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Diurnal temperature range over the United States: A satellite view

Donglian Sun,1 Rachel T. Pinker,2 and Menas Kafatos1
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[1] Diurnal temperature range (DTR) is an important
climate change index. Information on this parameter comes
primarily from sparse and unevenly distributed observations
of shelter air temperature. In this study, five years of GOES-
8 based estimates of land surface temperature (LST) over
the United States are used to evaluate DTR at high spatial
resolution. The spatial and temporal patterns that emerged
show a high degree of consistency with independent
satellite estimates of the Normalized Difference Vegetation
Index (NDVI). Specifically, the arid regions in the western
and central U.S. have larger DTRs than the eastern United
States or the northwest coast. When stratified by four major
surface types, the western U. S. DTRs over these surface
types are larger than over the eastern part. It is also observed
that urban areas have the lowest DTRs especially over the
polluted eastern U. S. The similarity of the DTR spatial and
temporal patterns and variations of the independent satellite
based vegetation index are encouraging and suggest that
satellite based estimates of DTR carry a strong signal on
surface conditions which are responsive to climate change.
Citation: Sun, D., R. T. Pinker, and M. Kafatos (2006), Diurnal

temperature range over the United States: A satellite view,

Geophys. Res. Lett., 33, L05705, doi:10.1029/2005GL024780.

1. Introduction

[2] Diurnal temperature range (DTR) is an important
index of climate change [Karl et al., 1984] and is suscep-
tible to urban effects [Intergovernmental Panel on Climate
Change, 2001]. It is also affected by land use changes
[Kalnay and Cai, 2003], vegetation [Collatz et al., 2000],
soil moisture, and clouds [Dai et al., 1999; Trenberth,
2003; Stone and Weaver, 2003]. As stressed by Braganza
et al. [2004], mean surface temperature alone is not as
useful an indicator of climate change as the change in
daily maximum and minimum temperatures. Trends in
mean surface temperature are due to changes in either
maximum or minimum temperature, or relative changes in
both. The recently reported surface warming over land is
associated with relatively larger increase in daily minimum
temperature rather than in maximum temperature [Karl et
al., 1993; Easterling et al., 1997]. Till recently, most
information on DTR came from station observations of
surface air temperature (SAT) or from numerical model
simulations. Several studies based on climate model sim-
ulations suggest that DTR changes may be due to effects

of human-induced increase in atmospheric greenhouse
gases (CO2) and sulfate aerosols [Park and Joh, 2005;
Karoly and Braganza, 2005; Schnur and Hasselmann,
2005]. However, Collatz et al. [2000] claim that increasing
atmospheric CO2 produced little change in the DTR, and
Zhao and Pitman [2005] pointed out that increase in
greenhouse gases affected both the maximum and mini-
mum temperature, and therefore, resultant changes in the
DTR were small.
[3] Gallo et al. [1996] evaluated DTR of SAT over the

Unite States. Seidel et al. [2005] found that the DTR of air
temperature from radiosondes observations is larger at the
surface than in the upper atmosphere. It is of interest to use
satellites for evaluating DTR because of their ability to
provide full spatial coverage. Moreover, the satellite sensed
skin temperature (radiative temperature) is directly related
to surface-atmosphere energy exchange processes and
therefore, directly sensitive to surface changes such as soil
moisture and land cover/land use (LC/LU). Station obser-
vations are sparse, unevenly distributed, and suffer from
differences in elevation, time of observation, and nonstan-
dard sitting [Peterson, 2003]. The use of satellite-based
estimates of DTR can provide consistent information over
large areas [Gallo and Owen, 1999]. The DTR from SATs
is different in nature from the satellite-based estimate of
DTR, since satellites observe the skin temperature (e.g.,
radiative temperature) under clear sky conditions while
DTR of SAT at 2m from meteorological station observa-
tions integrates the effects of clouds. It can be expected that
the satellite based DTR will be higher than the one
observed from SAT due to the mitigating effect of clouds
[Sun et al., 2006].
[4] One can argue that perhaps, the satellite based esti-

mates of DTR (directly related to surface conditions), are a
better index of climate change than SAT which includes a
feedback effect of climate change (effect on clouds), and as
such, is more difficult to interpret. Moreover, uncertainties
exist about cloud cover extent. Dai et al. [1999] point out
that clouds have increased during the last 4–5 decades over
the United States and many other regions where DTR was
reported to decrease. Due to the damping effect of clouds on
DTR they see a strong link between the two (also supported
by Karl et al. [1993]). However, more recent studies based
on global scale satellite observations [Rossow and Duenas,
2004] claim that there has been a steady decrease in
cloudiness in the last 20 years raising questions about the
cloud link to DTR.
[5] Most surface temperature retrievals from satellites

are based on polar orbiters. Surface temperature, especially
land surface temperature (LST) has a strong diurnal cycle,
which cannot be captured at the temporal resolution
(approximately two views per day) of polar orbiting
satellites. Jin and Dickinson [2002] and Sun and Pinker
[2005] estimated diurnal range of surface skin temperature
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from the Advanced Very High Resolution Radiometer
(AVHRR) on polar orbiting satellites corrected for diurnal
effects by using typical diurnal patterns derived from
climate model simulations and GOES observations, respec-
tively. Geostationary satellites provide good diurnal cover-
age, which makes them attractive for deriving information
on LST diurnal cycle. Sun and Pinker [2003] introduced a
new split window algorithm (daytime) and a new triple-
window algorithm (nighttime) for LST retrieval from the
Geostationary Operational Environmental Satellite GOES-
8. When compared with ground observations, the root
mean square (RMS) error is about 1 � 2�C and the bias
error is less than 1.0�C for both daytime and nighttime. In
this study, we investigate the spatial variations in the
diurnal range of surface skin temperature as derived from
GOES-8 observations using the method of Sun and Pinker
[2003]. The data and methodology used will be briefly
described in section 2; section 3 will present results; and
discussion and conclusions will be given in section 4.

2. Data and Methodology

2.1. Data

[6] . The mean target brightness temperature and cloud
cover fraction as derived from GOES-8 observations. These
are available as a by-product from a NOAA/NESDIS
operational insolation product generated in support of the
GEWEX (Global Energy and Water Cycle Experiment)
Continental-scale International Project (GCIP) and the
GEWEX Americas Prediction Project (GAPP) activity and
as archived at the University of Maryland (http://www.
meto.umd.edu/~srb/gcip) [Pinker et al., 2003].
[7] . Satellite based classification of land cover from the

NOAA/AVHRR 1-km resolution University of Maryland
product [Hansen et al., 1998] (http://glcf.umiacs.umd.edu/
data/landcover/); it includes 14 International Geosphere-
Biosphere Programme classes [Townshend, 1992].
[8] . The normalized difference vegetation index (NDVI)

data from the Global Inventory Monitoring and Modeling
Studies (GIMMS) (http://glcf.umiacs.umd.edu/data/gimms/)
[Zhou et al., 2003; Tucker et al., 2006].

2.2. LST Retrieval Algorithm

[9] The LST retrieval methodology is described by Sun
and Pinker [2003]. Briefly:

Ts ið Þ ¼ a0 ið Þ þ a1 ið ÞT11 þ a2 ið Þ T11 � T12ð Þ þ a3 ið Þ T11 � T12ð Þ2

þ a4 ið Þ sec q� 1ð Þ ð1Þ

where i is the surface type index [Hansen et al., 1998], q is
the satellite-viewing angle, T11 and T12 are the brightness
temperatures at 10.8 and 12.0 mm channels (http://
www.meto.umd.edu/~srb/gcip), a0 to a4 are coefficients
and Ts is the derived skin temperature.
[10] The coefficients in equation (1) are derived from

GOES-8 forward simulations using the moderate resolu-
tion atmospheric radiance and transmittance model
(MODTRAN) as provided in Sun and Pinker [2004]. The
period 1996 to 2000 is selected for this study since
improved information on clear sky radiances and cloud
cover is available (X. Li et al., Toward improved satellite
estimates of short-wave radiative fluxes: Focus on cloud
detection over snow: 1. Methodology, submitted to Journal
of Geophysical Research, 2005; R. T. Pinker et al., Toward
improved satellite estimates of short-wave radiative fluxes:
Focus on cloud detection over snow: 2. Results, submitted
to Journal of Geophysical Research, 2005). Clear condi-
tions are selected to calculate skin temperature (Ts) if cloud
cover fraction (CCF) less than 10% is reported. The
retrieved Ts is used to calculate the DTR (maximum-
minimum Ts) for clear days (daily CCF < 10%).

3. Results

[11] The five-year average DTRs for the four mid-seasons
show geographical differences, with western and central
U. S. being systematically higher than those of the eastern
U. S. or the northwestern coast (Figure 1). Over the
western U. S., DTR is larger in spring and summer than fall
and winter. Over the eastern part, DTR is larger in spring and
fall than in summer and winter (dividing line between west
and east is about 100�W). Discussion of all plausible causes
of the observed differences is beyond the scope of this paper.

Figure 1. Spatial distribution of DTR derived from the
GOES-8 observations for different months as averaged
from 1996 to 2000 (a) January, (b) April, (c) July, and
(d) October.

Figure 2. Spatial distribution of NDVI derived from
AVHRR observations for different months as averaged
from 1996 to 2000 (a) January, (b) April, (c) July, and
(d) October.
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We have looked at the primary ones such as soil moisture,
evaporation, and vegetation distribution. The distribution of
surface soil moisture for the same time period shows that the
western and central U. S. are dry, while the eastern U. S. and
northwestern coast are wet [Willmott et al., 1985]. Evapora-
tion distribution obtained from the ECMWF 40 Years
Re-Analysis (http://data.ecmwf.int/data/d/era40_mnth/) also
indicates high values in the east as compared to the west,
especially during warm seasons. High evaporation over the
wet region during daytime reduces the maximum tempera-
ture, and consequently the DTR [Zhao and Pitman, 2002].
The vegetation index NDVI for the same time periods is
shown in Figure 2. A remarkable resemblance between high
vegetation and low DTR can be seen for all four mid-season
months. Evapotranspiration from vegetation contributes
significantly to the decrease in DTR during summer in the
eastern United States [Durre and Wallace, 2001]. Moreover,
the smaller DTR areas over the eastern United States are
found to have higher sulfate aerosol emissions than the
western U. S. [Chin et al., 2000]. Sulfate aerosols scatter
solar radiation back to space and tend to cool the surface
during daytime and may result in a decreased DTR [Stone
and Weaver, 2003].
[12] Figure 3 illustrates the 5 year average meridional

mean DTR in July for the following selected LC/LU types:
cropland, forest, grassland, and urban. There is a distinct
difference in DTR between the west and east for each
surface type, the DTRs being much larger over the west
than over the east. In general, the DTR of grasslands are
the largest followed by cropland, forests and urban areas.
The larger scatter in grassland DTR in the east and
seemingly smaller values than for cropland might be due
to the smaller sample of grasslands in the east (2% of total
pixels) than in the west (29%). For the other surface types
the samples in east and west are comparable. Some DTR
values of forests over the west coast are smaller than the
surrounding pixels because the highly vegetated northwest
(Figure 2) is included.

4. Discussion and Conclusions

[13] For the first time, the spatial and seasonal variation
of satellite based estimates of DTR from surface skin
temperature over the United States is shown. The satellite-
derived DTRs show geographical patterns, which are highly

consistent with those of the vegetation (NDVI). Satellite-
derived DTR may be affected by a variety of additional
factors, such as surface topography, soil moisture, soil
composition and thermal properties, evaporation, sulfate
aerosol distributions, and large and local scale climate.
Since the satellite-based estimates are obtained for clear
conditions only, they may serve as better index of climate
change than DTRs of SAT that include the effect of clouds.
It’s expected that part of the spatial variations in satellite
DTR could be explained by soil moisture, vegetation,
aerosols, and LC/LU as described in this paper. Our results
also confirm the simulation results of Zhao and Pitman
[2002], which show that different mechanisms/parameters
dominate over different regions and vary with different
seasons. Further investigations of the quantitative relation-
ship between satellite derived DTR and the above men-
tioned parameters will follow.

[14] Acknowledgments. This work was supported by the VAccess/
MAGIC project, funded by the NASA’s Science Applications Program. The
work that resulted in the DTRs was supported under grants
NA030AR4310045 and NA06GP0404 from the NOAA Office of Global
Programs to the University of Maryland.
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