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Error and Generalization in Discrete Choice Under Risk 
 

by 
 

Nathaniel T. Wilcox* 

 
Abstract 

 
 I compare the generalization ability, or out-of-sample predictive success, of four 
probabilistic models of binary discrete choice under risk. One model is the conventional 
homoscedastic latent index model—the simple logit—that is common in applied econometrics: 
This model is “context-free” in the sense that its error part is homoscedastic with respect to 
decision sets. The other three models are also latent index models  but their error part is 
heteroscedastic with respect to decision sets: In that sense they are “context-dependent” models. 
Context-dependent models of choice under risk arise from several different theoretical 
perspectives. Here I consider my own “contextual utility” model (Wilcox 2011), the “decision 
field theory” model of Busemeyer and Townsend (1993) and the “Blavatskyy-Fishburn” model 
(Fishburn 1978; Blavatskyy 2014). In a new experiment, all three context-dependent models 
outperform the context-free model in prediction, and significantly outperform a linear probability 
model (suggested by contemporary applied practice a la Angrist and Pischke 2009) when the 
latent preference structure is rank-dependent utility (Quiggin 1982). All of this holds true for 
function-free estimations of outcome utilities and probability weights as well as parametric 
estimations. Preoccupation with theories of the deterministic structure of choice under risk, to the 
exclusion of theories of error, is a mistake. 
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 Beginning with Mosteller and Nogee (1951), dozens of experiments on discrete choice 

under risk suggest that these choices have a strong probabilistic component. These experiments 

involve repeated trials of choice from pairs of risky options, and reveal high rates of choice 

switching by the same subject between trials of the same pair.1 In some cases, the repeated trials 

span days (e.g. Tversky 1969; Hey and Orme 1994; Hey 2001) and one might worry that 

decision-relevant conditions have changed between trials. Yet similarly substantial switching 

occurs even between trials separated by bare minutes, with no intervening change in wealth, 

background risk, or any other obviously decision-relevant variable (Camerer 1989; Starmer and 

Sugden 1989; Ballinger and Wilcox 1997; Loomes and Sugden 1998). 

 Since Kahneman and Tversky (1979) introduced Prospect Theory, most research on 

choice under risk has concerned its structure—the functional or “representation” that describes 

how lottery characteristics (outcomes, events and their likelihoods) are combined to represent 

binary preference directions. Econometrically, that discussion concerns the functional form taken 

by the nonrandom part of the latent index in a conventional discrete choice model. However, 

there is renewed interest in the random part of decision under risk, driven both by theoretical 

questions and empirical findings. Sometimes, an anomaly (say, an apparent violation of expected 

utility or EU theory) can be attributed to probabilistic models rather than the structure in question 

(Wilcox 2008). The point goes back at least to Becker, DeGroot and Marschak’s (1963a,1963b) 

observation that violations of the “betweenness” property of EU are precluded by some 

probabilistic versions of EU (random preferences) but not others (see also Blavatskyy 2006). 

Loomes (2005), Gul and Pesendorfer (2006) and Blavatskyy (2009) are just three relatively 

recent (but very different) examples of this renewed interest.  

                                                 
1 For instance, Camerer (1989, p. 81) reported that “Overall, 31.6% of the subjects reversed preference [between a 
test and retest of the same lottery pair]. This number is distressingly close to…random, but comparable with 
numbers in other studies (e.g. Starmer and Sugden 1989)…” 
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 I compare four probabilistic models of choice under risk. One of the models is the 

conventional homoscedastic latent index model—the simple logit—that was long a staple of 

applied econometrics: This model is “context-free” in the sense that its random error part is 

homoscedastic with respect to decision sets. The other three models are also latent index models, 

but their error part is heteroscedastic with respect to decision sets (though none require 

estimation of any new parameters), and in that sense these models are “context-dependent.” 

Context dependence arises from several different theoretical perspectives. I consider my own 

“contextual utility” model (Wilcox 2011), the “decision field theory” model of Busemeyer and 

Townsend (1993) and the “Blavatskyy-Fishburn” model (Fishburn 1978; Blavatskyy 2014). A 

new experiment is performed on 80 subjects. Two-thirds of the data is used to estimate models 

for each individual, and these estimates predict the remaining third of choices. All the context-

dependent models strongly outperform the context-free logit in prediction and, additionally, 

strongly outperform a simple linear probability model suggested by contemporary applied 

practice (a la Angrist and Pischke 2009) when the latent preference structure is rank-dependent 

utility (Quiggin 1982). My results strongly suggest that wholesale preoccupation with the 

deterministic structure of choice under risk, to the exclusion of theories of error, is a serious 

scientific mistake with widespread implications for applied theory and empirical applications. 

 In the literature on semiparametric estimation of discrete choice models, Monte Carlo 

evidence reveals the importance of heteroscedastic latent index errors (Manski and Thompson 

1986; Horowitz 1992): Here, models that incorrectly impose a homoscedastic form can lead to 

highly biased estimation. Therefore we might expect that probabilistic models containing some 

of the truth of heteroscedastic error will predict discrete decisions much better than a 

homoscedastic misspecification. The heteroscedastic models I consider here all emerge from 
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some reasonable theoretical objection to the homoscedastic model, including concerns about 

violations of stochastic dominance, proper representation of comparative risk aversion and 

computational logic. Perhaps one or more of them catch some of the truth of decision error.  

 

1. Preliminaries 

 In the experiment, each choice pair is a set of two options ሼݕ݇ݏ݅ݎ, ሽ݂݁ܽݏ ؠ ሼሺ݄, ,ݍ ݈ሻ, ݉ሽ. 

The option safe pays m dollars with certainty, while the option risky pays h dollars with 

probability q and l dollars with probability 1 െ ݄ where ,ݍ ൐ ݉ ൐ ݈.  Subjects choose between 

risky and safe in each pair presented to them. I call the vector of outcomes ݈ۃ, ݉,  the context of ۄ݄

each pair. Figure 1 shows an example pair where ሼݕ݇ݏ݅ݎ, ,ሽ is ሼሺ90,1/6,40ሻ݂݁ܽݏ 50ሽ and the 

context of the pair is ۄ40,50,90ۃ.  

 I consider a class of probabilistic choice models of the form  

(1) ܲ ؠ ,ݕ݇ݏ݅ݎሼ ݉݋ݎ݂ ݊݁ݏ݋݄ܿ ݕ݇ݏ݅ݎሺܾ݋ݎܲ ሽሻ݂݁ܽݏ ൌ ܨ  ቀߣ
௏ሺ௥௜௦௞௬ሻି௏ሺ௦௔௙௘ሻ

஽ሺ௥௜௦௞௬,௦௔௙௘ሻ
ቁ. 

where ܸሺݕ݇ݏ݅ݎሻ െ ܸሺ݂݁ܽݏሻ is a decision-theoretic representation of the difference between the 

values of the options risky and safe, such as expected utility or rank-dependent utility, ߣ is a scale 

(or inverse standard deviation) parameter, ܦሺݕ݇ݏ݅ݎ,  ሻ adjusts the scale parameter in݂݁ܽݏ

heteroscedastic models, and ܨ: ܴ ՜ ሾ0,1ሿ is an increasing function with ܨሺ0ሻ ൌ 0.5 and 

ሻݔሺܨ  ൌ  1 െ  .ሻݔሺെܨ

 While my focus is on the function ܦሺݕ݇ݏ݅ݎ,    ”ሻ, first I consider the “value difference݂݁ܽݏ

Δܸ ൌ ܸሺݕ݇ݏ݅ݎሻ െ ܸሺ݂݁ܽݏሻ.  The function V needs to be a decision-theoretic representation of 

lottery value with theoretical breadth and empirical strength. Rank-dependent utility or RDU, 

originally developed by Quiggin (1982), fits this bill. Under RDU, the values of two-outcome 

options like risky, and single outcome options like safe, are  
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(2) ܸሺݕ݇ݏ݅ݎሻ  ൌ ሺ݄ሻݑሻݍሺݓ   ൅ ሾ1 െ ሻ݂݁ܽݏሺ݈ሻ    and  ܸሺݑሻሿݍሺݓ  ൌ  ሺ݉ሻ, whereݑ 

  and ;ݖ ሻ is the utility of outcomeݖሺݑ 

  .of receiving outcome ݄ in risky ݍ ሻ is the weight associated with probabilityݍሺݓ 

The RDU value difference between risky and safe in a pair is thus  

ܷܦܴ∆ (3) ൌ ሺ݄ሻݑሻݍሺݓ  ൅  ሾ1 െ ሺ݈ሻݑሻሿݍሺݓ െ  .ሺ݉ሻݑ

RDU nests the expected utility or EU representation: EU is just that special case of RDU where 

ሻݍሺݓ ؠ  To convert those into .ܷܦܴ∆ Therefore I develop all choice models below in terms of .ݍ

EU-based models, just replace ݓሺݍሻ by ݍ in 3 to get 

ܷܧ∆ (4) ൌ ሺ݄ሻݑݍ  ൅ ሺ1 െ ሺ݈ሻݑሻݍ െ  .ሺ݉ሻ, the EU value difference between risky and safeݑ

 Special experimental design choices also make the RDU representation indistinguishable 

from both Tversky and Kahneman’s (1992) cumulative prospect theory (or CPT) and Savage’s 

(1954) subjective expected utility (or SEU) representation. Cumulative prospect theory differs 

from RDU only in its treatment of outcomes below some reference point (put differently, CPT 

posits loss aversion), and my experiment pairs contain only large positive outcomes of $40 to 

$120.2 In general, RDU is not a subjective expected utility model since the weight associated 

with an outcome will in general change when the rank order of an outcome differs in two 

different lotteries. But if the mapping between events and outcome ranks is constant across all 

risks—as it is in this experiment—then SEU is indistinguishable from RDU.3  

                                                 
2 It is possible that some subjects would have a reference point shaped by the payoff range of the experiment itself, 
in which case my claim here might be unjustified. However, my function-free estimations of utilities and weights 
will permit an s-shaped loss-averse array of outcome utilities around any reference point (including one interior to 
my outcome set)—as is the case with Prospect Theory—if the fitting of the choice data demands it. 

3 More concretely: In the experiment, lotteries risky all have probabilities q of receiving their high outcome that are 
in sixths, generated by the roll of a six-sided die. All lotteries are constructed so that q = k/6 is always the roll “1 or 
2 or…k”. So w(k/6), the weight on the high outcome h in risky, can always be thought of as the subjective 
probability of the event “the die roll is 1 or 2 or…k”, while 1−w(k/6), the weight on the low outcome l in risky, can 
always be thought of as the subjective probability of the event “the die roll is k+1 or k+2 or…6”. The states and 
outcome ranks are identically ordered across all option pairs (that is, the risky options are all comonotonic—see 
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 This implies that the RDU representation in eq. 2 will be reasonably broad, equivalent to 

(or nesting) all of RDU, CPT, SEU, EU and EV (expected value). If we wished to distinguish 

between these representations, this deliberate confounding would be a bug, but here it is a feature 

since my interest lies with the scale adjustment ܦሺݕ݇ݏ݅ݎ,  ሻ. By experimental design, the݂݁ܽݏ

RDU representation of Δܸ ൌ ܸሺݕ݇ݏ݅ݎሻ െ ܸሺ݂݁ܽݏሻ will encompass this wide set of decision-

theoretic representations, so inferences concerning ܦሺݕ݇ݏ݅ݎ,  ሻ will hold for this set of݂݁ܽݏ

decision-theoretic representations in this domain of option pairs. 

 

2. The Probabilistic Models  

 Decision theory knows the first probabilistic model as the “strong utility” or SU model 

(Debreu 1958; Block and Marschak 1960; Luce and Suppes 1965), and econometrics knows it as 

the homoscedastic latent index model. It imposes the restriction ܦሺݕ݇ݏ݅ݎ, ሻ݂݁ܽݏ ؠ 1 on eq. 1, 

and with RDU it is 

(5) ܲ௥ௗ௦௨ ൌ ሻݕ݇ݏ݅ݎሺܾ݋ݎܲ ൌ  .ሻܷܦΔܴߣሺܨ

As is well-known (Luce 1959 ), if we let ܨሺݔሻ be Λሺxሻ ൌ  ሾ1 ൅  , .ሻሿିଵ, the logistic c.d.fݔሺെ݌ݔ݁

this is equivalent to a binary logit: 

(6) ܲ௥ௗ௦௨ ൌ
௘௫௣ሾఒ௏ሺ௥௜௦௞௬ሻሿ

௘௫௣ሾఒ௏ሺ௥௜௦௞௬ሻሿା௘௫௣ሾఒ௏ሺ௦௔௙௘ሻሿ
, 

with ܸሺݕ݇ݏ݅ݎሻ and ܸሺ݂݁ܽݏሻ as given in eq. 2. McFadden and others developed economic theory 

and application of this model and it appears widely in experimental and behavioral applied 

theory (e.g. McKelvey and Palfrey 1995; Camerer and Ho 1999). I use the logistic c.d.f. as ܨ in 

all my estimations in part for that reason, so that my results speak clearly to these applications. 

                                                                                                                                                             
Quiggin 1993), so rank-dependent weighting and subjective probability become indistinguishable. This feature is 
also necessary for applying Decision Field Theory to the RDU representation.  
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 The contextual utility or CU model (Wilcox 2011) sets ܦሺݕ݇ݏ݅ݎ, ሻ݂݁ܽݏ ؠ ሺ݄ሻݑ െ  ,ሺ݈ሻݑ

and with RDU it is 

(7) ܲ௥ௗ௖௨ ൌ ሻݕ݇ݏ݅ݎሺܾ݋ݎܲ ൌ ܨ ቀ
ఒ୼ோ஽௎

௨ሺ௛ሻି௨ሺ௟ሻ
ቁ. 

Contextual utility makes comparative risk aversion properties of the RDU representation and its 

stochastic implications consistent within and across contexts. For representations such as RDU 

and EU, utility functions ݑሺݖሻ are only unique up to a ratio of differences: Intuitively, contextual 

utility exploits this uniqueness to create a correspondence between functional and probabilistic 

definitions of comparative risk aversion. To see this, consider any of my pairs on a 3-outcome 

context. Under RDU and contextual utility, the choice probability in eq. 7 can be rewritten as  

(8) ܲ௥ௗ௖௨ ൌ ,ሺ݈ݒሾെߣሺܨ  ݉, ݄ሻ ൅ ,ሺ݈ݒ ሻሿሻ, whereݍሺݓ ݉, ݄ሻ ൌ ሾݑሺ݉ሻ െ ሺ݈ሻሿݑ ሾݑሺ݄ሻ െ ⁄ሺ݈ሻሿݑ . 

This probability is decreasing in the ratio of differences ݒሺ݈, ݉, ݄ሻ. Consider two subjects Anne 

and Bob with identical weighting functions (this includes the case where both have EU 

preferences) and identical scale parameters , and assume that Bob is globally more risk averse 

than Anne in Pratt’s sense (Bob’s local absolute risk aversion – ሻݖሺ"ݑ ሻൗݖԢሺݑ  exceeds that of 

Anne for all ݖ). These assumptions and simple algebra based on Pratt’s (1964) main theorem  

imply that  ݒ஻௢௕ሺ݈, ݉, ݄ሻ ൐ ,஺௡௡௘ሺ݈ݒ ݉, ݄ሻ on all contexts, and as a result (8) implies that Bob 

will have a lower probability than Anne of choosing risky on all contexts. Strong utility cannot 

share this property, and this was the primary motivation for the contextual utility model. 

 The third model is decision field theory or DFT (Busemeyer and Townsend 1992, 1993), 

one of the earliest “diffusion” models4 of preferential choice (see Rangel 2009). It sets 

,ݕ݇ݏ݅ݎሺܦ ሻ݂݁ܽݏ ؠ ሾݑሺ݄ሻ െ ሻሾ1ݍሺݓሺ݈ሻሿඥݑ െ  ሻሿ, and with RDU it isݍሺݓ

                                                 
4 The word “diffusion” appears in the text of Busemeyer and Townsend (1992) thirty times, and one of its keywords 
is “diffusion models.” Decision field theory is most definitely a diffusion model. 
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(9) ܲ௥ௗௗ௙௧ ൌ ሻݕ݇ݏ݅ݎሺܾ݋ݎܲ ൌ ܨ ൬
ఒ୼ோ஽௎

ሾ௨ሺ௛ሻି௨ሺ௟ሻሿඥ௪ሺ௤ሻሾଵି௪ሺ௤ሻሿ
൰. 

Note that eq. 9 is DFT only for pairs like those found in this experiment (every pair consists of a 

two-outcome risk versus a sure outcome). In general, the function ܦሺݕ݇ݏ݅ݎ,  ሻ varies in a݂݁ܽݏ

complex but theoretically well-motivated manner with decision sets. Notice too that in this 

special case DFT shares CU’s main property: Holding constant scale parameters and weighting 

functions, globally greater risk aversion (in the sense of Pratt) will imply a lower probability of 

choosing risky in all pairs on all contexts. DFT has another attractive property: As ݍ approaches 

zero (or one)—that is, as safe (or risky) gets closer to stochastically dominating risky (or safe)—

the probability of choosing the (nearly) stochastically dominating alternative approaches 

certainty. The CU model does not share this property. 

 Busemeyer and Townsend (1992, 1993) derive decision field theory from a sophisticated 

computational logic, but a simple intuition can be given for the model. Suppose that a decision 

maker’s computational resources can effortlessly and quickly provide utilities of outcomes, and 

also suppose the decision maker wishes to choose according to relative RDU value; but suppose 

she does not have an algorithm for effortlessly and quickly multiplying utilities and weights 

together. The decision maker could proceed by sampling the possible utilities in options in 

proportion to their decision weights, keeping running sums of these sampled utilities for each 

option, and stop (and choose) when the difference between the sums exceeds some threshold 

determined by the cost of sampling. In essence, the choice probability in eq. 9 results from this 

kind of sequential sampling decision procedure, which can be traced back to Wald (1947). 

Busemeyer and Townsend also show that, as the sampling rate gets large, the function F will be 

the logistic c.d.f.—another reason I employ the logistic c.d.f. throughout this work.  
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 The final model is called stronger utility by its author Blavatskyy (2014), but here I call it 

the BF model to avoid confusing it with strong utility. The BF model begins with a definition of 

two important benchmark options. Let ሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ  ൌ  ሺ݄, ,ݍ ݉ሻ and  ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ  ൌ

 ሺ݉, ,ݍ ݈ሻ: These two options are the least upper bound and greatest lower bound, respectively, on 

both risky and safe in terms of stochastic dominance.5 Then in the BF model, ܦሺݕ݇ݏ݅ݎ, ሻ݂݁ܽݏ ൌ

ሻ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሺܷܦܴ  െ  ሻ, and݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሺܷܦܴ

(10) ܲ௥ௗ௕௙ ൌ ሻݕ݇ݏ݅ݎሺܾ݋ݎܲ ൌ ఒܪ ቀ
୼ோ஽௎

ோ஽௎ሺ௥௜௦௞௬ ڀ ௦௔௙௘ሻିோ஽௎ሺ௥௜௦௞௬ ٿ ௦௔௙௘ሻ
ቁ,  

where ܪఒ: ሾെ1,1ሿ ՜ ሾ0,1ሿ and otherwise has the same properties as F, and  is again a scale 

parameter. The BF model is a general approach to constructing probabilistic models of risky 

choice that will respect stochastic dominance: That is, the model always attaches a zero 

probability to choice of stochastically dominated options. As mentioned above, the CU model 

does not do so.6 

 Although the ܪఒ function in the BF model differs from the F in the general class I 

defined earlier in eq. 1, a suitable choice of ܪఒ converts the BF model into the following form 

that uses the logistic c.d.f. (see Appendix I): 

(11)  ܲ௥ௗ௕௙ ൌ ሻݕ݇ݏ݅ݎሺܾ݋ݎܲ ൌ Λ ቂߣ ln ቀ
௪ሺ௤ሻሾ௨ሺ௛ሻି௨ሺ௠ሻሿ

ሾଵି௪ሺ௤ሻሿሾ௨ሺ௠ሻି௨ሺ௟ሻሿ
ቁቃ. 

Thus, all four models may be estimated using a common function F which, as mentioned above, 

will be the logistic c.d.f. throughout my estimations. When ݓሺݍሻ ؠ  and we have an EU ݍ

representation, the form taken by eq. 11 is an instance of Fishburn’s (1978) incremental EU 

                                                 
5 That is, ሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ stochastically dominates both risky and safe, but is itself stochastically dominated by 
every other option that stochastically dominates both risky and safe. Similarly, risky and safe both stochastically 
dominate ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ, and every other option stochastically dominated by both risky and safe is itself 

stochastically dominated by ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ.  
6 In the experiment reported here, there are no option pairs in which one option stochastically dominates the other. In 
Wilcox (2008) I provide a simple method for dealing with stochastic dominance in option pairs. 
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advantage model (see Appendix I). This is why I call this the BF (“Blavatskyy-Fishburn”) 

model, as the form of eq. 11 is (with an EU representation) consistent with both Blavatskyy’s 

and Fishburn’s models. 

 The specifications denoted by the superscripts on ܲ in eqs. 5, 7, 9 and 11 (rdsu, rdcu, 

rddft and rdbf) are specific combinations of a decision-theoretic representation (the prefix rd 

denotes the  RDU representation) and a probabilistic model (denoted by the suffixes su, cu, dft 

and bf). Let spec stand for any specification. The purpose of the experiment described in the next 

section is to compare the generalization ability, or out-of-context prediction success, of these 

specifications as well as EU-based versions of them.  

 There are other ways to introduce probabilistic choice into models of decision under risk. 

One of these is random preferences (Loomes and Sugden 1995; Gul and Pesendorfer 2006): This 

approach treats vectors of outcome utilities and/or probability weights as random draws from a 

fixed distribution of these vectors. Random preference models also exhibit context dependence 

(Wilcox 2011, p. 101). Elsewhere I have shown that the generalization ability of the contextual 

utility model outperforms that of a random preference model (Wilcox 2008, 2011) as well as 

other models (including strong utility) using the data set of Hey and Orme (1994). There is, 

however, a difficult problem with considering a random preference RDU specification in this 

study, where the data contains 25 distinct outcome contexts: It is very difficult to generalize an 

RDU random preference specification across more than three outcome contexts without 

changing estimation techniques in fundamental ways (Wilcox 2008 pp. 252-256; Wilcox 2011 

pp.101-102). I converted Blavatskyy’s (2014) model into a form using the logistic c.d.f. not just 

to reveal its kinship with Fishburn’s (1978) model, but also to control that parametric estimation 
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element, making it a common feature of the competing models. This simply cannot be done with 

a random preference RDU model across multiple outcome contexts. 

 

3. Experimental Design and Protocol 

The subjects in this experiment were 80 undergraduate students at a large urban university, 

recruited widely from registered students by means of a single email announcement to all 

undergraduates. Each subject was individually scheduled for three separate sessions on three 

separate days of their own choosing, almost always finishing all three sessions within one week. 

Only one subject had to be replaced due to noncompletion of the three-day protocol. On each 

day, each subject made choices from the 100 choice pairs shown in Table 1, so that each made 

300 choices in all by the end of their third day. On each day, for each subject, the 100 choice 

pairs were randomly ordered into two halves of 50 pairs each, separated by about ten to fifteen 

minutes of other tasks (demographic surveys, item response surveys, short tests of arithmetic and 

problem-solving ability, and so forth). Only rarely did any day’s session last more than an hour, 

and most sessions were substantially shorter than this. At the conclusion of each subject’s third 

day, one of their 300 choice pairs was selected at random (by means of the subject drawing a 

ticket from a bag) and the subject was paid according to their choice in that pair (this is called 

random task selection). If the subject’s choice in the selected pair was risky, the subject selected 

a six-sided die from a box of six-sided dice (rolling them until satisfied if they wished), and their 

selected die was then rolled by the attendant to determine the payment. 

 Here is the reasoning behind the protocol’s features. I want to estimate utilities and 

weights without aggregation assumptions. Decision theories are about individuals, not 

aggregates, and aggregation mutilates and destroys many observable properties of decision 
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theories (Wilcox 2008). A large amount of choice data from each subject is needed to reliably 

estimate utilities and weights at the individual level. A subject will become bored, and will 

become careless, if she makes hundreds of decisions at one sitting. So the decisions are divided 

up across three days, and on each day into two parts separated by unrelated tasks providing a 

break from decisions. The separation across three days, in particular, introduces a risk that some 

substantial event altering a subjects’ wealth or background risks will occur between days, which 

could arguably undermine the assumption that utilities of outcomes and hence choice 

probabilities are stationary throughout the protocol. This is a risk I am willing to run to mitigate 

subject boredom with hundreds of choice tasks, and I can check whether distributions of risky 

choice proportions across subjects appear to be stationary across subjects’ three days of 

decisions.  Figure 2 shows these distributions. Although the first day distribution appears to have 

slightly less dispersion, no parametric or nonparametric test finds any significant difference 

between these three daily distributions. The within-subject difference between risky choice 

proportions on the first and third day has a zero mean by all one-sample tests. There is no sign of 

nonstationarity of choice probabilities across the three days. 

Random task selection is meant to result in truthful, motivated and unbiased revelation of 

preferences in each pair: That is, subjects should make each of their 300 choices as if it was the 

only choice being made, for real, and there should be no portfolio or wealth effects making 

choices interdependent across the tasks. Both the independence axiom of EUT and the “isolation 

effect” of prospect theory would imply this. To see this for EUT, notice that the independence 

axiom in its “unreduced compounds” form (i.e. “compound independence”) implies 

     (risky with Prob = 1/300; Z with Prob = 299/300)  
ݕ݇ݏ݅ݎ غ  غ        if and only if     ݂݁ܽݏ
     (safe with Prob = 1/300; Z with Prob = 299/300) 
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…where Z is any other outcome or risk, including the “grand lottery” created by the subject’s 

other 299 choices over the course of this experiment. Therefore, if subjects’ preferences satisfy 

independence in this unreduced compounds form, random task selection should be incentive 

compatible. Some evidence suggests that preferences generally satisfy the independence axiom 

in its unreduced compounds form (Kahneman and Tversky 1979; Conlisk 1989), and older direct  

examinations of random task selection in binary lottery choice experiments found no systematic 

choice differences between tasks selected with relatively low or high probabilities (Wilcox 1993) 

nor between tasks presented singly or under random task selection (Starmer and Sugden 1991), 

at least for relatively simple tasks like the pairs used here. There is renewed controversy on this 

point (Cox, Sadiraj and Schmidt 2014; Harrison and Swarthout 2014), but random task selection 

has been the standard experimental mechanism for a few decades. 

 Two competing issues surround the resolution of risky lottery outcomes. On the one hand 

experimenters want random devices to be concrete, observable and credible: I use a six-sided die 

for this reason. We also want subjects to have good reason to believe these devices are not rigged 

against them: This is why subjects select a die from an offered box of dice (and, if they wish, 

after rolling several to “test” them). However, the experimenter rolls the selected die because 

subjects may believe they exercise control over the die (whether they truly can or not; see e.g. 

Langer 1982). Here, the protocol compromises between the desire for credibility of  randomizing 

devices and the possibility of subject beliefs in control over the die.  

 The choice pairs in Table 1 are organized into groups of four tasks (the rows of the table) 

by their shared outcome context. All risky lotteries are chances ݍ and 1 െ  in sixths, generated) ݍ

by a six-sided die) of receiving the high and low outcomes ݄ and ݈ on the context, respectively: 

Four values of ݍ shown in each row in Table 1 (qa, qb, qc and qd) create four risky lotteries on 
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each context, and each of these is paired with safe (the middle outcome m of the context with 

certainty) to create four pairs on the context. There are twenty-five distinct contexts, all 

constructed from nine positive money outcomes  ($40 to $120 in $10 increments).  

 Multiple outcome contexts serve several purposes. I much prefer to carry off the 

comparison between probabilistic models without using functional form assumptions about the 

decision-theoretic entities (the utilities of outcomes and the probability weights). Therefore I 

want to be able to estimate the utilities and weights in the function-free manner Hey and Orme 

(1994) pioneered for utilities and as Blavatskyy (2013) did for utilities and weights.7 Monte 

Carlo simulations showed that function-free identification utilities, weights and scale parameters 

is greatly improved when the same events (the die rolls) are matched with many different 

outcomes on different contexts. Additionally, the major feature of the context-dependent CU, 

DFT and BF models is how their choice probabilities vary with context. Therefore, the design 

contains a wide variety of contexts as shown in Table 1.  

 Finally, the choice of “sixths” as the “probability unit” for constructing risks serves 

several purposes. First, the six-sided die is perhaps the most familiar of all randomizing devices: 

This reduces some of the artificiality of laboratory risks. Second, sixths are well-suited to a 

widely-believed shape of weighting functions. Figure 5 shows Prelec’s (1998) single-parameter 

weighting function ݓሺߛ|ݍሻ ൌ exp ሺെሾെln ሺݍሻሿఊሻ  q  (0,1), w(0)=0 and w(1)=1, at various 

values of   from 0.5 to 1, covering widely-held priors about the shape of the function. The linear 

function (heavy black line) is EU with  = 1. Figure 5 shows that the maximum downward 

                                                 
7 Gonzalez and Wu (1999) also did this but not with binary choice data, as Blavatskyy did and as I do here. 
Gonzalez  and Wu elicited and used option certainty equivalents as the dependent measure. There are long-standing 
doubts as to whether the elicitation of certainty equivalents produces the same weak order as binary choices, starting 
with the long literature on preference reversals (see Butler and Loomes 2007 for a relatively recent review). 
Additionally, Gonzalez and Wu’s “choice list” methodology for eliciting certainty equivalents is not without critics. 
See for instance Cohen et al. (1987) and Loomes and Pogrebna (2014).  
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deflection (from linearity) of the nonlinear versions occurs very close to q = 5/6; and at q = 1/6 

the upward deflection of nonlinear versions is about 75% of its maximum (which generally 

occurs at a somewhat smaller q). Finally, Monte Carlo simulations suggested that relatively 

coarse probability grids (fourths or sixths) over many contexts permits relatively more precise 

estimation of utilities and weights than a design with a finer probability grid and fewer contexts. 

 

4. Estimation and Prediction 

 To discuss the estimation and prediction, it is helpful to define indices for pairs, trials 

(days) and subjects, as well as some important sets of indices: 

i = 1,2,…I, indexing I distinct pairs. Here I = 100. 

Pairs i are then ሼሺ݄௜, ,௜ݍ ݈௜ሻ, ݉௜ሽ, or ሼݕ݇ݏ݅ݎ௜,  ௜ሽ; and also note that݂݁ܽݏ

t = 1,2,…T, indexing T distinct trials (days) of each pair. Here T = 3 (three days).  

s = 1,2,…S, indexing the S distinct subjects. Here S = 80. 

it: A double subscript indicating the tth trial of pair i. 

௜௧ݎ
௦ ൌ 1 if subject s chose ݕ݇ݏ݅ݎ௜ in her tth trial of pair i, and zero otherwise. 

௦௘௧ሺ௞ሻܚ
௦ ൌ  ሺݎ௜௧

௦ ݐ݅| א  ሺ݇ሻሻ, the observed choice vector of subject s over the pairs and trialsݐ݁ݏ

in some ݐ݁ݏሺ݇ሻ, which is either ݅݊ሺ݇ሻ or ݐݑ݋ሺ݇ሻ, where k = 1,2,…,10 indexes ten 

partitions of the 100 pairs into two sets—an ݅݊ሺ݇ሻ set for estimation, and an ݐݑ݋ሺ݇ሻ set 

for prediction.  

 Let ݑ௦ሺݖሻ  and ݓ௦ሺݍሻ denote utilities of outcomes z and weights associated with 

probabilities q, respectively, of subject s. The experiment involves nine distinct outcomes 

ݖ א ሼ$40, $50, … , $120ሽ across its 100 choice pairs, but because of the affine transformation 

invariance property of RDU and EU utilities, we can choose ݑ௦ሺ40ሻ ൌ 0 and ݑ௦ሺ120ሻ ൌ 1 for 
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all subjects s. With this done, the unique estimable utility vector ܝ௦ for each subject s is the 

utilities of the seven remaining outcomes, ܝ௦ ൌ ,௦ሺ50ሻݑۃ ,௦ሺ60ሻݑ … , -The function .ۄ௦ሺ110ሻݑ

free estimations make each of those seven utilities a separate parameter to be estimated. I also 

examine a parametric alternative with one parameter ߩ௦, the CRRA utility of money given by 

௦ሻߩ|ݖ௦ሺݑ ൌ ଵିఘೞݖ
/ሺ1 െ ௦ሺ40ሻݑ ௦ሻ, normalized soߩ ൌ 0 and ݑ௦ሺ120ሻ ൌ 1.8 

 The experiment also involves five distinct probabilities א ݍ ቄଵ

଺
, ଶ

଺
, … , ହ

଺
ቅ, so there is a 

vector ܟ௦ ൌ ௦ݓۃ ቀଵ

଺
ቁ , ௦ݓ ቀଶ

଺
ቁ , … , ௦ݓ ቀହ

଺
ቁۄ of five weights to be estimated for each subject. 

The function-free estimations make each of those five weights a separate parameter to be 

estimated. For a parametric alternative I use Prelec’s (1998) two-parameter function , given by 

,௦ߚ|ݍ௦ሺݓ ௦ሻߛ ൌ exp ൫െߚ௦ሾെln ሺݍሻሿఊೞ
൯  q  (0,1), w(0) = 0 and w(1) = 1. 

 To summarize, the function-free latent index of the RDU representation, for subject s and 

pair i, is 

ܦܴ∆ (12) ௜ܷሺܝ௦, ௦ሻܟ  ൌ ௦ሺ݄௜ሻݑ௜ሻݍ௦ሺݓ  ൅  ሾ1 െ ௦ሺ݈௜ሻݑ௜ሻሿݍ௦ሺݓ െ  ௦ሺ݉௜ሻ, whereݑ

௦ܟ  ൌ ௦ݓۃ ቀଵ

଺
ቁ , ௦ݓ ቀଶ

଺
ቁ , … , ௦ݓ ቀହ

଺
ቁۄ, and 

௦ܝ  ൌ ,௦ሺ50ሻݑۃ ,௦ሺ60ሻݑ … , ௦ሺ40ሻݑ with ,ۄ௦ሺ110ሻݑ ൌ 0 and ݑ௦ሺ120ሻ ൌ 1  s. 

Combine eq. 12 with eqs. 5, 7, 9 and 11, let ી௦ ؠ ሺܝ௦, ,௦ܟ  ௦ሻ and choose the logistic c.d.f. asߣ

F(x), and we have the following choice probability specifications: 

(13) ௜ܲ
௥ௗ௦௨ሺીݏሻ ൌ Λሾߣ௦Δܴܦ ௜ܷሺݏܝ,  ;ሻሿݏܟ

(14) ௜ܲ
௥ௗ௖௨ሺીݏሻ ൌ Λ ቂߣ௦ ୼ோ஽௎೔ሺݏܟ,ݏܝሻ

ሺ݈݅ሻݏݑሺ݄݅ሻെݏݑ
ቃ; 

(15) ௜ܲ
௥ௗௗ௙௧

ሺીݏሻ ൌ Λ ൤ߣ௦ ୼ோ஽௎೔ሺݏܟ,ݏܝሻ

ሾ௨ೞሺ௛೔ሻି௨ೞሺ௟೔ሻሿඥ௪ೞሺ௤೔ሻሾଵି௪ೞሺ௤೔ሻሿ
൨; and  

                                                 
8 This normalized version of  CRRA utility is simply ݑ௦ሺߩ|ݖ௦ሻ ൌ  ൫ݖଵିఘೞ

െ 40ଵିఘೞ
൯/൫120ଵିఘೞ

െ 40ଵିఘೞ
൯. 
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 (16) ௜ܲ
௥ௗ௕௙ሺીݏሻ ൌ Λ ቂߣ௦ln ቀ

௪ೞሺ௤೔ሻሾ௨ೞሺ௛೔ሻି௨ೞሺ௠೔ሻሿ

ሾଵି௪ೞሺ௤೔ሻሿሾ௨ೞሺ௠೔ሻି௨ೞሺ௟೔ሻሿ
ቁቃ. 

Corresponding EU-based choice probabilities simply omit the vector of weights ܟ௦ from 

function arguments and set ݓ௦ሺݍ௜ሻ ൌ   .௜ everywhere elseݍ

 Equations 13-16 define the probability of the event ݎ௜௧
௦ ൌ 1 (subject s chose risky in the 

tth trial of pair i). Letting ௜ܲ
௦௣௘௖ሺી௦ሻ denote any of those probabilities, the log likelihood of ݎ௜௧

௦  is 

(17) ℓ௦௣௘௖ሺݎ௜௧
௦ |ી௦ሻ ൌ ௜௧ݎ

௦ lnൣ ௜ܲ
௦௣௘௖ሺી௦ሻ൧ ൅ ሺ1 െ ௜௧ݎ

௦ ሻln ሾ1 െ ௜ܲ
௦௣௘௖ሺી௦ሻሿ; 

the total log likelihood over any particular ݐ݁ݏሺ݇ሻ, for subject s, is 

(18) ࣦ ௦௣௘௖൫ܚ௦௘௧ሺ௞ሻ
௦ หી௦൯ ൌ ∑ ℓ௦௣௘௖ሺݎ௜௧

௦ |ી௦ሻ௜௧א௦௘௧ሺ௞ሻ ; 

and estimation of ી௦ by maximum likelihood, for each subject s, is performed using just the 

݅݊ሺ݇ሻ choice vector ܚ௜௡ሺ௞ሻ
௦ . Let ી෡௜௡ሺ௞ሻ

௦௣௘௖,௦ be the estimated parameter vector for any specification, 

for any s, using just the ݅݊ሺ݇ሻ data. Then using the estimate, the ݐݑ݋ሺ݇ሻ choice vector ܚ௢௨௧ሺ௞ሻ
௦ , 

and eq. 18, calculate average prediction log likelihoods (across the ten partitions k of the data), 

and their difference for any two specifications, as  

(19) ࣦ௣௥௘ௗ
௦௣௘௖,௦ ൌ

ଵ

ଵ଴
∑ ∑ ℓ௦௣௘௖ ቀݎ௜௧

௦ ቚી෡௜௡ሺ௞ሻ
௦௣௘௖,௦ቁ௜௧א௢௨௧ሺ௞ሻ ௞ ,   

 and let ܺ௣௥௘ௗ
௦ ሺ1ܿ݁݌ݏ, 2ሻܿ݁݌ݏ ؠ  ࣦ௣௥௘ௗ

௦௣௘௖ଵ,௦ െ ࣦ௣௥௘ௗ
௦௣௘௖ଶ,௦. 

 ܺ௣௥௘ௗ
௦ ሺ1ܿ݁݌ݏ,  2ሻ is the average difference between the prediction log likelihoods ofܿ݁݌ݏ

any two specifications, for subject s. If I was willing to assume that the 300 choices of subject s 

are independent trials, I might now talk about the statistical significance of ܺ௣௥௘ௗ
௦  for each 

subject s, using either the asymptotic approach of Vuong (1989) or Clarke’s (2007) finite sample 

nonparametric variation on Voung’s method. Instead, I will remain agnostic about statistical 

independence within each subject, and regard the probability models as marginal probabilities 
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across each subject’s sequence of trials. This leads to conservatively treating each value of ܺ௣௥௘ௗ
௦  

as a single observation coming from each subject s. I can inspect the distribution of  ܺ௣௥௘ௗ
௦  across 

subjects and ask whether or not this distribution is significantly positive using a sign test—

indicating whether or not spec1 is better than spec2 for the majority of my subjects. 

 Statistical significance is nice, but not everything: A sensible approach to judging the 

magnitudes of any improvements will round out the picture of results. For this purpose, I need 

two benchmark log likelihoods: A lower benchmark ࣦ௣௥௘ௗ
௟௢௪,௦ that any good specification ought to 

beat, and an upper benchmark ࣦ௣௥௘ௗ
௛௜௚௛,௦ that no specification could outperform. From these and the 

actual ࣦ௣௥௘ௗ
௦௣௘௖,௦ of some specification, form a ratio of differences measure of prediction quality  

(20) തܻ
௣௥௘ௗ
௦௣௘௖ ൌ

∑ ࣦ೛ೝ೐೏
ೞ೛೐೎,ೞ

ೞ ି∑ ࣦ೛ೝ೐೏
೗೚ೢ,ೞ

ೞ

∑ ࣦ೛ೝ೐೏
೓೔೒೓,ೞ

ೞ ି∑ ࣦ೛ೝ೐೏
೗೚ೢ,ೞ

ೞ
. 

Because there are three trials of every option pair, there is a natural choice for the upper 

benchmark: The log likelihood of the observed choice proportions in the ݐݑ݋ሺ݇ሻ choice vector. 

Letting ݎҧ௜
௦ ൌ ∑ ௜௧ݎ

௦
௧ 3⁄  be this observed choice proportion of subject s for pair i, this is 

(21) ࣦ௣௥௘ௗ
௛௜௚௛,௦ ൌ

ଵ

ଵ଴
∑ ∑ ௜௧ݎ

௦ lnሺݎҧ௜
௦ሻ ൅ ሺ1 െ ௜௧ݎ

௦ ሻln ሺ1 െ ҧ௜ݎ
௦ሻ௜௧א௢௨௧ሺ௞ሻ௞ . 

No model of fixed marginal choice probabilities can do better than this log likelihood. 

 The lower benchmark could be based on each subject’s mean choice of ݕ݇ݏ݅ݎ௜ across all 

choice pairs, in which case the measure of prediction quality would resemble a pseudo ܴଶ; but 

this seems like an uninformative straw man to me.  In my view the lower benchmark ought to be 

a good atheoretical model of some sort. I take a few pages from Angrist and Pischke (2009) for 

this purpose, simply estimating a linear probability model or LPM of choices whose right-hand-

side dummy regressors code all characteristics of option pairs in a plausible fashion. Regard each 
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option pair ݅ as consisting of four dimensions: (i) ݉௜, the sure outcome of ݂݁ܽݏ௜; (ii) ݄௜ െ ݉௜, the 

potential upside of ݕ݇ݏ݅ݎ௜; (iii) ݉௜ െ ݈௜, the potential downside of ݕ݇ݏ݅ݎ௜; and (iv) ݍ௜, the 

probability of the upside of ݕ݇ݏ݅ݎ௜. Then the mostly harmless or MH specification is 

(22) ௜ܲ
௠௛ሺ઺ݏሻ  ൌ ∑ ௝ܽ

௦ · 1ሺ݉௜ ൌ ݆ሻ ൅௝ୀହ଴,଺଴,…,ଵଵ଴  

   ∑ ௝ܾ
௦ · 1ሺ݄௜ െ ݉௜ ൌ ݆ሻ ൅௝ୀଵ଴,ଶ଴,…,଺଴  

   ∑ ௝ܿ
௦ · 1ሺ݉௜ െ ݈௜ ൌ ݆ሻ ൅௝ୀଵ଴,ଶ଴  

   ∑ ௝݀
௦ · 1ሺݍ௜ ൌ ݆ሻ௝ୀଵ ଺⁄ ,ଶ ଺⁄ ,…,ହ ଺⁄ , 

where ઺௦ ൌ ሺ܉௦, ,௦܊ ,௦܋  ௦) is a vector of parameters to be estimated. Though there appear to be܌

twenty parameters, there are actually seventeen since, for estimability, the restrictions ∑ ௝ܾ
௦ ൌ 0௝ , 

ܿଵ଴
௦ ൅ ܿଶ଴

௦ ൌ 0 and ∑ ௝݀
௦

௝ ൌ 0 must be imposed. I estimate this by ordinary least squares for each 

subject, again staying close to Angrist and Pischke. With estimated values ઺෡௜௡ሺ௞ሻ
௦  in hand for 

each partition k, it is straightforward to calculate  

(23)  ࣦ௣௥௘ௗ
௟௢௪,௦ ൌ

ଵ

ଵ଴
∑ ∑ ௜௧ݎ

௦ lnൣ ௜ܲ
௠௛൫઺෡௜௡ሺ௞ሻ

௦ ൯൧ ൅ ሺ1 െ ௜௧ݎ
௦ ሻln ൣ1 െ௜௧א௢௨௧ሺ௞ሻ௞

௜ܲ
௠௛൫઺෡௜௡ሺ௞ሻ

௦ ൯൧. 

 At first blush the MH specification may seem like a straw man. In fact the prediction log 

likelihoods of the MH specification improve on those of a mean-variance model—a result well-

known from the history of psychological decision research (Payne 1973)—and my results 

suggest that it improves on most of the expected utility specifications (though significantly so 

only in the case of the strong utility model). So it is no straw man. Moreover, we seem to have 

entered a period where one regularly sees linear probability models used in applied 

microeconomics in preference to latent index models. Applied microeconomists may well feel 
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that a linear probability model will perform as well as (or better than) any of the context-

dependent models examined here. We will see. 

 Finally, recall that ࣦ௣௥௘ௗ
௦௣௘௖,௦ is an average prediction log likelihood across ten partitions k = 

1,2,…,10 of the data into an  ݅݊ሺ݇ሻ set for estimation and an ݐݑ݋ሺ݇ሻ set for prediction. The 

partitions are not randomly drawn: They are highly constrained. Some of the specifications 

above, particularly the MH linear probability model, would not always be estimable if these 

partitions were constructed randomly, and identification of the other models would usually suffer 

too. The partitions are constructed subject to constraints that guarantee estimability and promote 

better identification. Moreover, all of the context-dependent models attach special importance to 

variation in context: To capture this, both the ݅݊ሺ݇ሻ and ݐݑ݋ሺ݇ሻ sets are constructed to contain 

wide variation of contexts.  

Each of the ten partitions of pairs are also a partition of contexts: The ݅݊ሺ݇ሻ set always 

contains sixteen of the twenty-five contexts in Table 1, while the ݐݑ݋ሺ݇ሻ set always contains the 

remaining nine contexts. Thus the prediction task is always “out of context” since the estimation 

and prediction pairs are disjoint with respect to contexts. In all, there are always 64 pairs (and 

192 choices across the three days) within the estimation data ݅݊ሺ݇ሻ, and 36 pairs (and 108 

choices across the three days) within the prediction data ݐݑ݋ሺ݇ሻ. Appendix II further discusses 

the construction of the ten partitions.  

 

5. Results 

 The four panels of Figure 4 compare distributions of prediction log likelihoods. For this 

purpose, the prediction log likelihood of the MH specification is used as a baseline: The Figure 4 

curves are empirical cumulative distributions (over subjects) of  ܺ௣௥௘ௗ
௦ ሺܿ݁݌ݏ, ݄݉ሻ, where spec is 
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any other specification. The four panels of Table 2 complement the Figure 4 panels, showing the 

number of the 80 subjects for whom ܺ௣௥௘ௗ
௦ ሺ1ܿ݁݌ݏ, 2ሻܿ݁݌ݏ ൐ 0 for all pairs of specifications, 

along with an associated 2-tailed p-value for a sign test against equal medians for each pair of 

specifications. Figure 5 in turn provides information about the magnitudes of any significant 

effects: It compares values of തܻ
௣௥௘ௗ
௦௣௘௖ for the sixteen specifications formed by combining CU, 

DFT, BF or SU with any of the EU or RDU representations. 

There are three main findings. First, differences between the three context-dependent 

heteroscedastic specifications CU, DFT and BF are, for the most part, small and inconsistent 

across the four decision-theoretic representations. The panels of Figure 4 show this visually, but 

the sign test results in Table 2 bring home the point: While CU significantly bests DFT and BF 

when using parametric EU or RDU specifications, BF significantly bests CU and DFT when 

using function-free EU, and DFT significantly bests CU when using function-free RDU. This 

mixed evidence does not order these context-dependent models in a convincing way. 

 The second finding is that the MH specification wins only in competitions with 

specifications using EU representations. This is easiest to see in Figure 5: There, almost all 

comparisons of MH against specifications using EU representations show that the latter actually 

predict a bit worse than the MH specification. Yet whenever a context-dependent model is 

combined with an RDU representation, it improves strongly on the MH specification (see panels 

a and b of Table 2).   

 The third finding concerns the truly dismal performance of the SU model. Figure 5 brings 

this finding home in convincing fashion. Recall that തܻ
௣௥௘ௗ
௦௣௘௖ ൌ 0 is the performance of the MH 

specification. Figure 5 shows that തܻ
௣௥௘ௗ
௘௨௦௨ is strongly negative for both the parametric and 

function-free versions of EU: That is, a strong utility EU model has a prediction log likelihood 
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that is much worse than the atheoretic linear probability model. Even the RDU-based strong 

utility specifications do not significantly improve on the MH specification (see panels a and b of 

Table 2). Blavatskyy (2014) reports similar results using Hey’s (2001) data for in-sample fit but 

did not explore prediction fit. My own earlier work (Wilcox 2008, 2011) finds the same failure 

of strong utility relative to contextual utility in prediction, using Hey and Orme’s (1994) data. 

 Unlike in-sample log likelihoods, prediction log likelihoods do not need to be penalized 

for estimation degrees of freedom: Overfitting will automatically be punished in prediction. 

However, it is true that the linear probability model involves more independent parameters 

(seventeen) than the context-dependent models do (at most thirteen in the function-free RDU 

specifications). This might be the reason why the context-dependent RDU specifications 

outperform the MH specification. Pooled estimations (rather than the individual estimations 

considered so far) may make this concern less compelling since, in this case, data degrees of 

freedom far outnumber model degrees of freedom in all the estimation. Table 3 reports results of 

pooled estimations of the function-free RDU specifications and the MH specification. The three 

context-dependent specifications still strongly outperform the MH specification and the context-

free SU specifications. 

 

6. Conclusions 

 Binary choice under risk is an ubiquitous and frequently important situation in economic 

life, applied economic theory and empirical economics. Choices to pursue higher education or 

not, to have medical insurance or not, and to migrate or not are just three examples. In the case of 

binary choice under risk, the strong utility model—homoscedastic latent index models—should 

be regarded as mortally wounded. Theory tells us that strong utility models cannot respect 
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stochastic dominance (Falmagne 1985; Loomes and Sugden 1995), have no good computational 

interpretation (Busemeyer and Townsend 1993), and cannot coherently represent comparative 

risk aversion across agents in different choice contexts (Wilcox 2011). The laboratory evidence 

against strong utility for choice under risk is by now overwhelming (Loomes and Sugden 1998; 

Rieskamp 2008; Wilcox 2008, 2011; Butler, Isoni and Loomes 2012; Blavatskyy 2014).  

There are constructive alternatives in place: The new heteroscedastic, context-dependent 

models of probabilistic choice can accommodate violations of the betweenness property 

(Blavatskyy 2006), the Allais phenomena (Blavatskyy 2007), and the preference reversal 

phenomenon (Blavatskyy 2009, 2014; Butler Isoni and Loomes 2012). They provide coherent 

models of probabilistic risk aversion across agents and decision situations (Wilcox 2011; 

Blavatskyy 2014), and they have solid grounding in cognitive science (Busemeyer and 

Townsend 1993). Here, I have added to this growing progressive and constructive research 

program by demonstrating the predictive superiority of the new context-dependent models of 

probabilistic discrete choice under risk. 

Because it is convenient for IV estimation, the linear probability model will almost 

certainly be with us for some time (but see Lewbel, Dong and Yang 2012 for critique and 

alternatives). But if the application is a single equation analysis of binary choice under risk, my 

results show that an RDU-based representation combined with any of the three context-

dependent probabilistic choice models strongly outperforms a linear probability model in 

prediction. Linear probability models have become very common in applied economics. I believe 

that in the case of choice under risk, there are now better ways to analyze the choice. Saying you 

tried a homoscedastic logit as well, and got similar results to the linear probability model, may 

soon fail to convince the audience. 
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Appendix I: Equivalence of eqs. 10 and 11 given a suitable choice of the function ܪఒ. 

Let ܴ ൌ ܵ and ݕ݇ݏ݅ݎ ൌ ܷ From eq. 10 and the definitions .݂݁ܽݏ ൌ ሺܴ ڀ ܵሻ  ൌ  ሺ݄, ,ݍ ݉ሻ and  

ܮ ൌ ሺܴ ٿ ܵሻ  ൌ  ሺ݉, ,ݍ ݈ሻ for the option pairs in this experiment, Blavatskyy’s model is 

(A1) ܲ௥ௗ௕௙ ൌ ሺܴሻܾ݋ݎܲ ൌ ఒܪ ቀ௏ሺோሻି௏ሺௌሻ

௏ሺ௎ሻି௏ሺ௅ሻ
ቁ.  

Choose ܪఒሺݔሻ ൌ Λ ቂߣln ቀଵା௫

ଵି௫
ቁቃ. For ݔ א ሺെ1,1ሻ, this has the needed properties ܪఒሺ0ሻ ൌ 0.5 and 

ሻݔఒሺܪ ൌ 1 െ ݔ ሻ. Withݔఒሺെܪ ൌ ௏ሺோሻି௏ሺௌሻ

௏ሺ௎ሻି௏ሺ௅ሻ
, we have 

(A2) 
ଵା௫

ଵି௫
ൌ  

ଵା
ೇሺೃሻషೇሺೄሻ
ೇሺೆሻషೇሺಽሻ

ଵି
ೇሺೃሻషೇሺೄሻ
ೇሺೆሻషೇሺಽሻ

ൌ
௏ሺ௎ሻି௏ሺ௅ሻା௏ሺோሻି௏ሺௌሻ

௏ሺ௎ሻି௏ሺ௅ሻା௏ሺௌሻି௏ሺோሻ
ൌ

ሾ௏ሺ௎ሻି௏ሺௌሻሿାሾ௏ሺோሻି௏ሺ௅ሻሿ

ሾ௏ሺ௎ሻି௏ሺோሻሿାሾ௏ሺௌሻି௏ሺ௅ሻሿ
. 

Applying the RDU representation theorem to the four key options, 

(A3) ܸሺܴሻ  ൌ ሺ݄ሻݑሻݍሺݓ   ൅  ሾ1 െ ሺ݈ሻ,    ܸሺܵሻݑሻሿݍሺݓ  ൌ   ,ሺ݉ሻݑ 

 ܸሺܷሻ  ൌ ሺ݄ሻݑሻݍሺݓ   ൅ ሾ1 െ ሻܮሺ݉ሻ, and ܸሺݑሻሿݍሺݓ  ൌ ሺ݉ሻ ൅ݑሻݍሺݓ   ሾ1 െ  .ሺ݈ሻݑሻሿݍሺݓ

Substitute these into the four bracketed terms at the right end of (A2) to get 

(A4) ሾܸሺܷሻ െ ܸሺܵሻሿ ൌ ሾݓሺݍሻݑሺ݄ሻ ൅  ሾ1 െ ሺ݉ሻݑሻሿݍሺݓ െ ሺ݉ሻሿݑ ൌ ሺ݄ሻݑሻሾݍሺݓ െ  ,ሺ݉ሻሿݑ

 ሾܸሺܴሻ െ ܸሺܮሻሿ ൌ ሾݓሺݍሻݑሺ݄ሻ ൅ ሾ1 െ ሺ݈ሻݑሻሿݍሺݓ െ ሺ݉ሻݑሻݍሺݓ  െ  ሾ1 െ ሺ݈ሻሿݑሻሿݍሺݓ ൌ 

ሺ݄ሻݑሻሾݍሺݓ     െ  ,ሺ݉ሻሿݑ

 ሾܸሺܷሻ െ ܸሺܴሻሿ ൌ ሾݓሺݍሻݑሺ݄ሻ ൅ ሾ1 െ ሺ݉ሻݑሻሿݍሺݓ െ ሺ݄ሻݑሻݍሺݓ  െ ሾ1 െ ሺ݈ሻሿݑሻሿݍሺݓ ൌ 

    ሾ1 െ ሺ݉ሻݑሻሿሾݍሺݓ െ  ሺ݈ሻሿ, andݑ

 ሾܸሺܵሻ െ ܸሺܮሻሿ ൌ ሾݑሺ݉ሻ െ ሺ݉ሻݑሻݍሺݓ െ  ሾ1 െ ሺ݈ሻሿݑሻሿݍሺݓ ൌ 

ሾ1 െ ሺ݉ሻݑሻሿሾݍሺݓ െ  .ሺ݈ሻሿݑ

Clearly 
ଵା௫

ଵି௫
ൌ ௪ሺ௤ሻሾ௨ሺ௛ሻି௨ሺ௠ሻሿ

ሾଵି௪ሺ௤ሻሿሾ௨ሺ௛ሻି௨ሺ௠ሻሿ
, so the equivalence to eq. 11, given a suitable choice of ܪఒ, has 

been established. In turn, a bit of algebra on eq. 11 shows that it implies 
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(A5) 
௉௥௢௕ሺ௥௜௦௞௬ሻ

ଵି௉௥௢௕ሺ௥௜௦௞௬ሻ
ൌ ቀ ௪ሺ௤ሻሾ௨ሺ௛ሻି௨ሺ௠ሻሿ

ሾଵି௪ሺ௤ሻሿሾ௨ሺ௠ሻି௨ሺ௟ሻሿ
ቁ

ఒ
. 

When we set ݓሺݍሻ ؠ  so that the structural representation is expected utility, this expression is ݍ

recognizable as an instance of the probabilistic form derived by Fishburn (1978, p. 635). 

 

Appendix II: Estimation notes 

 All estimations were carried out in SAS 9.2 using the nonlinear programming procedure 

(“Proc NLP” in the SAS language) using the quasi-Newton algorithm.  For function-free 

estimations all parameters bounded in the interval [0,1], that is utilities and weights, were 

constrained to lie in [0.0001,0.9999]; additionally, monotonicity was imposed on estimated 

utilities and weights. For parametric RDU estimations the parameters ߚ௦ and ߛ௦ of the 2-

parameter Prelec (1998) weighting function were constrained to the strictly positive reals—in 

practice the interval [0.0001,∞). No other constraints were imposed on any estimates. 

 Monte Carlo simulations showed that both finite sample biases of parameter estimates 

and prediction log likelihoods could be noticeably improved by penalizing estimation that 

produced fitted probabilities very close to zero or one. By a grid search across Monte Carlo 

simulations, the following piecewise quadratic penalty function ݌௜ሺી௦ሻ was arrived at as a good 

kludge for penalizing such fitted probabilities: 

௜ሺી௦ሻ݌  ൌ 0 if ௜ܲ
௦௣௘௖ሺી௦ሻ א ሾ0.001,0.999ሿ; 

௜ሺી௦ሻ݌  ൌ െ30 · ቀ1 െ ൣ ௜ܲ
௦௣௘௖ሺી௦ሻ/0.001൧

ଶ
ቁ if ௜ܲ

௦௣௘௖ሺી௦ሻ ൏ 0.001; and 

௜ሺી௦ሻ݌  ൌ െ30 · ቀ1 െ ൣ1000 െ 1000 · ௜ܲ
௦௣௘௖ሺી௦ሻ൧

ଶ
ቁ if ௜ܲ

௦௣௘௖ሺી௦ሻ ൐ 0.999. 

This simply imposes a very steep but smoothly differentiable penalty on probabilities that 

wander within 0.001 of zero or one. The adjusted log likelihood function is 
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 ࣦ ௦௣௘௖൫ܚ௦௘௧ሺ௞ሻ
௦ หી௦൯ ൌ ∑ ℓ௦௣௘௖ሺݎ௜௧

௦ |ી௦ሻ௜௧א௦௘௧ሺ௞ሻ ൅  ∑ ݅݌
ሺી௦ሻ௜  

This penalty ∑ ௜ሺી௦ሻ௜݌  was imposed on all maximum likelihood estimations and (with a sign 

change) on the ordinary least squares estimation of the MH specification as well for purposes of 

comparability. Note that the penalty is imposed for all lottery pairs, including those in the 

 for estimation. However the ,(ሺ݇ሻ data is not part of the penalty functionݐݑ݋ but the) ሺ݇ሻ setݐݑ݋

penalty is not included in the prediction log likelihoods analyzed in the text. 

 For each subject, specification, and ݅݊ሺ݇ሻ data set, estimations were started from a 

moderate-sized grid of starting parameter vectors (six to sixty, depending on the dimensionality 

of the vector) to a “finalist” estimated vector from each starting vector, and the finalist with the 

best adjusted log likelihood was selected as the maximum likelihood estimate. 

 As mentioned in the text, the ten partitions of the data into ݅݊ሺ݇ሻ and ݐݑ݋ሺ݇ሻ sets were 

constructed subject to several constraints. First, the MH specification must be estimable: For 

each of the MH specification’s twenty indicator function regressors (see eq. 22) among the 64 

pairs comprising any ݅݊ሺ݇ሻ set, the indicator must vary, taking some values of 1 and some values 

of 0. Among other requirements, this implies that every distinct value of ݉௜, the outcomes of 

 ௜ in pairs i, must occur at least once in any ݅݊ሺ݇ሻ set: This also aids the identification of݂݁ܽݏ

utilities and the scale parameter ߣ௦ in the other models. 

Second, the context-dependent models differ from the context-free model mostly across 

pairs with different contexts: In particular, the utility difference ݑ௦ሺ݄௜ሻ െ  ௦ሺ݈௜ሻ is all or part ofݑ

the ܦ function of all three context-dependent models: This is transparent for the CU and DFT 

models in eqs. 7 and 9, and simple algebra shows that the ܦ function of the BF model equals 

0.5ሾݑ௦ሺ݄௜ሻ െ ௜ሻݍ௦ሺݓ ௜ such thatݍ ௦ሺ݈௜ሻሿ atݑ ൌ 0.5. Variation of ݑ௦ሺ݄௜ሻ െ  ௦ሺ݈௜ሻ across pairs alsoݑ

strengthens identification of the scale parameter ߣ௦ in all of the models. Therefore, any partition 
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should include broad variation of ݄௜ െ ݈௜ across the pairs in both the ݅݊ሺ݇ሻ and ݐݑ݋ሺ݇ሻ parts of 

the partition. In practice this meant requiring at least as many contexts with any particular value 

of ݄௜ െ ݈௜ in the ݅݊ሺ݇ሻ set as in the ݐݑ݋ሺ݇ሻ set, while ensuring some instances in the ݐݑ݋ሺ݇ሻ set 

as well. For example, Table 1 shows that there are six contexts where ݄௜ െ ݈௜ = $40: The 

algorithm for constructing partitions required that of these six contexts, four would be found in 

any ݅݊ሺ݇ሻ set while two would be found in any ݐݑ݋ሺ݇ሻ set. A similar constraint was imposed for 

each unique value of ݄௜ െ ݈௜ ($20 to $80) found among the contexts of Table 1.  
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Table 1: The 100 Choice Pairs 
 

the contexts four pairs 
 

the contexts four pairs 
 

,݈ۃ # ݉, qa qb qc qd ۄ݄ ,݈ۃ #  ݉, ۄ݄ qa qb qc qd

1 (40,50,60) 5/6 4/6 3/6 2/6  15 (70,80,100) 5/6 4/6 3/6 2/6
2 (40,50,70) 5/6 4/6 3/6 2/6  16 (70,80,110) 4/6 3/6 2/6 1/6
3 (40,50,80) 4/6 3/6 2/6 1/6  17 (70,80,120) 4/6 3/6 2/6 1/6
4 (40,50,90) 4/6 3/6 2/6 1/6  18 (70,90,110) 5/6 4/6 3/6 2/6
5 (40,60,100) 4/6 3/6 2/6 1/6  19 (80,90,100) 5/6 4/6 3/6 2/6
6 (40,60,110) 4/6 3/6 2/6 1/6  20 (80,90,110) 5/6 4/6 3/6 2/6
7 (40,60,120) 4/6 3/6 2/6 1/6  21 (80,90,120) 4/6 3/6 2/6 1/6
8 (50,60,90) 4/6 3/6 2/6 1/6  22 (80,100,120) 5/6 4/6 3/6 2/6
9 (50,70,100) 5/6 4/6 3/6 2/6  23 (90,100,110) 5/6 4/6 3/6 2/6
10 (50,70,110) 4/6 3/6 2/6 1/6  24 (90,100,120) 5/6 4/6 3/6 2/6
11 (50,70,120) 4/6 3/6 2/6 1/6  25 (100,110,120) 5/6 4/6 3/6 2/6
12 (60,70,90) 5/6 4/6 3/6 2/6  
13 (60,80,110) 5/6 4/6 3/6 2/6  
14 (60,80,120) 4/6 3/6 2/6 1/6        
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Table 2. Numbers of subjects for which the “row” specification has a higher prediction log 
likelihood than the “column” specification, with 2-tailed sign test p-values below numbers. 
 
Table 2-a. Function-free RDU 

MH  SU  CU  BF 

SU 
45 
0.31       

CU 
66 

<0.0001 
61 

<0.0001     

BF 
71 

<0.0001 
62 

<0.0001 
46 
0.22   

DFT 
67 

<0.0001 
65 

<0.0001 
52 

0.0097 
41 
0.91 

 
Table 2-b. Parametric RDU. 

MH  SU  DFT  BF 

SU 
44 
0.43       

DFT 
52 

0.0097 
55 

0.0011     

BF 
62 

<0.0001 
64 

<0.0001 
54 

0.0023   

CU 
69 

<0.0001 
71 

<0.0001 
57 

0.0002 
51 

0.0183 

 
Table 2-c. Function-free EU. 

SU  MH  DFT  CU 

MH 
52 

0.0097       

DFT
61 

<0.0001 
46 
0.22     

CU 
62 

<0.0001 
45 
0.31 

48 
0.093   

BF 
68 

<0.0001 
50 

0.033 
55 

0.0011 
52 

0.0097 

 
Table 2-d. Parametric EU. 

SU  DFT  BF  MH 

DFT 
70 

<0.0001       

BF 
71 

<0.0001 
45 
0.31     

MH 
59 

<0.0001 
45 
0.31 

46 
0.22   

CU 
70 

<0.0001 
51 

0.018 
58 

<0.0001 
45 
0.31 

 
 
 

Table 3: Pooled function-free RDU specifications: Numbers of subjects for which the “row” 
specification has a higher prediction log likelihood than the “column” specification, with 2-tailed 

sign test p-values below numbers. 
 

SU  MH  DFT  BV 

MH 
62 

<0.0001       

DFT 
64 

<0.0001 
60 

<0.0001     

BV 
63 

<0.0001 
59 

<0.0001 
50 

0.033   

CU 
63 

<0.0001 
58 

<0.0001 
47 
0.15 

46 
0.22 

 
Notes (Tables 2 and 3). MH = mostly harmless model (linear probability model with dummy 
coding of option pair dimensions); SU = strong utility model (homoscedastic logit); CU = 
contextual utility; BF = Blavatskyy-Fishburn model; and DFT = decision field theory. 
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Figure 1. An example pair, as displayed to subjects. 
The pair’s “context” in this example is ۄ40,50,90ۃ (in U.S. dollars). 

 
 

Left option [“risky”] 

 

 
 

Generally, risky is ሺ݄, ,ݍ ݈ሻ, 
 where ݄ ൐ ݍ , ݈ ൌ ሺ݄ሻ  and 1ܾ݋ݎܲ െ ݍ ൌ  .ሺ݈ሻܾ݋ݎܲ

 
Here, ݄ = $90, 1/6 = ݍ and ݈  = $40. 

 
 

 
Right option [“safe”] 

 

 
 

Generally, safe is ݉ with Prob 1,  
where ݄ ൐  ݉ ൐  ݈. 

 
Here ݉ = $50. 
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Figure 2. Cumulative distributions of risky choice proportions across days

Cumulative percent, day 1 Cumulative percent of subjects, day 1 minus day 2

Cumulative percent, day 2 Cumulative percent of subjects, day 1 minus day 3

Cumulative percent, day 3 Cumulative percent of subjects, day 2 minus day 3

Locations of cumulative 
distributions of within‐
subject differences 
across pairs of days 
are not significantly 
different from zero 
by sign, signed‐rank 
or t‐tests; and these 
distributions pass 
all tests of normality.
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Figure 3: Prelec-type one-parameter weighting functions at
1/6 and 5/6 for widely-held priors ( = 1 to 0.5)
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Figures 4: Cumulative distributions of ܺ௣௥௘ௗ
௦ ሺܿ݁݌ݏ, ݄݉ሻ of the four probabilistic models (spec) and the mostly harmless model (mh). 

Vertical axes are cumulative subjects; horizontal axes are differences in prediction log likelihoods. 
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Figure 4‐a. Function‐Free RDU.
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Figure 4‐b. Parametric RDU.
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Figure 4‐c. Function‐Free EU.
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Figure 4‐d. Parametric EU.

bf minus mh

dft minus mh

cu minus mh

su minus mh



 

 39

 
 
Notes. The measure of prediction quality is തܻ

௣௥௘ௗ
௦௣௘௖, defined in eq. 20. Its zero value is the average prediction log likelihood of the 

mostly harmless model, that is ࣦ௣௥௘ௗ
௟௢௪,௦ (see eqs. 22 and 23). Its maximum (unity) is the average log likelihood of the observed choice 

proportions in the ݐݑ݋ሺ݇ሻ data sets, that is ࣦ௣௥௘ௗ
௛௜௚௛,௦ (see eq. 21).
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Figure 5. Measure of prediction quality for various specifications.
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(Instructions to subjects)                              Instructions 
 
You will participate in 3 different sessions—one session on each of 3 different days.  
 
On each of the three days, you will make 100 choices from each of 100 pairs of monetary 
options. Some of the options will involve chance, in the form of a die roll. Option pairs will be 
presented to you as pie charts, on a computer screen: In each option pair you see, you will 
choose the option you would prefer to play.  
 
At the end of your third day with us, you will have made 300 choices over your three sessions. 
ONE of your 300 option choices will then be randomly selected using a bag of 300 tickets with 
the numbers 1, 2, 3,…, 299, 300 written on them. The numbers 1 to 100 correspond to the 100 
choices you will make today, in the order you make them today. Likewise, the numbers 101 to 
200 (and 201 to 300) correspond to the 100 choices you will make on your second day (and 
then on your third day) with us, in the order you make them on those days. 
 
At the end of your third day with us, you will reach into the bag of tickets (without looking inside),  
pull one out and show us the number. We will then enter that number into the computer, and it 
will recall that option pair and show the option you chose. That option will determine your 
payment for participation in this project. If the option you chose requires a die roll, we will then 
roll a six-sided die to determine your payment. 
 
Notice that since every option pair choice you make has a 1 in 300 chance of determining your 
payment for participation, you have a real reason to consider each option pair with equal care. 
Also, notice that only one of your 300 option pair choices will determine your payment. 
 
Please note that you won’t be able to use a calculator, or pencil and paper, to make your 
choices. That would take too long for 100 choices…our lab schedule will not accommodate this. 
 
An example of an option pair is shown below. The left option is a 1 in 6 chance of $90 and a 5 in 
6 chance of $40: If you chose this option and it was selected to determine your payment, a die 
roll would be needed to determine the payment. The right option is a sure $50: If you chose this 
option and it was selected to determine your payment, no die roll would be needed. 

 
Left Option 

 
 

 
 

Right Option 
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(Instructions to subjects—continued) 
 
The option pair you just saw is only one example. The money outcomes in the option pairs you 
see will range from $40 to $120, in ten dollar increments. Also, the connection between die rolls 
and money outcomes varies a lot over those options that involve a die roll, so remember to 
notice those die rolls when new option pairs appear on the screen for your consideration. 
Finally, note that the computer will present option pairs to you in a randomized order, and will 
also randomly select the left/right placement of the options in each pair. So you do not want to 
assume that option pairs appear in any kind of patterned sequence: They do not. The computer 
will remember the exact sequence, as well as what you chose, so that you can be paid properly 
on your last day with us. 
 
Some questions for a break 
 
It is difficult to maintain good attention over 100 choices. Even though the amounts of money in 
option pairs are not small, almost anyone will get a bit bored with making these kinds of choices 
after awhile.  
 
Partly for that reason, the 100 option pair choices will be broken into two halves (50 pairs in 
each half) on each day. Between the halves, on each day, you will answer some survey 
questions and respond to some questionnaire items. This will go pretty quickly on all three days 
(a little longer on the second day), and will give you a break each day from the option pair 
choices.  
 
You'll be able to do everything at your own pace. We believe that each session will last about 
one hour for most people on most days, but remember that we expect you to have 90 minutes 
available on each day, so that you are not rushed. 
 
If there is anything you do not understand, please ask us. We will be happiest if you understand 
exactly how your decisions affect you: We want you to be able to do well for yourself, whatever 
your believe “doing well” is. We encourage you to do what you want.  
 
Finally, the money for this study comes from grants. This money is earmarked for payment to 
student participants. We have no alternative use for this money: It must be paid out to 
participants like you. We must of course make payments only in accordance with the procedure 
we have described above. But do not worry about taking that money from us: It is specifically 
earmarked for this and we cannot use it for anything else. We say this, only because some 
students worry about taking such money from professors. You should not worry about it. The 
money is grant money, not Dr. Wilcox’s money, and it is earmarked specifically for paying out to 
student participants like yourself. 
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