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Unusual Estimates of Probability Weighting Functions  
 

by 
 

Nathaniel T. Wilcox* 

 
Abstract 

 
 I present new estimates of the probability weighting functions found in rank-
dependent theories of choice under risk. These estimates are unusual in two senses. First, 
they are free of functional form assumptions about both utility and weighting functions, 
and they are entirely based on binary discrete choices and not on matching or valuation 
tasks, though they depend on assumptions concerning the nature of probabilistic choice 
under risk. Second, estimated weighting functions contradict widely held priors of an 
inverse-s shape: Instead I usually find populations dominated by “optimists” who 
uniformly overweight best outcomes in risky options. A salience-based theory of choice 
may help to explain this. Additionally, the choice pairs I use here mostly do not provoke 
similarity-based simplifications. In a third experiment, I show that the presence of choice 
pairs that provoke similarity-based computational shortcuts does indeed flatten estimated 
probability weighting functions. 
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 The probability weighting function, found in the rank-dependent  family of choice 

theories, is very widely believed to follow an inverse-s shape on the unit square—rising 

steeply at first but concave enough so that it quickly decelerates to cross the 45 degree 

line from above (around a third or so), and thereafter becoming convex and accelerating 

upward to the unit point (e.g. Tversky and Kahneman 1992; Quiggin 1993; Prelec 1998). 

This shape accounts for various versions of the Allais paradox and several other decision 

making phenomena. However, there has long been an alternative explanation for many of 

the same phenomena based on similarity judgments, mostly associated with Rubinstein 

(1988) and Leland (1994), though tracing its roots to well-known contributions of 

Tversky (1969). Some widely accepted aspects of the probability weighting function 

might be due to similarity-induced flattening of apparent probability weighting. If so, we 

might expect to estimate markedly different weighting functions when we confine 

decision makers’ choices to options which are less likely to bring similarity judgments 

into play. I explore this idea and find support for it. 

 I perform three new risky choice experiments in which the chance device is a 

single roll of either a six-sided, four-sided or twelve-sided die. In the first two 

experiments this confines outcome probabilities to a relatively coarse grid (sixths in the 

first experiment, fourths in the second), so that pairs of options will rarely present 

subjects with easy opportunities to exploit similarity-based procedures that ignore small 

probability differences and bypass a full judgment that weights utilities of outcomes by 

probability weights. The twelve-sided die used for the third experiment helps to clinch 

this interpretation of the results. I usually find that the plurality type of decision maker is 

an “optimist”—a person whose probability weighting function exceeds true probability 

everywhere (in the second experiment, using the four-sided die, they are an outright 

majority). This is not the received shape of the probability weighting function. A 

salience-based account of context-dependent weighting (Bordalo et al. 2011) may help to 

explain why I commonly find optimistic probability weighting functions in these new 

experiments. 
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 The estimates of probability weights are free of functional form assumptions 

concerning both outcome utilities and probability weights, and the experimental data is 

wholly discrete choice from pairs of risky options.1 In particular, no valuation or 

matching tasks are used here: Subjects make no indifference judgments—they state no 

certainty or probability equivalents—and so are not being asked to solve preference 

equations, which may be unnatural to them. However, my estimates do depend on 

assumptions concerning the probabilistic nature of discrete choice under risk. To guard 

against the possibility that the results crucially depend on those assumptions, I perform 

the estimations with three recent but different models of probabilistic choice under risk, 

all of which have been shown to perform better than older models. The results are, for the 

most part, insensitive to the choice of one of these models or another. Optimistic decision 

weights appear to be the norm in an experiment that is relatively free of similarity-based 

opportunities for choice simplification. 

 

1. Preliminaries 

 In general, the notation ሺݍ, ,ݍ  ሻ denotes an option’s probability distribution onݍ

a vector ݈ۃ, ݉,  of three outcomes which I call the context of a choice pair. In the first ۄ݄

experiment, each choice pair is a set ሼݕ݇ݏ݅ݎ, ሽ݂݁ܽݏ ؠ ሼሺ1 െ ,ݍ 0, ,ሻݍ ሺ0,1,0ሻሽ of two 

options on a context ݈ۃ, ݉,  The option safe pays m dollars with certainty, while the .ۄ݄

option ݕ݇ݏ݅ݎ ൌ ሺ1 െ ,ݍ 0,   and l dollars withݍ ሻ pays h dollars with probabilityݍ

probability 1 െ ݄ , whereݍ  ݉  ݈  US$40.  Subjects choose between risky and safe 

in each pair presented to them.  

The instructions to subjects in Appendix III show a pair where ሼݕ݇ݏ݅ݎ,  ሽ is݂݁ܽݏ

ሼሺ5/6,0,1/6ሻ, ሺ0,1,0ሻሽ on the context ۄ40,50,90ۃ. Table 1 shows the 100 choice pairs 

used in the first experiment, organized into groups of four pairs (the rows of the table) by 

their shared context. All risky lotteries are chances ݍ and 1 െ   (in sixths, generated byݍ

a six-sided die) of receiving high and low outcomes ݄ and ݈ on the context, respectively: 

                                                 
1 The use of binary choices distinguishes my function-free estimations from the nonparametric estimation 
of Gonzalez and Wu (1999), who used certainty equivalents elicited by means of a choice list procedure—a 
procedure reviewed and experimentally critiqued by Loomes and Pogrebna (2014). 



3 
 

Four values of ݍ, shown on each row in Table 1 (ݍ
, ݍ

, ݍ
  and ݍ

ௗ) create four risky 

lotteries on each context, and each of these is paired with safe (the middle outcome m of 

the context with certainty) to create four pairs on the context. There are twenty-five 

contexts built from the nine positive money outcomes $40, $50,…,$120. 

The subjects in the first experiment were 80 undergraduates at the University of 

Houston, recruited widely by means of a single e-mail to all undergraduates. Each subject 

was individually scheduled for three separate sessions on three separate days of their own 

choosing, almost always finishing all three sessions within one week. Only one subject 

had to be replaced due to noncompletion of the three-day protocol.  

On each day, each subject made choices from the 100 choice pairs shown in Table 

1, so that each made 300 choices in all by the end of their third day. On each day, for 

each subject, the 100 choice pairs were randomly ordered into two halves of 50 pairs 

each, separated by about ten to fifteen minutes of other tasks (demographic surveys, item 

response surveys, short tests of arithmetic and problem-solving ability, and so forth). 

 

Table 1: The 100 option pairs of the first experiment. 

 

contexts 
,݈ۃ ݉,  ۄ݄

four pairs 
 

contexts 
,݈ۃ ݉,  ۄ݄

four pairs 
 

ݍ


ݍ 


ݍ 
 ݍ

ௗ ݍ 


ݍ 


ݍ 
 ݍ

ௗ

3/6 4/6 5/6 ۄ40,50,60ۃ 1 2/6 ۄ70,80,100ۃ 15  5/6 4/6 3/6 2/6
3/6 4/6 5/6 ۄ40,50,70ۃ 2 2/6 ۄ70,80,110ۃ 16  4/6 3/6 2/6 1/6
2/6 3/6 4/6 ۄ40,50,80ۃ 3 1/6 ۄ70,80,120ۃ 17  4/6 3/6 2/6 1/6
2/6 3/6 4/6 ۄ40,50,90ۃ 4 1/6 ۄ70,90,110ۃ 18  5/6 4/6 3/6 2/6
2/6 3/6 4/6 ۄ40,60,100ۃ 5 1/6 ۄ80,90,100ۃ 19  5/6 4/6 3/6 2/6
2/6 3/6 4/6 ۄ40,60,110ۃ 6 1/6 ۄ80,90,110ۃ 20  5/6 4/6 3/6 2/6
2/6 3/6 4/6 ۄ40,60,120ۃ 7 1/6 ۄ80,90,120ۃ 21  4/6 3/6 2/6 1/6
2/6 3/6 4/6 ۄ50,60,90ۃ 8 1/6 ۄ80,100,120ۃ 22  5/6 4/6 3/6 2/6
3/6 4/6 5/6 ۄ50,70,100ۃ 9 2/6 ۄ90,100,110ۃ 23  5/6 4/6 3/6 2/6
2/6 3/6 4/6 ۄ50,70,110ۃ 10 1/6 ۄ90,100,120ۃ 24  5/6 4/6 3/6 2/6
2/6 3/6 4/6 ۄ50,70,120ۃ 11 1/6 ۄ100,110,120ۃ 25  5/6 4/6 3/6 2/6
3/6 4/6 5/6 ۄ60,70,90ۃ 12 2/6  
3/6 4/6 5/6 ۄ60,80,110ۃ 13 2/6  
2/6 3/6 4/6 ۄ60,80,120ۃ 14 1/6        
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Only rarely did any day’s session last more than an hour, and most sessions were 

substantially shorter than this. At the conclusion of each subject’s third day, one of their 

300 choice pairs was selected at random (by means of the subject drawing a ticket from a 

bag) and the subject was paid according to their choice in that pair (this is called random 

task selection). If the subject’s choice in the selected pair was risky, the subject selected a 

six-sided die from a box of six-sided dice (rolling them until satisfied if they wished), and 

their selected die was then rolled by the attendant to determine the payment. A detailed 

explanation of this protocol, as well as instructions to subjects, appears in Appendix III. 

Quiggin (1982) originally developed rank-dependent utility or RDU; later, 

Quiggin’s treatment of the weighting function became a part of cumulative prospect 

theory or CPT (Tversky and Kahneman 1992). Under RDU (or CPT for pure gain 

options), the value of an option ሺݍ, ,ݍ   ሻ isݍ

 

,ݍሺܷܦܴ  (1) ,ݍ ሻݍ  ൌ ሺ݄ሻݑሻݍሺݓ    ሾݓሺ1 െ ሻݍ െ ሺ݉ሻ ሾ1ݑሻሿݍሺݓ െ ሺ1ݓ െ      ,ሺ݈ሻݑሻሿݍ

 

where ݑሺݖሻ is the utility of outcome ݖ and ݓሺݍሻ is the weighting function at probability 

  is simply ݂݁ܽݏ and ݕ݇ݏ݅ݎ In the first experiment, the RDU value difference between .ݍ

 

ܷܦܴ∆  (2) ൌ ሻݕ݇ݏ݅ݎሺܷܦܴ െ ሻ݂݁ܽݏሺܷܦܴ ൌ ሺ݄ሻݑሻݍሺݓ   ሾ1 െ ሺ݈ሻݑሻሿݍሺݓ െ  .ሺ݉ሻݑ

 

I wish to estimate the weights ݓሺݍሻ of RDU (or CPT for pure gains) with no 

assumptions concerning their functional form, and using only binary choice data. To do 

this, I need assumptions about the nature of probabilistic binary choices.  

 

2. The probabilistic choice models 
 

 Beginning with Mosteller and Nogee (1951), many experiments on discrete 

choice under risk suggest that these choices have a strong probabilistic component. 

Repeated trials of choice from pairs of risky options and reveal high rates of choice 
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switching by the same subject between trials of the same pair.2 In some cases, the 

repeated trials span days (e.g. Tversky 1969; Hey and Orme 1994; Hey 2001) and 

decision-relevant conditions might have changed between trials. Yet switching occurs 

even between trials separated by bare minutes, with no intervening change in wealth, 

background risk, or any other obviously decision-relevant variable (Camerer 1989; 

Starmer and Sugden 1989; Ballinger and Wilcox 1997; Loomes and Sugden 1998).  

To construct observation likelihoods, assumptions about the probabilistic nature 

of these choices are needed. I use three different probabilistic choice models of the form 

  

(3)  ܲ ؠ ,ݕ݇ݏ݅ݎሼ ݉ݎ݂ ݊݁ݏ݄ܿ ݕ݇ݏ݅ݎሺܾݎܲ ሽሻ݂݁ܽݏ ൌ ܨ  ቀߣ ∆ோ

ሺ௦௬,௦ሻ
ቁ, 

 

where ߣ is a scale (or inverse standard deviation) parameter, ܦሺݕ݇ݏ݅ݎ,  ሻ adjusts the݂݁ܽݏ

scale parameter, and ܨ: ܺ ՜ ሾ0,1ሿ is an increasing function with ܨሺ0ሻ ൌ 0.5 and 

ሻݔሺܨ  ൌ  1 െ ܺ ሻ, whereݔሺെܨ ك Թ. The probabilistic models are my own “contextual 

utility” or CU model (Wilcox 2011), the “decision field theory” or DFT model of 

Busemeyer and Townsend (1992, 1993) and the “stronger utility” or SU model of 

Blavatskyy (2014). Respectively, these models are:  

 

(4)  ܲ௨ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ܨ ቀߣ ோ

௨ሺሻି௨ሺሻ
ቁ, contextual utility;  

(5)  ܲௗ௧ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ܨ ൬ߣ ோ

ሾ௨ሺሻି௨ሺሻሿඥ௪ሺሻሾଵି௪ሺሻሿ
൰, decision field theory; and 

(6)  ܲ௦௨ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ఒܪ ቀ ோ

௪ሺሻሾ௨ሺሻି௨ሺሻሿାሾଵି௪ሺሻሿሾ௨ሺሻି௨ሺሻሿ
ቁ, stronger utility. 

 

In the contextual utility and decision field theory models, ܺ ൌ Թ, while in 

stronger utility ܺ ൌ ሺെ1,1ሻ. However, by way of a suitable choice of ܪఒ, the stronger 

utility model can be rewritten in a form with ܨ: Թ ՜ ሾ0,1ሿ as well (see Appendix I): 

                                                 
2 For instance, Camerer (1989, p. 81) reported that “Overall, 31.6% of the subjects reversed preference 
[between a test and retest of the same lottery pair]. This number is distressingly close to…random, but 
comparable with numbers in other studies (e.g. Starmer and Sugden 1989)…” 
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(7)   ܲ௦௨ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ܨ ቂߣ ln ቀ ௪ሺሻሾ௨ሺሻି௨ሺሻሿ

ሾଵି௪ሺሻሿሾ௨ሺሻି௨ሺሻሿ
ቁቃ. 

 

This means that all three of these probabilistic models may be estimated using a common 

choice for the function F. Busemeyer and Townsend (1993) give theoretical reasons for 

choosing the logistic c.d.f. Λሺݔሻ ൌ ሾ1  expሺെݔሻሿିଵ for use with decision field theory 

(see Appendix I) so I use it as the function F in all estimations for all three models. 

 Until recently (e.g. Anderson et al. 2008), most applied econometric estimations 

would have been done with the simple homoscedastic latent variable model ܲ ൌ

ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ  ,ሻ: I call this the homoscedastic model. For many reasonsܷܦΔܴߣሺܨ

much professional opinion has turned against the homoscedastic model for discrete 

choice under risk. It does not respect stochastic dominance (Loomes and Sugden 1995) 

and cannot coherently represent comparative risk aversion across agents in different 

choice contexts (Wilcox 2011). The laboratory evidence against the homoscedastic 

model, for choice under risk, is now extensive (Loomes and Sugden 1998; Rieskamp 

2008; Wilcox 2008, 2011, 2015; Butler, Isoni and Loomes 2012; Blavatskyy 2014). 

Previous applied econometric users of the simple homoscedastic model have put it aside 

in favor of the newer models (e.g. Anderson et al. 2013). Appendix I presents more 

information on contextual utility, decision field theory and stronger utility. 

 There are other ways to introduce probabilistic choice into models of decision 

under risk. One of these is random preferences (Loomes and Sugden 1995; Gul and 

Pesendorfer 2006): This approach treats vectors of outcome utilities and/or probability 

weights as random draws from a fixed distribution of these vectors. Random preference 

models also exhibit context dependence (Wilcox 2011, p. 101). There is, however, a 

difficult problem with considering a random preference RDU specification for the 

experimental data considered here: It is not possible to generalize an RDU random 

preference specification across more than three outcome contexts without changing 

estimation techniques in fundamental ways (Wilcox 2008 pp. 252-256; Wilcox 2011 

pp.101-102). The first experiment has 25 distinct outcome contexts while the second and 

third experiments have 10 each. Therefore, I do not consider random preferences here. 
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3. Estimation  

 To discuss the estimation, it is helpful to define indices for pairs, trials (days) and 

subjects, as well as some important sets of indices: 

 

i = 1,2,…I, indexing I distinct pairs. Here I = 100. 

Pairs i are ሼݕ݇ݏ݅ݎ, ሽ݂݁ܽݏ ؠ ሼሺ1 െ ,ݍ 0, ,ሻݍ ሺ0,1,0ሻሽ on context ݈ۃ, ݉, ݄ۄ. 

t = 1,2,…߬, indexing ߬ distinct trials of each pair i. Here ߬ = 3 (three days).  

s = 1,2,…S, indexing the S distinct subjects. Here S = 80. 

it: A double subscript indicating the tth trial of pair i. 

௧ݎ
௦ ൌ 1 if subject s chose ݕ݇ݏ݅ݎ in her tth trial of pair i, and zero otherwise. 

௦ܚ  ൌ the observed choice vector of subject s over all pairs and trials it.   

 

 Let ݑ௦ሺݖሻ  and ݓ௦ሺݍሻ denote utilities of outcomes z and weights associated with 

probabilities q, respectively, of subject s. The first experiment involves nine distinct 

outcomes ݖ א ሼ$40, $50, … , $120ሽ across its 100 choice pairs, but because of the affine 

transformation invariance property of RDU and EU utilities, we can choose ݑ௦ሺ40ሻ ൌ 0 

and ݑ௦ሺ120ሻ ൌ 1 for all subjects s. With this done, the unique estimable utility vector ܝ௦ 

of the seven remaining outcomes is ܝ௦ ൌ ,௦ሺ50ሻݑۃ ,௦ሺ60ሻݑ … ,  Function-free .ۄ௦ሺ110ሻݑ

estimations make each of those seven utilities a separate parameter to be estimated.  

 The first experiment involves five distinct probabilities ݍ א  ቄଵ


, ଶ


, … , ହ


ቅ, so there 

is a vector ܟ௦ ൌ ௦ݓۃ ቀଵ


ቁ , ௦ݓ ቀଶ


ቁ , … , ௦ݓ ቀହ


ቁۄ of five weights to estimate for each 

subject. Function-free estimations make each of those five weights a separate parameter 

to be estimated. To summarize, the function-free latent index of the RDU representation, 

for subject s and pair i, is 

 

ܦܴ∆  (8) ܷሺܝ௦, ௦ሻܟ  ൌ ௦ሺ݄ሻݑሻݍ௦ሺݓ    ሾ1 െ ௦ሺ݈ሻݑሻሿݍ௦ሺݓ െ  ௦ሺ݉ሻ, whereݑ

௦ܟ ൌ ௦ݓۃ ቀଵ


ቁ , ௦ݓ ቀଶ


ቁ , … , ௦ݓ ቀହ


ቁۄ, and 

௦ܝ ൌ ,௦ሺ50ሻݑۃ ,௦ሺ60ሻݑ … , ௦ሺ40ሻݑ with ,ۄ௦ሺ110ሻݑ ൌ 0 and ݑ௦ሺ120ሻ ൌ 1  s. 
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Combine eq. 8 with eqs. 4, 5 and 7, let ી௦ ؠ ሺܝ௦, ,௦ܟ  ௦ሻ and choose the logistic c.d.f. asߣ

F(x), and we have the following choice probability specifications: 

 

(9)   ܲ
ௗ௨ሺી௦ሻ ൌ Λ ቂߣ௦ ோሺܝೞ,ܟೞሻ

௨ೞሺሻି௨ೞሺሻ
ቃ; 

(10)  ܲ
ௗௗ௧ሺી௦ሻ ൌ Λ ߣ௦ ோሺܝೞ,ܟೞሻ

ሾ௨ೞሺሻି௨ೞሺሻሿඥ௪ೞሺሻሾଵି௪ೞሺሻሿ
൨; and  

(11)  ܲ
ௗ௦௨ሺી௦ሻ ൌ Λ ቂߣ௦ln ቀ ௪ೞሺሻሾ௨ೞሺሻି௨ೞሺሻሿ

ሾଵି௪ೞሺሻሿሾ௨ೞሺሻି௨ೞሺሻሿ
ቁቃ. 

 

Equations 9-11 give the probability of events ݎ௧
௦ ൌ 1 (subject s chose risky in the tth trial 

of pair i). Letting ܲ
௦ሺી௦ሻ denote any of those probabilities, the log likelihood of ܚ௦ is 

 

(12)  ࣦ ௦ሺܚ௦|ી௦ሻ ൌ ∑ ௧ݎ
௦ lnൣ ܲ

௦ሺી௦ሻ൧  ሺ1 െ ௧ݎ
௦ ሻln ሾ1 െ ܲ

௦ሺી௦ሻሿ௧ . 

 

I estimate ી௦ by a penalized maximum likelihood procedure, for each subject s; 

Appendix II contains details of this estimation. 

 

4. Some Monte Carlo results 

 The 100 choice pairs in Table 1 were in part chosen through Monte Carlo 

simulations exploring estimation performance with alternative sets of choice pairs. To 

gain confidence in the estimations reported here—and to understand their limitations—it 

helps to see some Monte Carlo results. Consider a data generating process or DGP based 

on one of the choice probability models in equations 9-11, combined with well-known 

parametric estimates of utility and weighting functions. For the utility function, I use the 

CRRA utility of money given by ݑ௦ሺߩ|ݖ௦ሻ ൌ ଵିఘೞݖ
/ሺ1 െ  ௦ሻ, normalized3 so thatߩ

௦ሺ40ሻݑ ൌ 0 and ݑ௦ሺ120ሻ ൌ 1, and begin with the parameter value ߩ௦ ൌ 0.12 (very mild 

concavity of utility) reported by Tversky and Kahneman (1992). For the weighting 

function, I use Prelec’s (1998) two-parameter function, given by ݓ௦ሺߚ|ݍ௦, ௦ሻߛ ൌ

                                                 
3 This normalized version of  CRRA utility is simply ݑ௦ሺߩ|ݖ௦ሻ ൌ  ൫ݖଵିఘೞ

െ 40ଵିఘೞ
൯/൫120ଵିఘೞ

െ 40ଵିఘೞ
൯. 
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exp ൫െߚ௦ሾെln ሺݍሻሿఊೞ
൯  q  (0,1), w(0) = 0 and w(1) = 1, and begin with parameter 

values ߚ௦ ൌ 1 and ߛ௦ ൌ 0.65 which, according to Prelec, match earlier estimations of 

weights using other weighting functions. Express the parameters of this first DGP as 

ሺߩ, ,ߛ ሻߚ ൌ ሺ0.12,0.65,1ሻ: These parameters are cumulative prospect theory as first 

conceived a quarter century ago, and I call this “Prospector I” for short. I take a more 

recent parametric version of cumulative prospect theory from Bruhin, Fehr-Duda and 

Epper (2010), using a second DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ0.043,0.45,0.8ሻ. I call this “Prospector 

II” for short: It closely resembles Bruhin, Fehr-Duda and Epper’s most common subject 

type (that they estimated with a finite mixture model using all of their data). 

For contrast, and anticipating later results, I examine two other DGPs. One of 

these DGPs is ሺߩ, ,ߛ ሻߚ ൌ ሺ3,1.5,0.4ሻ: I call this DGP “Optimist” since its weighting 

function is such that ݓ௦ሺݍሻ   in the first experiment: The decision maker ݍ for all ݍ

overweights probabilities of highest outcomes. By itself such probability weighting 

would imply risk-seeking, but this DGP also has a highly concave utility function which, 

by itself, would imply risk aversion. The last DGP for Monte Carlo study is ሺߩ, ,ߛ ሻߚ ൌ

ሺ1.5,3,2ሻ: The implied weighting function in this case is s-shaped—opposite of the 

inverse s-shape of received Cumulative Prospect Theory. This weighting function may 

represent a decision maker who sometimes rounds low probabilities to zero and high 

probabilities to unity, so I call this DGP “Rounder.”  

Figures 1, 2, 3 and 4 show results of function-free estimations of utilities (the left 

panels) and weights (the right panels) for 80 simulated subjects, using the contextual 

utility specification of eq. 9 for the estimation. These simulated subjects all have true 

(DGP) choice probabilities given by the contextual utility model in eq. 9 with ߣ௦ ൌ 12. In 

Figure 1, the 80 simulated subjects have the “Prospector I” DGP; in Figure 2 they have 

the “Prospector II” DGP; in Figure 3 they have the “Optimist” DGP; and in Figure 4 they 

have the “Rounder” DGP. On all panels, the true (DGP) utility functions or weighting 

functions appear as a bold black curve, while the 80 functions estimated using the 

function-free method appear as thinner curves of varying greys. 
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Figure 1: 80 function-free estimates from Monte Carlo data with ‘Prospector I’ DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ0.12,0.65,1ሻ and contextual utility. 

  
  
Figure 2: 80 function-free estimates from Monte Carlo data with ‘Prospector II” DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ0.043,0.45,0.8ሻ and contextual 
utility. 
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Figure 3: 80 function-free estimates from Monte Carlo data with ‘Optimist’ DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ3,1.5,0.4ሻ and contextual utility. 

  
  
Figure 4: 80 function-free estimates from Monte Carlo data with ‘Rounder’ DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ1.5,3,2ሻ and contextual utility. 
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Figures 1, 2, 3 and 4 show that the function-free estimates cluster around the DGP 

curve with little in the way of strong biases, except occasionally near the endpoints of the 

functions where true utilities and/or weights are close to zero or one (this is expected for 

maximum likelihood estimates  of parameters lying near a boundary of an allowed 

parameter space). The variability of the estimated curves (not small) is due both to the 

inherent variability of (simulated) observed choices that is consequent to probabilistic 

choice in the DGP, and to the burden of the function-free estimation.4 Yet comparison of 

these four figures shows that collected function-free estimations track different DGPs: 

The collective impression made by the “cloud” of individual estimates matches different 

amounts of utility concavity and different weighting function shapes quite well. 

Tables 2-A, 2-B and 2-C show distributions of five estimated weighting function 

shapes for 1000 simulated subjects, using each of the four DGPs: 

 

(1)  prospector—  there is a כݍ א ቀଵ


, ହ


ቁ such that ݓෝ ௦ሺݍሻ ش ݍ as ݍ س  ;כݍ

(2)  pessimist—  ݓෝ ௦ሺݍሻ ൏  ;ݍ for all ݍ

(3)  optimist—  ݓෝ ௦ሺݍሻ   ;ݍ for all ݍ

(4)  rounder—   there is a כݍ א ቀଵ


, ହ


ቁ such that ݓෝ ௦ሺݍሻ س ݍ as ݍ س  and ;כݍ

(5)  unclassified— estimated weights cross the identity line more than once. 

 

The tables show that most  estimated weighting function shapes match the shape of the 

DGP (usually more than 80%, but a bit less for Prospector I). These tables also bear on 

later results. First, Cumulative Prospect Theory DGPs (that is, Prospector I and 

Prospector II) produce estimated optimist or rounder shapes less than about 8% of the 

time: If a sample of 80 subjects comes from a population composed solely of Prospector I 

and Prospector II, we expect that function-free estimation will produce about 7 subjects 

having estimated optimist or rounder shapes. Second, Cumulative Prospect Theory DGPs 

produce estimated pessimist shapes about 11% of the time: If we see 8 or so estimated  

                                                 
4 Parametric estimations produce estimates with about eighty to fifty percent of the variability of these 
function-free estimates (around the true DGP weighting function). 



 13

Tables 2. Monte Carlo results: Distribution of 1000 function-free estimations of  
weighting function shapes, using 1000 simulated subjects from four different DGPs. 

 
Table 2-A. Contextual utility (ߣ௦ ൌ 12) is in the DGP and is also used for estimations. 

estimated 
weighting 

function shapes 

DGP utility and weighting function parameters ሺߩ, ,ߛ   ሻߚ
Prospector I, 
as in Figure 1 
ሺ0.12,0.65,1ሻ 

Prospector II, 
as in Figure 2 

ሺ0.043,0.45,0.8ሻ 

Optimist, 
as in Figure 3 

ሺ3,1.5,0.4ሻ 

Rounder, 
as in Figure 4 

ሺ1.5,3,2ሻ 
Prospector 66.7% 84.1%   8.4%   0.0% 
Pessimist 10.9%   0.4%   0.0%   2.4% 
Optimist   4.6%   8.1% 91.0%   0.0% 
Rounder   1.8%   0.0%   0.6% 81.0% 

Unclassifiable 16.0%   7.4%   0.0% 16.6% 
 
Table 2-B. Decision field theory (ߣ௦ ൌ 5) is in the DGP and is also used for estimations.   

estimated 
weighting 

function shapes 

DGP utility and weighting function parameters ሺߩ, ,ߛ   ሻߚ
Prospector I, 
as in Figure 1 
ሺ0.12,0.65,1ሻ 

Prospector II, 
as in Figure 2 

ሺ0.043,0.45,0.8ሻ 

Optimist, 
as in Figure 3 

ሺ3,1.5,0.4ሻ 

Rounder, 
as in Figure 4 

ሺ1.5,3,2ሻ 
Prospector 74.4% 89.8% 20.1%   0.0% 
Pessimist 11.7%   2.0%   0.0%   0.0% 
Optimist   3.2%   4.9% 79.1%   0.0% 
Rounder   1.4%   0.1%   0.5% 88.0% 

Unclassifiable   9.3%   3.2%   0.3% 12.0% 
 
Table 2-C. Stronger utility (ߣ௦ ൌ 2) is in the DGP and is also used for estimations. 

estimated 
weighting 

function shapes 

DGP utility and weighting function parameters ሺߩ, ,ߛ   ሻߚ
Prospector I, 
as in Figure 1 
ሺ0.12,0.65,1ሻ 

Prospector II, 
as in Figure 2 

ሺ0.043,0.45,0.8ሻ 

Optimist, 
as in Figure 3 

ሺ3,1.5,0.4ሻ 

Rounder, 
as in Figure 4 

ሺ1.5,3,2ሻ 
Prospector 67.4% 88.5%   4.0%   0.0% 
Pessimist 12.6%   1.1%   0.0%   0.4% 
Optimist   4.2%   5.9% 94.2%   0.0% 
Rounder   3.3%   0.2%   1.8% 95.6% 

Unclassifiable 12.5%   4.3%   0.0%   4.0% 
 

 

pessimist shapes, these may be simply the result of sampling variability and true 

Cumulative Prospect Theory types in the sampled population. Finally, Prospector I DGPs 

produce unclassified shapes about 10% to 15% of the time, so we should not be surprised 
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to estimate a small number of unclassified shapes if Prospector I DGPs (or other DGPs 

relatively close to identity weights) are common in the sampled population. 

 I noted that until recently, the simple homoscedastic latent index model ܲ ൌ

ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ  ሻ was commonly used for such estimations. Figure 5 showsܷܦΔܴߣሺܨ

some consequences of such a homoscedastic latent index estimation when the DGP in 

fact features any of the three probabilistic models I use here. The DGP utility and 

weighting function is in all cases the Optimist DGP, that is ሺߩ, ,ߛ ሻߚ ൌ ሺ3,1.5,0.4ሻ, which 

also features pronounced concavity of utility. Figure 5 shows that for all three DGPs, this 

results in reliable underestimation of both utility concavity and weighting optimism: 

Almost all of the 80  estimates lie below the bold black DGP curves. The newer 

heteroscedastic probabilistic models are consequential for estimation and inferences 

concerning utility and weighting functions and, as mentioned earlier, there is now 

extensive evidence against the homoscedastic model. 

 

5. Results of the first experiment 

 Figures 6, 7 and 8 show most of the results of the function-free individual 

estimations: Figure 6 shows contextual utility estimations; Figure 7 shows decision field 

theory estimations; and Figure 8 shows stronger utility estimations. In each figure, the 

upper left panel shows 80 estimated utility functions while the remaining three panels 

show most (at least 68 of 80) estimated weighting functions, divided into the three most 

commonly estimated shapes—optimists, rounders and prospectors, generally in that order 

(except with decision field theory). The remaining 12 subjects (whose estimated 

weighting functions are not shown) break almost evenly between pessimists and 

unclassified,5 certainly consistent with the sampling variability considerations of the 

previous section and not strong evidence that these types even exist in the sampled 

population. Overall, by individual-level likelihood ratio tests, about 85% to 95% of these 

estimated weighting functions significantly differ from identity weighting at the five 

percent level of significance, depending somewhat on the probabilistic model used. 
                                                 
5 6 of each with contextual utility, 4 pessimists and 7 unclassified with decision field theory, and 7 
pessimists and 5 unclassified with stronger utility. 
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Figure 5: 80 function-free estimates from Monte Carlo data with ‘Optimist’ DGP ሺߩ, ,ߛ ሻߚ ൌ ሺ3,1.5,0.4ሻ, estimated with the 
homoscedastic model, when the true DGP uses one of the three heteroscedastic models: 
 

DGP is contextual utility (CU) 
 
 

 
 
 

 
 
 
 

 

DGP is decision field theory (DFT) 
 
 

 
 
 

 
 
 
 
 

DGP is stronger utility (SU) 
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Figure 6: 80 function-free individual estimates, estimated with the contextual utility model using data from the first experiment. 
Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting functions for the 
three most commonly estimated shapes, accounting for 68 of the 80 subjects. The median estimated ߣ௦ is about 11.3. 
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Figure 7: 80 function-free individual estimates, estimated with the decision field theory model using data from the first experiment. 
Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting functions for the 
three most commonly estimated shapes, accounting for 69 of the 80 subjects. The median estimated ߣ௦ is about 5.15. 
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Figure 8: 80 function-free individual estimates, estimated with the stronger utility model using data from the first experiment. 
Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting functions for the 
three most commonly estimated shapes, accounting for 68 of the 80 subjects. The median estimated ߣ௦ is about 2.13.
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 Figures 6 and 8, however, are clearly unusual given widely held priors concerning 

weighting functions: Both the contextual utility and stronger utility estimations suggest a 

sampled population where the plurality type of decision maker is an optimist rather than a 

prospector, and where even rounders outnumber prospectors. Figure 7 is an exception to 

this, but not a very convincing one: Decision field theory estimations do produce 

prospectors as the plurality type, but inspection of the upper right panel (the prospector 

shapes) reveals that a large number of these estimated weighting functions might be 

optimists aside from the estimated weight at ݍ ൌ 5/6. Camerer and Ho (1994) and Wu 

and Gonzalez (1996) estimate that “the” weighting function crosses the identity line at 

some ݍ ൏ 1/2: Very few of the “prospector” shapes in the upper right panel of Figure 7 

do this. These previous estimations used the homoscedastic latent index model which, as 

shown in Figure 5, tends to bias estimated weights downward—which could account for 

the discrepancy I point out here. The prospector shapes produced by decision field theory 

don’t fit received Cumulative Prospect Theory priors. 

 

6. First discussion 

 Consider two options ݂݁ܽݏ ൌ ሺ1 െ , , 0ሻ and ݕ݇ݏ݅ݎ ൌ ሺ1 െ ,ݍ 0,  ሻ whereݍ

  ݄  and as usualݍ  ݉  ݈. Tversky (1969), Rubinstein (1988) and Leland (1994) 

have all noted that if ݄ െ ݉ is large but  െ  ݍ  and  is sufficiently small, so thatݍ

are deemed “similar” but ݄ and ݉ are not, a decision procedure might not bother with 

computing and comparing overall values of  ݂݁ܽݏ and ݕ݇ݏ݅ݎ, but instead simply ignore 

the similar probabilities and choose the option ݕ݇ݏ݅ݎ with the noticeably larger “prize” ݄. 

Tversky showed that such decision procedures produce intransitive choices, and both 

Rubinstein and Leland showed that such decision procedures account for many of the 

Allais phenomena. This kind of decision procedure would reveal “apparent weights” ߱ 

such that  ߱ሺሻ ൌ ߱ሺݍሻ. If an experiment contains many option pairs of this kind, 

with many paired “similar” probabilities  and ݍ in some interval ሾܽ, ܾሿ ؿ ሾ0,1ሿ, a 

straightforward estimation of RDU or CPT will result in an estimated probability 

weighting function that is too flat on ሾܽ, ܾሿ—reflecting, to some extent, similarity-based 



 20

computational shortcuts rather than the true difference ݓሺܾሻ െ  ሺܽሻ. The firstݓ

experiment contains no option pairs like these, and does not often produce estimated 

weighting functions that are relatively flat on the range of low interior probabilities—a 

marker of prospector shapes. 

 However, the first experiment does contain option pairs which may lead to the 

commonly observed rounder shape. Consider the pair ݂݁ܽݏ ൌ ሺ0,1,0ሻ and ݕ݇ݏ݅ݎ ൌ

ሺ1/6,0,5/6ሻ on the context ۄ40,50,60ۃ. A decision maker might sometimes regard ݕ݇ݏ݅ݎ 

as ሺ0,0,1ሻ and choose it over ݂݁ܽݏ. Likewise for a pair such as ݂݁ܽݏ ൌ ሺ0,1,0ሻ and 

ݕ݇ݏ݅ݎ ൌ ሺ5/6,0,1/6ሻ on the context ۄ50,70,110ۃ, a decision maker might sometimes 

regard ݕ݇ݏ݅ݎ as ሺ1,0,0ሻ and choose ݂݁ܽݏ instead. I conjecture that this kind of decision 

maker produces the rounder shape. The coarse probability grid of the six-sided die wasn’t 

coarse enough to make such behavior rare, given the frequency of estimated rounder 

shapes that is apparent in Figures 6, 7 and 8: or, at least, this is one interpretation of the 

rounder shape. These considerations suggest a second experiment that uses fourths as a 

very coarse probability grid: Perhaps these rounding shortcuts can be made rarer still with 

the help of a 4-sided die.  

Bordalo, Gennaioli and Schleifer (2011) offer a salience-based theory of context-

dependent weighting that may help explain the prevalence of estimated optimist shapes in 

the first experiment. In this theory, events have a higher salience rank when their 

potential outcomes differ more strongly across options, and events with higher salience 

ranks get a relatively large decision weight. Let e index events and let ݖ
௦௬ and ݖ

௦ be 

the outcomes of ݕ݇ݏ݅ݎ and ݂݁ܽݏ, respectively, should e occur. The parametric event 

salience function offered by Bordalo et alia (p. 1250, eq. 5) is 

 

ݖ൫ߪ (13)
௦௬, ݖ

௦൯ ൌ
ቚ௭

ೝೞೖି ௭
ೞೌቚ

ቚ௭
ೝೞೖቚାቚ௭

ೞೌቚାఝ
, where ߮  0. 

 

Choice  pairs in the first experiment have only two relevant events. The event “the six-

sided die roll exceeds 6ݍ” is the bad event b, where ݖ
௦௬ ൌ ݈ and ݖ

௦ ൌ ݉; the 
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complementary good event g has ݖ
௦௬ ൌ ݄ and ݖ

௦ ൌ ݉. In six of the contexts in 

Table 1, ݉ െ ݈ ൌ ݄ െ ݉: Here the general “diminishing sensitivity” property of salience 

functions (including the function in eq. 13) implies that the bad event b is more salient 

than the good event g. Under the salience theory, this implies a pessimistic decision 

weight (less than true probability) on the good event g, and hence a pessimistic weighting 

function on those six contexts. However, the opposite is true on the other nineteen 

contexts. For any ߮  0 in eq. 13, it is true that in the other nineteen contexts, ߪሺ݄, ݉ሻ 

,ሺ݈ߪ ݉ሻ.6 According to the salience theory, this implies an optimistic decision weight on 

the good event g, and hence an optimistic weighting function on those nineteen contexts.  

To summarize: For the choice pairs in this first experiment, the salience theory 

implies either an optimist or a pessimist shape for the weighting function, depending on 

the outcome context, and nineteen of the contexts in this experiment imply an optimist 

shape while just six imply a pessimist shape. So perhaps Bordalo et alia’s (2011) salience 

theory helps to explain the prevalence of estimated optimism in the first experiment. 

However, neither prospector nor rounder shapes are predicted by salience theory for any 

of the twenty-five contexts, and the combined prevalence of prospector and rounder 

shapes is substantial in Figures 6, 7 and 8.  

 Andreoni and Sprenger (2012, p.3373) have suggested that “Subjects exhibit a 

preference for certainty when it is available…” This could have an effect on estimated 

probability weighting. Because all relatively safe options in the first experiment are sure 

outcomes, this data is not well-suited to seeing whether this is an issue or not in the 

function-free estimations of probability weights. For now I observe that Cheung (2013) 

fails to replicate this finding when using a choice list method rather than the budget 

allocation method of Andreoni and Sprenger. In the second experiment, I also fail to 

replicate it using the choice pairs method. 

  

                                                 
6 On the nineteen contexts where ݄ െ ݉  ݉ െ ݈, it is also true that 









, which is sufficient to imply 

this. 
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7. Design of the second experiment 

 In this second experiment, I mainly seek a replication of the prevalence of 

estimated optimism. This experiment is done with a sampled population from a different 

university, with different option pairs and a different random device, the 4-sided die. As 

suggested in the previous section, the 4-sided die is an attempt to limit the prevalence of 

estimated rounder shapes. The second experiment also uses option pairs going beyond the 

sure things versus two-outcome risks of the first experiment. Let ݂݁ܽݏ ൌ ሺ, ,  ሻ and

ݕ݇ݏ݅ݎ ൌ ሺݍ, ,ݍ ,݈ۃ ሻ denote vectors of outcome probabilities on the contextݍ ݉,  In .ۄ݄

all pairs,     whileݍ ൏   andݍ ൏  ݂݁ܽݏ . As before, subjects choose betweenݍ

and ݕ݇ݏ݅ݎ in each pair presented to them. Table 3 shows the 69 option pairs used in the 

experiment: Some are repeated up to four times as indicated in the “trials” column, for a 

total of 100 choice tasks in the experiment. There are ten distinct 3-outcome contexts, all 

created from the five positive money outcomes  $15, $20, $30, $45 and $80. There is now 

plenty of variation in whether the option ݂݁ܽݏ is a sure thing ሺ0,1,0ሻ or not, which allows 

a check on concerns raised by Andreoni and Sprenger (2012). 

Constraining all probabilities to the set of fourths (0, 1/4, 1/2, 3/4 or 1), the option 

pairs (and number of trials of each pair) were selected by way of iterated Monte Carlo 

simulation. The iterative procedure aimed at approximately maximizing the average 

determinant of the function-free estimator’s information matrix for the worst 10% (lowest 

decile of information matrix determinants) of estimated parameters in a simulated 

population of decision makers whose distribution of DGPs resembled what had been 

previously estimated using past experimental data at Chapman University.  

The subjects for the second experiment were 98 undergraduate students at 

Chapman University. Each subject participated in a single session, making choices from 

the choice tasks shown in Table 3. Sessions commenced with computerized instructions, 

including tests of understanding that returned subjects to relevant instruction sections in 

the event of test mistakes. Subjects had to correctly answer all questions before 

proceeding. The 100 choice pairs were divided into two parts (a first part of 60 pairs and 

a second part of 40 pairs), separated by about ten to fifteen minutes of other tasks  
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Table 3. The 69 option pairs used in the second experiment. 
 

pair 
# 

trials 
context 

,݈ۃ  ݉,  ۄ݄

safe option outcome 
probabilities 

risky option outcome 
probabilities 

 ݍ ݍ ݍ   
1 4 

 ۄ15,20,30ۃ

0 1 0 0.75 0 0.25 
2 1 0 1 0 0.25 0.5 0.25 
3 3 0 1 0 0.5 0 0.5 
4 1 0 1 0 0.25 0 0.75 
5 1 0.25 0.75 0 0.75 0 0.25 
6 1 0.25 0.75 0 0.5 0 0.5 
7 4 0 0.75 0.25 0.5 0 0.5 
8 1 0.5 0.5 0 0.75 0 0.25 
9 1 0.25 0.5 0.25 0.5 0 0.5 

10 1 0 0.5 0.5 0.25 0 0.75 
11 1 

 ۄ15,20,45ۃ

0 1 0 0.75 0 0.25 
12 1 0 1 0 0.5 0 0.5 
13 1 0.25 0.75 0 0.75 0 0.25 
14 1 0 0.75 0.25 0.5 0 0.5 
15 1 0 0.75 0.25 0.25 0 0.75 
16 1 0 0.5 0.5 0.25 0 0.75 
17 1 

 ۄ15,20,80ۃ

0 1 0 0.75 0 0.25 
18 1 0 1 0 0.5 0 0.5 
19 1 0.25 0.75 0 0.5 0 0.5 
20 2 0.5 0.5 0 0.75 0 0.25 
21 1 

 ۄ15,30,45ۃ

0 1 0 0.5 0 0.5 
22 1 0 1 0 0.25 0 0.75 
23 1 0.25 0.75 0 0.75 0 0.25 
24 2 0 0.75 0.25 0.5 0 0.5 
25 1 0 0.75 0.25 0.25 0 0.75 
26 1 0.5 0.5 0 0.75 0 0.25 
27 1 0 0.5 0.5 0.25 0 0.75 
28 3 

 ۄ15,30,80ۃ

0.25 0.75 0 0.75 0 0.25 
29 1 0.25 0.75 0 0.5 0 0.5 
30 4 0 0.75 0.25 0.25 0 0.75 
31 1 0.5 0.5 0 0.75 0 0.25 
32 4 0.25 0.5 0.25 0.5 0 0.5 
33 1 0 0.5 0.5 0.25 0 0.75 
34 1 

 ۄ15,45,80ۃ

0 1 0 0.75 0 0.25 
35 1 0 1 0 0.25 0 0.75 
36 1 0.25 0.75 0 0.75 0 0.25 
37 1 0.25 0.75 0 0.5 0 0.5 
38 2 0 0.75 0.25 0.5 0 0.5 
39 1 0 0.75 0.25 0.25 0 0.75 
40 1 0.5 0.5 0 0.75 0 0.25 
41 1 0 0.5 0.5 0.25 0 0.75 
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Table 3 (continued). The 69 option pairs used in the second experiment. 
 

pair 
# 

trial
s 

context 
,݈ۃ  ݉,  ۄ݄

safe option outcome 
probabilities 

risky option outcome 
probabilities 

 ݍ ݍ ݍ   
42 2 

 ۄ20,30,45ۃ

0 1 0 0.75 0 0.25 
43 1 0 1 0 0.5 0.25 0.25 
44 1 0 1 0 0.25 0.5 0.25 
45 4 0 1 0 0.5 0 0.5 
46 1 0 1 0 0.25 0.25 0.5 
47 2 0 1 0 0.25 0 0.75 
48 1 0.25 0.75 0 0.75 0 0.25 
49 1 0.25 0.75 0 0.5 0 0.5 
50 1 0 0.75 0.25 0.5 0 0.5 
51 1 

 ۄ20,30,80ۃ
0.25 0.75 0 0.75 0 0.25 

52 1 0.25 0.75 0 0.5 0 0.5 
53 1 0.5 0.5 0 0.75 0 0.25 
54 1 

 ۄ20,45,80ۃ

0 1 0 0.25 0 0.75 
55 1 0.25 0.75 0 0.5 0 0.5 
56 1 0 0.75 0.25 0.5 0 0.5 
57 1 0 0.5 0.5 0.25 0 0.75 
58 4 

 ۄ30,45,80ۃ

0 1 0 0.75 0 0.25 
59 1 0 1 0 0.5 0.25 0.25 
60 1 0 1 0 0.25 0.5 0.25 
61 3 0 1 0 0.5 0 0.5 
62 1 0 1 0 0.25 0 0.75 
63 1 0.25 0.75 0 0.75 0 0.25 
64 3 0.25 0.75 0 0.5 0 0.5 
65 1 0 0.75 0.25 0.5 0 0.5 
66 1 0 0.75 0.25 0.25 0 0.75 
67 1 0.5 0.5 0 0.75 0 0.25 
68 1 0.25 0.5 0.25 0.5 0 0.5 
69 1 0 0.5 0.5 0.25 0 0.75 

 
 
 

(demographic surveys, item response surveys, short tests of arithmetic and problem-

solving ability, and so forth). At the conclusion of a session, one of each subject’s 100 

choice pairs was selected at random (by means of the subject rolling two ten-sided dice) 

and the subject was paid according to their choice in that pair. If the subject’s choice in 

the selected pair involved chance, the subject rolled a four-sided die (using a dice cup) to 

resolve payment. Sessions rarely lasted more than 70 minutes. 
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The second experiment involves five distinct outcomes but as before we can 

choose ݑ௦ሺ15ሻ ൌ 0 and ݑ௦ሺ80ሻ ൌ 1 for all subjects s. The unique estimable utility vector 

 ௦ for each subject s is the utilities of the three remaining outcomesܝ

௦ܝ ൌ ,௦ሺ20ሻݑۃ ,௦ሺ30ሻݑ  and function-free estimations make those three utilities ,ۄ௦ሺ45ሻݑ

separate parameters to be estimated. The experiment also involves three distinct 

probabilities א ݍ ቄଵ

ସ
, ଶ

ସ
, ଷ

ସ
ቅ, so there is a vector ܟ௦ ൌ ௦ݓۃ ቀଵ

ସ
ቁ , ௦ݓ ቀଶ

ସ
ቁ , ௦ݓ ቀଷ

ସ
ቁۄ of three 

weights to be estimated for each subject. Function-free estimations make those three 

weights separate parameters to be estimated. Including the scale parameter ߣ௦, this makes 

seven parameters, in all, in the function-free estimation. The same penalized maximum 

likelihood procedure was used for this estimation (see Appendix II). 

 

8. Results of the second experiment 

 Figures 10, 11 and 12 display the estimation results using the data from the 

second experiment. Figure 9 shows contextual utility estimations; Figure 10 shows 

decision field theory estimations; and Figure 11 shows stronger utility estimations. In 

each figure, the upper left panel shows 98 estimated utility functions while the remaining 

three panels show most (at least 84 of the 98) estimated weighting functions, divided into 

the three most commonly estimated shapes—optimists, rounders and pessimists or 

prospectors, generally in that order (except with contextual utility). The remaining 

handful of subjects (whose estimated weighting functions are not shown) include 11 

pessimists or prospectors and 1 to 3 unclassified.7 Overall, by individual-level likelihood 

ratio tests, about 65% to 70% of these estimated weighting functions significantly differ 

from identity weighting at the five percent level of significance, depending somewhat on 

the probabilistic model used. 

It is very clear that estimated optimist shapes are an outright majority, and at least 

three times as common as the second-most-common shape (rounder shapes except with 

contextual utility, where it is pessimist shapes). Keep in mind that the set of outcomes, 

                                                 
7 11 prospectors and 1 unclassified with contextual utility, 11 prospectors and 2 unclassified with stronger 
utility, and 11 pessimists and 3 unclassified with decision field theory. 
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Figure 9: 98 function-free individual estimates, estimated with the contextual utility model using data from the second experiment. 
Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting functions for the 
three most commonly estimated shapes, accounting for 86 of the 98 subjects. The median estimated ߣ௦ is about 14.0. 
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Figure 10: 98 function-free individual estimates, estimated with the decision field theory model using data from the second 
experiment. Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting 
functions for the three most commonly estimated shapes, accounting for 84 of the 98 subjects. The median estimated ߣ௦ is about 7.85. 
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Figure 11: 98 function-free individual estimates, estimated with the stronger utility model using data from the second experiment. 
Estimated utility functions are displayed together on the first panel; the next three panels show estimated weighting functions for the 
three most commonly estimated shapes, accounting for 85 of the 98 subjects. The median estimated ߣ௦ is about 2.31. 
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the probability device and the sampled population are all different in this second 

experiment. Therefore the (tempting) conclusion that the coarser probability grid has 

resulted in less rounding and more optimism (relative to the first experiment) is not 

warranted. However, optimist shapes are again the most commonly observed shape. This 

conclusion has been replicated with a new sample from a different population, a new die 

and a new outcome set. 

 One can modify estimations to include the possibility raised by Andreoni and 

Sprenger (2012)—that subjects “exhibit a preference for certainty when it is available.” 

To do this, I multiply all ݂݁ܽݏ option occurrences of ݑ௦ሺ݉ሻ in equations 8, 9 and 10 by 

a factor ሾ1  ௦1ሺߚ ൌ 1ሻሿ, shifting the estimated utility of the middle outcome ݉ in 

 is a sure thing. Having done this and ݂݁ܽݏ ௦ wheneverߚ by a multiplicative effect ݂݁ܽݏ

estimated these models, I find no evidence that ߚ௦ is systematically and significantly 

positive as suggested by the findings of Andreoni and Sprenger. Additionally, this does 

not change the qualitative findings in Figures 9 and 10: Optimist shapes are still an 

outright majority using the decision field theory probabilistic model and nearly so using 

contextual utility.8 

 

9. Second discussion 

Optimism is again prevalent in the second experiment—even more prevalent than 

in the first experiment. Again, salience theory (Bordalo et alia 2012) may help to explain 

this. Table 4 shows salience theory computations of combined decision weights on the 

highest outcome in the options of two pairs from Table 3. This computation requires an 

assumption concerning the salience discounting parameter ߜ in salience theory; in the 

Table 4 computation I use the value offered by Bordalo et alia, ߜ ൌ 0.7. The notes of  

                                                 
8 With estimates ߚመ ௦ in hand for the 98 subjects, the null hypothesis ߚ ൌ 0 fails to be rejected at the 10% 
significance level by either a sign, signed-rank or t-test when contextual utility is the probabilistic model, 
and 48 of the 98 estimated weighting functions have optimist shapes. When decision field theory is the 
probabilistic model, median estimates of ߚ௦ are weakly significantly negative (p = 0.081) by a signed-rank 
test, but not by the sign or t-test, and 51 of the 98 estimated weighting functions have optimist shapes. 
Application of stronger utility to this case is not straightforward since it is unclear how stochastic 
dominance is to be defined when there is one utility function for certain outcomes and another for uncertain 
outcomes.  
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Table 4. Two examples of salience theory computation of combined decision weight  
on the highest outcome in the options of a pair . 

 
Option pair 28 in Table 3 die roll 
events ݁ (4-sided die roll) 1 2 3 4 
objective probability ߨ 0.25 0.25 0.25 0.25 

outcomes of options in each state
 30 30 30 15 ݂݁ܽݏ
ݕ݇ݏ݅ݎ 15 15 15 80 

event salience 0 0.3326 0.3326 0.4541
event salience rank ݇ 3 2 2 1 

ߜ , givenߜ ൌ 0.7 0.343 0.49 0.49 0.7 
decision weight 0.1696 0.2422 0.2422 0.346 

combined decision weight  
on highest outcome 

݂݁ܽݏ w(0.75 prob of 30) = 0.8304 
ݕ݇ݏ݅ݎ w(0.25 prob of 80) = 0.3460 

      
Option pair 32 in Table 3 die roll 
events ݁ (4-sided die roll) 1 2 3 4 
objective probability ߨ 0.25 0.25 0.25 0.25 

outcomes of options in each state
 80 30 30 15 ݂݁ܽݏ
ݕ݇ݏ݅ݎ 15 15 80 80 

event salience 0 0.3326 0.4541 0 
event salience rank ݇ 3 2 1 3 

ߜ , givenߜ ൌ 0.7 0.343 0.49 0.7 0.343 
decision weight 0.1828 0.2612 0.3731 0.1828

combined decision weight  
on highest outcome 

 w(0.25 prob of 80) = 0.1828 ݂݁ܽݏ
ݕ݇ݏ݅ݎ w(0.50 prob of 80) = 0.5559 

 
Notes: Event salience is computed using equation 5 with the parameter value ߮ ൌ 0.1 
offerred by Bordalo et alia (2012). The decision weight for each event ݁ is computed 
using the formula specified by Bordalo et alia, which is  ߨߜ ൫∑ ೕߜߨ

 ൯ൗ . The 
combined decision weight is then the sum of the decision weights associated with each 
option’s highest-ranked outcome. For instance, for the ݂݁ܽݏ option in pair 28, the 
highest-ranked outcome is 30 which occurs in the three events ݁ ൌ 2, 3 or 4: Summing 
the decision weights for these three events, we have 0.2422 + 0.2422 + 0.3460 = 0.8304, 
the predicted rank-dependent weight on the high outcome in ݂݁ܽݏ for pair 28. Here, this 
is an optimistic weight as the underlying probability of the high outcome is 0.75. 
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Table 4 provide details of these computations. Doing the same thing for all of the pairs in 

Table 3, one may take conditional averages of these combined decision weights, 

conditioning on the probability of the high outcomes in options. These conditional 

averages are points on an averaged rank-dependent weighting function. Figure 12 shows 

the results of this exercise for five different values of the salience discounting parameter 

ߜ At Bordalo et alia’s value of .ߜ ൌ 0.7, the prediction is for very mild average optimism 

that would hardly be detectable by this experiment, but at smaller values of ߜ, the theory 

predicts more substantial average optimism—not quite of the magnitude observed in the 

second experiment, but helping to explain the qualitative result.  

 I have suggested that the received prospector shape, characterized by relatively 

flat weighting functions on interior probability ranges, may frequently occur because 

close probabilities tend to be regarded as similar and ignored. Here is one econometric 

path for addressing this possibility. Begin with a design resembling that of the second 

experiment: It identifies utilities ܝ௦ ൌ ,௦ሺ20ሻݑۃ ,௦ሺ30ሻݑ ௦ܟ and weights ۄ௦ሺ45ሻݑ ൌ

௦ݓۃ ቀଵ

ସ
ቁ , ௦ݓ ቀଶ

ସ
ቁ , ௦ݓ ቀଷ

ସ
ቁۄ. Now replace the 4-sided die with a 12-sided die: We can still 

use the same design to identify the same weights and utilities, but suppose we wish to add 

some choice pairs to identify ݓ௦ ቀଵ

ଷ
ቁ as well and, in particular, the marginal weight 

between ݍ ൌ 1/4 and ݍ ൌ 1/3. Let ݀ݓ௦ denoted this marginal weight: That is, let 

௦ݓ݀ ൌ ௦ݓ ቀଵ

ଷ
ቁ െ ௦ݓ ቀଵ

ସ
ቁ. 

 Two routes to this identification can be imagined. The first route depends on 

adding pairs such as ݂݁ܽݏ ൌ ሺ0,1,0ሻ and ݕ݇ݏ݅ݎ ൌ ሺ2/3,0,1/3ሻ. In pairs like this, only the 

most aggressive rounder would view the 1/3 probability (of h in risky) as zero, and almost 

no one would view the 1/3 probability (of h in risky) as similar to certainty (of m in safe). 

I call this a “dissimilar pair” for those reasons: It does not encourage computational 

shortcuts based on either similarity judgments or rounding behavior. Add enough pairs 

like this one to the pre-existing design and we should be able to estimate ݓ௦ ቀଵ

ଷ
ቁ directly  
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Figure 12. Salience theory predictions of optimistic average rank-dependent weighting functions in the second experiment. 
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and then estimate the marginal weight ݀ݓ௦ as the difference between the estimates 

ෝݓ ௦ ቀଵ

ଷ
ቁ and ݓෝ ௦ ቀଵ

ସ
ቁ. Call this estimate ݀ݓ

ௗ௦
௦  (the subscript dis meaning “dissimilar”). 

 The second route to identification depends on adding a different sort of choice 

pair such as ݂݁ܽݏ ൌ ሺ2/3,1/3,0ሻ and ݕ݇ݏ݅ݎ ൌ ሺ3/4,0,1/4ሻ. Add enough pairs like this 

one to the pre-existing design and we should also be able to estimate ݓ௦ ቀଵ

ଷ
ቁ and hence 

 ௦. But this is not a “dissimilar pair” as defined in the previous paragraph: I believe thatݓ݀

many decision makers would regard the 1/3 probability (of m in safe) as similar to the 1/4 

probability (of h in risky), and would therefore ignore that probability difference and 

choose according to most-preferred outcome (that is, choose risky since ݄  ݉). For that 

reason, I will call these “similar pairs.” Although we can estimate ݀ݓ௦ by adding only 

such similar pairs, I expect that our resulting estimate—call this ݀ݓ
௦
௦ —will be much 

smaller than we would estimate by adding only dissimilar pairs to the pre-existing design 

(that is, following the first identification strategy). 

Under the hypothesis that rank-dependent weighting exists independently of 

similarity, the two identification strategies outlined above should result in equivalent 

estimates of ݀ݓ௦. The final observation is that nothing prevents us from constructing a 

design which simultaneously follows both paths to identifying ݀ݓ௦—that is, in which 

 ௦ is overidentified, once with similar pairs and once with dissimilar pairs. The thirdݓ݀

experiment does this. 

 

 10. Design of the third experiment 

 The option pairs in this third experiment begin with design considerations and 

choices very like those of the second experiment. As before, subjects choose between 

 in each pair presented to them. There are ten distinct 3-outcome ݕ݇ݏ݅ݎ and ݂݁ܽݏ

contexts, all created from the five positive money outcomes  $15, $20, $30, $45 and $80. 

Table 5-A shows 34 of the option pairs used in the experiment: Some of these are 

repeated up to four times as indicated in the “trials” column, for a total of 68 choice tasks.  
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Tables 5. Option pairs used in the third experiment. 
 
Table 5-A. The 34 pairs used in both dissimilar and similar estimations (68 trials in all). 
 

pair # trials 
context 

,݈ۃ  ݉,  ۄ݄

safe option outcome 
probabilities 

risky option outcome 
probabilities 

 ݍ ݍ ݍ   
1 4 

 ۄ15,20,30ۃ

0 1 0 0.75 0 0.25 
2 3 0 1 0 0.5 0 0.5 
3 1 0 1 0 0.25 0 0.75 
4 4 0 0.75 0.25 0.5 0 0.5 
5 1 0.25 0.5 0.25 0.5 0 0.5 
6 1 0 0.5 0.5 0.25 0 0.75 
 0.75 0 0.25 0.5 0.5 0 ۄ15,20,45ۃ 1 7
 ۄ15,20,80ۃ 1 8

0.25 0.75 0 0.75 0 0.25 
9 1 0.25 0.75 0 0.5 0 0.5 

10 1 
 ۄ15,30,45ۃ

0.25 0.75 0 0.75 0 0.25 
11 1 0 0.75 0.25 0.5 0 0.5 
12 1 0 0.5 0.5 0.25 0 0.75 
13 4 

 ۄ15,30,80ۃ

0.25 0.75 0 0.75 0 0.25 
14 1 0.5 0.5 0 0.75 0 0.25 
15 4 0.25 0.5 0.25 0.5 0 0.5 
16 4 0 0.75 0.25 0.25 0 0.75 
17 1 

 ۄ15,45,80ۃ

0.25 0.75 0 0.75 0 0.25 
18 1 0.5 0.5 0 0.75 0 0.25 
19 1 0 1 0 0.25 0 0.75 
20 2 0 0.75 0.25 0.5 0 0.5 
21 2 0 0.5 0.5 0.25 0 0.75 
22 3 

 ۄ20,30,45ۃ

0 1 0 0.75 0 0.25 
23 1 0 1 0 0.25 0.5 0.25 
24 4 0 1 0 0.5 0 0.5 
25 2 0.25 0.75 0 0.5 0 0.5 
26 3 0 1 0 0.25 0 0.75 
27 1 0 0.75 0.25 0.5 0 0.5 
 0.75 0 0.25 0.5 0.5 0 ۄ20,45,80ۃ 1 28
29 3 

 ۄ30,45,80ۃ

0 1 0 0.75 0 0.25 
30 3 0 1 0 0.5 0 0.5 
31 3 0.25 0.75 0 0.5 0 0.5 
32 1 0 1 0 0.25 0 0.75 
33 2 0 0.75 0.25 0.5 0 0.5 
34 1 0 0.75 0.25 0.25 0 0.75 
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Tables 5 (continued). Option pairs used in the third experiment. 
 
Table 5-B. The 6 “dissimilar pairs” used only in dissimilar estimations (16 trials in all). 

pair 
# 

trial
s 

context 
,݈ۃ  ݉,  ۄ݄

safe option outcome 
probabilities 

risky option outcome 
probabilities 

 ݍ ݍ ݍ   
 0.33 0 0.67 0 1 0 ۄ15,20,30ۃ 3 35
 0.33 0 0.67 0 1 0 ۄ15,20,80ۃ 4 36
 0.33 0 0.67 0 1 0 ۄ15,45,80ۃ 1 37
 0.33 0 0.67 0 1 0 ۄ20,30,45ۃ 3 38
 0.33 0 0.67 0 1 0 ۄ20,30,80ۃ 1 39
 0.33 0 0.67 0 1 0 ۄ30,45,80ۃ 4 40

 
 
Table 5-C. The 6 “similar pairs” used only in similar estimations (16 trials in all). 
pair # trials context 

,݈ۃ ݉,  ۄ݄
safe option outcome probabilities risky option outcome probabilities

 ݍ ݍ ݍ   
 0.25 0 0.75 0 0.33 0.67 ۄ15,20,30ۃ 2 41
 0.25 0 0.75 0 0.33 0.67 ۄ15,20,80ۃ 3 42
 0.25 0 0.75 0 0.33 0.67 ۄ15,30,45ۃ 4 43
 0.25 0 0.75 0 0.33 0.67 ۄ15,45,80ۃ 4 44
 0.25 0 0.75 0 0.33 0.67 ۄ20,30,45ۃ 2 45
 0.25 0 0.75 0 0.33 0.67 ۄ30,45,80ۃ 1 46

 
 

These choice tasks are the “trunk” of the design: The probabilities in this set of pairs are 

constrained to the set of fourths (0, 1/4, 1/2, 3/4 or 1). 

The pairs in Tables 4-B and 4-C are the two different identification “branches” of 

the design: These pairs introduce options that contain the 1/3 probability of a highest 

outcome in various options. There are six dissimilar pairs in Table 5-B, and six similar 

pairs in Table 5-C, each repeated up to four times as indicated in the “trials” column, for 

a total of 16 choice tasks from each of these tables. With the 68 choice tasks from Table 

5-A, this is a total of 100 choice tasks in the design. As with the design of the second 

experiment, the 68 choice tasks in Table 5-A were chosen by an iterated Monte Carlo 

simulation procedure aimed at maximizing the efficiency of estimation for the worst 

decile of the sampled population. Then, the same kind of iterated Monte Carlo procedure 

was used to select contexts and numbers of trials for the two branches aimed at efficient 

estimation of ݀ݓ௦ in both branches.  
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The subjects for the third experiment were 92 undergraduate students, again at Chapman 

University as with the second experiment. The experimental protocol was almost 

identical to that of the second experiment, except that a twelve-sided die was used as the 

random device—this being the lowest-sided die capable of producing both fourths and 

thirds as probabilities.  

Estimation closely resembles that undertaken for data from the second 

experiment. The third experiment now involves four distinct probabilities א ݍ ቄଵ

ସ
, ଵ

ଷ
, ଶ

ସ
, ଷ

ସ
ቅ, 

and hence a vector of four weights to estimate. As suggested by the second discussion in 

the previous section, we can think of the two different branches of the design as creating 

two possibly different vectors of weights ܟௗ௦
௦  and ܟ௦

௦ . The dissimilar estimation uses 

only the 84 choice tasks of tables 4-A and 4-B to produce an estimate ܟෝௗ௦
௦ , while the 

similar estimation uses only the 84 choice tasks of Tables 4-A and 4-C to produce an 

estimate ܟෝ௦
௦ . The same penalized maximum likelihood procedure was used for this 

estimation (see Appendix II). With these estimates in hand, two  different estimates of the 

marginal weight may be computed as  ݀ݓ
ௗ௦
௦ ൌ ෝௗ௦ݓ

௦ ቀଵ

ଷ
ቁ െ ෝௗ௦ݓ

௦ ቀଵ

ସ
ቁ and ݀ݓ

௦
௦ ൌ

ෝ௦ݓ
௦ ቀଵ

ଷ
ቁ െ ෝ௦ݓ

௦ ቀଵ

ସ
ቁ.  

 

11. Results of experiment three 

 Figure 13 shows the results of the dissimilar estimation (the left panel) and the 

similar estimation (the right panel) side by side, using contextual utility as the 

probabilistic model. Vertical lines at ݍ ൌ 1/4 and ݍ ൌ 1/3 focus attention on the change 

in estimated weights across this probability interval. The dissimilar estimations result in a 

handful of flat weighting function segments, that is ݀ݓ
ௗ௦
௦ ൌ 0.0001,9 across the 

interval—11 out of 92 subjects in fact. The similar estimation shows well more than a 

handful of flat weighting function segments: In fact 57 of the 92 estimates result in 

ݓ݀
௦
௦ ൌ 0.0001. This alone is strong evidence that the similar pairs quite commonly 

                                                 
9 As mentioned in Appendix II, monotonicity is imposed on estimated utilities and weights in such a 
manner that the minimum estimated value of ݀ݓ௦ is constrained to be no smaller than 0.0001. 
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Figure 13. 92 function-free individual estimates of weighting functions, estimated with the contextual utility model using data from 
the third experiment. The left panel shows estimations using only the “dissimilar  pairs” to identify the weight at ݍ ൌ 0.33; the right 
panel shows estimations using only the “similar pairs” to identify the weight at ݍ ൌ 0.33.  
 

Estimated weights using only the pairs in Tables 5-A and 5-B 
(the “dissimilar pairs”). 11 of 92 estimated weighting functions 

are flat on the interval [0.25,0.33] in this case. 
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(the “similar pairs”). 57 of 92 estimated weighting functions are 
flat on the interval [0.25,0.33] in this case. 
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provoke the computational shortcut suggested throughout this study. Decision field  

theory estimations produce the same kind of figures. Stronger utility estimations, on the 

other hand, only rarely produced bottom-bounded estimates. 

 Table 6 shows the sample mean value of ݀ݓ
ௗ௦
௦ െ ݀ݓ

௦
௦ , which I will call “the 

similarity effect,” along with related statistics. In absolute terms as well as the estimated 

effect size, contextual utility estimations produce the strongest similarity effect: Across 

the 92 subjects, the sample mean of ݀ݓ
ௗ௦
௦ െ ݀ݓ

௦
௦  is 0.0791 with a standard error of 

0.011 (a p-value would be gratuitous). One perspective on the size of this estimated 

similarity effect is provided by the fact that for identity weights (expected utility for 

instance), ݀ݓ௦ ൌ 1/3 – 1/4 = 0.0833. That is, the estimated size of the similarity effect is 

that it will very nearly erase identity weighting. The sample mean of the estimated 

similarity effect is smaller when I perform the estimation with either decision field theory 

or stronger utility, but still significantly positive at any conventional significance level. 

None of this supports the null hypothesis that estimated probability weights are 

independent of plausible similarity effects.   

Salience theory does not seem to help explain the large similarity effect estimated 

in the third experiment. Table 7 shows salience theory computations of decision weights 

associated with one dissimilar and one similar pair from Tables 5-B and 5-C, 

 

Table 6. The estimated similarity effect ݀ݓ
ௗ௦
௦ െ ݀ݓ

௦
௦  in the third experiment. 

 
 probabilistic model used for estimation 
 contextual utility decision field theory stronger utility

sample mean 0.0791 0.0533 0.0462 
standard error 0.011 0.0094 0.0092 

standard deviation of ݀ݓ
ௗ௦
௦   0.0855 0.0838 0.0841 

effect size 0.925 0.636 0.549 
 
Notes: The effect size is calculated as the ratio of the sample mean of ݀ݓ

ௗ௦
௦ െ ݀ݓ

௦
௦  to 

the standard deviation of ݀ݓ
ௗ௦
௦ . An effect size of 0.5 is considered moderate while an 

effect size of 0.8 is considered large. (The standard deviation of ݀ݓ
௦
௦  is always smaller  

than that of ݀ݓ
ௗ௦
௦ , so the effect sizes would be larger if that information was used too.)  
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Table 7. Salience theory computation of decision weights in one dissimilar pair  
from Table 5-B and one similar pair from Table 5-C. 

 
Option pair 35 in Table 5-B die rolls 
events ݁ (12-sided die roll) 1 to 3 4 to 6 7 and 8 9 10 to 12

objective probability ߨ 0.25 0.25 0.167 0.083 0.25 

outcomes of options in each state
 20 20 20 20 20 ݂݁ܽݏ
ݕ݇ݏ݅ݎ 15 15 15 30 30 

event salience 0.1425 0.1425 0.1425 0.1996 0.1996 
event salience rank ݇ 2 2 2 1 1 

ߜ , givenߜ ൌ 0.7 0.49 0.49 0.49 0.7 0.7 
decision weight 0.2188 0.2188 0.1458 0.1042 0.3125 

 
       

Option pair 41 in Table 5-C die rolls 
events ݁ (4-sided die roll) 1 to 3 4 to 6 7 and 8 9 10 to 12
objective probability ߨ 0.25 0.25 0.167 0.083 0.25 

outcomes of options in each state
 20 20 15 15 15 ݂݁ܽݏ
ݕ݇ݏ݅ݎ 15 15 15 15 30 

event salience 0 0 0 0.1425 0.1996 
event salience rank ݇ 3 3 3 2 1 

ߜ , givenߜ ൌ 0.7 0.343 0.343 0.343 0.49 0.7 
decision weight 0.1929 0.1929 0.1286 0.0919 0.3937 

 
Notes: Event salience is computed using equation 5 with the parameter value ߮ ൌ 0.1 
offerred by Bordalo et alia (2012). The decision weight for each event ݁ is computed 
using the formula specified by Bordalo et alia, which is  ߨߜ ൫∑ ೕߜߨ

 ൯ൗ .  
 
 

respectively, in the same way done in Table 4. These two pairs share the same context 

 As Table 7 shows, the predicted decision weight on the die roll 9 (the .ۄ15,20,30ۃ

equivalent of ݀ݓ௦ in terms of the underlying event) hardly differs between the dissimilar 

and similar pairs. These two pairs share the same context ۄ15,20,30ۃ. If we choose a 

different pair context that reverses some salience ranks, such as ۄ15,45,80ۃ, the predicted 

decision weights on the die roll 9 actually predict a negative value of ݀ݓ௦ rather than the 

empirically observed large positive value. 
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12. Conclusions 

 Optimism is the most prevalent form of rank-dependent weighting functions 

estimated here—not the received inverse-s shape that has become the null hypothesis. I 

attribute this to several potential factors. First, the salience theory of Bordalo et alia 

(2012) suggests that average rank-dependent weights in my first and second experimental 

designs should be at least mildly optimistic. Second, the designs of the first and second 

experiments deliberately set about to minimize opportunities for reducing decision 

complexity by way of computational shortcuts based on similarity of probabilities and 

rounding of probabilities. This was done by confining probabilities to relatively coarse 

grids and avoiding choice pairs that juxtapose similar probabilities of high outcomes. The 

third experiment showed that such pairs do produce flatter probability weighting function 

estimates on low to moderate interior probabilities—a defining feature of the inverse-s 

prospector shape—in the predicted manner. 

 Study of risk preferences requires a researcher to make several interrelated 

choices. Here  I chose binary discrete choice as an elicitation method. This has its virtues, 

not least of which is the fact that binary preference relations are the primitive of most 

axiomatic theories. Yet each elicitation method comes with its own econometric 

conundrums—for instance, where and how functional form assumptions should be 

deployed. Here, I chose to minimize functional assumptions concerning the utilities and 

weights that are the structural entities of axiomatic rank-dependent representation 

theorems. This has costs. Assumptions concerning probabilistic models of binary discrete 

choices will be needed, and I have used three such models. By and large my results are 

not too sensitive to a choice of one of those models or another. Yet another strategy 

would be to minimize assumptions about probabilistic models (say, exploiting some of 

the new semiparametric methods for discrete choice estimation) and that would have its 

own costs—in particular, a more parametric approach to the decision-theoretic entities. 

This would be good and useful future work.  
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Finally, others choose to elicit certainty equivalents, usually employing a choice 

list procedure (e.g. Tversky and Kahneman 1992; Gonzalez and Wu 1999; Bruhin, Fehr-

Duda and Epper 2010), and deploy econometric methods appropriate to certainty 

equivalents, which in general require milder econometric assumptions. Such estimations 

generally find the conventional inverse-s shape. Resolving the contrast between the 

results of those methods and the ones I use here will also be useful future work. I note 

that choice list elicitation was recently reviewed and experimentally critiqued by Loomes 

and Pogrebna (2014), who found it lacking in procedural invariance: Inversion of lists 

affected the elicited certainty equivalents. 

Taken at face value, though, my results suggest that with considerations of 

salience and similarity in mind, an experimenter might—by judicious selection of choice 

pairs—be able to demonstrate almost any rank-dependent probability weighting function 

shape. Asked what the probability weighting function looks like, the reply of a worldly 

experimenter might resemble that of the famously broad-minded corporate accountant: 

What do you want it to look like? 
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Appendix I: Background on the three probabilistic choice models 

 

 The contextual utility or CU model (Wilcox 2011) makes comparative risk 

aversion properties of the RDU representation and its stochastic implications consistent 

within and across contexts. For representations such as RDU, utility functions ݑሺݖሻ are 

only unique up to a ratio of differences: Intuitively, contextual utility exploits this 

uniqueness to create a correspondence between functional and probabilistic definitions of 

comparative risk aversion. Consider the choice pairs in the first experiment: Under RDU 

and contextual utility, eq. 4 can be rewritten as  

 

(A1)  ܲௗ௨ ൌ ,ሺ݈ݒሾെߣሺܨ  ݉, ݄ሻ    ሻሿሻ, whereݍሺݓ

,ሺ݈ݒ ݉, ݄ሻ ൌ ሾݑሺ݉ሻ െ ሺ݈ሻሿݑ ሾݑሺ݄ሻ െ ⁄ሺ݈ሻሿݑ . 

 

This probability is decreasing in the ratio of differences ݒሺ݈, ݉, ݄ሻ. Consider two subjects 

Anne and Bob with identical weighting functions (this includes the case where both have 

EU preferences) and identical scale parameters , and assume that Bob is globally more 

risk averse than Anne in Pratt’s sense (Bob’s local absolute risk aversion – ሻݖሺ"ݑ ሻൗݖԢሺݑ  

exceeds that of Anne for all ݖ). These assumptions and simple algebra based on Pratt’s 

(1964) main theorem  imply that  ݒሺ݈, ݉, ݄ሻ  ,ሺ݈ݒ ݉, ݄ሻ on all contexts, and as a 

result (A1) implies that Bob will have a lower probability than Anne of choosing risky on 

all contexts. In Wilcox (2011) I showed that the received homoscedastic latent index 

model cannot share this property, and this was my primary motivation for the contextual 

utility model. 

 Note that eq. 5 is the decision field theory model or DFT only for pairs like those 

found in the first experiment. For those choice pairs, DFT shares CU’s main property: 

Holding constant ߣ and ݓሺݍሻ, globally greater risk aversion (in the sense of Pratt) will 

imply a lower probability of choosing risky in all pairs on all contexts. The general 

formulation of ܦሺݕ݇ݏ݅ݎ,  ሻ in DFT, which is needed for the  estimations using data݂݁ܽݏ

from the second and third experiments, depends on the underlying events that generate 
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outcome probabilities as well as outcome utilities. Index events by ݁ ൌ 1,2, … ,  ݓ let ,ܧ

be the decision weight given to event ݁, and let ݑ
௦௬ and ݑ

௦ be the utilities resulting 

from the choice of options ݕ݇ݏ݅ݎ and ݂݁ܽݏ, respectively, when event ݁ occurs. Then the 

general formulation of ܦሺݕ݇ݏ݅ݎ,  :ሻ in decision field theory is݂݁ܽݏ

 

(A2)  ܦሺݕ݇ݏ݅ݎ, ሻ݂݁ܽݏ ൌ ට∑ ݑ൫ݓ
௦௬ െ ݑ

௦൯
ଶ

 . 

 

 Busemeyer and Townsend (1992, 1993) derive DFT from a computational 

argument: The theory is one of the early “diffusion” models of probabilistic choice. A 

simple intuition can be given for the model. Suppose that a decision maker’s 

computational resources can effortlessly and quickly provide utilities of outcomes, and 

also suppose the decision maker wishes to choose according to relative RDU value; but 

suppose she does not have an algorithm for effortlessly and quickly multiplying utilities 

and weights together. The decision maker could proceed by sampling events in option 

pairs in proportion to their decision weights, keeping running sums of the sampled utility 

differences between the options, and choose when the summed differences exceed some 

threshold determined by the cost of sampling. In essence, the choice probability in eq. 5 

results from this kind of sequential sampling decision procedure, which can be traced 

back to Wald (1947). Busemeyer and Townsend also show that, as the sampling rate gets 

large, the function F will be the logistic c.d.f.—the reason I employ the logistic c.d.f. 

throughout this work. 

 Because decision field theory’s D function is defined in terms of events, with 

decision weights assigned to events rather than ranked outcomes, application of decision 

field theory to members of the rank-dependent family is only sensible if all choice 

options in an experiment are comonotonic. In this case, event weights and rank-

dependent weights coincide, and all three experiments are structured in this way. For 

example, in the first experiment, lotteries risky all have probabilities ݍ of receiving their 

high outcome that are in sixths, generated by the roll of a six-sided die. All lotteries are 
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constructed so that ݍ = k/6 is always the roll “1 or 2 or…k”. So w(k/6), the rank-

dependent weight on the high outcome h in risky, can always be thought of as the 

decision weight of the event “the die roll is 1 or 2 or…k”, while 1−w(k/6), the rank-

dependent weight on the low outcome l in risky, can always be thought of as the decision 

weight of the event “the die roll is k+1 or k+2 or…6.” The events and outcome ranks are 

identically ordered across all option pairs in each experiment: This is comonotonicity (see 

Quiggin 1993).   

Blavatskyy’s (2014) stronger utility or SU model is a general approach to 

constructing probabilistic models of risky choice that will respect (first order) stochastic 

dominance: That is, the model always attaches a zero probability to choice of 

stochastically dominated options. In its general form, the SU model begins with a 

definition of two important benchmark options. Let ሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ  and  

ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ denote the least upper bound and greatest lower bound, respectively, on 

both risky and safe in terms of stochastic dominance.10 Let ܸ denote the functional 

representation of option value for some decision theory. Then in the general SU model, 

,ݕ݇ݏ݅ݎሺܦ ሻ݂݁ܽݏ ൌ  ܸሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ െ ܸሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ, and 

 

(A3 ) ܲௗ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ఒܪ ቀ ሺ௦௬ሻିሺ௦ሻ

ሺ௦௬ ڀ ௦ሻିሺ௦௬ ٿ ௦ሻ
ቁ. 

 

For the choice pairs in the first experiment, ሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ ൌ ሺ0,1 െ ,ݍ  ሻ andݍ

ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ ൌ ሺ1 െ ,ݍ ,ݍ 0ሻ. Applying the RDU representation to these lotteries,   

 

(A4)  ܴܷܦሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ െ ሻ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሺܷܦܴ ൌ 

ሺ݄ሻݑሻݍሺݓ  ሾ1 െ ሺ݉ሻݑሻሿݍሺݓ െ ሺ݉ሻݑሻݍሺݓ െ ሾ1 െ ሺ݈ሻݑሻሿݍሺݓ ൌ 

ሺ݄ሻݑሻሾݍሺݓ െ ሺ݉ሻሿݑ  ሾ1 െ ሺ݉ሻݑሻሿሾݍሺݓ െ  ,ሺ݈ሻሿݑ

 
                                                 
10 That is, ሺ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ stochastically dominates both risky and safe, but is itself stochastically 
dominated by every other option that stochastically dominates both risky and safe. Similarly, risky and safe 
both stochastically dominate ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ, and every other option stochastically dominated by both 

risky and safe is itself stochastically dominated by ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ.  
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which is the denominator appearing in eq. 6 defining the SU model for these choice pairs.  

Given a suitable choice of the function ܪఒ, equivalence of eqs. A3 and 7 may be 

established as follows. Let ܴ ൌ ܵ and ݕ݇ݏ݅ݎ ൌ  From eq. A3 and the definitions .݂݁ܽݏ

ܷ ൌ ሺܴ ڀ ܵሻ  ൌ  ሺ0,1 െ ,ݍ ܮ  ሻ andݍ ൌ ሺܴ ٿ ܵሻ  ൌ  ሺ1 െ ,ݍ ,ݍ 0ሻ for the option pairs 

in the first experiment, Blavatskyy’s model is 

 

(A5) ܲௗ ൌ ሺܴሻܾݎܲ ൌ ఒܪ ቀሺோሻିሺௌሻ

ሺሻିሺሻ
ቁ.  

 

Choose ܪఒሺݔሻ ൌ Λ ቂߣln ቀଵା௫

ଵି௫
ቁቃ. For ݔ א ሺെ1,1ሻ, this has the needed properties ܪఒሺ0ሻ ൌ

0.5 and ܪఒሺݔሻ ൌ 1 െ ݔ ሻ. Withݔఒሺെܪ ൌ ሺோሻିሺௌሻ

ሺሻିሺሻ
, we have 

 

(A6) 
ଵା௫

ଵି௫
ൌ  

ଵା
ೇሺೃሻషೇሺೄሻ
ೇሺೆሻషೇሺಽሻ

ଵି
ೇሺೃሻషೇሺೄሻ
ೇሺೆሻషೇሺಽሻ

ൌ
ሺሻିሺሻାሺோሻିሺௌሻ

ሺሻିሺሻାሺௌሻିሺோሻ
ൌ

ሾሺሻିሺௌሻሿାሾሺோሻିሺሻሿ

ሾሺሻିሺோሻሿାሾሺௌሻିሺሻሿ
. 

 

Applying the RDU representation theorem to the four key options,  

 

(A7) ܸሺܴሻ  ൌ ሺ݄ሻݑሻݍሺݓ     ሾ1 െ ሺ݈ሻ,    ܸሺܵሻݑሻሿݍሺݓ  ൌ   ,ሺ݉ሻݑ 

 ܸሺܷሻ  ൌ ሺ݄ሻݑሻݍሺݓ    ሾ1 െ   ሺ݉ሻ, andݑሻሿݍሺݓ

 ܸሺܮሻ  ൌ ሺ݉ሻ ݑሻݍሺݓ   ሾ1 െ  .ሺ݈ሻݑሻሿݍሺݓ

 

Substitute these into the four bracketed terms at the right end of (A6) to get 

 

(A8) ሾܸሺܷሻ െ ܸሺܵሻሿ ൌ ሺ݄ሻݑሻሾݍሺݓ െ  ,ሺ݉ሻሿݑ

 ሾܸሺܴሻ െ ܸሺܮሻሿ ൌ ሺ݄ሻݑሻሾݍሺݓ െ   ,ሺ݉ሻሿݑ

 ሾܸሺܷሻ െ ܸሺܴሻሿ ൌ ሾ1 െ ሺ݉ሻݑሻሿሾݍሺݓ െ  ሺ݈ሻሿ, andݑ

 ሾܸሺܵሻ െ ܸሺܮሻሿ ൌ ሾ1 െ ሺ݉ሻݑሻሿሾݍሺݓ െ  .ሺ݈ሻሿݑ
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Clearly 
ଵା௫

ଵି௫
ൌ ௪ሺሻሾ௨ሺሻି௨ሺሻሿ

ሾଵି௪ሺሻሿሾ௨ሺሻି௨ሺሻሿ
, so the equivalence to eq. 7, given a suitable choice of 

  .ఒ and RDU, has been establishedܪ

 In the case of the second and third experiments, where ݂݁ܽݏ ൌ ሺ, ,  ሻ and

ݕ݇ݏ݅ݎ ൌ ሺݍ, ,ݍ ሻ݂݁ܽݏ ڀ ݕ݇ݏ݅ݎሻ, we have ሺݍ ൌ ሺ, 1 െ  െ ,ݍ   ሻ andݍ

ሺ݂݁ܽݏ ٿ ݕ݇ݏ݅ݎሻ ൌ  ሺݍ, 1 െ ݍ െ ,  ሻ. Algebraic steps resembling those from eqs. A3

to A8 lead to the following elaborated version of eq. 7 that is suitable for data from the 

second and third experiments:  

 

(A9)  ܲ௦௨ ൌ ሻݕ݇ݏ݅ݎሺܾݎܲ ൌ ܨ ቂߣ ln ቀ
ሾ௪ሺሻି௪ሺሻሿሾ௨ሺሻି௨ሺሻሿ

ሾ௪ሺଵିሻି௪ሺଵିሻሿሾ௨ሺሻି௨ሺሻሿ
ቁቃ. 

 

Appendix II: Estimation notes 

 

 All estimations were carried out in SAS 9.2 using the nonlinear programming 

procedure (“Proc NLP” in the SAS language) using the quasi-Newton algorithm.  For 

function-free estimations all parameters bounded in the interval [0,1], that is utilities and 

weights, were constrained to lie in [0.0001,0.9999]; additionally, monotonicity was 

imposed on estimated utilities and weights. No other constraints were imposed on any 

estimates. 

 Monte Carlo simulations showed that both finite sample biases of parameter 

estimates and prediction log likelihoods could be noticeably improved by penalizing 

estimation that produced fitted probabilities very close to zero or one. By a grid search 

across Monte Carlo simulations, the following piecewise quadratic penalty function 

 :ሺી௦ሻ was arrived at as a good kludge for penalizing such fitted probabilities

 

ሺી௦ሻ  ൌ 0 if ܲ
௦ሺી௦ሻ א ሾ0.001,0.999ሿ; 

ሺી௦ሻ  ൌ െ10 · ቀ1 െ 1000 ܲ
௦ሺી௦ሻቁ

ଶ
 if ܲ

௦ሺી௦ሻ ൏ 0.001; and 

ሺી௦ሻ  ൌ െ10 · ൫1000 ܲ
௦ሺી௦ሻ െ 999൯

ଶ
 if ܲ

௦ሺી௦ሻ  0.999. 
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This simply imposes a very steep but smoothly differentiable penalty on probabilities that 

wander within 0.001 of zero or one. The adjusted log likelihood function is 

 

 ࣦ ௦൫ܚ௦௧ሺሻ
௦ หી௦൯ ൌ ∑ ℓ௦ሺݎ௧

௦ |ી௦ሻ௧א௦௧ሺሻ   ∑ ߬݅
ሺી௦ሻ , 

 

where ߬ denotes the number of trials of pair ݅ in any experiment. This penalty was 

imposed on all maximum likelihood estimations. 

 For each subject and specification, estimations were started from a grid of starting 

parameter vectors to a “finalist” estimated vector from each starting vector, and the 

finalist with the best adjusted log likelihood was selected as the maximum likelihood 

estimate. 

 

Appendix III: First experiment protocol explanation and instructions to subjects 

 

 I want to estimate utilities and weights without aggregation assumptions. Decision 

theories are about individuals, not aggregates, and aggregation mutilates and destroys 

many observable properties of decision theories (Wilcox 2008). A large amount of choice 

data from each subject is needed to reliably estimate utilities and weights at the individual 

level. A subject will become bored, and will become careless, if she makes hundreds of 

decisions at one sitting. So the decisions are divided up across three days, and on each 

day into two parts separated by unrelated tasks providing a break from decisions.  

The separation across three days, in particular, introduces a risk that some 

substantial event altering a subjects’ wealth or background risks will occur between days, 

which could arguably undermine the assumption that utilities of outcomes and hence 

choice probabilities are stationary throughout the protocol. This is a risk I am willing to 

run to mitigate subject boredom with hundreds of choice tasks, and I can check whether 

distributions of risky choice proportions across subjects appear to be stationary across 

subjects’ three days of decisions.  No test finds any significant difference between these 

three daily distributions. Within-subject differences between risky choice proportions on 
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the first and third day have zero mean by all one-sample tests. There is no sign of 

nonstationarity of choice probabilities across the three days. 

Random task selection is meant to result in truthful, motivated and unbiased 

revelation of preferences in each pair: That is, subjects should make each of their 300 

choices as if it was the only choice being made, for real, and there should be no portfolio 

or wealth effects making choices interdependent across the tasks. Both the independence 

axiom of EUT and the “isolation effect” of prospect theory would imply this. To see this 

for EUT, notice that the independence axiom in its “unreduced compounds” form (i.e. 

“compound independence”) implies 

 

     (risky with Prob = 1/300; Z with Prob = 299/300)  
ݕ݇ݏ݅ݎ غ  غ        if and only if     ݂݁ܽݏ
     (safe with Prob = 1/300; Z with Prob = 299/300) 
 

…where Z is any other outcome or risk, including the “grand lottery” created by the 

subject’s other 299 choices over the course of this experiment. Therefore, if subjects’ 

preferences satisfy independence in this unreduced compounds form, random task 

selection should be incentive compatible. Some evidence suggests that preferences 

generally satisfy the independence axiom in its unreduced compounds form (Kahneman 

and Tversky 1979; Conlisk 1989), and older direct  examinations of random task 

selection in binary lottery choice experiments found no systematic choice differences 

between tasks selected with relatively low or high probabilities (Wilcox 1993) nor 

between tasks presented singly or under random task selection (Starmer and Sugden 

1991), at least for relatively simple tasks like the pairs used here. There is renewed 

controversy on this point (Cox, Sadiraj and Schmidt 2014; Harrison and Swarthout 2014), 

but random task selection has been the standard experimental mechanism for a few 

decades. 

 The choice pairs in Table 1 are on twenty-five distinct contexts, all constructed 

from nine positive money outcomes  ($40 to $120 in $10 increments). I want to estimate 

the utilities and weights in the function-free manner Hey and Orme (1994) pioneered for 
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utilities and as Blavatskyy (2013) did for utilities and weights. Monte Carlo simulations 

showed that function-free identification of utilities, weights and scale parameters is 

greatly improved when the same events (the die rolls) are matched with many different 

outcomes on different contexts.  

 Finally, the choice of a six-sided die for the first experiment was deliberate. 

Sixths are well-suited for estimation given widely-held priors about the shape of 

weighting functions. Consider Prelec’s (1998) single-parameter weighting function 

ሻߛ|ݍሺݓ ൌ exp ሺെሾെln ሺݍሻሿఊሻ  q  (0,1), w(0)=0 and w(1)=1: Prelec proposed ߛ ൌ

0.65 as a rough estimate consistent with other estimates using different weighting 

functions. At that value of ݍ ,ߛ െ  ;0.65ሻ attains its maximum very close to q = 5/6|ݍሺݓ

and at q = 1/6, ݍ െ 0.65ሻ|ݍሺݓ ൎ െ0.065, about 80% of the minimum value taken by 

ݍ െ ݍ 0.65ሻ (this is about –0.081 at|ݍሺݓ ൎ 0.07). So the differences between linear 

weighting (that is EU) and received priors concerning probability weighting are about as 

strong as they could be at q = 5/6 and q = 1/6.  
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Instructions [first experiment only] 
 
You will participate in 3 different sessions—one session on each of 3 different days. On 
each of the three days, you will make 100 choices from each of 100 pairs of monetary 
options. Some of the options will involve chance, in the form of a die roll. Option pairs 
will be presented to you as pie charts, on a computer screen: In each option pair you 
see, you will choose the option you would prefer to play.  
 
At the end of your third day with us, you will have made 300 choices over your three 
sessions. ONE of your 300 option choices will then be randomly selected using a bag of 
300 tickets with the numbers 1, 2, 3,…, 299, 300 written on them. The numbers 1 to 100 
correspond to the 100 choices you will make today, in the order you make them today. 
Likewise, the numbers 101 to 200 (and 201 to 300) correspond to the 100 choices you 
will make on your second day (and then on your third day) with us, in the order you 
make them on those days. 
 
At the end of your third day with us, you will reach into the bag of tickets (without looking 
inside),  pull one out and show us the number. We will then enter that number into the 
computer, and it will recall that option pair and show the option you chose. That option 
will determine your payment for participation in this project. If the option you chose 
requires a die roll, we will then roll a six-sided die to determine your payment. 
 
Notice that since every option pair choice you make has a 1 in 300 chance of 
determining your payment for participation, you have a real reason to consider each 
option pair with equal care. Also, notice that only one of your 300 option pair choices 
will determine your payment. 
 
Please note that you won’t be able to use a calculator, or pencil and paper, to make your 
choices. That would take too long for 100 choices…our lab schedule will not 
accommodate this. 
 

Left Option

 

Right Option 
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(Instructions to subjects—continued) 
 
An example of an option pair is shown above. The left option is a 1 in 6 chance of $90 
and a 5 in 6 chance of $40: If you chose this option and it was selected to determine 
your payment, a die roll would be needed to determine the payment. The right option is a 
sure $50: If you chose this option and it was selected to determine your payment, no die 
roll would be needed. 
 
The option pair you just saw is only one example. The money outcomes in the option 
pairs you see will range from $40 to $120, in ten dollar increments. Also, the connection 
between die rolls and money outcomes varies a lot over those options that involve a die 
roll, so remember to notice those die rolls when new option pairs appear on the screen 
for your consideration. Finally, note that the computer will present option pairs to you in a 
randomized order, and will also randomly select the left/right placement of the options in 
each pair. So you do not want to assume that option pairs appear in any kind of 
patterned sequence: They do not. The computer will remember the exact sequence, as 
well as what you chose, so that you can be paid properly on your last day with us. 
 
Some questions for a break 
 
It is difficult to maintain good attention over 100 choices. Even though the amounts of 
money in option pairs are not small, almost anyone will get a bit bored with making these 
kinds of choices after awhile.  
 
Partly for that reason, the 100 option pair choices will be broken into two halves (50 pairs 
in each half) on each day. Between the halves, on each day, you will answer some 
survey questions and respond to some questionnaire items. This will go pretty quickly on 
all three days (a little longer on the second day), and will give you a break each day from 
the option pair choices.  
 
You'll be able to do everything at your own pace. We believe that each session will last 
about one hour for most people on most days, but remember that we expect you to have 
90 minutes available on each day, so that you are not rushed. 
 
If there is anything you do not understand, please ask us. We will be happiest if you 
understand exactly how your decisions affect you: We want you to be able to do well for 
yourself, whatever your believe “doing well” is. We encourage you to do what you want.  
 
Finally, the money for this study comes from grants. This money is earmarked for 
payment to student participants. We have no alternative use for this money: It must be 
paid out to participants like you. We must of course make payments only in accordance 
with the procedure we have described above. But do not worry about taking that money 
from us: It is specifically earmarked for this and we cannot use it for anything else. We 
say this, only because some students worry about taking such money from professors. 
You should not worry about it. The money is grant money, not Dr. Wilcox’s money, and it 
is earmarked specifically for paying out to student participants like yourself. 
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