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ABSTRACT 

Purpose To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on 

the activity of P-glycoprotein (P-gp) in the liver and at the blood-brain barrier (BBB) of rats 

using rhodamine 123 (RH-123) as an in vivo marker.  

Methods Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 

24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, 

bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and 

some other transporters in the liver and brain were also determined by Western blot analysis.  

Results P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 

h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, 

presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP 

concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated 

with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or 

brain distribution of RH-123 was not affected by the 12-h IR injury.  

Conclusions Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution 

of drugs that are transported by P-gp and possibly other transporters. 

 

KEY WORDS: hepatic ischemia-reperfusion . pharmacokinetics . P-glycoprotein . blood-brain 

barrier . biliary excretion 
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ABBREVIATIONS 

ALT Alanine aminotransferase  

AUC area under the plasma concentration-time curve 

BBB blood-brain barrier 

BIBF bile salt-independent bile flow 

𝐶!"!" concentration in the brain at 40 min 

Cliver concentration in the liver 

Cmedian concentration in the median lobe of the liver 

Cright  concentration in the right lobe of the liver 

DTT DL-dithiothreitol 

fu unbound fraction in plasma 

IPRL isolated perfused rat liver 

IR ischemia-reperfusion 

Kin apparent brain uptake clearance 

LPS lipopolysaccharides 

Mrp multidrug resistance-associated protein  

Oatp organic anion transporting polypeptide 

P-gp P-glycoprotein 

PMSF phenylmethanesulfonyl fluoride  

RH-110 rhodamine 110 

RH-123 rhodamine 123 

RH-Glu rhodamine glucuronide 

TNF- α tumor necrosis factor-α 
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UDPGA uridine 5’-diphosphoglucuronic acid 

Wischemic weight of ischemic lobes of the liver 

Wnon-ischemic weight of non-ischemic lobes of the liver 

Wliver total weight of the liver 
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INTRODUCTION 

Transient interruption of blood supply to the liver, which occurs in a number of clinical 

situations such as hypovolemic shock and liver resection surgery or transplantation, causes 

significant damage to the organ (1-3). Ironically, reperfusion of the liver, following re-

establishment of blood supply to the ischemic liver, enhances this injury via different 

mechanisms. For instance, gut-derived lipopolysaccharides (LPS) are translocated directly into 

the liver circulation during the reperfusion period (4), activating the liver Kupffer cells. 

Activation of Kupffer cells results in the production and release of proinflammatory mediators, 

such as reactive oxygen species, high mobility group protein B1, and cytokines, including tumor 

necrosis factor (TNF)-α, interleukin-1β, and interleukin-6 (3, 5-8). Among these 

proinflammatory mediators, cytokines are known to alter hepatic transporters, such as sodium 

taurocholate cotransporting polypeptides, P-glycoprotein (P-gp), organic anion transporting 

polypeptides (Oatp), and multidrug resistance-associated proteins (Mrp) at the mRNA and/or 

protein levels (9-11). Additionally, previous studies (8, 12-14) have shown that hepatic ischemia-

reperfusion (IR) injury alters the mRNA and/or protein levels of sinusoidal and canalicular liver 

transporters. However, very little is known about the effects of hepatic IR-induced changes in the 

mRNA and/or protein levels of transporters on the hepatobiliary disposition (15) or in vivo 

pharmacokinetics (12) of drugs. 

 In addition to the transporters in the liver, hepatic IR may potentially alter the expression 

of transporters in remote organs via the release of proinflammatory mediators into the 

circulation. Indeed, Tanaka et al. (13) recently reported that whereas hepatic IR injury in rats 

decreased the mRNA and protein levels of Mrp2 in the liver, it upregulated the transporter’s 

expression in the kidneys. The authors suggested that the increased Mrp2 expression in the 
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kidney might be a protective mechanism in response to the downregulation of the transporter in 

the liver. Further, a recent study (12) showed that hepatic IR injury in rats resulted in 

upregulation of P-gp in the upper intestine, partially responsible for a lower oral bioavailability 

of cyclosporine A observed in the rats subjected to the hepatic IR injury. Therefore, hepatic IR 

injury may affect the pharmacokinetics of drugs by affecting transporters in both the liver and 

remote organs. 

 Among ATP-binding cassette transporters, P-gp plays a major role in the biliary 

excretion of many drugs. Additionally, P-gp is an important gatekeeper at the blood-brain barrier 

(BBB) of many species (16). At the BBB, P-gp is located at the luminal (blood) side of the brain 

capillary endothelium, pumping a variety of substrates back into the blood, thus limiting their 

access to brain tissue (17-20). Therefore, situations that change the function of P-gp at the BBB 

are of significant clinical importance in terms of both drug delivery to the brain and 

neurotoxicity.  

 The goal of the current study was to study the effects of hepatic IR injury on the P-gp 

expression and function in the liver itself and at the BBB as a remote structure. To study the 

function of P-gp in vivo, we selected rhodamine-123 (RH-123), which is a well-established P-gp 

substrate. Indeed, in vivo administration of RH-123 has been used before as a marker for 

detection of P-gp function both at the liver canalicular interface (21) and BBB (22, 23). 

Additionally, the glucuronidated metabolite of the marker (RH-Glu) is a selective substrate for 

Mrp2 (24, 25), which allows determination of the function of Mrp2 in addition to that of P-gp 

after the administration of RH-123.  
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MATERIALS AND METHODS 

Chemicals and Reagents 

RH-123, 7-hydroxycoumarin, d-saccharolactone, β-glucuronidase (Type-LII), and uridine 5’-

diphosphoglucuronic acid (UDPGA) were obtained from Sigma–Aldrich (St. Louis, MO, USA). 

Ketamine and xylazine solutions for anesthesia were purchased from Lloyd Laboratories 

(Shenandoah, IA, USA), and heparin solution was obtained from APP Pharmaceuticals 

(Schaumburg, IL, USA). NADPH was obtained from Calzyme Lab Inc. (San Luis Obispo, CA, 

USA). Mouse monoclonal anti-P-gp antibody was from Calbiochem (Gibbstown, USA), anti-

Mrp2 antibody was from Enzo life Sciences (Plymouth meeting, PA, USA), anti-β-actin 

antibody was from Sigma-Aldrich, and Rabbit polyclonal anti-Oatp1a4 antibody was from 

LSBio (Seattle, WA, USA).  Alanine aminotransferase (ALT) kits were from Teco Diagnostics 

(Anaheim, CA, USA). BCA kit for the measurement of protein was purchased from Pierce 

Biotechnology (Rockford, IL, USA). All other chemicals were analytical grade and obtained 

from commercial sources. 

Animals 

The Institutional Animal Care and Use Committee approved the use of animals in this study, and 

the procedures involving animals were consistent with the guidelines set by National Institute of 

Health (NIH publication #85-23, revised in 1985). Adult, male Sprague-Dawley rats (225-300 g) 

were purchased from Charles River Laboratories, Inc. (Wilmington, MA, USA). All the animals 

were acclimatized in animal care facility for at least 2-4 days before surgery, with free access to 

regular food and water. 
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Hepatic Ischemia-Reperfusion Model 

We used a well-established partial (70%) ischemia-reperfusion model, which has been described 

in detail before (26-28). Both ischemia and the following reperfusion contribute to the IR injury 

in this model. Briefly, after an overnight fast, animals were anesthetized by an intramuscular 

injection of a mixture of ketamine: xylazine (80:8 mg/kg body weight), and the abdomen was 

opened. To induce ischemia, the blood supplies to the median and left lobes were completely 

interrupted for 90 min. Because of the significant effect of temperature on the outcome of IR 

injury, the body temperature of rats was strictly maintained at 37ᴼC by using a combination of a 

heat lamp and a heating plate controlled by a rectal temperature probe during the surgery. At the 

end of the ischemic period, the blood flow to the ischemic lobes was reinstated. To compensate 

for any water loss during the ischemic period, 5 ml of warm (37ᴼC) sterile saline was added into 

the abdomen before closure of the incision. Sham-operated animals underwent laparatomy 

without ischemia under the same surgical condition as in the IR group. Different groups of 

animals (n=5-9/group) were used 12 or 24 h after the reinstatement of the blood flow or sham 

surgery. Therefore, the IR injury in this study refers to a combination of 90 min of ischemia and 

12 or 24 h of reperfusion. The sample size for the 24-h groups (n=9) was estimated based on the 

magnitude of difference between the 24-h sham and IR groups and variability in the biliary 

excretion of RH-123 observed in isolated perfused rat livers (15). In the absence of previous data 

on the expected magnitude of difference between the sham and IR in the 12-h groups, 5 animals 

were used for these groups.  

Dosing and Sample Collection 

After 12 or 24 h of reperfusion or sham surgery, rats were anesthetized, and catheters were 

inserted into the bile duct and jugular vein to collect bile and blood, respectively. After 
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intravenous bolus administration to rats, RH-123 follows a three-exponential kinetic model (29), 

resulting in a rapid decline in its early plasma concentrations. To avoid substantial fluctuations in 

the plasma concentrations of RH-123, which may potentially result in nonlinearity in the 

transport of the drug, RH-123 was infused into the penile vein at a constant rate of 12.5 

µg/kg/min over 40 min (total dose of 500 µg/kg). Serial (0, 5, 10, 20, 30, and 40 min) blood 

samples (~250 µl each) were then collected in heparinized microcentrifuge tubes from the 

jugular vein catheter. To prevent clotting, the catheter was filled with a heparin (10 U/ml) 

solution in saline. Blood samples were centrifuged immediately, and plasma was separated. 

Cumulative bile (0-40 min) was also collected. At the end of the experiment, a small piece of 

liver from the left lobe was cut and immediately (≤ 3 sec) frozen in liquid nitrogen for 

measurement of ATP levels. Subsequently, the vasculature blood was flushed out with 50 ml of 

ice-cold saline delivered at a flow rate of 25 ml/min through a catheter inserted into the left 

ventricle of the heart, and brain and liver tissue were collected. After snap-freezing the brain and 

liver in dry ice/isopentane and liquid nitrogen, respectively, the samples were stored at -80ᴼC for 

subsequent analysis. 

Analysis of RH-123 and Its Metabolites 

Liver samples were homogenized in deionized water (1:9) and after an additional five-fold 

dilution with 2% (w/v) albumin were used in the assay. The concentrations of RH-123 and its 

metabolites were measured in both ischemic (median) and non-ischemic (right) lobes separately. 

Brain samples were homogenized in deionized water (1:4) before analysis. Finally, bile samples 

were diluted 50 times with the 2% albumin solution before analysis. The plasma samples were 

measured without dilution. The concentrations of RH-123 and its metabolite RH-110 in the 

samples were quantitated by modifications of an HPLC method described before (30). Briefly, 
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50 µl of each sample was thoroughly mixed with 50 µl of deionized water before the addition of 

100 µl of ice-cold acetonitrile for protein precipitation. Following vortex-mixing and 

centrifugation, 50 µl of clear supernatant was injected onto HPLC for analysis at excitation and 

emission wavelengths of 505 and 525 nm, respectively.  The calibration standards were 

constructed in the range of 6.25-500 (RH-123) and 1.25-100 (RH-110) ng/ml for plasma, 5-250 

(RH-123) and 1-50 (RH-110) ng/ml for liver homogenates, 5-200 (RH-123) and 1-40 (RH-110) 

ng/ml for bile, and 0.25-10 (RH-123) and 0.05-2 (RH-110) ng/ml for brain homogenates. The 

inter-day CV values (%) of the slopes (n=4) were 10.1 (RH-123) and 4.17 (RH-110) for plasma, 

10.1 (RH-123) and 4.26 (RH-110) for liver, 2.23 (RH-123) and 0.84 (RH-110) for bile, and 7.50 

(RH-123) and 8.56 (RH-110) for brain samples.   

For the bile samples, the concentrations of RH-123 were analyzed both before and after 

treatment with β-glucuronidase to estimate the RH-Glu concentrations (30). Preliminary studies 

showed that the concentrations of RH-Glu in the plasma, liver, and brain samples were 

negligible, if any. Therefore, for these samples, only the unhydrolyzed samples were analyzed. 

Analysis of ALT 

Plasma ALT levels were measured spectrophotometrically using a commercially available kit. 

Analysis of Unbound Fraction of RH-123 and RH-110 in Plasma 

The degree of binding of RH-123 or RH-110 to plasma proteins was determined by ultrafiltration 

method using Microcon Ultracel YM-30 centrifugal devices, with a MWCO of 30 K, from 

Millipore (Billerica, MA, USA). To prevent adsorption of analytes to the membrane and/or 

device, the device was pretreated with 5% benzalkonium chloride as described before (31). 

Approximately, 100 µl of the terminal (40 min) plasma sample was added to the device, which 

was then incubated at 37ᴼC for 30 min before centrifugation at 2000 g for 15 min (37ᴼC). 
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Aliquots (10 µl) of the original plasma samples and the filtrate were then subjected to the HPLC 

assay described above. The free fraction (fu) of RH-123 or RH-110 was estimated by dividing the 

analyte concentration in the filtrate by that in the original plasma sample. 

Measurement of Hepatic ATP Levels 

The concentrations of ATP in the samples from the left lobes of the livers were analyzed by a 

reversed-phase, gradient HPLC method as described before (32).   

7-Hydroxycoumarin (Umbelliferone) Glucuronidation Assay 

To determine the glucuronidation capacity of the liver, umbelliferone (7-hydroxycoumarin) was 

used as a substrate marker for uridine diphosphate glucuronosyltransferase using a method 

described before (33). Briefly, liver samples from the median lobes were homogenized in cold, 

pH 7.4 PBS (1:80), and protein concentrations were measured by the BCA kit. The reaction 

mixture (500 µl) contained liver homogenate (1 mg protein/ml), 100 µM 7-hydroxycoumarin, 

6.25 mM magnesium chloride, 6.25 mM D-saccharolactone, and 1.25 mM UDPGA in PBS (pH 

7.4). The reaction mixture without UDPGA was preincubated at 37oC for 10 min before starting 

the reaction by the addition of UDPGA. After incubation at 37ᴼC for 20 min, the reaction was 

terminated by the addition of 500 µl of 0.4 M perchloric acid. After mixing and centrifugation, 

the supernatant was subjected to an HPLC analysis for the measurement of umbelliferone and its 

glucuronide (34). The glucuronidation capacity was expressed as percentage of the initial 

umbelliferone converted to umbelliferone glucuronide. 

Western Blot Analysis 

Analysis was conducted on crude membrane fractions, which were prepared based on standard 

methods. Briefly, liver (left lobe) and brain samples were homogenized in a homogenization 
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buffer (1:4), which contained 10 mM Tris-HCl pH 7.4, 1 mM EGTA, 1 mM MgCl2, 1 mM 

mercaptoethanol, 1 mM DTT, 2 mM PMSF, and 1% glycerol. To 1 ml of homogenate were 

added 40 µl of 0.5 M Tris-HCl and 1 µl of protease inhibitor cocktail for mammalian cells and 

tissue extracts (Sigma), and the samples were centrifuged (4ᴼC) at 2000 g for 15 min. The 

supernatant was separated and centrifuged (4ᴼC) at 100,000 g for 30 min to obtain the membrane 

fraction. The pellets were re-suspended in 250 µl of homogenization buffer containing 2.5 µl of 

the protease inhibitor PMSF (100 mM), and the protein concentrations were measured by the 

BCA kit. Membrane fractions from the brain (40 µg) and liver (30 µg) samples were then 

resolved by 4-20% gradient SDS-polyacrylamide gel electrophoresis (Thermo Scientific, 

Rockford, IL, USA) for the analysis of the brain P-gp and Oatp1a4 and liver P-gp and Mrp2. 

Additionally, an 8% SDS gel was used for the analysis of liver Oatp1a4. The proteins were then 

transferred to a PVDF membrane (Bio-Rad, Hercules, CA, USA), and the membrane was stained 

with Ponceau S. After blocking the membranes with 5% albumin, they were incubated overnight 

(4ᴼC) with primary antibodies against P-gp, Mrp2, or Oatp1a4. Additionally, incubation with β-

actin antibody was used for loading control. Finally, the membranes were treated with anti-

mouse or anti-rabbit horseradish peroxidase-conjugated secondary antibodies, and band 

intensities were quantified using VersaDoc Image system and Quantity One software (Bio-Rad). 

Pharmacokinetic Analysis 

The area under the plasma concentration-time curve from 0-40 min (AUC0-40) for RH-123 was 

calculated using the linear trapezoidal method. The total liver concentrations (Cliver) of RH-123 

and its metabolites were estimated using the following equation: 

𝐶!"#$% =
(𝐶!"#$%&×𝑊!"#!!"#$)+ (𝐶!"#!!×𝑊!"!!!"#!!"#$)

𝑊!"#$%
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where Cmedian and Cright are the concentrations in the median and right lobes, and Wischemic,    

Wnon-ischemic, and Wliver are the weight of ischemic lobes (median and right), non-ischemic lobes 

(right and caudate), and whole liver, respectively. This calculation assumes that Cmedian and Cright 

are representative of the concentrations in the ischemic (median and left) and non-ischemic (right 

and caudate) lobes. Apparent biliary clearance of RH-123 was estimated by dividing the amount 

of RH-123 excreted into bile over 40 min by the AUC0-40. The apparent brain uptake clearance 

(Kin) of RH-123 was calculated from the plasma AUC0-40 and the terminal brain concentration of 

RH-123 at 40 min (𝐶!"!") according to the following equation (35): 

𝐾!" =
𝐶!"!"

𝐴𝑈𝐶!!!"
 

Statistical Analysis 

The results are expressed as mean ± SD. All statistical analyses were performed using GraphPad 

Prism version 6.00 (GraphPad Software, San Diego, CA). Differences between the Sham and IR 

groups in terms of plasma concentrations of RH-123 and RH-110 at different time points were 

analyzed by a repeated-measure, two-way ANOVA, followed by Bonferroni’s multiple 

comparison of the means. The differences between the Sham and IR groups in terms of other 

parameters were assessed by an unpaired student t-test when the variances of the two samples 

were the same. In the presence of significant differences between the variances of the IR and 

Sham groups, Welch’s correction was applied. The threshold of the significance was p˂0.05. 

 

RESULTS 

Plasma Concentrations of ALT  

The plasma concentrations of ALT in both 12 and 24 h IR groups were significantly higher than 

those in their corresponding Sham groups (12-h groups: 667 ± 292 IU/l versus 137 ± 41 IU/l, 
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p<0.01; 24-h groups: 867 ± 467 IU/l versus 66.5 ± 31.8 IU/l, p<0.001), which confirms 

substantial damage to the liver due to the IR injury. 

Plasma Pharmacokinetics 

Although the concentrations of RH-123 and its deacylated metabolite, RH-110, were measurable 

in all the plasma samples, the concentrations of RH-Glu were negligible in most of the plasma 

samples during the 40-min infusion of the drug. The plasma concentration-time courses of RH-

123 and RH-110 after 12 or 24 h of IR surgery or sham operation are presented in Figure 1. 

Despite the constant intravenous infusion of the drug, the plasma concentrations of RH-123 and 

its metabolite RH-110 did not reach plateau in most groups during the 40 min of the infusion, an 

observation that was more evident for the metabolite (Fig. 1). The plasma concentrations of RH-

123 after 12 h of IR injury were not significantly different from those in the Sham group (Fig. 

1A). However, 24 h of IR caused a significant increase in the plasma concentrations of RH-123 

at all the time points except for the 5 min sample (Fig. 1B). As for RH-110, neither 12 nor 24 h 

of IR had any significant impact on its plasma concentration-time course (Figs. 1C and 1D).  

 The plasma AUC and fu values of RH-123 and RH-110 are listed in Table I. In agreement 

with the plasma concentration-time data (Fig. 1), there was no significant difference between the 

AUC of RH-123 in the IR and Sham groups after 12 h of reperfusion. However, the RH-123 

AUC in the IR group after 24 h of reperfusion was 56% higher (p˂0.01) than that in its 

corresponding Sham group (Table I). The AUC values for RH-110 were similar in the Sham and 

IR groups after either 12 or 24 h of reperfusion (Table I). Additionally, the RH-110:RH-123 

AUC ratio in the 24 h IR rats (0.122 ± 0.024) was significantly (p<0.01) lower than that in the 

Sham group (0.157 ± 0.020), suggesting an IR-induced reduction in the formation of RH-110 

from RH-123 after 24 h of reperfusion. IR did not affect the plasma free fractions of either RH-
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123 or its metabolite RH-110. However, the free fraction of RH-110 was significantly higher 

than that of RH-123 within each group (Table I).  

Biliary Excretion 

The biliary recoveries of RH-123 and RH-Glu along with the apparent biliary clearance of RH-

123 and bile flow rates are presented in Fig. 2 for both the 12- (Fig. 2A-D) and 24- (Figs. 2E-H) 

h reperfusion groups. After 12 h of reperfusion, there were no significant differences between the 

Sham and IR groups in any of the biliary parameters (Figs. 2A-D). However, 24 h of IR resulted 

in significant differences in all the measured parameters (Figs. 2E-H), which are explained here 

in more detail. The biliary recovery (Fig. 2E) and apparent clearance (Fig. 2F) values of RH-123 

in the IR group were 26% (p<0.05) and 45% (p<0.01) lower, respectively, as compared with the 

corresponding values in the Sham group. Additionally, 24-h IR caused a 53% decrease (p<0.01) 

in the biliary recovery of RH-Glu (Fig. 2G). Lastly, bile flow rates in the 24-h IR group were 

30% lower (p<0.001) than those in the Sham group (Fig. 2H). In contrast to RH-123 and RH-

Glu, the biliary recovery of RH-110 (~0.02% of the dose) was negligible (data not shown). 

Brain Uptake 

The brain concentrations and apparent uptake clearance (Kin) values of RH-123 and RH-110 are 

presented in Fig. 3 for both the 12- (Fig. 3A-D) and 24- (Figs. 3E-H) h reperfusion groups. After 

12 h of reperfusion, there were no significant differences between the Sham and IR groups in 

their brain concentrations or Kin values of RH-123 or RH-110 (Figs. 3A-D). As for the 24-h 

reperfusion groups, despite substantially higher plasma concentrations in the IR group (Fig. 1B), 

the brain concentrations of RH-123 in the IR and Sham groups were not significantly different 

(Fig. 3E). This was due to ~30% lower (p<0.05) Kin for RH-123 in the IR animals (Fig. 3F). In 

contrast to RH-123, although 24-h IR did not significantly affect the brain Kin of RH-110 (Fig. 
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3H), the brain concentrations of the metabolite in the IR rats were significantly (p<0.05) higher 

than those in the Sham animals (Fig. 3G).  

Mechanistic Studies 

To gain insight into the reasons behind changes in the biliary excretion of RH-123 and RH-Glu 

and brain Kin of RH-123 after 24 h of reperfusion, additional studies were conducted using the 

liver and brain samples from these groups. Figure 4 demonstrates the amount of RH-123 

recovered in the liver (Fig. 4A), RH-123 liver: plasma concentration ratio (Fig. 4B), the liver 

concentrations of ATP (Fig. 4C), and the extent of umbelliferone glucuronidation by the liver 

homogenates (Fig. 4D). Substantial amounts of RH-123 (~25% of the dose) were found in the 

liver of Sham rats after 40 min of drug infusion (Fig. 4A). However, despite the higher plasma 

concentrations (Fig. 1B) and AUC values (Table I) in the IR group, the liver concentrations and 

amounts of RH-123 in the Sham and IR rats were not significantly different (Fig. 4A). 

Consequently, the terminal liver: plasma concentration ratios of RH-123 in the IR group were 

29% lower (p˂0.01) than those in the Sham group (Fig. 4B). No RH-Glu was measurable in the 

liver samples, and the concentrations of RH-110 in the liver were ≤ 10% of those of RH-123 

(data not shown). Additionally, the liver concentration of ATP in the IR group was 23% lower 

(p<0.05) than that in the Sham group (Fig. 4C). However, the extents of umbelliferone 

glucuronidation, a marker for the glucuronidation capacity of the liver, in the Sham  and IR  

livers were not different from each other (Fig. 4D).  

 We also measured the protein levels of P-gp, Mrp2, and Oatp1a4 in the liver membrane 

fractions. The representative Western blots and individual densitometric data for the three 

studied hepatic transporters are presented in Fig. 5. Whereas IR caused an almost twofold 

increase (p<0.05) in the protein expression of P-gp in the liver membrane fractions (Fig. 5A), the 
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protein contents of Mrp2 and Oatp1a4 were down-regulated by 46% (p<0.01) (Fig. 5B) and 28% 

(p<0.05) (Fig. 5C), respectively, as a result of the IR injury.  

 Finally, we determined the protein levels of P-gp and Oatp1a4 in the brain membrane 

fractions. The representative Western blots and individual densitometric data for these brain 

transporters are presented in Fig. 6. The brain P-gp protein levels in the IR group were 24% 

higher (p<0.05) than those in the Sham group (Fig. 6A). However, the Oatap1a4 protein levels in 

the IR and sham groups (Fig. 6B) were not significantly different (p=0.066). 

 

DISCUSSION 

In one of the original reports on the effects of hepatic IR injury on the liver transporters, Tanaka 

et al. (8) showed that whereas the injury decreased the mRNA of a number of sinusoidal 

transporters and Mrp2, the mRNA of Mdr1b was significantly upregulated 24 h after the injury 

in rats. In a agreement with that report, a subsequent study (12) revealed that the protein levels of 

P-gp were modestly (~20%) increased after the hepatic IR injury in rats. Very recently (15), we 

investigated the potential effects of hepatic IR-induced increase in P-gp mRNA and protein 

levels on the biliary excretion of RH-123, a well-established marker of P-gp, in an isolated 

perfused rat liver (IPRL) model. However, in contrast to the reported increases in the mRNA (8) 

and protein (12) levels of P-gp, the biliary excretion of RH-123 significantly decreased 24 h after 

the IR injury (15). Although several possible explanations were provided, the reason(s) for this 

apparent discrepancy remained unclear. Therefore, one of the goals of the present in vivo study 

was to clarify this apparent discrepancy. 

 Similar to the previous IPRL study (15), 24-h IR caused significant reductions in the 

biliary excretion (Fig. 2E) and apparent clearance (Fig. 2F) of RH-123 in the present in vivo 
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study. However, additional mechanistic studies presented here (Figs. 4B, 4C, 5A, and 5C) 

provide some insights into the apparent discrepancy between the expression and function of the 

canalicular P-gp as a result of hepatic IR injury. Whereas the P-gp protein levels in the liver 

membrane fraction were significantly upregulated after 24 h of IR injury (Fig. 5A), the injury 

had an opposite effect (a significant reduction) on the liver ATP concentrations (Fig. 4C). 

Indeed, a reduction in the ATP concentrations during the ischemic period is one of the hallmarks 

of hepatic IR injury (36). Although the ATP levels recover during the reperfusion period, they 

may remain below the control levels even 24 h after the reperfusion (37), as observed in our 

study (Fig. 4C). Because ATP is essential for the function of P-gp, an IR-induced decrease in the 

ATP concentration (Fig. 4C) could have nullified the observed increase in the protein 

concentrations of the transporter in the liver (Fig. 5A).  

 In addition to the decreased ATP concentrations, our studies revealed a significant 

decrease in the liver: plasma concentration of RH-123 as a result of IR injury (Fig. 4B), 

suggesting an IR-induced decrease in the hepatic uptake of RH-123. Although it is generally 

believed that RH-123 enters the cells by passive diffusion, it has been reported that in 

hepatocytes, Oatp1a4 contributes to the sinusoidal uptake of RH-123 (38). Additionally, a recent 

study in transfected human embryonic kidney cells showed that RH-123 is subject to facilitated 

transport via human OATP1A2, which is analogous to rat Oatp1a4 (39). Therefore, we further 

investigated the effects of hepatic IR on the Oatp1a4 protein content of the liver membrane 

fraction. The observed decrease in the protein levels of Oatp1a4 in the liver membrane fraction 

(Fig. 5C) is in agreement with the reduced liver tissue: plasma ratio of the marker (Fig. 4B), 

confirming an IR-induced reduction in the sinusoidal uptake of RH-123. Collectively, our data 

suggest that the IR-induced reductions in the biliary recovery (Fig. 2E) and apparent clearance 
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(Fig. 2F) of RH-123, despite an increase in the P-gp protein (Fig. 5A), are most likely due to 

reductions in both the Oatp1a4 protein levels  (Fig. 5C) and the ATP concentrations (Fig. 4C), 

affecting the hepatic uptake and biliary transport of RH-123, respectively. 

 Because the glucuronidated metabolite of RH-123 (RH-Glu) is specifically transported 

into the bile by Mrp2, we also investigated the effect of IR on the biliary transport of RH-Glu. 

Previous studies have reported that normothermic hepatic IR reduces the mRNA (8, 14) and 

protein (13) levels of Mrp2 in the liver. Our results, which show decreases in the biliary recovery 

of RH-Glu (Fig. 2G) and Mrp2 protein content of the liver membrane fraction (Fig. 5B) as a 

result of 24-h IR, are consistent with these literature data. In addition to the decreased Mrp2 

protein, the IR-induced decrease in the hepatic ATP concentrations (Fig. 4C) might have also 

contributed to the decreased biliary recovery of RH-Glu.  

 Because we did not administer preformed RH-Glu as such, it may be argued that the 

observed decrease in the biliary excretion of RH-Glu (Fig. 2G) is due to a possible IR-induced 

decrease in its formation from RH-123. To address the possible effects of hepatic IR on the 

glucuronidation pathway, we conducted additional studies using umbelliferone, which is a 

marker of glucuronidation capacity of the liver. We selected umbelliferone for these in vitro 

studies because we are not aware of any studies reporting formation of RH-Glu in vitro. 

Additionally, our own attempts at formation of RH-Glu in vitro using liver microsomes in a 

previous study (25) and liver homogenates in the current study were not successful. Furthermore, 

although in vivo (29) or ex vivo (intact liver) (25, 30) formation of RH-Glu has been reported in 

many studies, based on regeneration of RH-123 after hydrolysis of bile or urine samples with 

glucuronidase, the exact structure and glucuronyltransferase enzyme(s) responsible for its 

formation remain unknown at this time. Nevertheless, these studies revealed that IR does not 
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significantly affect the glucuronidation of umbelliferone, suggesting that the IR-induced decrease 

in the biliary excretion of RH-Glu (Fig. 2G) is most likely not related to a decrease in its 

formation. 

 In addition to transporting a number of xenobiotics and their glucuronidated metabolites, 

Mrp2 also transports glutathione into the bile, which is the main driving force for the bile salt 

independent bile flow (BIBF) (14). A recent report (40) showed that a short-term (20 min) partial 

hepatic ischemia followed by 60 min of reperfusion caused internalization of Mrp2 from the bile 

canalicular membrane, causing a reduction in BIBF. Therefore, the reduction in the Mrp2 protein 

content in the 24 h IR livers in our study (Fig. 5B) might have been responsible, at least in part, 

for the reductions in the bile flow rate observed in these animals (Fig. 2H). 

 The amount of RH-123 recovered in the bile of the 24-h groups during the 40-min 

sampling period (<4% of dose; Fig. 2E) was low relative to the amount of the marker recovered 

in the liver tissue at 40 min (23% of dose; Fig. 4 A). This is most likely due to the fact that RH-

123, a cationic dye, is trapped in the mitochondria in the liver tissue (30). Therefore, only a small 

fraction of the intracellular RH-123 is freely available for excretion into the bile.    

 Similar to the upregulation of P-gp protein observed in the liver, the 24-h hepatic IR also 

caused a significant increase in the P-gp protein content in the brain membrane fraction (Fig. 

6A), which is in agreement with a lower Kin value for RH-123 in IR animals, compared with the 

Sham group (Fig. 3F). Upregulation of P-gp in the ischemic and/or remote organs has been 

reported before in the case of increased hepatic and intestinal P-gp protein after hepatic IR injury 

(12) or increased intestinal P-gp after intestinal IR (41). However, to the best of our knowledge, 

our study is the first to report upregulation of P-gp in the brain after IR injury in a peripheral 

organ. Recent (42-44) in vitro works in the area of brain P-gp modulation by proinflammatory 
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mediators have shown that whereas a short-term (< 4 h) exposure of the brain capillaries of rats 

to the inflammatory mediators LPS or TNF-α causes a rapid and reversible decrease in the 

functional activity of P-gp, a longer-term exposure causes an increased activity and protein 

expression of the transporter. After hepatic IR, the concentrations of both LPS (4) and TNF-α 

(45) are elevated in the systemic circulation. Therefore, the higher protein content (Fig. 6A) and 

activity (decreased Kin of RH-123, Fig. 3F) of P-gp at the BBB observed in our IR rats are in 

agreement with these in vitro studies. 

 Although more polar than RH-123, the metabolite RH-110 showed Kin values (~3 

µl/min/g) that were comparable to those of the parent drug RH-123 (~3-4 µl/min/g) in the Sham 

animals (Fig. 3). This is most likely due to the fact that, in contrast to the parent drug, RH-110 is 

not subject to P-gp efflux. Therefore, an expected reduction in its brain permeability, due to 

higher polarity, is offset by its lack of efflux, resulting in apparently similar Kin values for the 

drug and metabolite. The lack of effect of IR on the Kin value of RH-110 (Fig. 3) suggests that 

the passive permeability of the BBB to this metabolite is not altered by the injury.    

 The concept of modulation of P-gp at the BBB by a peripheral disease, although novel, 

has also been reported recently (46) for another peripheral inflammatory process. Seelbach et al. 

(46) demonstrated that λ-carrageenan-induced inflammatory pain in rats caused overexpression 

of BBB P-gp and reduction in the brain accumulation of the P-gp substrate morphine. Further 

studies (47) suggested that the λ-carrageenan-induced changes in the activity of P-gp at the BBB 

was most likely related to changes in the intracellular trafficking of P-gp within the 

microvascular endothelial cells. Whether the IR-induced increase in the expression and activity 

of P-gp observed in our studies is due to induction of synthesis of P-gp or changes in the 

trafficking of P-gp remains to be determined. Nevertheless, further studies are needed to 
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elucidate the mechanisms of IR-induced increases in P-gp protein and activity in both the liver 

and brain. 

 Recent studies suggest an abundant presence of Oatp1a4 at the BBB of mice (48) and rats 

(49). At the BBB, Oatp1a4 is expressed both at the luminal and abluminal sides of the brain 

capillary endothelial cells (48), transporting many substrates in both directions. However, the net 

effect of transport by the BBB Oatp1a4 (blood to brain or brain to blood) depends on the 

substrate (48). We are not aware of any study demonstrating transport of RH-123 by the brain 

Oatp1a4. However, because of transport of RH-123 by Oatp1a4 in other cells, it is likely that 

RH-123 is transported by Oatp1a4 at the BBB. Therefore, we also determined the effect of 

hepatic IR on the expression of brain Oatp1a4 in our studies. Although the protein contents of 

Oatp1a4 in the brains of IR rats were 21% higher than those in the Sham animals, this difference 

did not reach statistical significance (p=0.066) (Fig. 6B). Nevertheless, because of the 

bidirectional transport function of Oatp1a4 at the BBB, it is not clear whether an IR-induced 

overexpression of the transporter, even if it were significant, would be additive or antagonistic to 

the IR-induced overexpression of P-gp (Fig. 6A) and decreased Kin of RH-123 (Fig. 3F). 

 In addition to its use as a marker of canalicular P-gp (21), the use of RH-123 as an in vivo 

marker of P-gp function at the BBB has been validated in previous studies after both inhibition 

(22, 23) and induction (50) of the transporter. Using microdialysis method, Wang et al. (22) 

reported that co-administration of cyclosporine A, a P-gp substrate and inhibitor, significantly 

increased the brain distribution of RH-123 in rats by 3.6 fold. Similarly, de Lange et al. (23) 

showed that the brain concentrations of RH-123 in the mdr1a (–/–) mice were 4 fold higher than 

those in the wild type mice after the intravenous injection of the marker. On the other hand, the 

overexpression of BBB P-gp resulted in more than 50% reduction in the brain distribution of 
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RH-123 in pentylenetetrazole-kindled rats (50). These data indicate that RH-123 is an 

appropriate in vivo marker for detection of both inhibition and induction of P-gp at the BBB. 

 Although not a primary objective of this work, it is worthwhile to comment on some 

apparent differences between the 12- and 24-h Sham values. The RH-110: RH-123 AUC ratios 

(Table I) and the biliary excretion and bile flow rates (Fig. 2) data suggest a reduction of 

metabolic and excretory functions in the 12-h group, when compared with the 24-h animals. This 

may be due to a time-dependent effect of Sham surgery by itself, which has also been reported in 

other studies (28). 

 For mechanistic studies, we focused on the 24-h IR injury because of the apparent lack of 

statistical differences between the Sham and IR groups after 12 h of reperfusion (Table I and 

Figs. 1-3). However, it should be acknowledged that the lack of significance in the 12-h groups, 

at least for some parameters, might be due to a low sample size (n=5), and hence a low statistical 

power. Nevertheless, as opposed to the 24-h groups, the absolute magnitude of differences 

between the Sham and IR groups for the 12-h injury were very low for most of the parameters. 

Indeed, the maximum difference between the Sham and IR groups (~20%) was observed for the 

apparent biliary clearance of RH-123 (Fig. 2B). Given the extent of variability of the parameter 

(CV of 26%), a sample size calculation indicated an n of 27 to detect such a difference 

statistically with a power of 80%, which was not deemed justified. Therefore, additional animals 

were not added to this group.  

 

CONCLUSIONS 

In conclusion, the data presented in this manuscript indicate that the hepatic IR injury alters the 

expression and function of P-gp in the liver and at the BBB. Whereas P-gp protein and function 
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are increased in the remote organ (brain), the increase in the transporter’s protein in the ischemic 

organ (liver) is accompanied by a decrease in the hepatic concentrations of ATP, thus 

diminishing the impact of the increased P-gp protein in the liver. In contrast to P-gp 

overexpression, hepatic IR decreased the protein contents of hepatic sinusoidal Oatp1a4 and 

canalicular Mrp2. The IR-induced changes in the studied transporters resulted in significant 

changes in the in vivo pharmacokinetics of RH-123 (P-gp and Oatp1a4 substrate) and its 

metabolite RH-Glu (Mrp2 substrate), including reduction of their biliary recovery and a decrease 

in the brain uptake clearance of RH-123. These studies suggest that the peripheral 

pharmacokinetics and brain distribution of drugs that are transported by P-gp, and possibly other 

transporters, may be altered as a result of hepatic IR injury.   
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Table I Plasma Pharmacokinetic Parameters (Mean ± SD ) of RH-123 and Its Metabolites RH-110 after Constant Intravenous 

Infusion of RH-123 (12.5 µg/kg/min) for 40 min in Rats Subjected to Partial Hepatic Ischemia (IR) or Sham Surgery (Sham) and 12 or 

24 h of Reperfusion. 

 

 
 

 

 

 

 

 

 

** p<0.01: Significantly different from the corresponding Sham group (unpaired t test). 

¶ p<0.05, ¶¶ p<0.01, ¶¶¶ p<0.001: Significantly different from RH-123 (unpaired t test). 

 

Treatment 
 AUC, ng.min/ml  fu 

 RH-123 RH-110 RH-110:RH-123 Ratio  RH-123 RH-110 

12-h Groups        

Sham (n=5)  8210 ± 1160 968 ± 138 0.119 ± 0.016  0.302 ± 0.020 0.379 ± 0.058¶ 

IR (n=6)  9710 ± 3060 1030 ± 166 0.111 ± 0.020  0.300 ± 0.019 0.389 ± 0.037¶¶¶ 

24-h Groups        

Sham (n=9)  5070 ± 785 795 ± 142 0.157 ± 0.020  0.270 ± 0.029 0.340 ± 0.044¶¶ 

IR (n=9)  7930 ± 2500** 918 ± 174 0.122 ± 0.024**  0.264 ± 0.032 0.346 ± 0.0700¶¶ 
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FIGURE LEGENDS 

Fig. 1 Plasma concentration-time courses of RH-123 (A and B) and RH-110 (C and D) in rats 

subjected to partial hepatic ischemia (IR) or sham operation (Sham) and 12 (A and C) or 24 (B 

and D) h of reperfusion. RH-123 was infused intravenously at a constant rate of 12.5 µg/kg/min 

over 40 min. Symbols and bars represent mean and SD values, respectively. Animal numbers 

were 5 and 6 for the Sham and IR animals, respectively, in the 12 h group and 9 for either Sham 

or IR animals in the 24 h group. * p<0.05, ** p<0.01, *** p<0.001: Significant difference 

between the Sham and IR at each time point based on repeated-measure, two-way ANOVA, 

followed by Bonferroni’s post-hoc analysis.  

Fig. 2 Biliary recovery of RH-123 (A and E), apparent biliary clearance of RH-123 (B and F), 

biliary recovery of RH-Glu (C and G), and bile flow rates (D and H) in rats subjected to partial 

hepatic ischemia (IR) or sham operation (Sham) and 12 (A-D) or 24 (E-H) h of reperfusion. RH-

123 was infused intravenously at a constant rate of 12.5 µg/kg/min over 40 min. Symbols 

represent individual animals.  

Fig. 3 Brain concentrations of RH-123 (A and E), apparent brain uptake clearance (Kin) of RH-

123 (B and F), brain concentrations of RH-110 (C and G), and apparent brain uptake clearance 

(Kin) of RH-110 (D and H) in rats subjected to partial hepatic ischemia (IR) or sham operation 

(Sham) and 12 (A-D) or 24 (E-H) h of reperfusion. RH-123 was infused intravenously at a 

constant rate of 12.5 µg/kg/min over 40 min. Symbols represent individual animals. 

Fig. 4 Amount of RH-123 recovered in the terminal liver sample (A), terminal liver: plasma 

concentration ratio of RH-123 (B), hepatic concentration of ATP (C), and extent of formation of 

umbelliferone glucuronide in the liver homogenate (D) in rats subjected to partial hepatic 
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ischemia (IR) or sham operation (Sham), followed by 24 h of reperfusion. RH-123 was infused 

intravenously at a constant rate of 12.5 µg/kg/min over 40 min. Symbols represent individual 

animals. 

Fig. 5 Representative Western blots (top panels) and individual densitometric data (bottom 

panels) for P-gp (A), Mrp2 (B), and Oatp1a4 (C) in the liver membrane fractions from rats 

subjected to partial hepatic ischemia (IR) or sham operation (Sham), followed by 24 h of 

reperfusion. RH-123 was infused intravenously at a constant rate of 12.5 µg/kg/min over 40 min. 

Symbols represent individual animal data, which are normalized based on the Sham values 

(100%). 

Fig. 6 Representative Western blots (top panels) and individual densitometric data (bottom 

panels) for P-gp (A) and Oatp1a4 (B) in the brain membrane fractions from rats subjected to 

partial hepatic ischemia (IR) or sham operation (Sham), followed by 24 h of reperfusion. RH-123 

was infused intravenously at a constant rate of 12.5 µg/kg/min over 40 min. Symbols represent 

individual animal data, which are normalized based on the Sham values (100%). 
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