of fluorescein in plasma were determined by ultrafiltration method 

using Microcon Ultracel YM-30 centrifugal devices, with a molecular weight cut-off of 30 kDa, 

from Millipore (Billerica, MA, USA). Approximately, 100 µl of each plasma sample was added 

to the device, which was then incubated at 37
o
C for 30 min before centrifugation at 2000 g for 15 

min (37
o
C). Aliquots (10 µl) of the original plasma samples and the filtrate were then subjected 
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to the HPLC assay described below. The free fraction (fu) of fluorescein was estimated by 

dividing the concentration of the marker in the filtrate (free) by that in the original plasma 

sample (total). 

4.6. Effects of bile salts on unbound fraction of fluorescein in plasma 

The effects of various bile acids on the fu of FL in plasma were investigated in an in vitro study. 

Drug-free, heparinized rat plasma (Innovative Research, Novi, MI) was spiked with LCA, CA, 

CDCA, or TCA at concentrations of 0, 18.75, 37.5, 75, or 150 µM. After addition of FL at a 

plasma concentration of 50 µg/ml, the samples (n=3/group) were incubated at 37
o
C for 30 min 

before ultrafiltration as described above. 

4.7. Fluorescence HPLC analysis of fluorescein 

The concentrations of FL in plasma, bile, liver, and brain samples were measured by 

modification of a previously reported HPLC method (Selan et al., 1985). Briefly, the samples 

were chromatographed on a reversed phase C18 column (250 x 4.6 mm, 5 µm; Microsorb-MV 

100-5 C18; Varian, Palo Alto, CA) with a mobile phase of methanol: water: PIC-A reagent (55: 

45: 1.5, v/v; pH 7.4), run at a flow rate of 0.8 ml/min.  Fluorescence detection at excitation and 

emission wavelengths of 495 and 520 nm, respectively, was used for quantitation of FL.  

 Before analysis, liver (1:9) and brain (1:4) tissues were homogenized in distilled water. 

Additionally, plasma, filtrate after ultrafiltration of plasma, and liver homogenate samples were 

diluted 100, 50, and 5 times, respectively, with a solution of 4% bovine serum albumin in water 

before analysis. The brain homogenate samples were used without further dilution. To 20 µl of 

each sample was added 200 µl of mobile phase, and the samples were vortex-mixed for 10 sec. 

After centrifugation, 50 µl of the supernatant was injected into the HPLC system. Bile samples 



 15 

were analyzed twice, before and after hydrolysis. Glucuronide hydrolysis was based on a 

published method (Chen et al., 1980). Briefly, 20 µl of the diluted bile sample was incubated for 

20 min (37
o
C) with 50 µl of a 0.25 M sodium acetate buffer (pH 4.75) that contained 500 units of 

-glucuronidase. Subsequently, 150 µl of mobile phase was added, and after mixing and 

centrifugation, 50 µl of the supernatant was injected into the HPLC. Preliminary studies 

indicated that the concentrations of FL-Glu in the plasma, liver, and brain samples were 

negligible or undetectable. Therefore, only the parent drug was measured in these samples.   

4.8. Analysis of biochemical parameters in plasma 

The plasma concentrations of several biochemical markers were quantitated according to the 

manufacturers’ instructions for the commercially-available kits based on the following methods: 

Total plasma protein by the BCA method; albumin by albumin blue fluorescent assay; total bile 

acids by enzyme cycling method; ammonia by enzymatic (glutamate dehydrogenase) assay; and 

AST by spectrophotometric method.  

4.9. Pharmacokinetic analysis 

The areas under the plasma concentration-time curve of total (AUCtotal) and free (AUCfree) FL 

during the sampling time (0-30 min) were estimated using linear trapezoidal rule. The apparent 

brain uptake clearances (Kin) for the total and free FL were estimated by dividing the brain 

concentration of FL at 30 min by the AUCtotal and AUCfree, respectively (Bickel, 2005). The 

biliary clearance of total and free FL was estimated by dividing the amount of the marker 

excreted into the bile during the 30-min sampling period by the AUCtotal and AUCfree, 

respectively. 
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4.10. Statistical analysis 

Except for the free fraction, the differences between the Sham and PCA for all parameters were 

tested using unpaired, two-tailed t-test. A repeated measure, two-way ANOVA, followed by 

Bonferroni’s multiple comparison test was used the detection of significant differences between 

the free fraction of FL in Sham and PCA plasma at different times after the drug administration. 

In all cases, a p<0.05 was considered significant. Whenever mean data are presented, the error 

term is SD.     
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Figure Legends 

Fig. 1 – Liver: total body weight ratio (a) and plasma concentrations of ammonia (b), total bile 

acids (c), total proteins (d), albumin (e), and AST (f) in Sham (n=6) and PCA (n=5) animals. 

Data are collected 10 days after PCA or sham surgery. The symbols and horizontal lines 

represent the individual and mean values, respectively. Statistical analysis is based on unpaired, 

two-tailed, t-test. 

Fig. 2 – Total (free plus bound to plasma proteins) (a) and free (b) plasma concentration-time 

courses and plasma free fraction (fu)-time courses (c) of fluorescein in rats 10 days after sham (n 

=6) or PCA (n=5) surgery. A single 25 mg/kg dose of fluorescein was administered 

intravenously through a 5 min constant infusion 10 days after the surgery. The symbols and bars 

represent the mean and SD values, respectively. Statistical analysis is based on repeated measure, 

two-way ANOVA, followed by Bonferroni’s multiple comparison test. *p<0.05, **p<0.01. 

Fig. 3 – Biliary recovery (a), biliary clearance of total (free plus bound) (b) and free (unbound)  

(c) fluorescein, biliary recovery of fluorescein-glucuronide (d), overall (fluorescein plus 

fluorescein glucuronide) biliary recovery (e), and bile flow rate (f) in Sham (n=6) and PCA (n=5) 

animals. A single 25 mg/kg dose of fluorescein was administered intravenously through a 5 min 

constant infusion 10 days after the surgery, and samples were collected for 30 min. The symbols 

and horizontal lines represent the individual and mean values, respectively. Statistical analysis is 

based on unpaired, two-tailed, t-test. 

Fig. 4 – The concentration (a) and amount (b) of fluorescein recovered in the liver in Sham (n=6) 

and PCA (n=5) animals. A single 25 mg/kg dose of fluorescein was administered intravenously 

through a 5 min constant infusion 10 days after the surgery, and liver samples were collected 
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after 30 min. The symbols and horizontal lines represent the individual and mean values, 

respectively. Statistical analysis is based on unpaired, two-tailed, t-test. 

Fig. 5 – The brain concentration (a) and total (b) and free (c) brain uptake clearance (Kin) of 

fluorescein in Sham (n=6) and PCA (n=5) animals. A single 25 mg/kg dose of fluorescein was 

administered intravenously through a 5 min constant infusion 10 days after the surgery, and brain 

samples were collected after 30 min. The symbols and horizontal lines represent the individual 

and mean values, respectively.  

Fig. 6 – The effects of different concentrations of lithocholic acid (LCA), cholic acid (CA), 

chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) on the in vitro free fraction of 

fluorescein in rat plasma (n=3). The concentration of fluorescein in the plasma samples was 50 

µg/ml. The symbols and bars represent the mean and SD values, respectively. 
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Table 1 – Effects of portacaval anastomosis (PCA) on the area under the plasma 

concentration-time curves of total (free plus protein-bound, AUCtotal) and free (unbound, 

AUCfree) fluorescein and the free: total ratios.  

A single 25 mg/kg dose of fluorescein was administered intravenously through a 5 min constant 

infusion 10 days after sham (n=6) or PCA (n=5) surgery, and plasma concentrations were 

collected over 30 min. The data are presented as mean ± SD. Statistical analysis is based on 

unpaired, two-tailed, t-test (NS: not significant). 

 

 

 AUCtotal AUCfree AUCfree: AUCtotal 

Sham 2790 ± 311 1260 ± 136 0.455 ± 0.050 
PCA 2520 ± 293 1453 ± 238 0.575 ± 0.047 
PCA: Sham 0.903 1.15 1.26 
p NS NS < 0.01 

Table 1
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