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Abstract 

Tug-of-war is a multi-battle contest often used to describe extended interactions in economics, 

management, political science, and other disciplines. While there has been some theoretical work, 

there is scant empirical evidence regarding behavior in a tug-of-war game. To the best of our 

knowledge, this paper provides the first experimental study of the tug-of-war. The results show 

notable deviations of behavior from theory. In the first battle of the tug-of-war, subjects exert fewer 

resources, while in the follow-up battles, they exert more resources than predicted. Also, contrary 

to the theoretical prediction, resource expenditures tend to increase in the duration of the tug-of-

war. Finally, extending the margin necessary to win the tug-of-war causes more discouragement 

than either a reduction in the prize or greater impatience despite all three having the same expected 

effect. Potential behavioral explanations for these findings are also discussed. 
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1. Introduction 

Ultimate success or failure in a competition often depends on the outcomes in a sequence 

of intermediate contests. In a patent race, companies exert costly resources at multiple stages and 

one company may drop out if it falls too far behind its rival. In a political contest, politicians 

engage in a series of debates and issue multiple policy statements in order to swing voters to their 

side. Similarly, in organizations, the final decision of a committee depends on the series of small 

arguments made by advocates who may go back and forth in trying to lobby their interests. These, 

and many other competitions, can be described as a “tug-of-war.” 

Most commonly, the term “tug-of-war” refers to a rope pulling contest in which two 

contestants (or groups) pull a rope in different directions until one of the contestants pulls the other 

across the middle. More generally, tug-of-war can be described as a contest consisting of a series 

of battles, where a battle victory of one contestant moves the game closer to the winner’s preferred 

terminal state, and where one contestant wins the war if the difference in the number of battle 

victories exceeds some threshold (Konrad and Kovenock, 2005). As a modeling device, the tug-

of-war has a large number of applications in economics (Harris and Vickers, 1987), management 

(Schutten et al., 1996), political science (Whitford, 2005), history (Organski and Lust-Okar, 1997), 

biology (Zhou et al., 2004), and other disciplines.  

Harris and Vickers (1987) were the first to formally examine the tug-of-war game. They 

analyzed an R&D race as a tug-of-war in which two players engage in a series of multiple battles 

and the winner of each battle is determined probabilistically. The assumptions of their model, 

prevented Harris and Vickers from completely solving the model, and instead they were only able 

to obtain qualitative predictions. More recently, Konrad and Kovenock (2005) have explicitly 
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solved the tug-of-war game and provided conditions for a unique equilibrium.1 They showed that 

the contest effort crucially depends on the number of needed victories, the value of the prize, and 

the discount rate.  

To the best of our knowledge, this is the first study examining tug-of-war experimentally. 

Our experiment examines the theoretical predictions of Konrad and Kovenock (2005), using a 

three-by-one between-subjects design. In the Low Value treatment, the value of the prize v, is lower 

than in the other treatments. The Extended treatment involves more possible states m and thus a 

greater necessary margin for victory, than the other two treatments. The Impatient treatment, 

reduces the discount rate δ as compared to the other treatments. We follow the standard procedure 

for inducing a discount rate by making continuation to the next round probabilistic (see Dal Bo, 

2005; Duffy, 2008). The key aspect of the design is that for all three treatments δm/2v is fixed, 

which makes all three treatments theoretically equivalent. The prediction is that contestants should 

exert costly efforts (bids) in the first battle (round) using a mixed strategy as in the standard all-

pay auction. In the follow-up rounds, when the state is not m/2, there should be no bidding. 

Moreover, bidding should not depend on the number of times a particular state has been reached. 

Finally, the aggregate behavior in each treatment should be the same as long as δm/2v is fixed. 

We find notable deviations of behavior from theoretical predictions. First, we find that in 

the first round of the tug-of-war, bids are not drawn from the uniform distribution but are left-

skewed, indicating underbidding. Second, we find that bids are systematically greater than the 

predicted value of zero in the follow-up rounds. Third, contrary to the theoretical prediction, 

conditional on the state bids tend to increase in the duration of the tug-of-war. Finally, we find that 

bidding behavior is similar in the Low Value and Impatient treatments, but bidding is significantly 

                                                 
1 Also see Agastya and McAfee (2006). 
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lower in the Extended treatment, suggesting that extending the necessary margin of victory for the 

tug-of-war discourages subjects more from exerting resources than the lower prize or discounting. 

The most closely related studies examine behavior in sequential multi-battle contests, also 

known as best-of-n races.2 Mago et al. (2013), for example, examine behavior in a best-of-three 

race between two contestants and find that the leader exerts more effort than the follower. Zizzo 

(2002) implements a best-of-n race and finds a positive correlation between investment and 

progress in the race. Ryvkin (2011) investigates a best-of-n contest in which players who choose 

the high effort early in the competition decrease their probability of winning in later battles, 

imitating fatigue. Consistent with the theory, subjects abstain from high effort in early battles in 

the presence of fatigue. Deck and Sheremeta (2012) examine behavior in a multi-battle contest in 

which the defender must win each battle to secure the resource and the attacker needs only to win 

one battle to capture the resource. In the experiment, subjects’ behavior is consistent with the main 

qualitative prediction of the theory, except for one key pattern: when fighting, rather than lowering 

expected effort in each new battle, subjects increase effort. Finally, Gelder and Kovenock (2015) 

examine behavior in a multi-battle contest with a losing penalty, and also find escalation of conflict 

effort contrary to the theoretical predictions. 

Our study differs substantially from the previous studies. Most importantly, we examine 

behavior in the tug-of-war, which has not been previously studied in the literature (Dechenaux et 

al., 2015). The tug-of-war differs from the best-of-n race because in the race the number of battles 

n is fixed and the winner is determined by the number of battles each player has won. In contrast, 

                                                 
2 There are also some studies on simultaneous multi-battle contests (also known as Colonel Blotto games), examining 

how different factors such as budget constraint, information, contest success function, asymmetry in resources and 

battles impact individual behavior (Avrahami and Kareev, 2009; Horta-Vallve and Llorente-Saguer, 2010; Kovenock 

et al., 2010; Arad, 2012; Arad and Rubinstein, 2012; Chowdhury et al., 2013; Mago and Sheremeta, 2014; Irfanoglu 

et al., 2015), as well as, studies on multi-battle elimination contests (Parco et al., 2005; Amegashie et al., 2007; 

Sheremeta, 2010a, 2010b; Altmann et al., 2012; Höchtl et al., 2015). 
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in the tug-of-war the first player to win m/2 (where m is even) more contests than her rival is the 

winner. In our experiment, the tug-of-war may continue for a very long time (infinity in the limit), 

potentially making it a very exhausting competition. 

 

2. Theory and Hypotheses 

2.1. The Tug-of-War Game 

The experiment closely aligns with the theoretical model of Konrad and Kovenock (2005).3 

There are two players: A and B. There are m+1 > 2 ordered possible states (where m is even) 

located on the grid line along which the war can take place. Let xt denote the state of the game at 

the start of round t  [1, 2, 3, …]. The tug-of-war begins in round t = 1 in the initial state x1 = m/2, 

halfway between the two terminal states. At each round in which the game has not yet reached a 

terminal state, there is a contest resolved as an all-pay auction (Baye et al., 1996) where A’s bid is 

denoted by at > 0 and B’s bid is denoted by bt > 0. If at > (or <) bt then A (or B) wins the contest 

and the state becomes xt-1 (or xt+). If at = bt then A wins if xt < m/2, B wins if xt > m/2, and the 

winner is determined randomly if xt = m/2. If the game reaches state 0 (or m) then the game ends 

and A (B) claims a prize of v. Otherwise the game continues to the next round with the state in 

round t+1 determined by xt and the outcome of the contest in round t. The two players are assumed 

to have a common discount rate of . Figure 1 shows an example of the game with m = 4 in which 

A wins after the fourth round. In this example, A earns v-55 and B earns -40. 

 

 

 

                                                 
3 The model of Konrad and Kovenock (2005) is more general than what is presented here. We are only providing the 

detail needed for analyzing the specific situations we study in the laboratory. 
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Figure 1: An Example Tug-Of-War 

 

The unique Markov perfect equilibrium is at = bt = 0 if xt  [1, 2, …, m-1] \ {m/2} and at, 

bt are drawn from the distribution F(b) if xt = m/2, where 𝐹(𝑏) = {
𝑏

𝛿𝑚/2𝑣
for 𝑏 ≤ 𝛿𝑚/2𝑣

1 for 𝑏 > 𝛿𝑚/2𝑣
.4 

Intuitively, when the players are even (at state m/2), they are in an all-pay auction and the expected 

payoff to each player is 0. If the game is at state m/2-1, then a winning bid by B will move the 

game to a point in which B expects to earn 0, so B’s optimal bid is 0 and given the tie breaking 

rule A should bid 0 as well. Iterating this logic, B should never bid when the state is less than m/2 

and similarly A should never bid if the state exceeds m/2. Because of the behavior that should 

occur when the state is not m/2, winning in the first round should result in winning the game in 

m/2 rounds making the prize for winning the first round δm/2v. 

 

                                                 
4 For the details see Proposition 3 in Konrad and Kovenock (2005). 

0 1 2 3 4A B

Bids in Period 1   a1 = 20                                                                                     b1 = 15

0 1 2 3 4A B

Bids in Period 2   a2 = 5                                                                                       b2 = 10

0 1 2 3 4A B

Bids in Period 3   a3 = 25                                                                                     b3 = 10

0 1 2 3 4A B

Bids in Period 4   a4 = 5                                                                                       b4 = 5

0 1 2 3 4A B
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2.2. Hypotheses 

The equilibrium solution provides the basis for the hypotheses to be tested in the laboratory. 

Specifically, we test the following hypotheses regarding the expected behavior in a tug-of-war. 

Hypothesis 1: When the game begins (at state m/2), a player’s bid is drawn from the 

uniform distribution over the interval [0, δm/2v]. 

Hypothesis 2: When the state is not m/2, subjects bid zero. 

The model also provides predictions regarding different tug-of-war games. In particular, if 

two tug-of-war games have the same value for δm/2v then behavior should be identical at state m/2. 

This leads to the following prediction.  

Hypothesis 3: Behavior does not differ between games with differing values of m, , and 

v if δm/2v is held constant. 

While no state is predicted to be reached multiple times during a game; should such an 

event occur due to out of equilibrium behavior, behavior in that situation should depend on the 

state and not the round. This leads to our final hypothesis. 

Hypothesis 4: Play in a state does not depend on the round. 

 

3. Experimental Design and Procedures 

To test the hypotheses we conduct a three-by-one between-subjects experimental design. 

The three treatments (Low Value, Impatient, and Extended) differ in terms of the values of v, , 

and m as shown in Table 1. In the Low Value treatment, the value of the prize, v, is lower than in 

the other treatments. The Extended treatment involves more possible states, m, than the other two 

treatments. The Impatient treatment, reduces the discount rate  as compared to the other 

treatments. We follow the standard procedure for inducing a discount rate by making continuation 
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to the next round probabilistic (see Dal Bo, 2005; Duffy, 2008). Our primary goal is not to identify 

how changes in a specific variable impact behavior, but rather to determine if strategic behavior is 

contingent upon δm/2v, as predicted by the theory. Hence, the key aspect of our design is that for 

all three treatments δm/2v is held constant (at  66). Although our design does not compare two 

treatments differing along a single dimension, one can identify the relative effects of specific 

parameters by comparing one treatment to the composition of the other two. 

Table 1: Experimental Treatments 

Treatment m δ v 

Low Value 4 0.81 100 

Impatient 4 0.73 125 

Extended 6 0.81 125 

 

A total of 96 subjects participated in the experiment, which was conducted in the 

Behavioral Business Research Laboratory at the University of Arkansas. Subjects for each one 

hour long session were recruited through the lab’s database of volunteers and no subject 

participated in more than one session. For each of the three treatments, four sessions were 

completed. Each session involved 8 subjects who read written instructions (available in Appendix) 

and completed a comprehension worksheet. After the worksheets were checked for correctness 

and any remaining questions were answered, subjects completed two unpaid practice tug-of-war 

games, and then ten salient tug-of-war games. 

Each game, referred to as a period in the experiment, subjects were randomly and 

anonymously paired with someone else in the session.5 Figure 2 provides a screen shot for the 

Impatient treatment. Subjects always saw themselves as the player who won the game at state 0 

                                                 
5 The directions used the term tug-of-war in an effort to help subjects understand the nature of the game being played. 

Copies of the directions are available upon request. 
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on the far left of the screen as shown in Figure 2. The colored ball moved around based on the 

state of the game. The probability that the game would continue for one, two, five and ten more 

rounds if a terminal state was not reached is shown at the top left of the screen. The right hand 

portion of the screen records what has occurred in each round of the current period (game) and the 

outcome from previous periods. 

Figure 2: Sample Screen Shot in Impatient Treatment 

 

After all 10 periods were completed, one was randomly selected and subjects were paid 

their earnings based on the outcome of the game in that period. Experimental earnings were 

denoted in franks and converted into dollars at the rate 25 franks = $1. The average subject payment 

was $19.59. 

 

4. Results 

The findings are presented as a series of results corresponding to the four hypotheses 

provided in the previous section. Figure 3 shows the distribution of bids in the first round of every 

tug-of-war by treatment. 
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Figure 3: Distribution of Bids in First Round by Treatment 

 

Panel A. Low Value Treatment 

 

Panel B. Impatient Treatment 

 

Panel C. Extended Treatment 
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Theory predicts that all bids should be distributed between 0 and 66 (= δm/2v). Indeed, we 

find that by and large the bids are drawn from the same support as the equilibrium distribution. 

However, none of these distributions appear to be uniform over the interval 0 to 66. Statistically, 

we test that the mean and variance of each distribution is equal to the values that would be 

generated if subjects were behaving according to the theoretical predictions. Notice, that under the 

null hypotheses subjects are independently drawing their bids from the interval [0, 66] at the start 

of every tug-of-war. For each treatment, either the observed mean, the observed variance, or both 

differ from the theoretical predictions as shown in Table 2. 

Table 2: Statistical Comparison of Observed and Predicted Behavior in the First Round 

 Treatment 

Test of Low Value Impatient Extended 

Mean (t) p-value = 0.190 p-value < 0.001 p-value < 0.001 

Variance (2)  p-value < 0.001 p-value = 0.138 p-value < 0.001 

 

Interestingly, bids are skewed to the left, indicating underbidding. However, only for the 

Impatient treatment and the Extended treatment, the average bid is significantly lower than the 

theoretical prediction: 27.8 versus 33 (p-value < 0.001) and 16.8 versus 33 (p-value < 0.001), 

respectively. Overall, these findings provide evidence against Hypotheses 1 and are the basis for 

our Result 1. 

Result 1: Subjects do not bid according to the theoretical prediction in the first round of a 

tug-of war. That is bids are not drawn from the uniform distribution over the interval [0, 66] and 

are skewed to the left. 

Another prediction of the theory is that when the state is not m/2, subjects should bid zero. 

However, we find that in the second round bids are systematically greater than the predicted value 

of zero. Only 3% of all bids at state 1 in the Low Value treatment are 0 and only 20% of the bids 



 12 

at state 3 are 0 in that treatment. For the Impatience treatment the respective percentages are 1% 

and 29% for states 1 and 3. The percentage of bids equal to zero for states 1, 2, 4, and 5 in the 

Extended treatment are 4%, 3%, 32%, and 41% respectively. Figure 4 shows the average bid by 

round and state for each treatment. Notice that when one player is in the state x the other player is 

in the state m-x. Also, because continuation to the next round is probabilistic, some pairs do not 

reach the terminal state nor do they reach the next round. The data in Figure 4 are taken to be 

sufficient evidence against Hypothesis 2. 

Result 2: When the game is not in a symmetric state, subjects do not bid zero contrary to 

the theoretical prediction. 

Figure 4: Average Bids by State and Round for Each Treatment  
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Panel B. Impatient Treatment 

 

Panel C. Extended Treatment 

m= 27.8
n= 320

m= 38.5
n= 160

m= 21.6
n= 160

m= 37.6
n= 66

m= 35.3
n= 19

m= 44.4
n= 19

m= 42.5
n= 10

m= 60.0
n= 2

m= 65.0
n= 2

State m=
0                 1                           2                    3                   4

Round t=
1

2

3

4

5

6

m= 16.8
n= 320

m= 21.9 
n= 160

m= 14.9
n= 160

m= 29.6
n= 86

m= 22.1 
n= 117

m= 13.5
n= 117

m= 28.9
n= 55

m= 28.7
n= 55

m= 30.1
n= 42

m= 28.8
n= 25

m= 21.8
n= 25

m= 36.7
n= 25

m= 23.2
n= 25

m= 21.1
n= 12

m= 61.9
n= 16

m= 39.9
n= 16

m= 37.1
n= 14

m= 22.4
n= 14

m= 35.0
n= 6

m= 35.7
n= 11

m= 50.8
n= 11

m= 39.6
n= 8

m= 30.9
n= 8

m= 28.5
n= 6

m= 42.3
n= 3

m= 47.0
n= 3

m= 50.8
n= 5

m= 29.0
n= 5

m= 36
n= 2

m= 41.3
n= 4

m= 43.5
n= 4

State m=
0                 1                        2                    3                     4                    5            6

Round t=
1

2

3

4

5

6

7

8

9

10

11

12

13



 14 

Turning to the question of whether or not subjects behave the same in each treatment, we 

note that Figure 3 and Figure 4 suggest that bids are lower in the Extended treatment than the other 

two treatments. This conclusion is supported statistically in Table 3. The first column of Table 3 

estimates how bids are impacted by treatments when the state is m/2. The omitted treatment is Low 

Value so the lack of significance for Impatient suggests these two treatments yield similar behavior 

on average. The negative and significant coefficient for Expanded indicates that on average bids 

are lower in this treatment than in the Low Value treatment. Average bids are marginally lower in 

the Extended treatment than in the Impatient treatment (p-value = 0.052). The second and third 

columns of Table 3 compare Impatient to Low Value at states 1 and 3, respectively, omitting 

Extended because 1) it has already been shown to differ and 2) the states are not directly 

comparable. For both specifications, the coefficient on Impatient is not significant. Together, these 

three specifications indicate that behavior is similar in the Low Value and Impatient treatments. 

This provides the support for Result 3. 

Result 3: Bidding behavior is similar in the Low Value and Impatient treatments, but 

bidding behavior in the Extended treatment differs from the other two. In particular, subjects bid 

less in the middle state when there are more states in the tug-of-war. 

Table 3: Comparison of Treatments Conditional on State 

 State = m/2 State = 1 State = 3 

Constant 33.89*** 38.91*** 30.47*** 

Impatient -4.06* -0.47 -6.00 

Extended -13.00**   

Observations 1350 409 409 

*, ** and *** indicate significance at the 10%, 5%, and 1% 

level respectively based on a two sided test. Standard errors 

are clustered at the session level. 
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Figure 4 also reveals another stark pattern in the data. Regardless of treatment, conditional 

on the state, bids tend to increase the longer the tug-of-war has been going. For all 11 treatment-

state combinations, the average bid is lower in the earliest round in which the state was reached 

than in the latest round in which the state was reached. Table 4 provides statistical evidence of the 

period trend in each situation. For both the Low Value and Extended treatments, the trend is 

positive and significant. The trend is not significant in the Impatient treatment; however, one 

should be cautious given the relatively small number of observations occurring after round 3 in 

this treatment. These patterns lead to Result 4. 

Result 4: Contrary to the theoretical prediction that bids are state independent, conditional 

on the treatment and state bids are generally increasing in the duration of the tug-of-war. 

Table 4: Estimation of Trend in Bids over Rounds Given Treatment and State 

 Treatment 

 Low Value Impatient Extended 

State 1 28.63*** 37.19*** 12.61*** 

State 1 × Round 3.54*** 0.57 3.58*** 

State 2 26.04*** 23.55*** 16.85*** 

State 2 × Round 3.96*** 4.38 2.77*** 

State 3 14.46* -0.85 16.24*** 

State 3 × Round 5.51*** 11.2 2.18** 

State 4   13.16** 

State 4 × Round   1.84*** 

State 5   -0.04 

State 5 × Round   4.71*** 

*, **, and *** indicate significance at the 10%, 5%, and 1% 

level respectively based on a two sided test. Standard errors 

are clustered at the session level. Based on 3054 observations. 
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5. Discussion 

Taken together, our findings provide substantial evidence of behavioral deviations from 

theoretical predictions. Here, we provide a discussion of these deviations and suggest some 

potential explanations. 

We begin with Result 1. Contrary to the prediction that the first round of the tug-of-war 

should resemble a one stage all-pay auction, we find that bids are not drawn from the uniform 

distribution but are left-skewed. This finding is surprising given the vast experimental literature 

documenting overbidding, not underbidding, in all-pay auctions (Dechenaux et al., 2015). It is 

possible that the reason for this finding is that our experiment does not involve a one-shot all-pay 

auction, but rather a series of potentially many all-pay auctions which may prevent subjects from 

fully engaging in the very first round of the tug-of-war. The significant underbidding in the first 

round also can be interpreted as a “proper response” to the observation that most of the competition 

occurs in later rounds, as opposed to the predicted “frontloaded” competition. Since successful 

participation in later rounds requires substantial bids, it seems prudent to conserve resources in the 

first round. 

Results 2 documents that bids in the follow-up rounds are higher than the predicted bid of 

zero. One natural explanation of this finding is that the prediction is at the boundary. The problem 

of boundary equilibrium predictions has been well recognized in dictator games (List, 2007), 

public good games (Laury and Holt, 2008), and contests (Kimbrough et al., 2014), and it has been 

proposed as an explanation for excessive giving, overcontribution to public goods, and excessive 

conflict. Similar argument can be used to explain our Result 2. The prediction is that subjects 

should bid zero after the first round, and any mistake that they make would lead to overbidding. 

Another explanation is that in addition to monetary prize, subjects also have a nonpecuniary utility 
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of winning (Sheremeta, 2013, 2015; Price and Sheremeta, 2011, 2015). In such a case, subjects 

may continue to participate in the tug-of-war even if their continuation value is zero. Such a utility 

inherently transforms the game into a multi-battle contest with intermediate prizes; and one of the 

fundamental theoretical results with intermediate prizes is that “the player who is lagging behind 

may catch up, and does catch up with a considerable probability in the equilibrium” (Konrad and 

Kovenock, 2009, page 267). Both these explanations are consistent with our findings. 

Result 3 documents that bidding behavior in the Extended treatment is significantly 

different from the Low Value and Impatient treatments, despite all three treatments being 

theoretically equivalent. One explanation for this result is that subjects are discouraged by a 

potentially long and exhaustive tug-of-war in the Extended treatment. Another explanation is that 

subjects apply a multi-dimensional reasoning when choosing their strategies in the tug-of-war 

(Arad and Rubinstein, 2012). Specifically, subjects first decide how much they are willing to spend 

on the tug-of-war and then they choose how to allocate these resources across the rounds. At the 

start of the tug-of-war, the best case scenario is winning the first m/2 rounds and claiming the prize 

– a path along the top left edge of flow charts in Figure 4. For all three treatments, the sum of the 

average bid along the best case scenario path is similar (68.6 in Low Value, 66.3 in Impatient, and 

60.8 in Extended). Further, along each best case scenario path the average bids are fairly uniform. 

This suggests that subjects may begin by thinking about how much they want to spend along the 

path they hope to take and then allocating their resources more or less evenly along that path. As 

a result, bids at specific states along the best path in the Extended treatment are smaller than in the 

other treatments because the same amount of resources is being divided over more states. As 

subjects win and remain on the best case scenario path, they continue to implement their plan. 

Once they are knocked of the best scenario path, they adjust as evidenced by Result 4. 
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There are two possible explanations for Result 4 that bids increase in the duration of the 

tug-of-war. One is that people who compete more intensively are simply more likely to reach later 

rounds and the other is that individuals engage in bid escalation as the game progresses. Further 

examination of the data suggests that it is the later. Consider the Low Value treatment. When a bid 

is placed in round 7, on average the bid in that round is 21.5 greater than the bid that the same 

contestant made in round 1. We reject the null hypothesis that the change from round 1 to round 7 

is equally likely to be positive or negative in favor of the alternative hypothesis that bids are 

increasing (sign test, p-value = 0.022). For the Impatience treatment, when someone reaches round 

5 the average increase from that person’s round 1 bid is 16 (sign test, p-value = 0.063). For the 

contestants who returned to the middle state in round 9 of the Extended treatment, the average bid 

increase from round 1 is 15.3 (sign test, p-value = 0.031). Similar patterns arise in other 

comparisons; however, one needs to be cautious as a pair that goes several rounds may only arrive 

at a state once. Thus, Result 4 provides evidence of conflict escalation, i.e., conditional on the state 

bids tend to increase in the duration of the tug-of-war. Although this finding is contrary to the 

theoretical prediction, it is consistent with a well-documented escalation of commitment (Staw, 

1976). 

 

6. Conclusion 

Tug-of-war is a multi-battle contest used to model extended interactions in economics, 

management, political science, and other disciplines. It has attracted the attention of prominent 

theorists (Harris and Vickers, 1987; Konrad and Kovenock, 2005; Agastya and McAfee, 2006), 

but to the best of our knowledge there are no previous experimental tests of a tug-of-war 

(Dechenaux et al., 2015).  
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Our results show notable deviations of behavior from theory. In the first battle of the tug-

of-war, subjects exert fewer, while in the follow-up battles, they exert more resources than 

predicted. Also, contrary to the theoretical prediction, resource expenditures tend to increase the 

longer the tug-of-war has been going. Finally, we find that the required margin of victory of the 

tug-of-war influences subjects more from exerting resources than the value of the prize or 

discounting. 

Our findings have implications both for theorists and practitioners. The fact that in all 

treatments subjects shift their resource expenditures from the first battle to the later battles suggests 

that there are important factors which are not captured by the theory. We conjecture that some of 

these factors include bounded rationality and nonpecuniary incentives, both of which could be 

incorporated into the tug-of-war model. From practical point of view, our findings show that 

conflicts resembling the tug-of-war game may be more extensive than predicted. At the same time, 

potentially long conflicts may deter competing sides from exerting costly resources in early rounds 

of conflict. 

Our experimental design considers the setting of symmetric players. While our framework 

captures some of the most salient features of the tug-of-war, we have set aside empirically relevant 

issues, such as contestant strength differences, heterogeneous prizes, and resource constraints. 

Given the observed deviations of behavior from theoretical predictions, exploring these extensions 

is an important avenue for future research. 
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Appendix (For Online Publication) – Instructions for the Low Value Treatment 

 

General Instructions 

 

This is an experiment in the economics of decision making. Various research agencies have provided the 

funds for this research. The instructions are simple and if you follow them closely and make careful 

decisions, you can make an appreciable amount of money. 

 

The experiment consists of 10 decision periods. The currency used in the experiments is called Francs. At 

the end of the experiment your earnings in Francs from 1 randomly selected period will be converted to US 

Dollars at the rate 25 Franks = US $1. You are also being given a US $20 participation payment. Any gains 

you make will be added to this amount, while any losses will be deducted from it. You will be paid privately 

in cash at the end of the experiment. The period that will be used to determine your payoff will be randomly 

selected at the end of the experiment using a 10-sided die. 

 

It is very important that you do not communicate with others or look at their computer screens. If you have 

questions, or need assistance of any kind, please raise your hand and an experimenter will approach you. If 

you talk or make other noises during the experiment you will be asked to leave and you will not be paid.  

 

Instructions for the Experiment 

 

Each period you will be randomly and anonymously paired with one of the other participants, but no 

participant will be able to identify if or when he or she has been paired with a specific person. 

 

Every period you and the person that you are paired with for the period will have an opportunity to win a 

prize of 100 Franks. The person who wins the prize is determined by a game of tug-of-war that occurs over 

the course of multiple rounds, so at most of one of you will win the prize in a period. 

 

Each period lasts for a randomly determined number of rounds. The way the number of rounds is 

determined is as follows: after each round there is an 81% chance that another round will occur. This means 

that there is a 19% chance that a period will end after a given round. Notice that the chance of the period 

continuing does not depend on how many rounds the period has already lasted. At any point in time, the 

probability of a period lasting at least N more rounds is 0.81N. So the chance that a period will last for at 

least two more rounds is 0.812 = 65.61%. As you can see on the sample screen shot on the next page, by 

the heading "Rounds” your screen will show you the likelihood that the period will last at least 1, 2, 5, and 

10 more rounds. 

 

At the start of each period a green ball will be placed 2 spaces from you and 2 spaces from the participant 

with whom you have been randomly paired. Each round, you and the person you are paired with will make 

a bid. Any amount that you bid is instantly deducted from your payoff for the period. Bids cannot exceed 

the prize so bids can be anything from [0, 0.1, 0.2, …, 99.9, 100]. The ball will move 1 space closer to the 

person who bids the most that round. In the event of a tie, the ball will move towards the closer person. If 

the ball is equidistant from both of you then a tie will be broken randomly. This bidding process will 

continue until either 1) someone has moved the ball all the way to his side and thus claimed the prize of 

100 or 2) the period ends due to the random process described above. 
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To place a bid you simply type it in the box on the lower left portion of your screen and press Submit. After 

both participants have placed their bids, each person will be informed of the bids and the outcome for that 

round in the upper right portion of their screen. The green ball will also be moved accordingly. The number 

above the green ball tells you how many more rounds you must win to claim the prize this period. This 

number is referred to as the location. The lower right portion of the screen will keep a record of what 

happened each period. Recall that at the end of the experiment, you will be paid based upon what happened 

in one randomly selected period. 

 

Let’s look at a couple of examples: 

 

1) Suppose that in Round 1 you bid 13 and the person you are paired with bid 45. Since the other 

person bid more, the ball would move one position to the right, away from you. If in Round 2 you 

bid 30 and the other person bid 10, the ball would move back to the left to its original position. At 

this point, it is as if the period just began except that you would have already spent 43 = 13+30 and 

the other person would have already spent 55 = 45+10. 

 

2) Suppose that in Round 1 you bid 13 and the person you are paired with bid 45. Since the other 

person bid more, the ball would move one position to the right, away from you. If in Round 2 you 

both bid 18, the ball would move one more space to the right since there was a tie and the ball was 

closer to the other person. This would be the end of the period. The other person would claim the 

prize of 100 and earn a profit of 37 = 100–45–18. You would earn a profit of –31 = –13–18. 

 

3) Suppose that in Round 1 you bid 65 and the person you re paired with bid 30. Since you bid more, 

the ball would move one position to the left, towards you. If by random chance the period ended 

after that round, your profit would be –65 and the other persons’ profit would be –30. 

 

If you are finished reading these instructions, please raise your hand and an experimenter will bring you a 

review sheet to complete. The review sheet will not impact your payoff in any way; rather it is intended to 

ensure that you and everyone else understand the experiment. 
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Review Sheet 

Please answer each of the following. If you have a question at any point, you should raise your hand 

and an experimenter will assist you. 

 

1) Complete the following table by determining where the green ball would start and end each 

round given the bids listed. 

 

Round Starting Location Your Bid Other Person’s Bid Ending Location 

1 2 15 26 3 

2 3 18 13  

3  20 5  

4  38 39  

5  3 2  
 

2) Using the table above, what would your profit be if the period was randomly ended after the 

third round? ___________ What would the other person’s profit be? ____________ 

 

3) Suppose instead that in round 1 you bid 10 and the other person bid 15. If both of you bid 0 in 

all subsequent rounds and the period was not randomly stopped before someone won the tug-

of-war, what would your profit be? ____ What would the other person’s profit be? _____ 

 

4) True of False, at the end of the experiment you will be paid the sum of your earnings each 

period. 
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